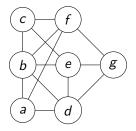
Twin-width and Logic

Édouard Bonnet

ENS Lyon, LIP

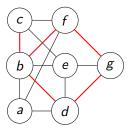
July 24th, HIGHLIGHTS'23, Kassel, Germany

Graphs



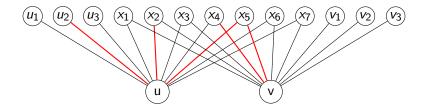
Two outcomes between a pair of vertices: edge or non-edge

Trigraphs



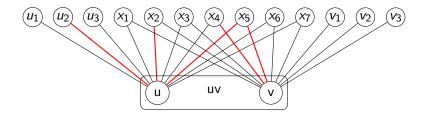
Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

Contractions in trigraphs



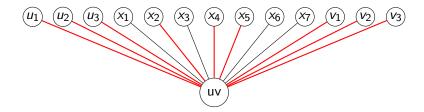
Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

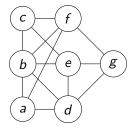


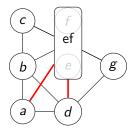
Identification of two non-necessarily adjacent vertices

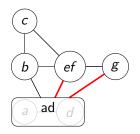
Contractions in trigraphs

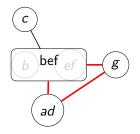


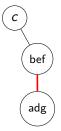
edges to $N(u)\triangle N(v)$ turn red, for $N(u)\cap N(v)$ red is absorbing



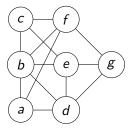






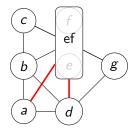


tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have $maximum\ red\ degree$ at most d.



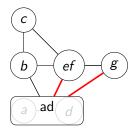
Maximum red degree = 0 overall maximum red degree = 0

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have $maximum\ red\ degree$ at most d.



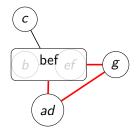
Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have $maximum\ red\ degree$ at most d.



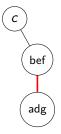
Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have $maximum\ red\ degree$ at most d.



Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have $maximum\ red\ degree$ at most d.



 $\label{eq:maximum red degree} \mbox{Maximum red degree} = 1 \\ \mbox{overall maximum red degree} = 2 \\ \mbox{}$

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have $maximum\ red\ degree$ at most d.

 $\label{eq:maximum red degree} \mbox{Maximum red degree} = 1 \\ \mbox{overall maximum red degree} = 2 \\ \mbox{}$

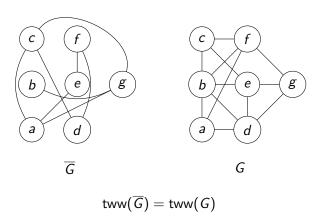
tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have $maximum\ red\ degree$ at most d.

Maximum red degree = 0 overall maximum red degree = 2

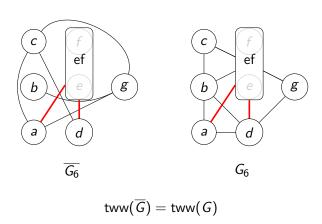
Simple operations preserving small twin-width

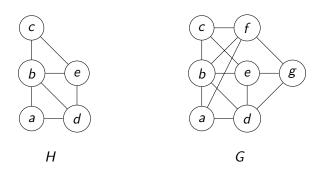
- complementation: remains the same
- taking induced subgraphs: may only decrease
- adding one vertex linked arbitrarily: at most "doubles"
- substitution, lexicographic product: max of the twin-widths

Complementation

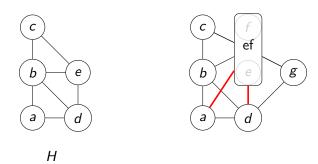


Complementation

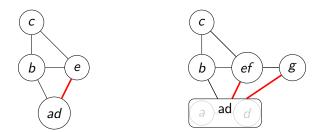


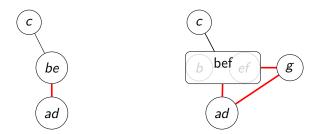


 $\mathsf{tww}(H) \leqslant \mathsf{tww}(G)$

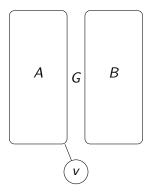


Ignore absent vertices



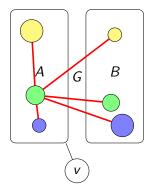


Adding one vertex v (arbitrarily linked)

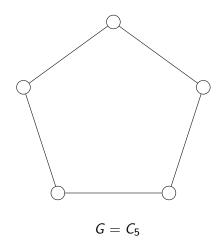


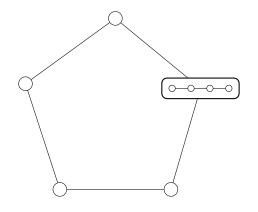
Split every part into their part in A and in B until the very end

Adding one vertex v (arbitrarily linked)

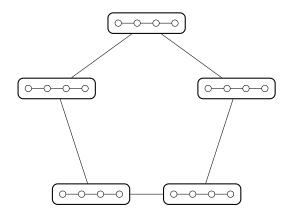


Split every part into their part in A and in B until the very end $\operatorname{tww}(G+v)\leqslant 2\cdot\operatorname{tww}(G)+1$

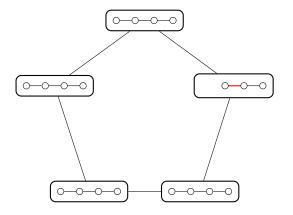




 $G = C_5$, $H = P_4$, substitution $G[v \leftarrow H]$

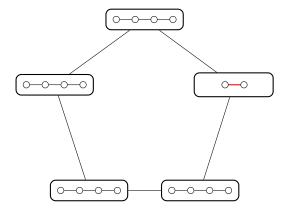


 $G = C_5$, $H = P_4$, lexicographic product G[H]



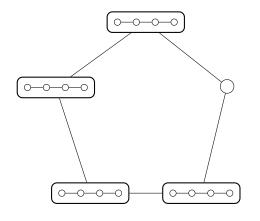
More generally any modular decomposition

Substitution and lexicographic product



More generally any modular decomposition

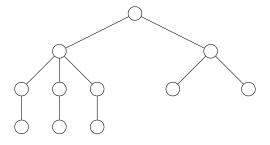
Substitution and lexicographic product



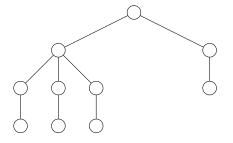
 $\mathsf{tww}(G[H]) = \mathsf{max}(\mathsf{tww}(G), \mathsf{tww}(H))$

Classes with bounded twin-width

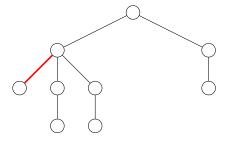
- ► cographs = twin-width 0
- trees, bounded treewidth, clique-width/rank-width
- grids
- **...**



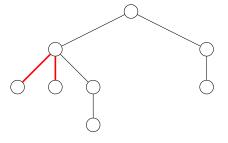
If possible, contract two twin leaves



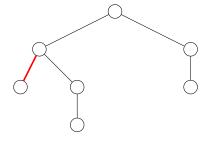
If not, contract a deepest leaf with its parent

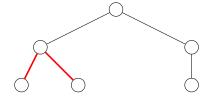


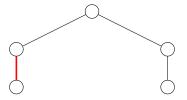
If not, contract a deepest leaf with its parent

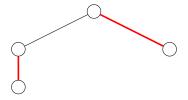


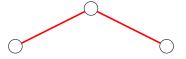
If possible, contract two twin leaves



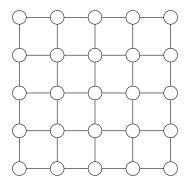


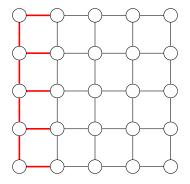


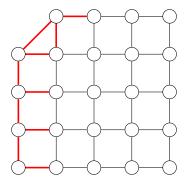


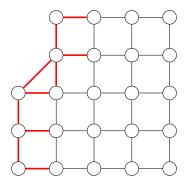


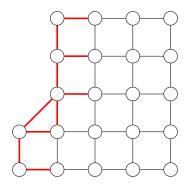
Generalization to bounded treewidth and even bounded rank-width

