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edge or non-edge



Trigraphs
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Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)



Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uvuv

Identification of two non-necessarily adjacent vertices
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Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing



Contraction sequence
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A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.
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Gi is obtained by performing one contraction in Gi+1.
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A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .
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Maximum red degree = 0
overall maximum red degree = 0
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Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .
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Maximum red degree = 0
overall maximum red degree = 2



Simple operations preserving small twin-width

I complementation: remains the same
I taking induced subgraphs: may only decrease
I adding one vertex linked arbitrarily: at most “doubles”
I substitution, lexicographic product: max of the twin-widths
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tww(G) = tww(G)
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Induced subgraph
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tww(H) 6 tww(G)



Induced subgraph
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Induced subgraph
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Induced subgraph
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Induced subgraph
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Mimic the contractions otherwise



Induced subgraph

abcdefg

H

abcde

Mimic the contractions otherwise



Adding one vertex v (arbitrarily linked)

A B

v

G

Split every part into their part in A and in B until the very end

tww(G + v) 6 2 · tww(G) + 1



Adding one vertex v (arbitrarily linked)

A B

v

G

Split every part into their part in A and in B until the very end
tww(G + v) 6 2 · tww(G) + 1



Substitution and lexicographic product

G = C5



Substitution and lexicographic product

G = C5, H = P4, substitution G [v ← H]



Substitution and lexicographic product

G = C5, H = P4, lexicographic product G [H]



Substitution and lexicographic product

More generally any modular decomposition



Substitution and lexicographic product

More generally any modular decomposition



Substitution and lexicographic product

tww(G [H]) = max(tww(G), tww(H))



Classes with bounded twin-width

I cographs = twin-width 0
I trees, bounded treewidth, clique-width/rank-width
I grids
I . . .



Trees

If possible, contract two twin leaves



Trees

If not, contract a deepest leaf with its parent



Trees

If not, contract a deepest leaf with its parent



Trees

If possible, contract two twin leaves



Trees

Cannot create a red degree-3 vertex
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Trees
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Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Generalization to bounded treewidth and even bounded rank-width



Grids

4-sequence for planar grids
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4-sequence for planar grids



Grids

4-sequence for planar grids



Grids

4-sequence for planar grids



3-dimensional grids

Contains arbitrary large clique minors



3-dimensional grids

Contract the blue edges in any order → 12-sequence



3-dimensional grids

The d-dimensional grid has twin-width 6 4d (even 3d)



2-lifts, expanders with bounded twin-width

split each vertex in 2, replace each edge by 1 of the 2 matchings

but no balanced separators of size o(n)



2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6

but no balanced separators of size o(n)
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2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6
but no balanced separators of size o(n)



First example of unbounded twin-width

Line graph of a biclique a.k.a. rook graph



First example of unbounded twin-width

No pair of near twins



First example of unbounded twin-width

No pair of near twins



Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Universal bipartite graph
No O(1)-contraction sequence:
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Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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No O(1)-contraction sequence:
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No O(1)-contraction sequence:
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Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

1
12
13
14

123
124
134

1234

2
23
24

234
3

34
4



Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Characterizing bounded twin-width via a vertex ordering

Our next goal:

Theorem ((informal) B., Kim, Thomassé, Watrigant ’20)
If each graph of a class C admits at least one simple (in a sense
that we will define) adjacency matrix then C has bounded
twin-width.



Twin-width in the language of matrices
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Encode a bipartite graph (or, if symmetric, any graph)



Twin-width in the language of matrices

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Contraction of two columns (similar with two rows)



Twin-width in the language of matrices
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How is the twin-width (re)defined?



Twin-width in the language of matrices
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How to tune it for non-bipartite graph?



Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive
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= error value
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Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive
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. . . until there are a single row part and column part



Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive
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Twin-width as maximum error value
of a contraction/division sequence



Grid minor

t-grid minor: t × t-division where every cell is non-empty
Non-empty cell: contains at least one 1 entry
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4-grid minor

A matrix is said t-grid free if it does not have a t-grid minor
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Mixed minor

Mixed cell: not horizontal nor vertical
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3-mixed minor

Every mixed cell is witnessed by a 2× 2 square
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Mixed cell: not horizontal nor vertical
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3-mixed minor

Every mixed cell is witnessed by a 2× 2 square = corner



Mixed minor

Mixed cell: not horizontal nor vertical
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3-mixed minor

A matrix is said t-mixed free if it does not have a t-mixed minor



Mixed value
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≈ (maximum) number of cells with a corner per row/column part
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But we add the number of boundaries containing a corner
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∴ merging row parts do not increase mixed value of column part



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If G admits a t-mixed free adjacency matrix, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di )i with mixed value f (t)
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If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di )i with mixed value f (t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Merge consecutive parts greedily



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di )i with mixed value f (t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Merge consecutive parts greedily



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
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Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .
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1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Stuck, removing every other separation → f (t)
2 mixed cells per part



Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Question
For every k, is there a ck such that every n×m 0, 1-matrix with at
least ck 1 per row and column admits a k-grid minor?

Conjecture (Stanley-Wilf conjecture ’80s)
Any proper permutation class contains only 2O(n) n-permutations.

Klazar showed Füredi-Hajnal ⇒ Stanley-Wilf in 2000
Marcus and Tardos showed Füredi-Hajnal in 2004
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For every k, there is a ck such that every n×m 0, 1-matrix with at
least ck max(n,m) 1 entries admits a k-grid minor.

Conjecture (Stanley-Wilf conjecture ’80s)
Any proper permutation class contains only 2O(n) n-permutations.

Klazar showed Füredi-Hajnal ⇒ Stanley-Wilf in 2000
Marcus and Tardos showed Füredi-Hajnal in 2004
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Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11
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T T T

W

T

T

W
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Let M be an n × n 0, 1-matrix without k-grid minor
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Draw a regular n
k2 × n

k2 division on top of M
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A cell is wide if it has at least k columns with a 1
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A cell is tall if it has at least k rows with a 1
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wide cells per column part. Why?
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In W and T, at most 2 · n
k2 · k
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n entries 1
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There are at most (k − 1)2ck
n
k2 remaining 1. Why?



Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11

W

W

W

T T T

W

T

T

W

¬W ,¬T
1

Choose ck = 2k4(k2

k
)

so that (k − 1)2ck
n
k2 + 2k3(k2

k
)
n 6 ckn



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di )i with mixed value f (t)
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Stuck, removing every other separation → f (t)
2 mixed cells per part

Impossible!
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Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di )i with mixed value f (t)
Step 2: find a contraction sequence with error value g(t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Refinement of Di where each part coincides on the non-mixed cells



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C



Unit interval graphs

Intersection graph of unit segments on the real line



Unit interval graphs

1

0

0

order by left endpoints



Unit interval graphs

1

0

0

not
mixed

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves



Graph minors

Formed by vertex deletion, edge deletion, and edge contraction

A graph G is H-minor free if H is not a minor of G

A graph class is H-minor free if all its graphs are

Planar graphs are exactly the graphs without K5 or K3,3 as a minor

K5 K3,3



Graph minors

Formed by vertex deletion, edge deletion, and edge contraction

A graph G is H-minor free if H is not a minor of G

A graph class is H-minor free if all its graphs are

Planar graphs are exactly the graphs without K5 or K3,3 as a minor

K5 K3,3



Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Given a hamiltonian path, we would just use this order



Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Contracting the 2t subpaths yields a Kt,t-minor, hence a Kt-minor



Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Instead we use a specially crafted lex-DFS discovery order



Theorem (B., Geniet, Kim, Thomassé, Watrigant ’20 & ’21)
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?
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Different conditions imposed in the sequence of red graphs

bd degree: defines bd twin-width

bd component: redefines bd cliquewidth
bd #edges: redefines bd linear cliquewidth



