Twin-width and Logic

Edouard Bonnet

ENS Lyon, LIP

July 24th, HIGHLIGHTS'23, Kassel, Germany

Graphs

Two outcomes between a pair of vertices:
edge or non-edge

Trigraphs

Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

edges to N(u)AN(v) turn red, for N(u) N N(v) red is absorbing

Contraction sequence

A contraction sequence of G:
Sequence of trigraphs G = G,,, G,_1, ..., Go, G such that
G; is obtained by performing one contraction in Gj41.

Contraction sequence

e f
e
00

A contraction sequence of G:
Sequence of trigraphs G = G, G,_1, ..., Go, G such that
G; is obtained by performing one contraction in Gj41.

Contraction sequence

0'?,3
O=0

A contraction sequence of G:
Sequence of trigraphs G = G, G,_1, ..., Go, G such that
G; is obtained by performing one contraction in Gj41.

Contraction sequence

A contraction sequence of G:
Sequence of trigraphs G = G, G,_1, ..., G, Gy such that
G; is obtained by performing one contraction in Gjy1.

Contraction sequence

adg

A contraction sequence of G:
Sequence of trigraphs G = G,,, G,_1, ..., Go, Gy such that
G; is obtained by performing one contraction in Gj41.

Contraction sequence

adg

A contraction sequence of G:
Sequence of trigraphs G = G,,, G,_1, ..., Go, Gy such that
G; is obtained by performing one contraction in Gj41.

Contraction sequence

abcdefg

A contraction sequence of G:
Sequence of trigraphs G = G,,, G,_1, ..., Go, G such that
G; is obtained by performing one contraction in Gj41.

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

Maximum red degree = 0
overall maximum red degree = 0

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

e ef
e
020

Maximum red degree = 2
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

Maximum red degree = 2
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

Maximum red degree = 2
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

adg

Maximum red degree = 1
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

adg

Maximum red degree = 1
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

Maximum red degree = 0
overall maximum red degree = 2

Simple operations preserving small twin-width

> complementation: remains the same
» taking induced subgraphs: may only decrease
» adding one vertex linked arbitrarily: at most “doubles”

P substitution, lexicographic product: max of the twin-widths

Complementation

tww(G) = tww(G)

Complementation

Induced subgraph

(<)
N
(b)—{e)

H G

tww(H) < tww(G)

Induced subgraph

D

o8

H

Ignore absent vertices

Induced subgraph

Mimic the contractions otherwise

Induced subgraph

Mimic the contractions otherwise

Induced subgraph

=

Mimic the contractions otherwise

Induced subgraph

)

Mimic the contractions otherwise

Induced subgraph

abcde

Mimic the contractions otherwise

Adding one vertex v (arbitrarily linked)

Split every part into their part in A and in B until the very end

Adding one vertex v (arbitrarily linked)

/O

B

~®
@

o

Split every part into their part in A and in B until the very end
tww(G +v) < 2-tww(G) +1

JAEEN

Substitution and lexicographic product

Substitution and lexicographic product

G = Gs, H= P4, substitution G[v < H]|

Substitution and lexicographic product

G = Gs, H= P4, lexicographic product G[H]

Substitution and lexicographic product

More generally any modular decomposition

Substitution and lexicographic product

===

=== [oo |

More generally any modular decomposition

Substitution and lexicographic product

=3

=== ®

tww(G[H]) = max(tww(G), tww(H))

Classes with bounded twin-width

» cographs = twin-width 0

> trees, bounded treewidth, clique-width/rank-width
> grids

> ...

Trees

If possible, contract two twin leaves

Trees

If not, contract a deepest leaf with its parent

Trees

If not, contract a deepest leaf with its parent

Trees

If possible, contract two twin leaves

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Generalization to bounded treewidth and even bounded rank-width

Grids

O—0O—"C0O—"—C0O——0
O—0O—"C0O—"—C0O—0
O—O——C0O—C0O0—=0
O—O——C0O—C0O0—=0
O—0O0—C0O—C0C——0

Grids

N

() () ()
\/

/

)))

/ / N\ mu
))) \U
/ / N\ \
I I I \U
N\ N\ L/ \
I I I \u
N\ N\ N\ S
))) e
,/\,/\//\//U

Grids

O—0O—0—0—0
O—O—0O—0O—0
O—O—O—0O—0
—O—O—O—0)
—O—O—0O

Grids

O—0O—"0—"C0——0
O—0O—0O—C0—C0
O—O—C0O——C0—0O
O)))

Grids

SO U
O—O—0O0—0O0—0O
O—0O—0O—C0—C0
O—O—C0O—0—0O
O O)) e

Grids

O—0O—0—0—0
O—O—0O—0O—0
O—O—O—0O—0
O—O0—0—Q

C‘/i\
/

Grids

O—O—0O—=C0
O—O—"C0O—0
O—O—"C0O—0
O—O—0O—=0
O—O—~0CO——=0

4-sequence for planar grids

3-dimensional grids

a; N
AR AR NS Q
NCHESESC A,
4 AT T] P
4 NTFANSTIN KL K
ST T I SN
RIS RSERAN,
'o'oll‘o < < o)
TaNSeENSE

Contains arbitrary large clique minors

3-dimensional grids

‘."‘.

&
LA TR

."/Allnrd-lr

4~ NSRS

O Q‘
d ‘.' Qoo

4«.@«.«...2-...‘
N R 47

./"

Contract the blue edges in any order — 12-sequence

3-dimensional grids

[N

AN

NS

SANEER.S\N ro?’"o

| TR

o . APTTASY
v‘.m.b‘r&.-».&,&-w.r,.ﬁr.

NN N

The d-dimensional grid has twin-width < 4d (even 3d)

2-lifts, expanders with bounded twin-width

split each vertex in 2, replace each edge by 1 of the 2 matchings

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K have twin-width at most 6

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K have twin-width at most 6

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K have twin-width at most 6

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K3 have twin-width at most 6

2-lifts, expanders with bounded twin-width

O

O

Iterated 2-lifts of K3 have twin-width at most 6
but no balanced separators of size o(n)

First example of unbounded twin-width

Line graph of a biclique a.k.a. rook graph

First example of unbounded twin-width

/]
w/h
S|
VAR
\\

O) ® O——0 O

No pair of near twins

First example of unbounded twin-width

.

)/

I
7

@
.
L
v .ig‘vj‘gN$

117
)/

I
1/

]/
I/
/B

]

il
/

\
_;‘

No pair of near twins

Universal bipartite graph

No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No O(1)-contraction sequence:

identification of near twins.

twin-width is not an iterated

\

X

K

\Y
/%,,

!
)

(

)

M’O

;
wM

Universal bipartite graph

No O(1)-contraction sequence:

identification of near twins.

twin-width is not an iterated

\

X

K

\Y
/%,,

!
)

(

)

M’O

;
wM

Universal bipartite graph

No O(1)-contraction sequence:

identification of near twins.

twin-width is not an iterated

\

/

\

A

N

%

Al

%

g
e._i

Universal bipartite graph

No O(1)-contraction sequence:

identification of near twins.

twin-width is not an iterated

\

/

\

A

N

%

Al

%

g
e._i

Universal bipartite graph

No O(1)-contraction sequence:

identification of near twins.

twin-width is not an iterated

.|V_ p
«‘,00
)

(¢

)

Va\
(=)

Universal bipartite graph

No O(1)-contraction sequence:

identification of near twins.

twin-width is not an iterated

.|V_ p
«‘,00
)

(¢

)

Va\
(=)

Universal bipartite graph

No O(1)-contraction sequence:

identification of near twins.

twin-width is not an iterated

&
2

<
o
N

\

"fww.“w.
5

_v

0\

RIS
N

)
<
o

N\

Y

Universal bipartite graph

No O(1)-contraction sequence:

identification of near twins.

twin-width is not an iterated

&
2

<
o
N

\

"fww.“w.
5

_v

0\

IS

)
<
o

N\

Y

Universal bipartite graph

No O(1)-contraction sequence:

identification of near twins.

twin-width is not an iterated

Universal bipartite graph

No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

Characterizing bounded twin-width via a vertex ordering

Our next goal:

Theorem ((informal) B., Kim, Thomassé, Watrigant '20)

If each graph of a class C admits at least one simple (in a sense
that we will define) adjacency matrix then C has bounded
twin-width.