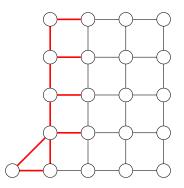


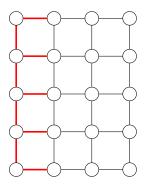






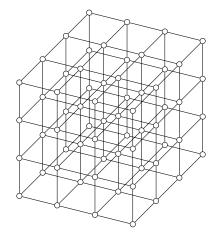






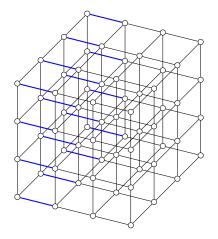
4-sequence for planar grids

3-dimensional grids



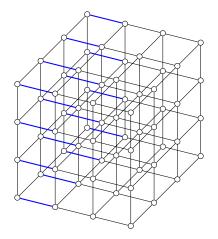
Contains arbitrary large clique minors

3-dimensional grids

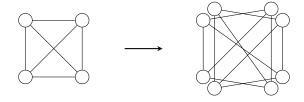


Contract the blue edges in any order \rightarrow 12-sequence

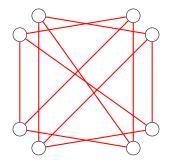
3-dimensional grids



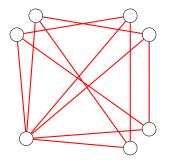
The d-dimensional grid has twin-width $\leqslant 4d$ (even 3d)



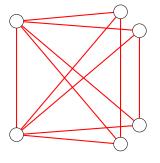
split each vertex in 2, replace each edge by $1\ \text{of the 2}\ \text{matchings}$



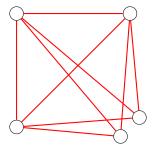
Iterated 2-lifts of K_4 have twin-width at most 6



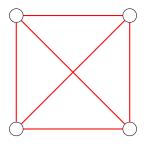
Iterated 2-lifts of K_4 have twin-width at most 6



Iterated 2-lifts of K_4 have twin-width at most 6

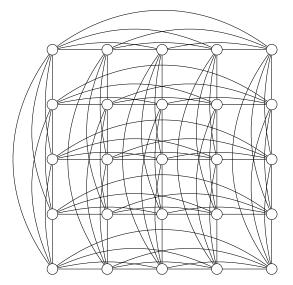


Iterated 2-lifts of K_4 have twin-width at most 6



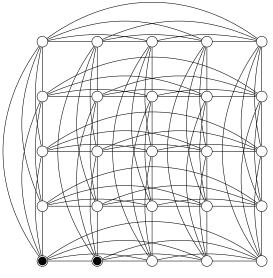
Iterated 2-lifts of K_4 have twin-width at most 6 but no balanced separators of size o(n)

First example of unbounded twin-width



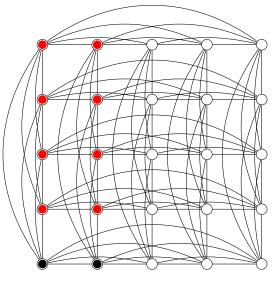
Line graph of a biclique a.k.a. rook graph

First example of unbounded twin-width



No pair of near twins

First example of unbounded twin-width



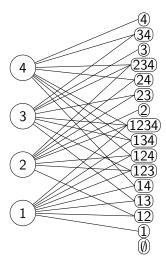
No pair of near twins

Universal bipartite graph

No O(1)-contraction sequence: twin-width is *not* an iterated identification of near twins.

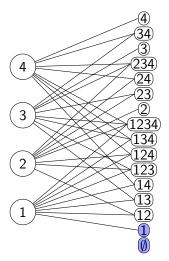
Universal bipartite graph

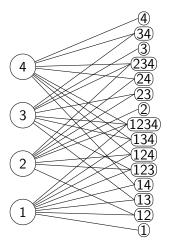
No O(1)-contraction sequence: twin-width is not an iterated identification of near twins.

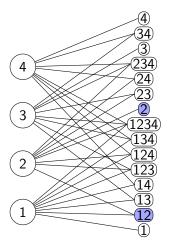


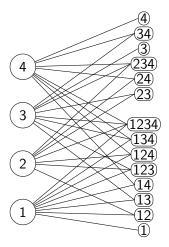
Universal bipartite graph

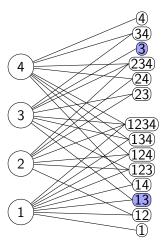
No O(1)-contraction sequence: twin-width is not an iterated identification of near twins.

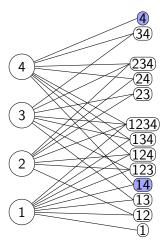


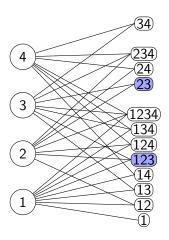


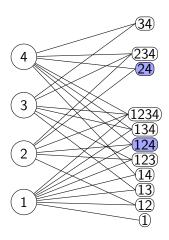


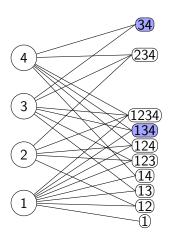


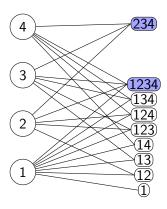


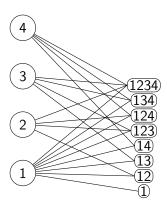


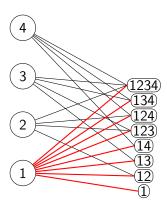












Characterizing bounded twin-width via a vertex ordering

Our next goal:

Theorem ((informal) B., Kim, Thomassé, Watrigant '20)

If each graph of a class $\mathcal C$ admits at least one simple (in a sense that we will define) adjacency matrix then $\mathcal C$ has bounded twin-width.

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Encode a bipartite graph (or, if symmetric, any graph)

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Contraction of two columns (similar with two rows)

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & r & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & r & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & r & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

How is the twin-width (re)defined?

```
\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & r & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & r & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & r & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}
```

How to tune it for non-bipartite graph?

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

1	1	1	1	1	1	1	0
							1
							1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
							0
1	0	1	1	1	0	0	1

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

1	1	1				1	
0	1	1				0	
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Maximum number of non-constant zones per column or row part = error value

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1				0	
1	0	1	1	1	0	0	1

Maximum number of non-constant zones per column or row part ... until there are a single row part and column part

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

1	1	1	1	1	1	1	0
	1					0	
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
	1					0	
1	0	1	1	1	0	0	1

Twin-width as maximum error value of a contraction/division sequence

Grid minor

t-grid minor: $t \times t$ -division where every cell is non-empty Non-empty cell: contains at least one 1 entry

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0							
0	1	0	0 1	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1 1	1	1	0	0
1	0	1	1	1	0	0	1

4-grid minor

Grid minor

t-grid minor: $t \times t$ -division where every cell is non-empty Non-empty cell: contains at least one 1 entry

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0							
0	1	0	0 1	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1 1	1	1	0	0
1	0	1	1	1	0	0	1

4-grid minor

A matrix is said *t*-**grid free** if it does not have a *t*-grid minor

Mixed minor

Mixed cell: not horizontal nor vertical

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ \end{bmatrix}$$

3-mixed minor

Mixed minor

Mixed cell: not horizontal nor vertical

3-mixed minor

Every mixed cell is witnessed by a 2×2 square = **corner**

Mixed minor

Mixed cell: not horizontal nor vertical

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ \end{bmatrix}$$

3-mixed minor

A matrix is said t-mixed free if it does not have a t-mixed minor

Mixed value

R_4	1	1	1	0	0	1	1	0
R_3	1 1	0	1	0	0	1	0	1 1
13	1	0	1	0	0	0	0	1
R_2	0	1	0	0	1 1	0	1	0
12	1	1	0	0	1	0	1	0
R_1	0	1	1	1	0 1	1	0	0
١١	1	0	1	0	1	0	0	1
	_			C_2			-	_

pprox (maximum) number of cells with a corner per row/column part

Mixed value

$$R_{4}\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ R_{1} & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

But we add the number of boundaries containing a corner

Mixed value

R_4	1	1	1	0	0	1	1	0
P.	1	0	1	0	0	1	0	1
113	1	0	$\bar{1}$	0	0	0	0	1
D.	0	1	0	0	1	0	1	0
Λ2	1	1	0	0	1	0	1	1 1 0 0
R_1	0	1	$ \bar{1} $	1	0	1	0	0
' \1	1	0	1	0	1	0	0	1
	_			C_2				_

... merging row parts do not increase mixed value of column part

Theorem (B., Kim, Thomassé, Watrigant '20) If G admits a t-mixed free adjacency matrix, then $tww(G) = 2^{2^{O(t)}}$.