Bd boolean-width ⇒ bd component twin-width

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

2 61 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

Bd boolean-width: binary tree layout s.t. every edge cut in the tree
induces a bipartition with bd # distinct neighborhoods



Bd boolean-width ⇒ bd component twin-width

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

2 61 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

There is a subtree on ` ∈ [d + 1, 2d ] leaves, where d bounds the
number of single-vertex neighborhoods in a bipartition



Bd boolean-width ⇒ bd component twin-width

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

1 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

Two vertices have the same neighborhood outside of this subtree

a



Bd boolean-width ⇒ bd component twin-width

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

1 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

Contracting them preserves the upper bound at 2d
on the size of red connected components



Component twin-width and boolean-width are tied

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded component twin-width iff it has bounded
boolean-width/cliquewidth/rank-width.

Proof.
We just saw one direction.

Conversely, build the binary tree layout based on the contractions.
When red components merge, their subtree gets a same parent.

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded total twin-width iff it has bounded linear
boolean-width/cliquewidth/rank-width.
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Component twin-width and boolean-width are tied

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded component twin-width iff it has bounded
boolean-width/cliquewidth/rank-width.

Proof.
We just saw one direction.
Conversely, build the binary tree layout based on the contractions.
When red components merge, their subtree gets a same parent.

Theorem (Baril, Couceiro, Lagerkvist ’22)
The component twinwidth plus one is at least the cliquewidth and
at most twice the cliquewidth.



Efficient parameterized algorithms via this characterization

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

C
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all red graphs have components of size at most d

C1

C2

C3

C

For every red component C keep every profile
V (C)→ 2{1,2,3} \ {∅} realizable by a proper 3-coloring of G〈C〉
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Efficient parameterized algorithms via this characterization

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

C

Some tuples of the at most d + 1 profiles
corresponding to merging red components are compatible



Efficient parameterized algorithms via this characterization

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d
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corresponding to merging red components are compatible



Efficient parameterized algorithms via this characterization

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

C

Some tuples of the at most d + 1 profiles
corresponding to merging red components are incompatible



Efficient parameterized algorithms via this characterization
Solve 3-Coloring on a graph G with a contraction sequence s.t.

all red graphs have components of size at most d

C1

C2

C3

C

Initialization: time 3n
Update: time 7d d2

Total: time 7d d2n
End: still a profile on the single vertex containing the whole graph?



Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi ) ∨ E (xi , x)

G |= ϕ? ⇔
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Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi ) ∨ E (xi , x)

G |= ϕ? ⇔ k-Dominating Set



Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi )

G |= ϕ? ⇔



Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi )

G |= ϕ? ⇔ k-Independent Set



Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃X1∃X2∃X3(∀x
∨

16i63
Xi (x)) ∧ ∀x∀y

∧
16i63

(Xi (x)∧Xi (y)→ ¬E (x , y))

G |= ϕ? ⇔



Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃X1∃X2∃X3(∀x
∨

16i63
Xi (x)) ∧ ∀x∀y

∧
16i63

(Xi (x)∧Xi (y)→ ¬E (x , y))

G |= ϕ? ⇔ 3-Coloring



The lens of contraction sequences

Class of bounded constraint on red graphs efficient model-checking

linear rank-width bd #edges MSO
rank-width bd component MSO
twin-width bd degree ?

We will reprove the result in bold, and fill the ?
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We will reprove the result in bold, and fill the ?



Courcelle’s theorems
We will reprove with contraction sequences:

Theorem (Courcelle, Makowsky, Rotics ’00)
MSO model checking can be solved in time f (|ϕ|, d) · |V (G)| given
a witness that the clique-width/component twin-width of the input
G is at most d.

generalizes

Theorem (Courcelle ’90)
MSO model checking can be solved in time f (|ϕ|, t) · |V (G)| on
graphs G of treewidth at most t.