Twin-width in the language of matrices

(1 1111110]
01100101
000000O0O0 1
01001010
10011010
01111100
10111001,

Encode a bipartite graph (or, if symmetric, any graph)

Twin-width in the language of matrices

(1 1(1)1(1)1 1 0]
0 1/1/0[/0|1 0 1
0 0/0/0[0|0 O 1
0 1/0/0[1]0 1 O
1 0l0[1|1/0 1 0
0 1/1]1f1]1 0 0
1 o0(1j1{1jo 0 1)

Contraction of two columns (similar with two rows)

Twin-width in the language of matrices

1 1(1)1 11 0]
01/rjl0 101
00/0/0 001
01/r/l0 010
10/rl1 010
01/1]/1 100
1 0(1J1 00 1

How is the twin-width (re)defined?

Twin-width in the language of matrices

(1 1(1)1 11 0]
01/rjl0 101
00/0/0 001
01/r/l0 010
10/rl1 010
01/1/1 100
1 0(1J1 00 1

How to tune it for non-bipartite graph?

Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

C1laa]lz]]z]o]
ofz]1folof1]o]z
ofofofofofofo]1
oft]ofolz]of1]0
1fofol1]1fo]z]o
ofz]1lz]1ToTo

‘1Jofr]z[xTo]o1

Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

f1l1]r 1|z]1]z]o]
o[z]1 ofof1fo]z
ofofo ofofofo]1
of1]o ofz]of1]0
1{ofo 1]1fofz1]o
ofz]1 1fz]1ToTo
‘1]of1r 1[z]o]o1]

Maximum number of non-constant zones per column or row part
= error value

Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

f1l1]r 1|z]1]z]o]
of1]r ofofz]o]1
olojo ofolofo]1
of1]o ofz]ofz]0
1]ofo 1]1fofz1]o
o[1]1 1]z]1To]o
‘1]ofr 1fxTo]o1)

Maximum number of non-constant zones per column or row part
... until there are a single row part and column part

Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

1]1]1 1]1]1]1]o
oft]r ofofz]ofz
ojoJo oJojofof1
o[1]o of1fo]1]0
1{ofo 1[1]0]1]0
o[tz 1[1]1]o]o
‘101 1]t]ofo]1]

Twin-width as maximum error value
of a contraction/division sequence

Grid minor

t-grid minor: t x t-division where every cell is non-empty
Non-empty cell: contains at least one 1 entry

(1 1]1 1|1 1|1 o]
0 1[1 ofo 1fo 1
0 0olo ofo ofo 1
0 1[0 of1 ofz o
1 0flo 1|1 0|1 O
0 1|1 11 1fo o
1 0f1 1f/1 0|0 1)

4-grid minor

Grid minor

t-grid minor: t x t-division where every cell is non-empty
Non-empty cell: contains at least one 1 entry

(1 1]1 1|1 1|1 o]
0 1[1 ofo 1fo 1
0 0olo ofo ofo 1
0 1[0 of1 ofz o
1 0flo 1|1 0|1 O
0 1|1 11 1fo o
1 0f1 1f/1 0|0 1)

4-grid minor

A matrix is said t-grid free if it does not have a t-grid minor

Mixed minor

Mixed cell: not horizontal nor vertical

O —H|+ OO O
— OO —H]|+H O O
— —H]|O O|O +H O
— Ol dH]|+d — -
— OO O —
N O O|O —
— —H]|O H]|]O —+H O
— OO O]+ O

3-mixed minor

Mixed minor

Mixed cell: not horizontal nor vertical
Nl I N (A T
0 1|1 0 0]1 0
0 0]0 0 0f0 O
0 1]0 0 1|0 1
1 0/0 1 1|0 1
0 1|1 1 1f1 O
10|11 1[0 0

3-mixed minor

= O OO0 H|+—

Every mixed cell is witnessed by a 2 x 2 square = corner

Mixed minor

Mixed cell: not horizontal nor vertical

1 1]1 1 11 1 o
01/100]101
0 0lo o ofo 0 1
0 1/0 0 1/0 1 0
1 0{o1 1010
0 1111|100
10|11 100 1]
3-mixed minor

A matrix is said t-mixed free if it does not have a t-mixed minor

(e ln |

o o

- O

L — N
BECHS

1 01 0 010 1
1 0f1 0 0J0J0 1

0 1{0 0 1|01 O

1 1{0 0 1]0f1 O

Ref1 1|11 0 011 O

Mixed value

3

R

2

R

~ (maximum) number of cells with a corner per row/column part

o~ —|o olo —~
—|o o]~ —]lo o
|- o|lo o]~ o
0001,:‘1:0‘”1
olo Bloolm T
—|— =|o o= =
O Ol H|+ O
=] O H]|O -
¢ € & «

Mixed value

But we add the number of boundaries containing a corner

Mixed value

Rel1 1|1 0 0ofl1]1 0
1 0[l10o0f1]0 1
R3
U1 0]l 0o0fojo 1
0 1[0 0 1]of1 0
R
1 1/0 0 1]0]1 0
0 1|1 1 ol1flo o
Rl [t
|1 0[1 0 1]0f0 1]
G

.. merging row parts do not increase mixed value of column part

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If G admits a t-mixed free adjacency matrix, then tww(G) = 22%0),

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 22"

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 22°".

Step 1: find a division sequence (D;); with mixed value f(t)

1)1]1]1]1]1]1]o
JAANNARNE
ofoJofoJoJo]o]t
o[t]ofo]1]o]1]0
1]oJo]1]1]o]1]0
JAAARRANR
‘t{ofr]1]tfofo]1]

Merge consecutive parts greedily

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 22°".

Step 1: find a division sequence (D;); with mixed value f(t)

1]1]1 1]1]1]1]o0
o[t]r ofofz]o]t1
0f[oJo ofofo]o]t
o[t]o of1]o]1]o
1]ofo 1[1]o[1]0
o[tz 1{1]1]o]o
‘1{ofr 1]tfofo]1]

Merge consecutive parts greedily

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 22°".

Step 1: find a division sequence (D;); with mixed value f(t)

1]1]1 1]1]1]1]o0
oftfr ofofz]oft
ofofo ofofofof1
o[t]o of1]o]1]o
1]ofo 1[1]o[1]0
o[tz 1{1]1]o]o
‘1{ofr 1]tfofo]1]

Merge consecutive parts greedily

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 22"

Step 1: find a division sequence (D;); with mixed value f(t)

1]1]1 1]1]1]1]o0
oftfr ofofz]oft
ofofo ofofofof1
o[t]o of1]o]1]0
1]o]o 1[1]o]1]0
of1]z 1{1]1]o]o
“1fof 1fxTofol]

f(t)

Stuck, removing every other separation — —5* mixed cells per part

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Question

For every k, is there a ¢, such that every n x m 0, 1-matrix with at
least ¢, 1 per row and column admits a k-grid minor?

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Conjecture (reformulation of Fiiredi-Hajnal conjecture '92)

For every k, there is a ¢, such that every n x m 0, 1-matrix with at
least cx max(n, m) 1 entries admits a k-grid minor.