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Merge consecutive parts greedily

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

1	1	1					0
0	1	1					1
0							1
0	1	0					0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Merge consecutive parts greedily

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

1							
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0					0
1	0	0					0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Merge consecutive parts greedily

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

1	1	1	1	1	1	1	0
	1		0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Stuck, removing every other separation $ightarrow rac{f(t)}{2}$ mixed cells per part

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed Question

For every k, is there a c_k such that every $n \times m \ 0, 1$ -matrix with at least $c_k \ 1$ per row and column admits a k-grid minor?

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed Conjecture (reformulation of Füredi-Hajnal conjecture '92) For every k, there is a c_k such that every $n \times m$ 0,1-matrix with at least $c_k \max(n,m)$ 1 entries admits a k-grid minor.

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Conjecture (reformulation of Füredi-Hajnal conjecture '92)

For every k, there is a c_k such that every $n \times m \ 0, 1$ -matrix with at least $c_k \max(n, m) \ 1$ entries admits a k-grid minor.

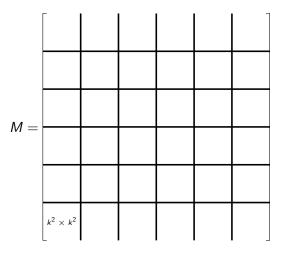
Conjecture (Stanley-Wilf conjecture '80s)

Any proper permutation class contains only $2^{O(n)}$ n-permutations.

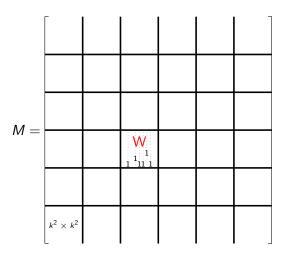
Klazar showed Füredi-Hajnal ⇒ Stanley-Wilf in 2000 Marcus and Tardos showed Füredi-Hajnal in 2004

$$M =$$

Let M be an $n \times n$ 0, 1-matrix without k-grid minor



Draw a regular $\frac{n}{k^2} \times \frac{n}{k^2}$ division on top of M



A cell is wide if it has at least k columns with a 1

Λ 1				
M =			1 1 T 1 1 T 1 1	
	$k^2 \times k^2$			

A cell is tall if it has at least k rows with a 1

		W		
		W		
M =				
IVI =		W		
	$k^2 \times k^2$			

There are less than $k\binom{k^2}{k}$ wide cells per column part. Why?

,				
۸.4				
M =		Т	Т	Т
	$k^2 \times k^2$			

There are less than $k\binom{k^2}{k}$ tall cells per row part

			W		
		W	W		Т
M =					
IVI =		Т	W	Т	Т
			Т		
	$k^2 \times k^2$				W

In W and T, at most $2 \cdot \frac{n}{k^2} \cdot k {k \choose k} \cdot k^4 = 2k^3 {k^2 \choose k} n$ entries 1

Λ./			$\neg W, \neg T$ 1	
M =				
	$k^2 \times k^2$			

There are at most $(k-1)^2 c_k \frac{n}{k^2}$ remaining 1. Why?

			W		
		W	W		Т
Λ./				$\neg W, \neg T$ 1	
M =		Т	W	Т	Т
			Т		
	$k^2 \times k^2$				W

Choose $c_k = 2k^4 \binom{k^2}{k}$ so that $(k-1)^2 c_k \frac{n}{k^2} + 2k^3 \binom{k^2}{k} n \leqslant c_k n$

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

1	1	1				1	
	1		0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1				0	_
1	0	1	1	1	0	0	1

Stuck, removing every other separation $ightarrow rac{f(t)}{2}$ mixed cells per part

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

		1				1	
	1		0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part **Impossible!**

```
Theorem (B., Kim, Thomassé, Watrigant '20) If \exists \sigma s.t. Adj_{\sigma}(G) is t-mixed free, then tww(G) = 2^{2^{O(t)}}.
```

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t) Step 2: find a contraction sequence with error value g(t)

1	1	1	1	1	1	1	0
	1		0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Refinement of \mathcal{D}_i where each part coincides on the non-mixed cells

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Theorem (B., Kim, Thomassé, Watrigant '20)

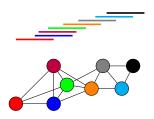
If $\exists \sigma$ s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Now to bound the twin-width of a class C:

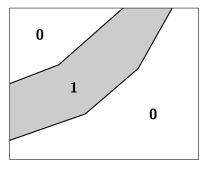
- 1) Find a *good* vertex-ordering procedure
- 2) Argue that, in this order, a t-mixed minor would conflict with $\mathcal C$

Unit interval graphs

Intersection graph of unit segments on the real line

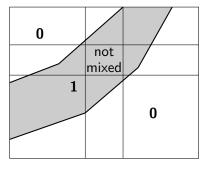


Unit interval graphs



order by left endpoints

Unit interval graphs



No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

Graph minors

Formed by vertex deletion, edge deletion, and edge contraction

A graph G is H-minor free if H is not a minor of G

A graph class is H-minor free if all its graphs are

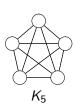
Graph minors

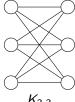
Formed by vertex deletion, edge deletion, and edge contraction

A graph G is H-minor free if H is not a minor of G

A graph class is *H-minor free* if all its graphs are

Planar graphs are exactly the graphs without K_5 or $K_{3,3}$ as a minor



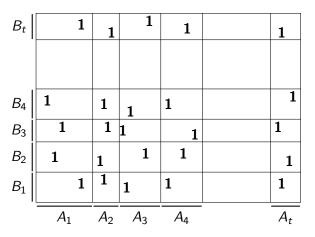


 $K_{3.3}$

Bounded twin-width – K_t -minor free graphs

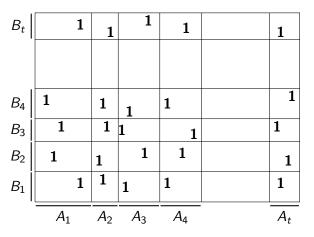
Given a hamiltonian path, we would just use this order

Bounded twin-width – K_t -minor free graphs



Contracting the 2t subpaths yields a $K_{t,t}$ -minor, hence a K_t -minor

Bounded twin-width – K_t -minor free graphs



Instead we use a specially crafted lex-DFS discovery order

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- ▶ Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- \triangleright K_t -minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- ► K_t-free unit d-dimensional ball graphs,
- $ightharpoonup \Omega(\log n)$ -subdivisions of all the n-vertex graphs,
- ▶ cubic expanders defined by iterative random 2-lifts from K₄,
- strong products of two bounded twin-width classes, one with bounded degree, etc.

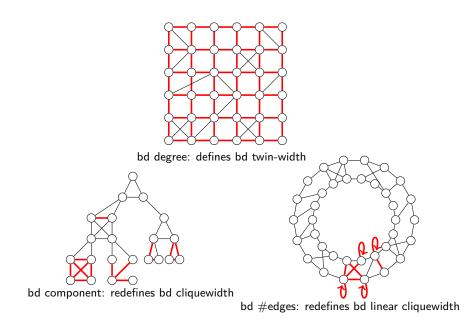
Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

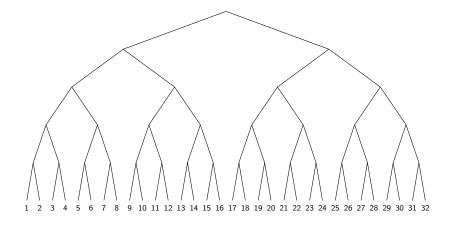
The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- ▶ Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- \triangleright K_t -minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- ► K_t-free unit d-dimensional ball graphs,
- $ightharpoonup \Omega(\log n)$ -subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K₄,
- strong products of two bounded twin-width classes, one with bounded degree, etc.

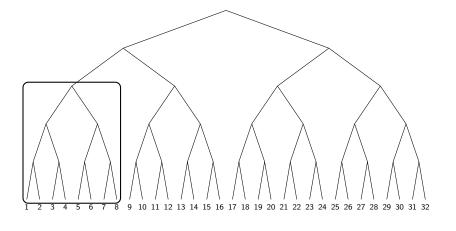
Can we solve problems faster, given an O(1)-sequence?