I as the incidence graph preserves bounded treewidth,
possible edge-set quantification

I linear FPT approximation for treewidth
I (polynomial) FPT approximation for clique-width



Courcelle’s theorems
We will reprove with contraction sequences:

Theorem (Courcelle, Makowsky, Rotics ’00)
MSO model checking can be solved in time f (|ϕ|, d) · |V (G)| given
a witness that the clique-width/component twin-width of the input
G is at most d.

generalizes

Theorem (Courcelle ’90)
MSO model checking can be solved in time f (|ϕ|, t) · |V (G)| on
graphs G of treewidth at most t.
I as the incidence graph preserves bounded treewidth,

possible edge-set quantification
I linear FPT approximation for treewidth
I (polynomial) FPT approximation for clique-width



Rank-k m-types
Sets of non-equivalent formulas/sentences of quantifier rank at
most k satisfied by a fixed structure:

tpLk (A,~a ∈ Am) = {ϕ(~x) ∈ L[k] : A |= ϕ(~a)},

tpLk (A) = {ϕ ∈ L[k] : A |= ϕ}.

Theorem (folklore)
For L ∈ {FO,MSO}, the number of rank-k m-types is bounded by
a function of k and m only.

Proof.
“L[k + 1] are Boolean combinations of ∃xL[k].”

Rank-k types partition the graphs into g(k) classes.
Efficient Model Checking = quickly finding the class of the input.
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tpLk (A) = {ϕ ∈ L[k] : A |= ϕ}.

Theorem (folklore)
For L ∈ {FO,MSO}, the number of rank-k m-types is bounded by
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Proof.
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Efficient Model Checking = quickly finding the class of the input.



FO Ehrenfeucht-Fraissé game

A B

b1a1

a2

b2

a3

b2

a3

2-player game on two σ-structures A,B (for us, colored graphs)

A[a1, . . . , ak ]



FO Ehrenfeucht-Fraissé game

A Bb1

a1

a2

b2

a3

b2

a3

At each round, Spoiler picks a structure (B) and a vertex therein

A[a1, . . . , ak ]



FO Ehrenfeucht-Fraissé game

A Bb1a1

a2

b2

a3

b2

a3

Duplicator answers with a vertex in the other structure

A[a1, . . . , ak ]



FO Ehrenfeucht-Fraissé game

A Bb1a1
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After q rounds, Duplicator wishes that ai 7→ bi is an isomorphism
between A[a1, . . . , ak ] and B[b1, . . . , bk ]
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A Bb1a1

a2

b2

a3

b2

a3

When no longer possible, Spoiler wins

A[a1, . . . , ak ]
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A Bb1a1

a2

b2

a3
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When no longer possible, Spoiler wins

A[a1, . . . , ak ]



FO Ehrenfeucht-Fraissé game

A Bb1a1

a2

b2

a3

b2

a3

If Duplicator can survive k rounds, we write A ≡FO
k B

Here A ≡FO
2 B and A 6≡FO

3 B



MSO Ehrenfeucht-Fraissé game

A B

Same game but Spoiler can now play set moves
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A B

Same game but Spoiler can now play set moves



MSO Ehrenfeucht-Fraissé game

A B

To which Duplicator answers a set in the other structure



MSO Ehrenfeucht-Fraissé game

A B

Again we write A ≡MSO
k B if Duplicator can survive k rounds



k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
For every σ-structures A,B and logic L ∈ {FO,MSO},

A ≡Lk B if and only if tpLk (A) = tpLk (B).

Proof.
Induction on k.

(⇒) L[k + 1] formulas are Boolean combinations of ∃xϕ or ∃Xϕ
where ϕ ∈ L[k]. Use the answer of Duplicator to x = a or X = A.