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Conjecture (reformulation of Fiiredi-Hajnal conjecture '92)

For every k, there is a cx such that every n x m 0, 1-matrix with at
least cx max(n, m) 1 entries admits a k-grid minor.

Conjecture (Stanley-Wilf conjecture '80s)

Any proper permutation class contains only 2°(") n-permutations.

Klazar showed Fiiredi-Hajnal = Stanley-Wilf in 2000
Marcus and Tardos showed Fiiredi-Hajnal in 2004

Marcus-Tardos one-page inductive proof

Let M be an n x n 0, 1-matrix without k-grid minor

Marcus-Tardos one-page inductive proof

K2 x k2

Draw a regular 3 x ;3 division on top of M

Marcus-Tardos one-page inductive proof

1
1 111

K2 x k2

A cell is wide if it has at least k columns with a 1

Marcus-Tardos one-page inductive proof

K2 x k2

A cell is tall if it has at least k rows with a 1

Marcus-Tardos one-page inductive proof

K2 x k>

There are less than k(lf) wide cells per column part. Why?

Marcus-Tardos one-page inductive proof

K2 x k>

2
There are less than k(l;() tall cells per row part

Marcus-Tardos one-page inductive proof

W W T
M =
T W T T
T
K2 % k2 W

In W and T, at most 2- %5 - k(%) - k* = 2k3(¥") n entries 1

Marcus-Tardos one-page inductive proof

-W, T

K2 x k2

There are at most (k — 1)%ck 7> remaining 1. Why?

Marcus-Tardos one-page inductive proof

W W T
-W, T
M— 1
T W T T
T
K2 % k2 W

Choose ¢, = 2k4(’f) so that (k — 1)%c, % + 2k3(’f)n < cn

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 2270

Step 1: find a division sequence (D;); with mixed value f(t)

1
1
0
1
0
1

RO O

1
0
0
1
1
1

RIO|O|I0C H |+

H|O|R]|O|1O0 O+

OIR|O|O0|O]~

1
0
0
1
1
0
0

=|Oo|o|o|—~ —|O

‘1ot 11

Stuck, removing every other separation —)

-
A
H_

mixed cells per part

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)

If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 2270

Step 1: find a division sequence (D;); with mixed value f(t)

1]1]1 1f1]1]1]0
0l1]1 O0jof1]0]1
0/0]0 0jojoj0O]1
0[1]0 0]1]0]1]0
1/]0f0 1|1]0]1]0
Ol1f1 1]1]1]0f0
11101 1|{1|{0f0f1]
Stuck, removing every other separation — f(t)

Impossible!

mixed cells per part

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 22000

Step 1: find a division sequence (D;); with mixed value f(t)
Step 2: find a contraction sequence with error value g(t)

1]1]1 1]1]1]1]o
oft]r ofo[z]oft
oJoJo oJojofof1
o]1]o o1]o]1]0
1{ofo 1[1]o]1]0
o[tz 1[1]1]o]o
‘101 1]1]ofo]1]

Refinement of D; where each part coincides on the non-mixed cells

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If Jo s.t. Adj,(G) is t-mixed free, then tww(G) = 2200,

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If Jo s.t. Adj,(G) is t-mixed free, then tww(G) = 2200,

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C

Unit interval graphs

Intersection graph of unit segments on the real line

Unit interval graphs

order by left endpoints

Unit interval graphs

not /
mixed
1 /
0

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

Graph minors

Formed by vertex deletion, edge deletion, and edge contraction
A graph G is H-minor free if H is not a minor of G

A graph class is H-minor free if all its graphs are

Graph minors

Formed by vertex deletion, edge deletion, and edge contraction
A graph G is H-minor free if H is not a minor of G

A graph class is H-minor free if all its graphs are

Planar graphs are exactly the graphs without K5 or K33 as a minor

Bounded twin-width — K;-minor free graphs

Given a hamiltonian path, we would just use this order

Bounded twin-width — K;-minor free graphs

Bt g 1 1
Bi|l 1 1 1 1
B; 1 1} 1 1
B 1 1 1 1 1
B; 11 1 1 1
A1 A As As At

Contracting the 2t subpaths yields a K; :-minor, hence a Ki-minor

Bounded twin-width — K;-minor free graphs

Bt 14 1 1
Byl 1 1 1 1 1
Bs|| 1 1h 1 1
Bl 1 1 1 1 1
B: 111 1 1
A Ay A3 A A

Instead we use a specially crafted lex-DFS discovery order

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.

Bounded rank-width, and even, boolean-width graphs,
every hereditary proper subclass of permutation graphs,
posets of bounded antichain size (seen as digraphs),
unit interval graphs,

Ki-minor free graphs,

map graphs,

subgraphs of d-dimensional grids,

Ki-free unit d-dimensional ball graphs,

Q(log n)-subdivisions of all the n-vertex graphs,

cubic expanders defined by iterative random 2-lifts from Ky,

VV VvV VYVYyVVYVYVY

strong products of two bounded twin-width classes, one with
bounded degree, etc.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.

Bounded rank-width, and even, boolean-width graphs,
every hereditary proper subclass of permutation graphs,
posets of bounded antichain size (seen as digraphs),
unit interval graphs,

K¢-minor free graphs,

map graphs,

subgraphs of d-dimensional grids,

Ki-free unit d-dimensional ball graphs,

Q(log n)-subdivisions of all the n-vertex graphs,

cubic expanders defined by iterative random 2-lifts from Ky,

VV VvV VYVYyVVYVYVY

strong products of two bounded twin-width classes, one with
bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?

Different conditions imposed in the sequence of red graphs

NS BEN
ona.a.a’x‘c O
oea’aaa.cnc
O.Q.Onb.ﬁ.ﬁ
c’x‘o“o.o'x‘c.c

bd component: redefines bd cliquewidth
bd #edges: redefines bd linear cliquewidth

Bd boolean-width = bd component twin-width

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Bd boolean-width: binary tree layout s.t. every edge cut in the tree
induces a bipartition with bd # distinct neighborhoods

Bd boolean-width = bd component twin-width

~
12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

There is a subtree on ¢ € [d + 1, 2d] leaves, where d bounds the
number of single-vertex neighborhoods in a bipartition

Bd boolean-width = bd component twin-width

Two vertices have the same neighborhood outside of this subtree

Bd boolean-width = bd component twin-width

18 19 20 21 22 23 24 25 26

Contracting them preserves the upper bound at 2d
on the size of red connected components

Component twin-width and boolean-width are tied

Theorem (B., Kim, Reinald, Thomassé '22)
A class has bounded component twin-width iff it has bounded
boolean-width /cliquewidth /rank-width.

Proof.

We just saw one direction.

Component twin-width and boolean-width are tied

Theorem (B., Kim, Reinald, Thomassé '22)

A class has bounded component twin-width iff it has bounded
boolean-width /cliquewidth /rank-width.

Proof.

We just saw one direction.

Conversely, build the binary tree layout based on the contractions.
When red components merge, their subtree gets a same parent. [

Theorem (B., Kim, Reinald, Thomassé '22)

A class has bounded total twin-width iff it has bounded linear
boolean-width /cliquewidth /rank-width.

Component twin-width and boolean-width are tied

Theorem (B., Kim, Reinald, Thomassé '22)

A class has bounded component twin-width iff it has bounded
boolean-width /cliquewidth /rank-width.

Proof.

We just saw one direction.

Conversely, build the binary tree layout based on the contractions.
When red components merge, their subtree gets a same parent. [

Theorem (Baril, Couceiro, Lagerkvist '22)

The component twinwidth plus one is at least the cliquewidth and
at most twice the cliquewidth.