Different conditions imposed in the sequence of red graphs

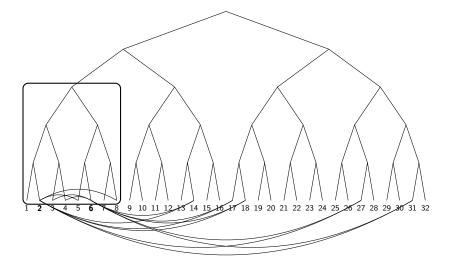




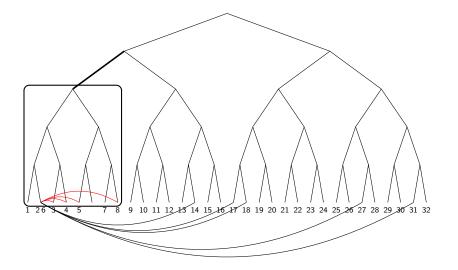
Bd boolean-width: binary tree layout s.t. every edge cut in the tree induces a bipartition with bd # distinct neighborhoods



There is a subtree on $\ell \in [d+1,2d]$ leaves, where d bounds the number of single-vertex neighborhoods in a bipartition



Two vertices have the same neighborhood outside of this subtree



Contracting them preserves the upper bound at 2*d* on the size of red connected components

Component twin-width and boolean-width are tied

Theorem (B., Kim, Reinald, Thomassé '22)

A class has bounded component twin-width iff it has bounded boolean-width/cliquewidth/rank-width.

Proof.

We just saw one direction.

Component twin-width and boolean-width are tied

Theorem (B., Kim, Reinald, Thomassé '22)

A class has bounded component twin-width iff it has bounded boolean-width/cliquewidth/rank-width.

Proof.

We just saw one direction.

Conversely, build the binary tree layout based on the contractions.

When red components merge, their subtree gets a same parent.

Theorem (B., Kim, Reinald, Thomassé '22)

A class has bounded total twin-width iff it has bounded linear boolean-width/cliquewidth/rank-width.

Component twin-width and boolean-width are tied

Theorem (B., Kim, Reinald, Thomassé '22)

A class has bounded component twin-width iff it has bounded boolean-width/cliquewidth/rank-width.

Proof.

We just saw one direction.

Conversely, build the binary tree layout based on the contractions.

When red components merge, their subtree gets a same parent.

Theorem (Baril, Couceiro, Lagerkvist '22)

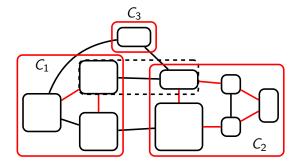
The component twinwidth plus one is at least the cliquewidth and at most twice the cliquewidth.

Efficient parameterized algorithms via this characterization

Solve $3\text{-}\mathrm{COLORING}$ on a graph G with a contraction sequence s.t. all red graphs have components of size at most d

Efficient parameterized algorithms via this characterization

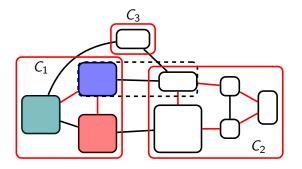
Solve $3\text{-}\mathrm{COLORING}$ on a graph G with a contraction sequence s.t. all red graphs have components of size at most d



For every red component C keep every profile $V(C) \to 2^{\{1,2,3\}} \setminus \{\emptyset\}$ realizable by a proper 3-coloring of $G\langle C \rangle$

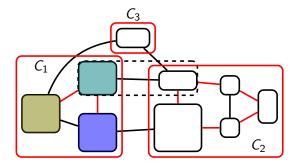
Efficient parameterized algorithms via this characterization

Solve $3\text{-}\mathrm{COLORING}$ on a graph G with a contraction sequence s.t. all red graphs have components of size at most d



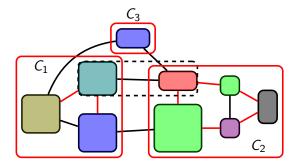
For every red component C keep every profile $V(C) \to 2^{\{1,2,3\}} \setminus \{\emptyset\}$ realizable by a proper 3-coloring of $G\langle C \rangle$

Solve $3\text{-}\mathrm{COLORING}$ on a graph G with a contraction sequence s.t. all red graphs have components of size at most d



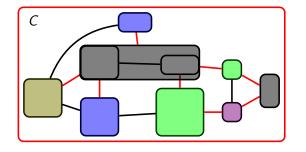
For every red component C keep every profile $V(C) \to 2^{\{1,2,3\}} \setminus \{\emptyset\}$ realizable by a proper 3-coloring of $G\langle C \rangle$

Solve $3\text{-}\mathrm{COLORING}$ on a graph G with a contraction sequence s.t. all red graphs have components of size at most d



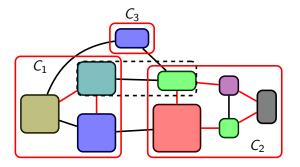
Some tuples of the at most d+1 profiles corresponding to merging red components are compatible

Solve $3\text{-}\mathrm{COLORING}$ on a graph G with a contraction sequence s.t. all red graphs have components of size at most d



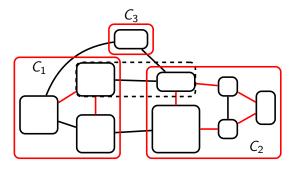
Some tuples of the at most d+1 profiles corresponding to merging red components are compatible

Solve $3\text{-}\mathrm{COLORING}$ on a graph G with a contraction sequence s.t. all red graphs have components of size at most d



Some tuples of the at most d+1 profiles corresponding to merging red components are incompatible

Solve $3\text{-}\mathrm{COLORING}$ on a graph G with a contraction sequence s.t. all red graphs have components of size at most d



Initialization: time 3nUpdate: time $7^d d^2$ Total: time $7^d d^2 n$

End: still a profile on the single vertex containing the whole graph?

Graph FO/MSO Model Checking \qquad Parameter: $|\varphi|$

Input: A graph G and a first-order/monadic second-order sen-

tence $\varphi \in FO/MSO(\{E\})$

Question: $G \models \varphi$?

Graph FO/MSO Model Checking Parameter: $|\varphi|$

Input: A graph G and a first-order/monadic second-order sen-

tence $\varphi \in FO/MSO(\{E\})$

Question: $G \models \varphi$?

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \bigvee_{1 \leqslant i \leqslant k} x = x_i \lor \bigvee_{1 \leqslant i \leqslant k} E(x, x_i) \lor E(x_i, x)$$

$$G \models \varphi? \Leftrightarrow$$

Graph FO/MSO Model Checking Parameter: $|\varphi|$

Input: A graph G and a first-order/monadic second-order sen-

tence $\varphi \in FO/MSO(\{E\})$

Question: $G \models \varphi$?

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \bigvee_{1 \leqslant i \leqslant k} x = x_i \lor \bigvee_{1 \leqslant i \leqslant k} E(x, x_i) \lor E(x_i, x)$$

$$G \models \varphi$$
? $\Leftrightarrow k$ -Dominating Set

Graph FO/MSO Model Checking Parameter: $|\varphi|$

Input: A graph G and a first-order/monadic second-order sen-

tence $\varphi \in FO/MSO(\{E\})$

Question: $G \models \varphi$?

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leq i < j \leq k} \neg (x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

$$G \models \varphi? \Leftrightarrow$$

Graph FO/MSO Model Checking Parameter: $|\varphi|$

Input: A graph G and a first-order/monadic second-order sen-

tence $\varphi \in FO/MSO(\{E\})$

Question: $G \models \varphi$?

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leq i < j \leq k} \neg (x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

$$G \models \varphi$$
? $\Leftrightarrow k$ -Independent Set

Graph FO/MSO Model Checking Parameter: $|\varphi|$

Input: A graph G and a first-order/monadic second-order sen-

tence $\varphi \in FO/MSO(\{E\})$

Question: $G \models \varphi$?

$$\varphi = \exists X_1 \exists X_2 \exists X_3 (\forall x \bigvee_{1 \leqslant i \leqslant 3} X_i(x)) \land \forall x \forall y \bigwedge_{1 \leqslant i \leqslant 3} (X_i(x) \land X_i(y) \rightarrow \neg E(x,y))$$

$$G \models \varphi? \Leftrightarrow$$

Graph FO/MSO Model Checking Parameter: $|\varphi|$

Input: A graph G and a first-order/monadic second-order sen-

tence $\varphi \in FO/MSO(\{E\})$

Question: $G \models \varphi$?

$$\varphi = \exists X_1 \exists X_2 \exists X_3 (\forall x \bigvee_{1 \leqslant i \leqslant 3} X_i(x)) \land \forall x \forall y \bigwedge_{1 \leqslant i \leqslant 3} (X_i(x) \land X_i(y) \rightarrow \neg E(x,y))$$

$$G \models \varphi$$
? \Leftrightarrow 3-Coloring

The lens of contraction sequences

Class of bounded	constraint on red graphs	efficient model-checking
linear rank-width	bd #edges	MSO
rank-width	bd component	MSO
twin-width	bd degree	?