(⇐) If tpLk+1(A) = tpLk+1(B), then the type tpLk (A, a) is equal to
some tpLk (B, b). Move a can be answered by playing b.
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MSO model checking for component twin-width d
Partitioned sentences: sentences on (E ,U1, . . . ,Ud )-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph Gi

tpMSO
k (G ,Pi ,C) = {ϕ ∈ MSOE ,U1,...,Ud (k) : (G〈C〉,Pi〈C〉) |= ϕ}.

C1, τ1

C2, τ2

C3, τ3

For each v ∈ V (G), tpk(G ,Pn, {v}) = type of K1
tpk(G ,P1, {V (G)}) = type of G
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τ = tpMSO
k (G ,Pi ,C) based on the τj = tpMSO

k (G ,Pi+1,Cj)?



MSO model checking for component twin-width d
Partitioned sentences: sentences on (E ,U1, . . . ,Ud )-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph Gi

tpMSO
k (G ,Pi ,C) = {ϕ ∈ MSOE ,U1,...,Ud (k) : (G〈C〉,Pi〈C〉) |= ϕ}.

B

X Y
C1, τ1

C2, τ2

C3, τ3

C arises from C1, . . . ,Cd ′ : τ = F (τ1, . . . , τd ′ ,B,X ,Y )



Showing τ = F (τ1, . . . , τd ′,B,X ,Y ) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

Duplicator combines her strategies in the red components
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b7

If Spoiler plays a vertex in the component of type τ1,



Showing τ = F (τ1, . . . , τd ′,B,X ,Y ) via MSO EF game
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Duplicator answers the corresponding winning move
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calls her winning strategy in C ′1
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and plays the union
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Turning it into a uniform algorithm

Reminder:
I #non-equivalent partitioned sentences of rank k: f (d , k)
I #rank-k partitioned types bounded by g(d , k) = 2f (d ,k)

For each newly observed type τ ,
I keep a representative (H,P)τ on at most (d + 1)g(d ,k) vertices
I determine the 0, 1-vector of satisfied sentences on (H,P)τ
I record the value of F (τ1, . . . , τd ′ ,B,X ,Y ) for future uses

To decide G |= ϕ, look at position ϕ in the 0, 1-vector of tpMSO
k (G)



Turning it into a uniform algorithm

Reminder:
I #non-equivalent partitioned sentences of rank k: f (d , k)
I #rank-k partitioned types bounded by g(d , k) = 2f (d ,k)

For each newly observed type τ ,
I keep a representative (H,P)τ on at most (d + 1)g(d ,k) vertices
I determine the 0, 1-vector of satisfied sentences on (H,P)τ
I record the value of F (τ1, . . . , τd ′ ,B,X ,Y ) for future uses

To decide G |= ϕ, look at position ϕ in the 0, 1-vector of tpMSO
k (G)



k-Independent Set given a d-sequence

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: For every connected subset D of size at most k of
the red graph of every Gi , store in T [D, i ] one largest
independent set in G〈D〉 intersecting every vertex of D.

Initialization: T [{v}, n] = {v}

End: T [{V (G)}, 1] = IS of size at least k or largest IS in G

Running time: d2kn2 red connected subgraphs,
actually only d2kn = 2Od (k)n updates

How to compute T [D, i ] from all the T [D′, i + 1]?
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d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: For every connected subset D of size at most k of
the red graph of every Gi , store in T [D, i ] one largest
independent set in G〈D〉 intersecting every vertex of D.

Initialization: T [{v}, n] = {v}

End: T [{V (G)}, 1] = IS of size at least k or largest IS in G
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k-Independent Set: Update of partial solutions

Gi

z

Gi+1

u
v

Best partial solution inhabiting •?

with u, or v , or both



k-Independent Set: Update of partial solutions

Gi

z

Gi+1

u
v

3 unions of 6 d + 2 red connected subgraphs to consider in Gi+1
with u, or v , or both



FO model checking on graphs of bounded twin-width

We will now generalize the previous algorithm to:

Theorem (B., Kim, Thomassé, Watrigant ’20)
FO model checking can be solved in time f (|ϕ|, d) · |V (G)| on
graphs G given with a d-sequence.