Efficient parameterized algorithms via this characterization

Solve 3-COLORING on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

Efficient parameterized algorithms via this characterization

Solve 3-COLORING on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

G

G

For every red component C keep every profile
V(C) — 211231\ {(} realizable by a proper 3-coloring of G(C)

Efficient parameterized algorithms via this characterization

Solve 3-COLORING on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

G

\.

For every red component C keep every profile
V(C) — 211231\ {(} realizable by a proper 3-coloring of G(C)

Efficient parameterized algorithms via this characterization

Solve 3-COLORING on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

G

\. J \

For every red component C keep every profile
V(C) — 211231\ {(} realizable by a proper 3-coloring of G(C)

Efficient parameterized algorithms via this characterization

Solve 3-COLORING on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

Some tuples of the at most d + 1 profiles
corresponding to merging red components are compatible

Efficient parameterized algorithms via this characterization

Solve 3-COLORING on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

Some tuples of the at most d + 1 profiles
corresponding to merging red components are compatible

Efficient parameterized algorithms via this characterization

Solve 3-COLORING on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

Some tuples of the at most d + 1 profiles
corresponding to merging red components are incompatible

Efficient parameterized algorithms via this characterization

Solve 3-COLORING on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

G

Initialization: time 3n

Update: time 79d?

Total: time 79d%n

End: still a profile on the single vertex containing the whole graph?

Formulas, sentences, and model checking

GrAaPH FO/MSO MODEL CHECKING Parameter: |¢|
Input: A graph G and a first-order/monadic second-order sen-
tence ¢ € FO/MSO({E})

Question: G = ¢?

Formulas, sentences, and model checking

GrAaPH FO/MSO MODEL CHECKING Parameter: |¢|
Input: A graph G and a first-order/monadic second-order sen-
tence ¢ € FO/MSO({E})

Question: G = ¢?

Example:

@ = IxyIxp - - - AxVx \/ X =x;V \/ E(x, x;) V E(xi, x)

1<i<k 1<i<k

GE? &

Formulas, sentences, and model checking

GrAaPH FO/MSO MODEL CHECKING Parameter: |¢|
Input: A graph G and a first-order/monadic second-order sen-
tence ¢ € FO/MSO({E})

Question: G = ¢?

Example:

@ = IxyIxp - - - AxVx \/ X =x;V \/ E(x, x;) V E(xi, x)

1<i<k 1<i<k

G E ¢? & k-DOMINATING SET

Formulas, sentences, and model checking

Grara FO/MSO MODEL CHECKING Parameter: |¢|
Input: A graph G and a first-order/monadic second-order sen-
tence ¢ € FO/MSO({E})

Question: G = ¢?

Example:

@ = IxqIxg - - - Ixg /\ —(xi = xj) A =E(xi, X)) A —E(x;, x;)
1<i<j<k

GEp? &

Formulas, sentences, and model checking

Grara FO/MSO MODEL CHECKING Parameter: |¢|
Input: A graph G and a first-order/monadic second-order sen-
tence ¢ € FO/MSO({E})

Question: G = ¢?

Example:

@ = IxqIxg - - - Ixg /\ —(xi = xj) A =E(xi, X)) A —E(x;, x;)
1<i<j<k

G = ¢? & k-INDEPENDENT SET

Formulas, sentences, and model checking

GraPH FO/MSO MODEL CHECKING Parameter: |y
Input: A graph G and a first-order/monadic second-order sen-
tence ¢ € FO/MSO({E})

Question: G |= ¢?

Example:

¢ = 3X13X3X3(Vx \/ Xi(x)) AVxYy N\ (Xi(x)AXi(y) = —E(x,y))

1<i<3 1<i<3

GEp? &

Formulas, sentences, and model checking

GraPH FO/MSO MODEL CHECKING Parameter: |y
Input: A graph G and a first-order/monadic second-order sen-
tence ¢ € FO/MSO({E})

Question: G |= ¢?

Example:

¢ = 3X13X3X3(Vx \/ Xi(x)) AVxYy N\ (Xi(x)AXi(y) = —E(x,y))

1<i<3 1<i<3

G = ¢? & 3-COLORING

The lens of contraction sequences

Class of bounded constraint on red graphs efficient model-checking

linear rank-width bd #edges MSO
rank-width bd component MSO
twin-width bd degree ?

The lens of contraction sequences

Class of bounded constraint on red graphs efficient model-checking

linear rank-width bd #edges MSO
rank-width bd component MSO
twin-width bd degree ?

We will reprove the result in bold, and fill the ?

Courcelle’s theorems

We will reprove with contraction sequences:

Theorem (Courcelle, Makowsky, Rotics '00)

MSO model checking can be solved in time f(|¢|,d) - |V(G)| given
a witness that the clique-width/component twin-width of the input
G is at most d.

generalizes

Theorem (Courcelle '90)

MSO model checking can be solved in time (||, t) - |V(G)| on
graphs G of treewidth at most t.

Courcelle’s theorems

We will reprove with contraction sequences:

Theorem (Courcelle, Makowsky, Rotics '00)

MSO model checking can be solved in time f(|¢|,d) - |V(G)| given
a witness that the clique-width/component twin-width of the input
G is at most d.

generalizes

Theorem (Courcelle '90)
MSO model checking can be solved in time (||, t) - |V(G)| on
graphs G of treewidth at most t.
P as the incidence graph preserves bounded treewidth,
possible edge-set quantification
» linear FPT approximation for treewidth

» (polynomial) FPT approximation for clique-width

Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at
most k satisfied by a fixed structure:

tpi(/,3 € A™) = {p(X) € LIK] : o F ¢(3)},

tpi () = {p € LIK : o |= o}

Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at
most k satisfied by a fixed structure:

tpi (e, 3 € A™) = {p(X) € LIK] - o = ¢(3)},
tpi () = {p € LIK : o |= o}

Theorem (folklore)

For £ € {FO, MSO}, the number of rank-k m-types is bounded by
a function of k and m only.

Proof.
“L[k + 1] are Boolean combinations of IxL[k]." O

Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at
most k satisfied by a fixed structure:

tpi (e, 3 € A™) = {p(X) € LIK] - o = ¢(3)},
tpi () = {p € LIK : o |= o}

Theorem (folklore)
For £ € {FO, MSO}, the number of rank-k m-types is bounded by
a function of k and m only.

Proof.
“L[k + 1] are Boolean combinations of IxL[k]." O

Rank-k types partition the graphs into g(k) classes.
Efficient Model Checking = quickly finding the class of the input.

FO Ehrenfeucht-Fraissé game

AN SN SN N NI

2-player game on two o-structures &, B (for us, colored graphs)

FO Ehrenfeucht-Fraissé game

AN SN SN N NI

At each round, Spoiler picks a structure (98) and a vertex therein

FO Ehrenfeucht-Fraissé game

NN T T T

<N

Duplicator answers with a vertex in the other structure

FO Ehrenfeucht-Fraissé game

AN SN SN N NI

After g rounds, Duplicator wishes that a; — b; is an isomorphism
between f[a1,...,ak] and B[b, ..., by]

FO Ehrenfeucht-Fraissé game

AN SN SN N NI

After g rounds, Duplicator wishes that a; — b; is an isomorphism
between f[a1,...,ak] and B[b, ..., by]

FO Ehrenfeucht-Fraissé game

AN SN SN N NI

When no longer possible, Spoiler wins

FO Ehrenfeucht-Fraissé game

AN SN SN N NI

When no longer possible, Spoiler wins

FO Ehrenfeucht-Fraissé game

NN SN S N N

PR

If Duplicator can survive k rounds, we write & = —FO B
Here of =5° % and of #5°

MSO Ehrenfeucht-Fraissé game

NN T T T T

PN

Same game but Spoiler can now play set moves

MSO Ehrenfeucht-Fraissé game

NN T T T T

PN

Same game but Spoiler can now play set moves

MSO Ehrenfeucht-Fraissé game

[N ENE SN SNESNE SN S a

<N

To which Duplicator answers a set in the other structure

MSO Ehrenfeucht-Fraissé game

RSN NS SN S

PR

Again we write &/ E,'\("SO A if Duplicator can survive k rounds

k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
For every o-structures o/ , B and logic L € {FO, MSO},

o =£ B if and only if tpE (o) = tpf(RB).

k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
For every o-structures o/ , B and logic L € {FO, MSO},

o =£ B if and only if tpE (o) = tpf(RB).
Proof.
Induction on k.