The lens of contraction sequences

Class of bounded	constraint on red graphs	efficient model-checking
linear rank-width	bd #edges	MSO
rank-width	bd component	MSO
twin-width	bd degree	?

We will reprove the result in bold, and fill the ?

Courcelle's theorems

We will reprove with contraction sequences:

Theorem (Courcelle, Makowsky, Rotics '00)

MSO model checking can be solved in time $f(|\varphi|, d) \cdot |V(G)|$ given a witness that the clique-width/component twin-width of the input G is at most d.

generalizes

Theorem (Courcelle '90)

MSO model checking can be solved in time $f(|\varphi|, t) \cdot |V(G)|$ on graphs G of treewidth at most t.

Courcelle's theorems

We will reprove with contraction sequences:

Theorem (Courcelle, Makowsky, Rotics '00)

MSO model checking can be solved in time $f(|\varphi|, d) \cdot |V(G)|$ given a witness that the clique-width/component twin-width of the input G is at most d.

generalizes

Theorem (Courcelle '90)

MSO model checking can be solved in time $f(|\varphi|, t) \cdot |V(G)|$ on graphs G of treewidth at most t.

- as the incidence graph preserves bounded treewidth, possible edge-set quantification
- ▶ linear FPT approximation for treewidth
- (polynomial) FPT approximation for clique-width

Rank-*k m*-types

Sets of non-equivalent formulas/sentences of quantifier rank at most k satisfied by a fixed structure:

$$\operatorname{tp}_{k}^{\mathcal{L}}(\mathcal{A}, \vec{a} \in A^{m}) = \{\varphi(\vec{x}) \in \mathcal{L}[k] : \mathcal{A} \models \varphi(\vec{a})\},$$
$$\operatorname{tp}_{k}^{\mathcal{L}}(\mathcal{A}) = \{\varphi \in \mathcal{L}[k] : \mathcal{A} \models \varphi\}.$$

Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at most k satisfied by a fixed structure:

$$\operatorname{tp}_{k}^{\mathcal{L}}(\mathscr{A}, \vec{a} \in A^{m}) = \{\varphi(\vec{x}) \in \mathcal{L}[k] : \mathscr{A} \models \varphi(\vec{a})\},$$
$$\operatorname{tp}_{k}^{\mathcal{L}}(\mathscr{A}) = \{\varphi \in \mathcal{L}[k] : \mathscr{A} \models \varphi\}.$$

Theorem (folklore)

For $\mathcal{L} \in \{FO, MSO\}$, the number of rank-k m-types is bounded by a function of k and m only.

Proof.

"
$$\mathcal{L}[k+1]$$
 are Boolean combinations of $\exists x \mathcal{L}[k]$."

Rank-k m-types

Sets of non-equivalent formulas/sentences of quantifier rank at most k satisfied by a fixed structure:

$$\operatorname{tp}_k^{\mathcal{L}}(\mathscr{A}, \vec{a} \in A^m) = \{ \varphi(\vec{x}) \in \mathcal{L}[k] : \mathscr{A} \models \varphi(\vec{a}) \},$$

$$\operatorname{tp}_k^{\mathcal{L}}(\mathscr{A}) = \{ \varphi \in \mathcal{L}[k] : \mathscr{A} \models \varphi \}.$$

Theorem (folklore)

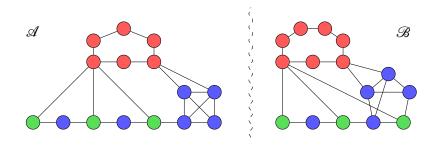
For $\mathcal{L} \in \{FO, MSO\}$, the number of rank-k m-types is bounded by a function of k and m only.

Proof.

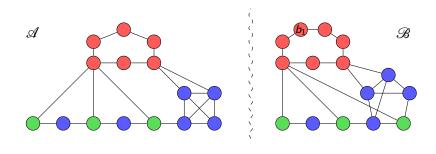
"
$$\mathcal{L}[k+1]$$
 are Boolean combinations of $\exists x \mathcal{L}[k]$."

Rank-k types partition the graphs into g(k) classes.

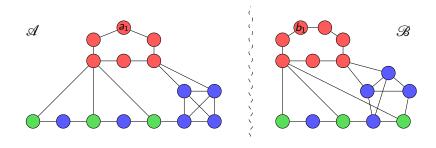
Efficient Model Checking = quickly finding the class of the input.



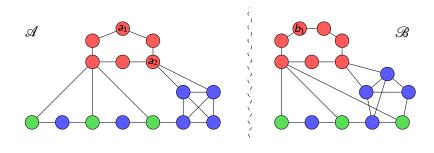
2-player game on two $\sigma\text{-structures }\mathcal{A},\mathcal{B}$ (for us, colored graphs)



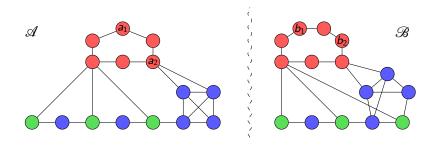
At each round, Spoiler picks a structure (\mathcal{B}) and a vertex therein



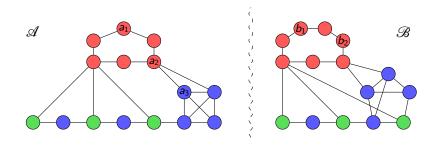
Duplicator answers with a vertex in the other structure



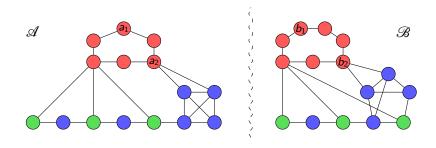
After q rounds, Duplicator wishes that $a_i\mapsto b_i$ is an isomorphism between $\mathscr{A}[a_1,\ldots,a_k]$ and $\mathscr{B}[b_1,\ldots,b_k]$



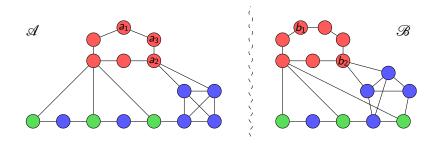
After q rounds, Duplicator wishes that $a_i\mapsto b_i$ is an isomorphism between $\mathscr{A}[a_1,\ldots,a_k]$ and $\mathscr{B}[b_1,\ldots,b_k]$



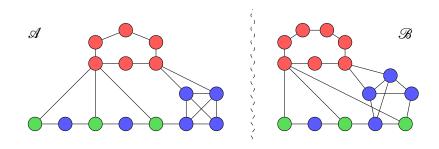
When no longer possible, Spoiler wins



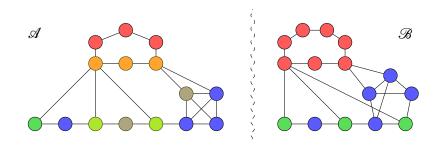
When no longer possible, Spoiler wins



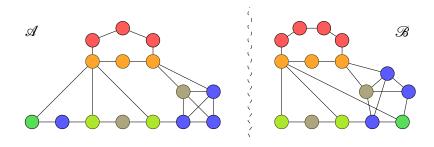
If Duplicator can survive k rounds, we write $\mathscr{A} \equiv_k^{\mathsf{FO}} \mathscr{B}$ Here $\mathscr{A} \equiv_2^{\mathsf{FO}} \mathscr{B}$ and $\mathscr{A} \not\equiv_3^{\mathsf{FO}} \mathscr{B}$



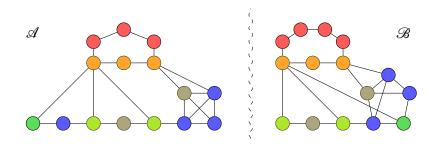
Same game but Spoiler can now play set moves



Same game but Spoiler can now play set moves



To which Duplicator answers a set in the other structure



Again we write $\mathscr{A} \equiv_k^{\mathsf{MSO}} \mathscr{B}$ if Duplicator can survive k rounds

k-round EF games capture rank-*k* types

Theorem (Ehrenfeucht-Fraissé)

For every σ -structures \mathscr{A}, \mathscr{B} and logic $\mathcal{L} \in \{FO, MSO\}$,

$$\mathscr{A} \equiv^{\mathcal{L}}_{k} \mathscr{B}$$
 if and only if $\operatorname{tp}_{k}^{\mathcal{L}}(\mathscr{A}) = \operatorname{tp}_{k}^{\mathcal{L}}(\mathscr{B})$.

k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)

For every σ -structures \mathcal{A}, \mathcal{B} and logic $\mathcal{L} \in \{FO, MSO\}$,

$$\mathscr{A} \equiv^{\mathcal{L}}_{k} \mathscr{B}$$
 if and only if $\operatorname{tp}_{k}^{\mathcal{L}}(\mathscr{A}) = \operatorname{tp}_{k}^{\mathcal{L}}(\mathscr{B})$.