Add Gaifman’s locality to our MSO model checking algorithm

Following [Gajarský, Pilipczuk, Przybyszewski, Toruńczyk ’22]
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Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...

P2 is at distance at most 2k−2 from {P1} in (G ,Pi )
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P1
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P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
P3 is at distance at most 2k−3 from {P1,P2} in (G ,Pi )
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(P1,P2, . . . ,Pq) is local around P1 if...
P3 is at distance at most 2k−3 from {P1,P2} in (G ,Pi )
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P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
P4 is at distance at most 2k−4 from {P1,P2,P3} in (G ,Pi )
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(P1,P2, . . . ,Pq) is local around P1 if...
P4 is at distance at most 2k−4 from {P1,P2,P3} in (G ,Pi )



Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
Pq is at distance at most 2k−q from {P1, ...,Pq−1} in (G ,Pi )
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Partitioned local sentences and types

A prenex sentence is partitioned local around X in (G ,Pi ) if of the
form Qx1 ∈ X Qx2 ∈ P2 . . . Qxk ∈ Pk ψ(x1, . . . , xk) with
I ψ is quantifier-free, and
I (X ,P2, . . . ,Pk) local around X in (G ,Pi ).

And the corresponding types:

ltpFO
k (G ,Pi ,X ) = {ϕ : qr(ϕ) 6 k,

ϕ is partitioned local around X in (G ,Pi ),

(G ,Pi ) |= ϕ}.
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Partitioned local sentences/types in (G ,Pn) and (G ,P1)

Initialization of the dynamic programming

In (G ,Pn = {{v} : v ∈ V (G)}): for every v ∈ V (G),
Qx1 ∈ {v} Qx2 ∈ {v} . . . Qxk ∈ {v} ψ ≡ ψ(v , v , . . . , v)

Partitioned local types are easy to compute in (G ,Pn)

Output of the dynamic programming

In (G ,P1 = {V (G)}):
Qx1 ∈ V (G) Qx2 ∈ V (G) . . . Qxk ∈ V (G) ψ ≡ classic sentences

The partitioned local type in (G ,P1) coincides with the type of G
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Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X ) = ltpFO
k (G ′,P ′i , f (X ))

(G ,Pi )

(G ′,P ′i )

P1a1
P2

a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Local strategies win the global game
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k (G ,Pi ,X ) = ltpFO
k (G ′,P ′i , f (X ))

(G ,Pi )

(G ′,P ′i )

P1a1

P2
a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Say, Spoiler plays in P1



Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO
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P1a1

P2
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P3a3

f (P1)
b1

f (P2)
b2

f (P3)
b3

f

Duplicator answers in f (P1) following the local game around P1
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Concluding as in the MSO model checking algorithm

(G ,Pi+1) (G ,Pi ) : X and Y are merged in Z

Partitioned local types around P
I only needs an update if P is at distance at most 2k−1 from Z

I update only involves parts at distance at most 2k−1 from P
I hence at most d2k parts: conclude like MSO model checking

Each contraction: Od ,k(1) = O(d2k ) updates in Od ,k(1) = f (d , k)
Total time: Od ,k(n)
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First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))
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Stable and NIP for hereditary classes

Due to [Baldwin, Shelah ’85; Braunfeld, Laskowski ’22]

Stable class: no transduction of the class contains all ladders
NIP class: no transduction of the class contains all graphs

ladder

Bounded-degree graphs → stable
Unit interval graphs → NIP but not stable
Interval graphs → not NIP