(=) L[k + 1] formulas are Boolean combinations of Ixp or IXp
where ¢ € L[k]. Use the answer of Duplicator to x = a or X = A.

k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
For every o-structures o/ , B and logic L € {FO, MSO},

o =£ B if and only if tpE (o) = tpf(RB).
Proof.
Induction on k.

(=) L[k + 1] formulas are Boolean combinations of Ixp or IXp
where ¢ € L[k]. Use the answer of Duplicator to x = a or X = A.

(<) If tpf, 1 (A) = tpf,1(B), then the type tpf (A, a) is equal to
some tpf(B7 b). Move a can be answered by playing b. O

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E, Ui, ..., Uy)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G;

tpk (G, Pi, €) = {p € MSOE ;... u, (k) : (G(C), Pi(C)) = o}

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E, Ui, ..., Uy)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G;

tpk (G, Pi, €) = {p € MSOE ;... u, (k) : (G(C), Pi(C)) = o}

For each v € V(G)r tpk(Gapn, {V}) = type of Kl
tpx (G, P1,{V(G)}) = type of G

MSO model checking for component twin-width d

Partitioned sentences: sentences on (E, Ui, ..., Uy)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G;
tpk*°(G. Pi, €) = { € MSOE uy,...u, (k) : (G(C), Pi{C)) =).

C3, 73

Gr/ [=

G, m

\. J

7 = tpM39(G, P;, C) based on the Tj = tpMSO(G, Piy1, G)?

MSO model checking for component twin-width d

Partitioned sentences: sentences on (E, Ui, ..., Uy)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G;
tpk *°(G. Pi, €) = { € MSOg uy,... s (k) : (G(C), Pi{C)) =).

(3,73

G/ = -

\. J \

C arises from Cy,...,Cq: 7= F(71,...,7q/, B, X, Y)

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Duplicator combines her strategies in the red components

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

If Spoiler plays a vertex in the component of type 71,

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Duplicator answers the corresponding winning move

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Same in the component of type

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Same in the component of type

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Same in the component of type

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Same in the component of type

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

If Spoiler plays a set, Duplicator looks at the intersection with (i,

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

If Spoiler plays a set, Duplicator looks at the intersection with (i,

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

calls her winning strategy in C{

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

same for the other components

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

same for the other components

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

same for the other components

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

and plays the union

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

that fully defines the winning strategy of Duplicator

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

that fully defines the winning strategy of Duplicator

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

that fully defines the winning strategy of Duplicator

Showing 7 = F(7m,...,74,B,X,Y) via MSO EF game

G, 13

that fully defines the winning strategy of Duplicator

Turning it into a uniform algorithm

Reminder:
» +non-equivalent partitioned sentences of rank k: f(d, k)
> #rank-k partitioned types bounded by g(d, k) = 2f(d:K)

For each newly observed type T,
> keep a representative (H,P), on at most (d + 1)8(¢:K) vertices
» determine the 0, 1-vector of satisfied sentences on (H,P),

» record the value of F(71,...,7q, B, X, Y) for future uses

Turning it into a uniform algorithm

Reminder:
» +non-equivalent partitioned sentences of rank k: f(d, k)
> #rank-k partitioned types bounded by g(d, k) = 2f(d:K)

For each newly observed type T,
> keep a representative (H,P), on at most (d + 1)8(¢:K) vertices
» determine the 0, 1-vector of satisfied sentences on (H,P),

» record the value of F(71,...,7q, B, X, Y) for future uses

To decide G = ¢, look at position ¢ in the 0, 1-vector of tp}'°9(G)

k-INDEPENDENT SET given a d-sequence

d-sequence: G = G, Gp_1,..., Gy, G1 = K3

Algorithm: For every connected subset D of size at most k of
the red graph of every G;, store in T[D,] one largest
independent set in G(D) intersecting every vertex of D.

k-INDEPENDENT SET given a d-sequence

d-sequence: G = G, Gp_1,..., Gy, G1 = K3

Algorithm: For every connected subset D of size at most k of
the red graph of every G;, store in T[D,] one largest
independent set in G(D) intersecting every vertex of D.

Initialization: T[{v},n] = {v}

End: T[{V(G)},1] = IS of size at least k or largest IS in G

Running time: d%n? red connected subgraphs,
actually only d?kn = 294(K) b ypdates

k-INDEPENDENT SET given a d-sequence

d-sequence: G = G, Gp_1,..., Gy, G1 = K3

Algorithm: For every connected subset D of size at most k of
the red graph of every G;, store in T[D,] one largest
independent set in G(D) intersecting every vertex of D.

Initialization: T[{v},n] = {v}
End: T[{V(G)},1] = IS of size at least k or largest IS in G

Running time: d%n? red connected subgraphs,
actually only d?kn = 294(K) b ypdates

How to compute T[D,] from all the T[D', i+ 1]?

k-INDEPENDENT SET: Update of partial solutions

Best partial solution inhabiting e?

k-INDEPENDENT SET: Update of partial solutions

3 unions of < d 4 2 red connected subgraphs to consider in Gji1
with u, or v, or both

FO model checking on graphs of bounded twin-width

We will now generalize the previous algorithm to:

Theorem (B., Kim, Thomassé, Watrigant '20)

FO model checking can be solved in time f(|p|,d) - |V(G)| on
graphs G given with a d-sequence.

FO model checking on graphs of bounded twin-width

We will now generalize the previous algorithm to:

Theorem (B., Kim, Thomassé, Watrigant '20)

FO model checking can be solved in time f(|p|,d) - |V(G)| on
graphs G given with a d-sequence.

Add Gaifman’s locality to our MSO model checking algorithm

Following [Gajarsky, Pilipczuk, Przybyszewski, Torunczyk '22]

Local tuple of parts

(P1,P2,...,Pq) is local around P; if...

Local tuple of parts

(P1,P2,...,Pq) is local around P; if...
P; is at distance at most 252 from {P1} in (G, P;)

Local tuple of parts

(P1,P2,...,Pq) is local around P; if...
P; is at distance at most 252 from {P1} in (G, P;)

Local tuple of parts

(P1,P2,...,Pq) is local around P; if...
Ps is at distance at most 25=3 from {Py, P} in (G, P;)

Local tuple of parts

(P1,P2,...,Pq) is local around P; if...
Ps is at distance at most 25=3 from {Py, P} in (G, P;)

Local tuple of parts

(P1,P2,...,Pq) is local around P; if...
Py is at distance at most 2k=# from {Py, P, P3} in (G, P;)

Local tuple of parts

(P1,P2,...,Pq) is local around P; if...
Py is at distance at most 2k=# from {Py, P, P3} in (G, P;)

Local tuple of parts

(P1,P2,...,Pg) is local around P; if...
Py is at distance at most 25=9 from {P4, ..., Pq_1} in (G, P;)

Local tuple of parts

(P1,P2,...,Pg) is local around P; if...
Py is at distance at most 25=9 from {P4, ..., Pq_1} in (G, P;)

Local tuple of parts

(P1,P2,...,Pg) is local around P; if...
Py is at distance at most 25=9 from {P4, ..., Pq_1} in (G, P;)

Partitioned local sentences and types

A prenex sentence is partitioned local around X in (G, P;) if of the
form Qx1 € X Qxa € Py ... Qxx € P 9(x1,...,xx) with

» ¢ is quantifier-free, and
» (X, Pa,...,Px) local around X in (G, P;).