Proof.

Induction on k.

 (\Rightarrow) $\mathcal{L}[k+1]$ formulas are Boolean combinations of $\exists x \varphi$ or $\exists X \varphi$ where $\varphi \in \mathcal{L}[k]$. Use the answer of Duplicator to x = a or X = A.

k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)

For every σ -structures \mathcal{A}, \mathcal{B} and logic $\mathcal{L} \in \{FO, MSO\}$,

$$\mathscr{A} \equiv^{\mathcal{L}}_{k} \mathscr{B}$$
 if and only if $\operatorname{tp}_{k}^{\mathcal{L}}(\mathscr{A}) = \operatorname{tp}_{k}^{\mathcal{L}}(\mathscr{B})$.

Proof.

Induction on k.

 (\Rightarrow) $\mathcal{L}[k+1]$ formulas are Boolean combinations of $\exists x \varphi$ or $\exists X \varphi$ where $\varphi \in \mathcal{L}[k]$. Use the answer of Duplicator to x=a or X=A.

 (\Leftarrow) If $\operatorname{tp}_{k+1}^{\mathcal{L}}(\mathcal{A}) = \operatorname{tp}_{k+1}^{\mathcal{L}}(\mathcal{B})$, then the type $\operatorname{tp}_{k}^{\mathcal{L}}(\mathcal{A}, a)$ is equal to some $\operatorname{tp}_{k}^{\mathcal{L}}(\mathcal{B}, b)$. Move a can be answered by playing b.

MSO model checking for component twin-width d

Partitioned sentences: sentences on (E, U_1, \dots, U_d) -structures, interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G_i

$$\mathsf{tp}_k^{\mathsf{MSO}}(\mathit{G}, \mathcal{P}_i, \mathit{C}) = \{\varphi \in \mathsf{MSO}_{\mathit{E}, \mathit{U}_1, \ldots, \mathit{U}_d}(\mathit{k}) : (\mathit{G}\langle \mathit{C} \rangle, \mathcal{P}_i \langle \mathit{C} \rangle) \models \varphi\}.$$

MSO model checking for component twin-width d

Partitioned sentences: sentences on (E, U_1, \dots, U_d) -structures, interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G_i

$$\mathsf{tp}_k^{\mathsf{MSO}}(\mathit{G},\mathcal{P}_i,\mathit{C}) = \{\varphi \in \mathsf{MSO}_{\mathit{E},\mathit{U}_1,\ldots,\mathit{U}_d}(\mathit{k}) : (\mathit{G}\langle\mathit{C}\rangle,\mathcal{P}_i\langle\mathit{C}\rangle) \models \varphi\}.$$

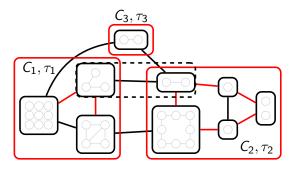
For each
$$v \in V(G)$$
, $\operatorname{tp}_k(G, \mathcal{P}_n, \{v\}) = \operatorname{type}$ of K_1
 $\operatorname{tp}_k(G, \mathcal{P}_1, \{V(G)\}) = \operatorname{type}$ of G

MSO model checking for component twin-width d

Partitioned sentences: sentences on (E, U_1, \dots, U_d) -structures, interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G_i

$$\mathsf{tp}_k^{\mathsf{MSO}}(G, \mathcal{P}_i, C) = \{ \varphi \in \mathsf{MSO}_{E, U_1, \dots, U_d}(k) : (G\langle C \rangle, \mathcal{P}_i \langle C \rangle) \models \varphi \}.$$



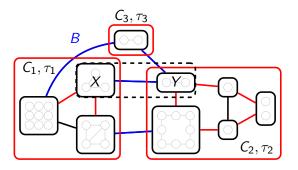
$$\tau = \mathsf{tp}_k^{\mathsf{MSO}}(G, \mathcal{P}_i, C)$$
 based on the $\tau_j = \mathsf{tp}_k^{\mathsf{MSO}}(G, \mathcal{P}_{i+1}, C_j)$?

MSO model checking for component twin-width d

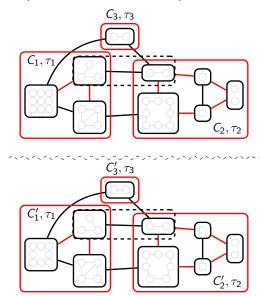
Partitioned sentences: sentences on (E, U_1, \dots, U_d) -structures, interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph G_i

$$\mathsf{tp}_k^{\mathsf{MSO}}(G,\mathcal{P}_i,C) = \{ \varphi \in \mathsf{MSO}_{E,U_1,\dots,U_d}(k) : (G\langle C \rangle, \mathcal{P}_i \langle C \rangle) \models \varphi \}.$$



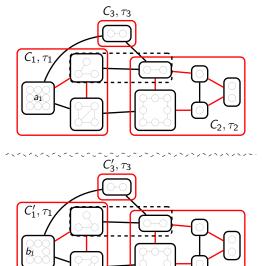
C arises from $C_1, \ldots, C_{d'}$: $\tau = F(\tau_1, \ldots, \tau_{d'}, B, X, Y)$



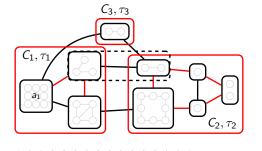
Duplicator combines her strategies in the red components

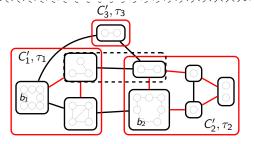


If Spoiler plays a vertex in the component of type τ_1 ,

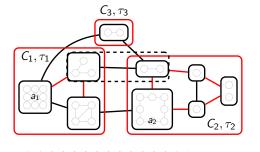


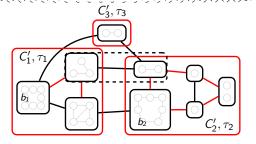
Duplicator answers the corresponding winning move