Bounded twin-width classes → NIP, but in general not stable
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FO Model Checking solvable in f (|ϕ|)n on bounded-degree graphs
[Seese ’96]
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FO Model Checking solvable in f (|ϕ|)n1+ε on any nowhere dense class
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End of the story for the subgraph-closed classes
tractable FO Model Checking ⇔ nowhere dense ⇔ stable
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New program: transductions of nowhere dense classes
Not sparse anymore but still stable
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MSO1 Model Checking solvable in f (|ϕ|,w)n on graphs of rank-width w
[Courcelle, Makowsky, Rotics ’00]
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Is σ a subpermutation of τ? solvable in f (|σ|)|τ |
[Guillemot, Marx ’14]
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FO Model Checking solvable in f (|ϕ|, d)n on graphs with a d-sequence
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First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant ’20)
For every class C of binary structures with bounded twin-width and
transduction T, the class T(C) has bounded twin-width.

I Making copies does not change the twin-width
I Adding a unary relation at most doubles it
I Refine parts of the partition sequence by partitioned local type
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More about FO model checking

I Extension to enumeration of FO model checking with
contraction sequences [Gajarský, Pilipczuk, Przybyszewski,
Toruńczyk ’22]

I Twin-width is key for ordered graphs [B, Giocanti, Ossona de
Mendez, Simon, Thomassé, Toruńczyk ’22]

I Progress on stable/structurally sparse classes,
e.g. [Dreier, Mählmann, Siebertz ’23]

I Bounded flip-width [Toruńczyk ’23] common generalization of
bounded expansion and bounded twin-width

I Hope that structures from NIP classes decompose into an
“ordered part” and a “stable part”
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Toruńczyk ’22]

I Twin-width is key for ordered graphs [B, Giocanti, Ossona de
Mendez, Simon, Thomassé, Toruńczyk ’22]
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Stable and structurally sparse classes

Conjecture (Ossona de Mendez)
Every monadically stable class is the FO transduction of a nowhere
dense class.

Morally: Stability coincides with structural sparsity

Shown among classes of bounded linear cliquewidth, cliquewidth,
and now twin-width:



Stable and structurally sparse classes

Conjecture (Ossona de Mendez)
Every monadically stable class is the FO transduction of a nowhere
dense class.

Shown among classes of bounded linear cliquewidth, cliquewidth,
and now twin-width:

Theorem (Gajarský, Pilipczuk, Toruńczyk ’22)
Every stable class of bounded twin-width is the FO transduction of
a class of bounded twin-width without arbitrarily large bicliques.



Stable and structurally sparse classes

Conjecture (Ossona de Mendez)
Every monadically stable class is the FO transduction of a nowhere
dense class.

Shown among classes of bounded linear cliquewidth, cliquewidth,
and now twin-width:

Theorem (Gajarský, Pilipczuk, Toruńczyk ’22, Tww II ’21)
Every stable class of bounded twin-width is the FO transduction of
a class of bounded expansion.



The lens of contraction sequences

Class of bounded FO transduction of constraint on red graphs efficient MC

linear rank-width linear order bd #edges MSO
rank-width tree order bd component MSO
twin-width ? bd degree FO



Compiling bounded twin-width graphs as p-f permutations

Our next goal:

Theorem (B., Nešeťril, Ossona de Mendez, Siebertz, Thomassé ’21)
A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

We already know the “if” part, thus we want to show:

∀ class C of bounded twin-width, ∃ permutation class P avoiding
one permutation and an FO transduction T such that C ⊆T(P).
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Twin-decomposition
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Reading out trigraphs from a twin-decomposition
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Twin-models
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Twin-model: tree edges T , transversal edges V
Example: T (3, 5), V (4, c)

Full twin-model: ancestor–descendant relation ≺, V

Ordered twin-model: T , tree pre-order <, V
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Why full twin-models?
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One can FO reconstruct the initial graph from a full twin-model

E (x , y) := ∃x ′∃y ′
(
x ′ � x ∧ y ′ � y ∧ V (x ′, y ′)

)

but not from a mere twin-model, in general
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Why ordered twin-models?