Partitioned local sentences and types

A prenex sentence is partitioned local around X in (G, P;) if of the
form Qx1 € X Qxa € Py ... Qxx € P 9(x1,...,xx) with

» ¢ is quantifier-free, and
» (X, Pa,...,Px) local around X in (G, P;).

And the corresponding types:
Itp} (G, P, X) = {¢ : ar(y) < k,

¢ is partitioned local around X in (G, P;),

Partitioned local sentences/types in (G, P,) and (G, P;)

Initialization of the dynamic programming

In (G,Pn={{v}:veV(G)}): forevery ve V(G),
Qxe{v @e{v} ... Qe {v}y=¢(v,v,...,v)

Partitioned local types are easy to compute in (G, P,)

Partitioned local sentences/types in (G, P,) and (G, P;)

Initialization of the dynamic programming

In (G,Pn={{v}:veV(G)}): forevery ve V(G),
Qxg € {v} Qe {v} ... @xxe{viyv=9¢(v,v,...,v)

Partitioned local types are easy to compute in (G, P,)

Output of the dynamic programming

In (G, Py = {V(G)}):
Qx1 € V(G) Qx2 € V(G) ... Qxk € V(G) 9 = classic sentences

The partitioned local type in (G, P;) coincides with the type of G

Partitioned local types give the partitioned types
Isom. f : P; — P! with Itpk° (G, P;, X) = Itp}°(G', P!, £(X))

\\\\\\\\\\\\\\\

Local strategies win the global game

Partitioned local types give the partitioned types
Isom. f : P; — P! with Itpk° (G, P;, X) = Itp}°(G', P!, £(X))

\\\

Say, Spoiler plays in Py

Partitioned local types give the partitioned types
Isom. f : P; — P! with Itpk° (G, P;, X) = Itp}°(G', P!, £(X))

Duplicator answers in f(P;) following the local game around P;

Partitioned local types give the partitioned types
Isom. f : P; — P! with Itpk° (G, P;, X) = Itp}°(G', P!, £(X))

Now when Spoiler plays close to Py or f(Py)

Partitioned local types give the partitioned types
Isom. f : P; — P! with Itpk° (G, P;, X) = Itp}°(G', P!, £(X))

Duplicator follows the winning local strategy

Partitioned local types give the partitioned types
Isom. f : P; — P! with Itpk° (G, P;, X) = Itp}°(G', P!, £(X))

Duplicator follows the winning local strategy

Partitioned local types give the partitioned types
Isom. f : P; — P! with Itpk° (G, P;, X) = Itp}°(G', P!, £(X))

If Spoiler plays too far

Partitioned local types give the partitioned types
Isom. f : P; — P! with Itpk° (G, P;, X) = Itp}°(G', P!, £(X))

Duplicator starts a new local game around that new part

Partitioned local types give the partitioned types
Isom. f : P; — P! with Itpk° (G, P;, X) = Itp}°(G', P!, £(X))

Duplicator starts a new local game around that new part

Concluding as in the MSO model checking algorithm

(G,Pit1) ~ (G,P;) : X and Y are merged in Z

Partitioned local types around P

» only needs an update if P is at distance at most 2¥~1 from Z

Concluding as in the MSO model checking algorithm

(G,Pit1) ~ (G,P;) : X and Y are merged in Z

Partitioned local types around P
» only needs an update if P is at distance at most 2¥~1 from Z

» update only involves parts at distance at most 2k~ from P

Concluding as in the MSO model checking algorithm

(G,Pit1) ~ (G,P;) : X and Y are merged in Z

Partitioned local types around P
» only needs an update if P is at distance at most 2¥~1 from Z
» update only involves parts at distance at most 2k~ from P

> hence at most d2 parts: conclude like MSO model checking

Concluding as in the MSO model checking algorithm

(G,Pit1) ~ (G,P;) : X and Y are merged in Z

Partitioned local types around P
» only needs an update if P is at distance at most 2¥~1 from Z
» update only involves parts at distance at most 2k~ from P

> hence at most d2 parts: conclude like MSO model checking

Each contraction: Oy «(1) = O(d2k) updates in Oq (1) = f(d, k)
Total time: Og k(n)

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

e(x,y) = =E(x,y) (complement)
o(x,y) = E(x,y) vV 3zE(x,z) A E(z,y) (square)

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
e(x,y) = ~E(x,y) (complement)
o(x,y) = E(x,y) vV 3zE(x,z) A E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete
g—g

On®)

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
e(x,y) = ~E(x,y) (complement)
o(x,y) = E(x,y) vV 3zE(x,z) A E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete
2—g

oo

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
e(x,y) = ~E(x,y) (complement)
o(x,y) = E(x,y) vV 3zE(x,z) A E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

IR

p(x,y) = E(x,y) V(G(x) A B(y) A =3zR(2) A E(y, 2))
V(R(x) A B(y) A 3zR(z) AN E(y,z) A —3zB(z) A E(y, z))

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
e(x,y) = ~E(x,y) (complement)
o(x,y) = E(x,y) vV 3zE(x,z) A E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

p(x,y) = E(x,y) V(G(x) A B(y) A =3zR(2) A E(y, 2))
V(R(x) A B(y) A 3zR(z) AN E(y,z) A —3zB(z) A E(y, z))

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
e(x,y) = ~E(x,y) (complement)
o(x,y) = E(x,y) vV 3zE(x,z) A E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

Stable and NIP for hereditary classes

Due to [Baldwin, Shelah '85; Braunfeld, Laskowski '22]

Stable class: no transduction of the class contains all ladders
NIP class: no transduction of the class contains all graphs

g%@
="
%

O

ladder

Stable and NIP for hereditary classes

Stable class: no transduction of the class contains all ladders
NIP class: no transduction of the class contains all graphs

N
OWO
—

Bounded-degree graphs — stable

Unit interval graphs — NIP but not stable
Interval graphs — not NIP

ladder

Stable and NIP for hereditary classes

Stable class: no transduction of the class contains all ladders
NIP class: no transduction of the class contains all graphs

N
OWO
—

Bounded-degree graphs — stable

Unit interval graphs — NIP but not stable
Interval graphs — not NIP

ladder

Bounded twin-width classes — NIP, but in general not stable

Classes with known tractable FO model checking

e - ~
NIP \ stable stable

[bounded expansion
|
bounded
rank-width

[polynomial expansionj bounded

pattern [1 | d} degree
: avoidin proper minor-close

g

permuta- map
dense — tions graphs | “sparse”
classes unit interval [PlleYEr classes
\ AN v

Classes with known tractable FO model checking

NIP \ stable

bounded
rank-width

posets of
bounded
width

nowhere dense

[bou nded expansion

l

[polynomial expansionj
I

pattern

.
stable

bounded
degree

avoiding [proper mmor—closed}
cographs | (E-interval) | permuta- | || ~map
dense — tions graphs “sparse”
classes unit interval planar classes
- AN)

FO MoDEL CHECKING solvable in f(|¢|)n on bounded-degree graphs

[Seese '96]

Classes with known tractable FO model checking

NIP \ stable

bounded
rank-width

dense
classes
N\

posets of
bounded

width pattern

. avoiding
permuta-

= tions
unit interval

\

[bounded expansion
l
[polynomial expansionj bounded
1 degree

[proper minor—closed}

J

" "
graphs sparse
planar

classes
J

FO MoDEL CHECKING solvable in f(|¢|)n'™ on any nowhere dense class
[Grohe, Kreutzer, Siebertz '14]