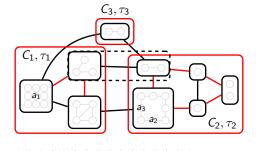


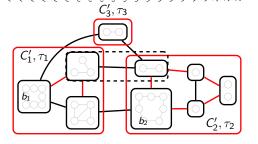
Same in the component of type au_2



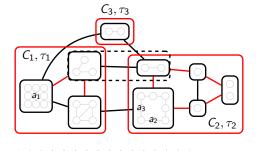


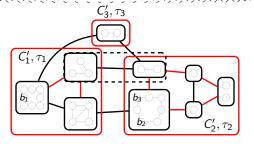
Same in the component of type au_2



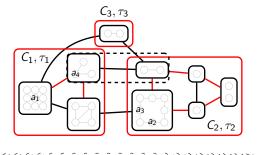


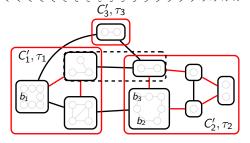
Same in the component of type au_2

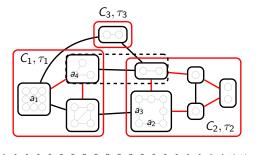


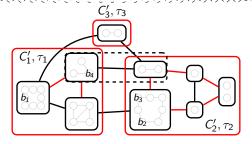


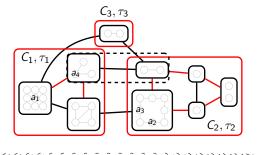
Same in the component of type τ_2

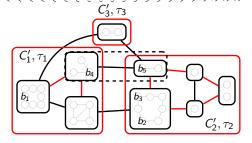


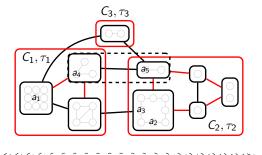


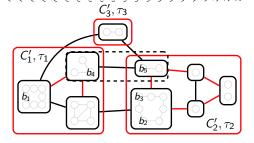


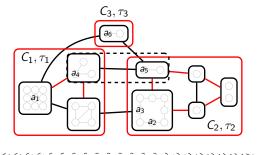


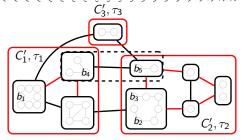


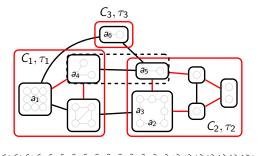


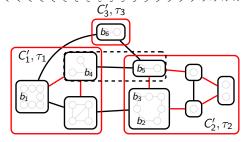


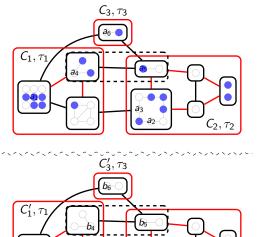




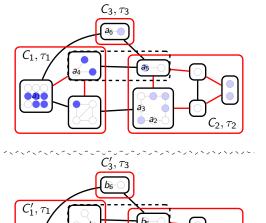


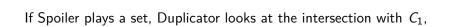


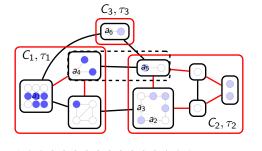


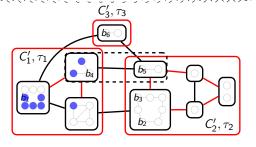


If Spoiler plays a set, Duplicator looks at the intersection with C_1 ,

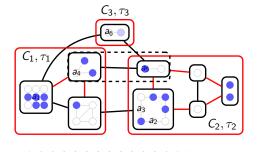


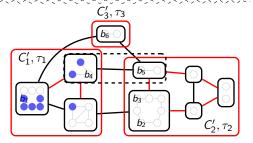




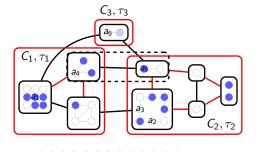


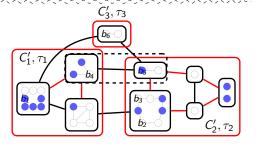
calls her winning strategy in C_1'



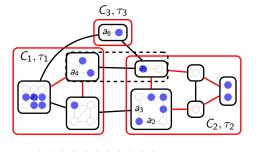


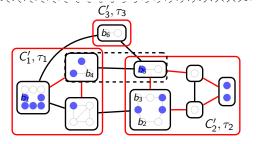
same for the other components



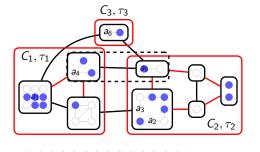


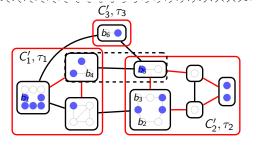
same for the other components



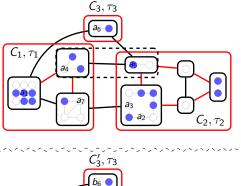


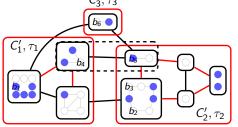
same for the other components

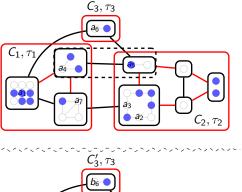


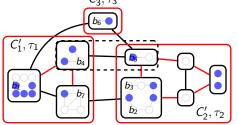


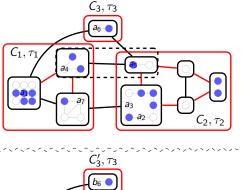
and plays the union

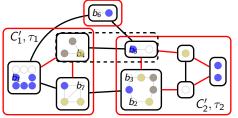


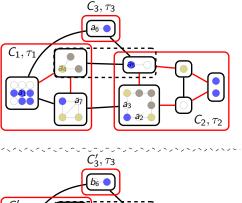


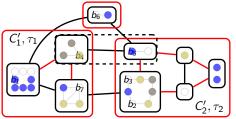












Turning it into a uniform algorithm

Reminder:

- \blacktriangleright #non-equivalent partitioned sentences of rank k: f(d, k)
- #rank-k partitioned types bounded by $g(d, k) = 2^{f(d,k)}$

For each newly observed type τ ,

- \blacktriangleright keep a representative $(H,\mathcal{P})_{\tau}$ on at most $(d+1)^{g(d,k)}$ vertices
- lacktriangle determine the 0,1-vector of satisfied sentences on $(H,\mathcal{P})_{\tau}$
- record the value of $F(\tau_1, \dots, \tau_{d'}, B, X, Y)$ for future uses

Turning it into a uniform algorithm

Reminder:

- \blacktriangleright #non-equivalent partitioned sentences of rank k: f(d, k)
- #rank-k partitioned types bounded by $g(d, k) = 2^{f(d,k)}$

For each newly observed type τ ,

- keep a representative $(H, \mathcal{P})_{\tau}$ on at most $(d+1)^{g(d,k)}$ vertices
- determine the 0,1-vector of satisfied sentences on $(H,\mathcal{P})_{\tau}$
- record the value of $F(\tau_1, \dots, \tau_{d'}, B, X, Y)$ for future uses

To decide $G \models \varphi$, look at position φ in the 0,1-vector of $\operatorname{tp}_k^{\mathsf{MSO}}(G)$

k-INDEPENDENT SET given a d-sequence

d-sequence:
$$G = G_n, G_{n-1}, ..., G_2, G_1 = K_1$$

Algorithm: For every connected subset D of size at most k of the red graph of every G_i , store in T[D,i] one largest independent set in $G\langle D \rangle$ intersecting every vertex of D.

k-INDEPENDENT SET given a d-sequence

d-sequence:
$$G = G_n, G_{n-1}, ..., G_2, G_1 = K_1$$

Algorithm: For every connected subset D of size at most k of the red graph of every G_i , store in T[D,i] one largest independent set in $G\langle D \rangle$ intersecting every vertex of D.

Initialization: $T[\{v\}, n] = \{v\}$

End: $T[\{V(G)\}, 1] = IS$ of size at least k or largest IS in G

Running time: $d^{2k}n^2$ red connected subgraphs, actually only $d^{2k}n = 2^{O_d(k)}n$ updates

k-INDEPENDENT SET given a d-sequence

d-sequence:
$$G = G_n, G_{n-1}, ..., G_2, G_1 = K_1$$

Algorithm: For every connected subset D of size at most k of the red graph of every G_i , store in T[D,i] one largest independent set in $G\langle D \rangle$ intersecting every vertex of D.

Initialization: $T[\{v\}, n] = \{v\}$

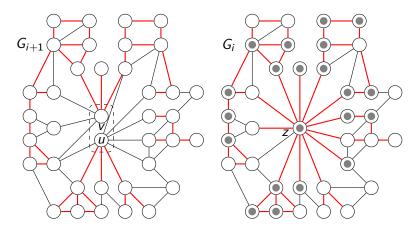
End: $T[\{V(G)\}, 1] = IS$ of size at least k or largest IS in G

Running time: $d^{2k}n^2$ red connected subgraphs,

actually only $d^{2k}n = 2^{O_d(k)}n$ updates

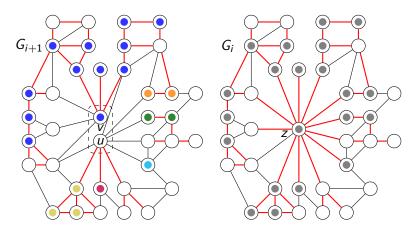
How to compute T[D, i] from all the T[D', i + 1]?

k-INDEPENDENT SET: Update of partial solutions



Best partial solution inhabiting •?

k-INDEPENDENT SET: Update of partial solutions



3 unions of $\leqslant d+2$ red connected subgraphs to consider in G_{i+1} with u, or v, or both

FO model checking on graphs of bounded twin-width

We will now generalize the previous algorithm to:

Theorem (B., Kim, Thomassé, Watrigant '20)

FO model checking can be solved in time $f(|\varphi|, d) \cdot |V(G)|$ on graphs G given with a d-sequence.

FO model checking on graphs of bounded twin-width

We will now generalize the previous algorithm to:

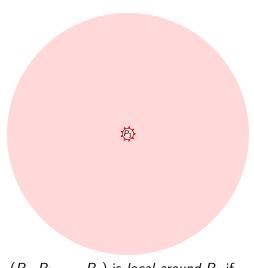
Theorem (B., Kim, Thomassé, Watrigant '20)

FO model checking can be solved in time $f(|\varphi|, d) \cdot |V(G)|$ on graphs G given with a d-sequence.