a d g c b e f

τ = 1

τ = 2

τ = 3

τ = 4

τ = 5

τ = 6

τ = 7

A linear order

1 < 3 < 5 < a < d < g < 2 < c < 4 < b < 6 < e < f

brings us closer to a permutation (≡ two linear orders)



Full and ordered twin-models are transduction equivalent
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x ≺ y := x < y ∧ ∀x < z ≤ y ∀w T (z ,w)→ x ≤ w

y is a strict descendant of x if it comes after in the pre-order, and
every neighbor w (in the tree) of any intermediate z (possibly y)

comes (non-strictly) after x
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Full and ordered twin-models are transduction equivalent

a d g c b e f

τ = 1

τ = 2

τ = 3

τ = 4

τ = 5

τ = 6

τ = 7

To define x < y from ≺, mark each left child with one color,
and express that the before-last vertex on the path from x to the

least ancestor of x and y is marked (or simply x ≺ y)



Done and left to do

graphs full twin-models ordered twin-models
bounded twin-width

bounded twin-width

permutations

Mimicking a good contraction sequence on a full twin-model yields
a good contraction sequence

ordered twin-models and permutations are transduction equivalent
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Done and left to do
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Past this point bounded twin-width is preserved by the FO
transductions, and we just need to show that:

ordered twin-models and permutations are transduction equivalent



Sparsity of the twin-model

Twin-models have bounded twin-width and degeneracy

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Bounded twin-width and degeneracy ⇒ bounded expansion.

Theorem (Nešeťril, Ossona de Mendez ’08)
Bounded expansion ⇒ bounded star chromatic number.

I.e., proper O(1)-coloring such that every two colors induce
a disjoint union of stars
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Encoding: Ordered twin-models to permutations
Fix a star coloring and orient edges away from centers of stars
→ bounded in-degree

a d g c b e f

v1

v3

v2

v4

v5

v6

<1

<2 v1 v1 v3 v3 a v5b f a v5 a g e d v3 g v1 c v2 c v2 c v4 g v4 b v6v4 b f v6 e f

v1 v1v1 v3 v3 v3 v5 v5 a a a d ggg v2v2 ccc v4v4v4 bb b v6v6 ee ff f

1 2 3 4 5 6

colors

List in the pre-order traversal:
I <1: the incoming arcs
I <2: the outgoing arcs

where an arc is a copy of its out-vertex with color of its in-vertex
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Decoding: Permutations to ordered twin-models

Guess the block ends (color 1)

<1

<2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

333027283224221326212319162017181154122914107113182595623

A(3) A(6) A(8) A(11) A(12) A(15) A(17) A(20) A(23) A(26) A(28) A(30) A(33)

B(3)B(6) B(8) B(11) B(12) B(15) B(17) B(20) B(23) B(26) B(28) B(30) B(33)

3 < 6 < 8 < 11 < 12 < 15 < 17 < 20 < 23 < 26 < 28 < 30 < 33

is the tree pre-order (on the domain of the image)

Two vertices are adjacent if their blocks along <1 and <2 contain
a same element (namely, their linking arc)

Use an extra color for the transversal edges (color 2)
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Recent developments

Theorem (B., Nešeťril, Ossona de Mendez, Siebertz, Thomassé ’21)
A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé ’23)
Pattern-free permutations are bounded products of separable
permutations.

As a consequence of these two results,

Corollary (B., Bourneuf, Geniet, Thomassé ’23)
There is a proper permutation class P such that every class of
binary structures has bounded twin-width if and only if it is
a first-order transduction of P.
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A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé ’23)
Pattern-free permutations are bounded products of separable
permutations.

As a consequence of these two results,

Corollary (B., Bourneuf, Geniet, Thomassé ’23)
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The lens of contraction sequences

Class of bounded FO transduction of constr. on red graphs efficient MC

linear rank-width linear order bd #edges MSO
rank-width tree order bd component MSO
twin-width proper perm. class bd degree FO

Thank you for your attention!
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