Classes with known tractable FO model checking

p
NIP \ stable

posets of
bounded

width pattern
- avoiding
— tions

bounded
rank-width

dense
classes
N\

\

[bounded expansion
l
[polynomial expansion} bounded
1 degree

[proper minor—closed}

graphs sparse
planar
| (planar]

classes
J

End of the story for the subgraph-closed classes

tractable FO MoDEL CHECK

ING < nowhere dense < stable

Classes with known tractable FO model checking

NIP \ stable

bounded
rank-width

posets of
bounded
width

idi proper minor-closed
svoidng ||)

nowhere dense

[bou nded expansion

l

]\

[polynomial expansionj

pattern 1

permuta-

map ¥ "
dense — tions graphs i sparse
classes unit interval 0 planar classes |

New program: transductions of nowhere dense classes

.
stable

bounded
degree

Not sparse anymore but still stable

Classes with known tractable FO model checking

NIP \ stable

bounded
rank-width

dense
classes
N\

posets of
bounded
width

unit interval

pattern
avoiding
permuta-
tions

\
sabl

[bou nded expansion
l

[polynomial expansionj bounded
1 degree
[proper mmor—closed}

J

) "
graphs sparse
. “-planar
_

classes
J

MSO; MoODEL CHECKING solvable in f(|¢|, w)n on graphs of rank-width w
[Courcelle, Makowsky, Rotics '00]

Classes with known tractable FO model checking

NIP \ stable

posets of
bounded
width

bounded
rank-width

cographs -interval) [sermuta-
dense — tions
classes unit interval
N\

nowhere dense

[bou nded expansion
l

[polynomial expansionj

I
[proper minor—closed}

-
graphs

planar
\ (planar]

pattern

.
stable

bounded
degree

“sparse”
classes
J

Is o a subpermutation of 77 solvable in f(|o|)|7|

[Guillemot, Marx '14]

Classes with known tractable FO model checking

NIP \ stable

bounded
rank-width

posets of
bounded
width

nowhere dense

[bou nded expansion
l

[polynomial expansionj

pattern 1

avoiding [proper mmor—closed}
cographs | (E-interval) | permuta- | || ~map
dense — tions graphs “sparse”
classes unit interval planar classes
- AN)

.
stable

bounded
degree

FO MobEL CHECKING solvable in (||, w)n? on posets of width w

[GHLOORS '15]

Classes with known tractable FO model checking

(- s 2
NIP \ stable stable

[bou nded expansion
posets of [
bounded

bounded

| [polynomial expansionj bounded
width pattern R degree
idi [proper mmor—closed}

rank-width

. avoiding
permuta- map
dense — tions | “sparse”
classes)l classes/

FO MoDEL CHECKING solvable in f(|¢|)n®®) on map graphs
[Eickmeyer, Kawarabayashi '17]

Classes with known tractable FO model checking

posets of
bounded

width pattern

bounded
rank-width

; avoidin
permutag—
dense

NIP \ Stab|e[bounded twin—width] f

\"'[polynomial expansionj

— tions
unit interval
J

classes
N\

map y "
graphs | sparse
classes/

&

nowhere dense

[bou nded expansion
l

I
proper minor—closed}

.
stable

bounded
degree

FO MoDEL CHECKING solvable in f(|¢], d)n on graphs with a d-sequence
[B., Kim, Thomassé, Watrigant '20]

First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)

For every class C of binary structures with bounded twin-width and
transduction I, the class I (C) has bounded twin-width.

First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)

For every class C of binary structures with bounded twin-width and
transduction I, the class I (C) has bounded twin-width.

» Making copies does not change the twin-width

» Adding a unary relation at most doubles it

First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)

For every class C of binary structures with bounded twin-width and
transduction I, the class I (C) has bounded twin-width.

» Making copies does not change the twin-width
» Adding a unary relation at most doubles it

P> Refine parts of the partition sequence by partitioned local type

More about FO model checking

» Extension to enumeration of FO model checking with
contraction sequences [Gajarsky, Pilipczuk, Przybyszewski,
Torunczyk '22]

More about FO model checking

» Extension to enumeration of FO model checking with
contraction sequences [Gajarsky, Pilipczuk, Przybyszewski,
Torunczyk '22]

» Twin-width is key for ordered graphs [B, Giocanti, Ossona de
Mendez, Simon, Thomassé, Toruiczyk '22]

More about FO model checking

» Extension to enumeration of FO model checking with
contraction sequences [Gajarsky, Pilipczuk, Przybyszewski,
Torunczyk '22]

» Twin-width is key for ordered graphs [B, Giocanti, Ossona de
Mendez, Simon, Thomassé, Toruiczyk '22]

» Progress on stable/structurally sparse classes,
e.g. [Dreier, Mahlmann, Siebertz '23]

More about FO model checking

» Extension to enumeration of FO model checking with
contraction sequences [Gajarsky, Pilipczuk, Przybyszewski,
Torunczyk '22]

» Twin-width is key for ordered graphs [B, Giocanti, Ossona de
Mendez, Simon, Thomassé, Toruiczyk '22]

» Progress on stable/structurally sparse classes,
e.g. [Dreier, Mahlmann, Siebertz '23]

» Bounded flip-width [Toruriczyk '23] common generalization of
bounded expansion and bounded twin-width

More about FO model checking

» Extension to enumeration of FO model checking with
contraction sequences [Gajarsky, Pilipczuk, Przybyszewski,
Torunczyk '22]

» Twin-width is key for ordered graphs [B, Giocanti, Ossona de
Mendez, Simon, Thomassé, Toruiczyk '22]

» Progress on stable/structurally sparse classes,
e.g. [Dreier, Mahlmann, Siebertz '23]

» Bounded flip-width [Toruriczyk '23] common generalization of
bounded expansion and bounded twin-width

» Hope that structures from NIP classes decompose into an
“ordered part” and a “stable part”

Stable and structurally sparse classes

Conjecture (Ossona de Mendez)

Every monadically stable class is the FO transduction of a nowhere
dense class.

Morally: Stability coincides with structural sparsity

Stable and structurally sparse classes

Conjecture (Ossona de Mendez)

Every monadically stable class is the FO transduction of a nowhere
dense class.

Shown among classes of bounded linear cliquewidth, cliquewidth,
and now twin-width:
Theorem (Gajarsky, Pilipczuk, Torunczyk '22)

Every stable class of bounded twin-width is the FO transduction of
a class of bounded twin-width without arbitrarily large bicliques.

Stable and structurally sparse classes

Conjecture (Ossona de Mendez)

Every monadically stable class is the FO transduction of a nowhere
dense class.

Shown among classes of bounded linear cliquewidth, cliquewidth,
and now twin-width:

Theorem (Gajarsky, Pilipczuk, Torunczyk '22, Tww Il '21)
Every stable class of bounded twin-width is the FO transduction of
a class of bounded expansion.

The lens of contraction sequences

Class of bounded FO transduction of constraint on red graphs efficient MC

linear rank-width linear order bd #edges MSO
rank-width tree order bd component MSO
twin-width ? bd degree FO

Compiling bounded twin-width graphs as p-f permutations

Our next goal:

Theorem (B., Neettil, Ossona de Mendez, Siebertz, Thomassé '21)

A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

Compiling bounded twin-width graphs as p-f permutations

Our next goal:

Theorem (B., Neettil, Ossona de Mendez, Siebertz, Thomassé '21)

A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

We already know the “if" part, thus we want to show:

V class C of bounded twin-width, 3 permutation class P avoiding
one permutation and an FO transduction such that C C 7 (P).

Twin-decomposition

SR 20 Bo
o."o‘a WOD @& D
8y vy &
&) oo ®
0~

o' ® ©

Contraction tree + transversal adjacencies (bicliques) + time 7

Reading out trigraphs from a twin-decomposition

Twin-models

Twin-model: tree edges T, transversal edges V
Example: T(3,5), V(4,c¢)

Twin-models

Twin-model: tree edges T, transversal edges V

Full twin-model: ancestor—descendant relation <, V
Example: 2 < e

Twin-models

Twin-model: tree edges T, transversal edges V

Full twin-model: ancestor—descendant relation <, V

Ordered twin-model: T, tree pre-order <, V
l1<3<b<ca<d<g<2<c<d<b<gbtge<f

Twin-models

Twin-model: tree edges T, transversal edges V

Full twin-model: ancestor—descendant relation <, V

Ordered twin-model: T, tree pre-order <, V

Why full twin-models?

One can FO reconstruct the initial graph from a full twin-model

E(x,y):=3x3y (X' <x Ay 2y A V(X,y))

Why full twin-models?

One can FO reconstruct the initial graph from a full twin-model
E(x,y) =3XFy' (X' =x Ay <y A V(X,y))

Example: E(c,f) sincec <c, 4 =<f, V(4,¢)

Why full twin-models?

One can FO reconstruct the initial graph from a full twin-model
E(x,y):=3x3y (X' <x Ay 2y A V(X,y))

but not from a mere twin-model, in general

Why ordered twin-models?

A linear order

1<3<bh<a<d<g<2<c<id<b<b<e<f

brings us closer to a permutation (= two linear orders)

Full and ordered twin-models are transduction equivalent

X<y=x<y ANVx<z<yVw T(z,w) > x<w

Full and ordered twin-models are transduction equivalent

X<y=x<y ANVx<z<yVw T(z,w) > x<w

vy is a strict descendant of x if it comes after in the pre-order, and
every neighbor w (in the tree) of any intermediate z (possibly y)
comes (non-strictly) after x

Full and ordered twin-models are transduction equivalent

To define x < y from <, mark each left child with one color,
and express that the before-last vertex on the path from x to the
least ancestor of x and y is marked (or simply x < y)

Done and left to do

graphs «—— full twin-models «— ordered twin-models
bounded twin-width

Done and left to do

graphs «—— full twin-models «— ordered twin-models

bounded twin-width ———> bounded twin-width

Mimicking a good contraction sequence on a full twin-model yields
a good contraction sequence

Done and left to do

graphs «—— full twin-models «— ordered twin-models

bounded twin-width ——> bounded twin-width

Past this point bounded twin-width is preserved by the FO
transductions, and we just need to show that:

ordered twin-models and permutations are transduction equivalent

Sparsity of the twin-model

Twin-models have bounded twin-width and degeneracy

Sparsity of the twin-model

Twin-models have bounded twin-width and degeneracy

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Bounded twin-width and degeneracy = bounded expansion.

Sparsity of the twin-model

Twin-models have bounded twin-width and degeneracy

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)

Bounded twin-width and degeneracy = bounded expansion.
Theorem (Nesetfil, Ossona de Mendez '08)
Bounded expansion = bounded star chromatic number.

l.e., proper O(1)-coloring such that every two colors induce
a disjoint union of stars

Encoding: Ordered twin-models to permutations

Fix a star coloring and orient edges away from centers of stars
— bounded in-degree

colors

OOOOLOG

a] < 0 < 7

T OOOOOOOOOLOOOOOEEOOLOOOYWOOOOEWOODOD
< OOOOOOROOOOOLOOOOOOOLOOOVWOLOOOO®O®OD

Encoding: Ordered twin-models to permutations

Fix a star coloring and orient edges away from centers of stars
— bounded in-degree

colors

OOOOLOG

a] c 0 <]

T OOOOOOOOOLOOOOOEEOOLOOOYWOOOOEWOODOD
< OOOOOOROOOOOLOOOOOOOLOOOVWOLOOOO®O®OD

List in the pre-order traversal:
> <;: the incoming arcs
> <5: the outgoing arcs
where an arc is a copy of its out-vertex with color of its in-vertex

Decoding: Permutations to ordered twin-models

Guess the block ends (color 1)

A@3) A6) AR) A1) A(12) A(15) A(IT) A(20) A(23) A(26) A(28) A(30) A(33)
<[201 5 @7 @y 10 a[@] 14 B @18 19 @21 22 6321 25 @27 @[20 &O[31 32 &3]
< [@]2 ®5 9 25 @3 @7 10 14 2 @[+ B[1 18 B[®]16 19 B2 @13 22 21 32 B27 DB

B(3) B(6) B() B(11) B(12) B(15) B(I7T) B(20) B(23) B(26) B(28) B(30) B(33)

3<6<8<1l<12«<15<17<20<23<26<28<30<33

is the tree pre-order (on the domain of the image)

Decoding: Permutations to ordered twin-models

Guess the block ends (color 1)

A@3) A6) AR) A1) A(12) A(15) A(IT) A(20) A(23) A(26) A(28) A(30) A(33)
<[201 5 @7 @y 10 a[@] 14 B @18 19 @21 22 6321 25 @27 @[20 &O[31 32 &3]
< [@]2 ®5 9 25 @3 @7 10 14 2 @[+ B[1 18 B[®]16 19 B2 @13 22 21 32 B27 DB

B(3) B(6) B(8) B(11) B(12) B(15) B(17) B(20) B(23) B(26) B(28) B(30) B(33)

3<6<8<1l<12«<15<17<20<23<26<28<30<33

is the tree pre-order (on the domain of the image)

Two vertices are adjacent if their blocks along <1 and <, contain
a same element (namely, their linking arc)

Decoding: Permutations to ordered twin-models

Guess the block ends (color 1)

A@3) A6) AR) A1) A(12) A(15) A(IT) A(20) A(23) A(26) A(28) A(30) A(33)
<[201 5 @7 @y 10 a[@] 14 B @18 19 @21 22 6321 25 @27 @[20 &O[31 32 &3]
< [@]2 ®5 9 25 @3 @7 10 14 2 @[+ B[1 18 B[®]16 19 B2 @13 22 21 32 B27 DB

B(3) B(6) B(8) B(11) B(12) B(15) B(17) B(20) B(23) B(26) B(28) B(30) B(33)

3<6<8<1l<12«<15<17<20<23<26<28<30<33

is the tree pre-order (on the domain of the image)

Two vertices are adjacent if their blocks along <1 and <, contain
a same element (namely, their linking arc)

Use an extra color for the transversal edges (color 2)

Recent developments

Theorem (B., Nesetfil, Ossona de Mendez, Siebertz, Thomassé '21)

A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

Recent developments

Theorem (B., Nesetfil, Ossona de Mendez, Siebertz, Thomassé '21)

A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé '23)

Pattern-free permutations are bounded products of separable
permutations.

Recent developments

Theorem (B., Nesetfil, Ossona de Mendez, Siebertz, Thomassé '21)

A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé '23)

Pattern-free permutations are bounded products of separable
permutations.

As a consequence of these two results,

Corollary (B., Bourneuf, Geniet, Thomassé '23)

There is a proper permutation class P such that every class of
binary structures has bounded twin-width if and only if it is
a first-order transduction of P.

The lens of contraction sequences

Class of bounded FO transduction of constr. on red graphs efficient MC

linear rank-width linear order bd #edges MSO
rank-width tree order bd component MSO
twin-width proper perm. class bd degree FO

The lens of contraction sequences

Class of bounded FO transduction of constr. on red graphs efficient MC
linear rank-width linear order bd #edges MSO
rank-width tree order bd component MSO
twin-width proper perm. class bd degree FO

Thank you for your attention!