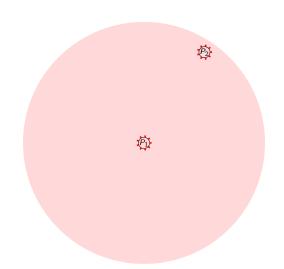
Add Gaifman's locality to our MSO model checking algorithm

Following [Gajarský, Pilipczuk, Przybyszewski, Toruńczyk '22]

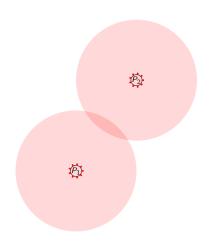
Local tuple of parts



 (P_1, P_2, \dots, P_q) is local around P_1 if...



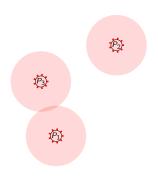
 (P_1,P_2,\ldots,P_q) is local around P_1 if... P_2 is at distance at most 2^{k-2} from $\{P_1\}$ in (G,\mathcal{P}_i)



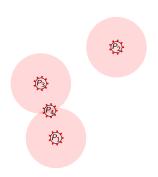
 $\begin{array}{c} (P_1,P_2,\ldots,P_q) \text{ is } \textit{local around } P_1 \text{ if...} \\ P_2 \text{ is at distance at most } 2^{k-2} \text{ from } \{P_1\} \text{ in } (\textit{G},\mathcal{P}_i) \end{array}$



 (P_1,P_2,\ldots,P_q) is local around P_1 if... P_3 is at distance at most 2^{k-3} from $\{P_1,P_2\}$ in (G,\mathcal{P}_i)



 (P_1,P_2,\ldots,P_q) is local around P_1 if... P_3 is at distance at most 2^{k-3} from $\{P_1,P_2\}$ in (G,\mathcal{P}_i)



 (P_1,P_2,\ldots,P_q) is local around P_1 if... P_4 is at distance at most 2^{k-4} from $\{P_1,P_2,P_3\}$ in (G,\mathcal{P}_i)

 (P_1,P_2,\ldots,P_q) is local around P_1 if... P_4 is at distance at most 2^{k-4} from $\{P_1,P_2,P_3\}$ in (G,\mathcal{P}_i)

 $\begin{array}{c} (P_1,P_2,\ldots,P_q) \text{ is local around } P_1 \text{ if...} \\ P_q \text{ is at distance at most } 2^{k-q} \text{ from } \{P_1,\ldots,P_{q-1}\} \text{ in } (\mathcal{G},\mathcal{P}_i) \end{array}$

 (P_1,P_2,\ldots,P_q) is local around P_1 if... P_q is at distance at most 2^{k-q} from $\{P_1,\ldots,P_{q-1}\}$ in (G,\mathcal{P}_i)

 (P_1,P_2,\ldots,P_q) is local around P_1 if... P_q is at distance at most 2^{k-q} from $\{P_1,\ldots,P_{q-1}\}$ in (G,\mathcal{P}_i)

Partitioned local sentences and types

A prenex sentence is partitioned local around X in (G, \mathcal{P}_i) if of the form $Qx_1 \in X$ $Qx_2 \in P_2$... $Qx_k \in P_k$ $\psi(x_1, \ldots, x_k)$ with

- $ightharpoonup \psi$ is quantifier-free, and
- $(X, P_2, ..., P_k)$ local around X in (G, P_i) .

Partitioned local sentences and types

A prenex sentence is partitioned local around X in (G, \mathcal{P}_i) if of the form $Qx_1 \in X$ $Qx_2 \in P_2$... $Qx_k \in P_k$ $\psi(x_1, \ldots, x_k)$ with

- $\blacktriangleright \psi$ is quantifier-free, and
- $(X, P_2, ..., P_k)$ local around X in (G, P_i) .

And the corresponding types:

$$\begin{split} \mathsf{ltp}_k^{\mathsf{FO}}(G,\mathcal{P}_i,X) &= \{\varphi : \mathsf{qr}(\varphi) \leqslant k, \\ \varphi \text{ is partitioned local around } X \text{ in } (G,\mathcal{P}_i), \\ (G,\mathcal{P}_i) &\models \varphi \}. \end{split}$$

Partitioned local sentences/types in (G, \mathcal{P}_n) and (G, \mathcal{P}_1)

Initialization of the dynamic programming

```
In (G, \mathcal{P}_n = \{\{v\} : v \in V(G)\}): for every v \in V(G), Qx_1 \in \{v\} \ Qx_2 \in \{v\} \ \dots \ Qx_k \in \{v\} \ \psi \equiv \psi(v, v, \dots, v)
```

Partitioned local types are easy to compute in (G, \mathcal{P}_n)

Partitioned local sentences/types in (G, \mathcal{P}_n) and (G, \mathcal{P}_1)

Initialization of the dynamic programming

```
In (G, \mathcal{P}_n = \{\{v\} : v \in V(G)\}): for every v \in V(G), Qx_1 \in \{v\} \ Qx_2 \in \{v\} \ \dots \ Qx_k \in \{v\} \ \psi \equiv \psi(v, v, \dots, v)
```

Partitioned local types are easy to compute in (G, \mathcal{P}_n)

Output of the dynamic programming

```
In (G, \mathcal{P}_1 = \{V(G)\}):

Qx_1 \in V(G) \ Qx_2 \in V(G) \ \dots \ Qx_k \in V(G) \ \psi \equiv \text{classic sentences}
```

The partitioned local type in (G, \mathcal{P}_1) coincides with the type of G

Isom.
$$f: \mathcal{P}_i \to \mathcal{P}_i'$$
 with $\operatorname{ltp}_k^{FO}(G, \mathcal{P}_i, X) = \operatorname{ltp}_k^{FO}(G', \mathcal{P}_i', f(X))$

$$(G, \mathcal{P}_i)$$

$$(G', \mathcal{P}'_i)$$

Local strategies win the global game

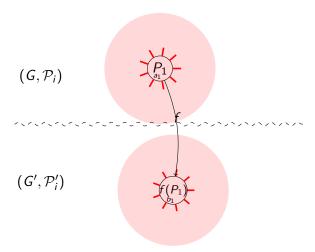
Isom. $f: \mathcal{P}_i \to \mathcal{P}'_i$ with $\operatorname{ltp}_k^{FO}(G, \mathcal{P}_i, X) = \operatorname{ltp}_k^{FO}(G', \mathcal{P}'_i, f(X))$

$$(G, \mathcal{P}_i)$$

$$(G', \mathcal{P}'_i)$$

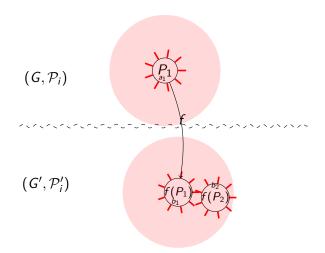
Say, Spoiler plays in P_1

Isom. $f: \mathcal{P}_i \to \mathcal{P}'_i$ with $\operatorname{ltp}_k^{FO}(G, \mathcal{P}_i, X) = \operatorname{ltp}_k^{FO}(G', \mathcal{P}'_i, f(X))$



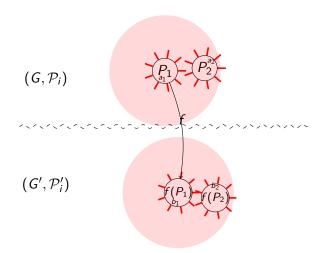
Duplicator answers in $f(P_1)$ following the local game around P_1

Isom. $f: \mathcal{P}_i \to \mathcal{P}'_i$ with $\operatorname{ltp}_k^{FO}(G, \mathcal{P}_i, X) = \operatorname{ltp}_k^{FO}(G', \mathcal{P}'_i, f(X))$



Now when Spoiler plays close to P_1 or $f(P_1)$

Isom. $f: \mathcal{P}_i \to \mathcal{P}'_i$ with $\operatorname{ltp}_k^{FO}(G, \mathcal{P}_i, X) = \operatorname{ltp}_k^{FO}(G', \mathcal{P}'_i, f(X))$



Duplicator follows the winning local strategy

Isom. $f: \mathcal{P}_i \to \mathcal{P}'_i$ with $\operatorname{ltp}_k^{FO}(G, \mathcal{P}_i, X) = \operatorname{ltp}_k^{FO}(G', \mathcal{P}'_i, f(X))$

$$(G, \mathcal{P}_i)$$

$$P_1 - P_2$$

$$P_2$$

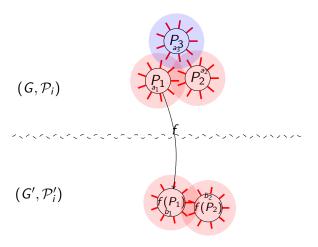
$$(G', \mathcal{P}'_i)$$

$$f(P_1)$$

$$P_1 - P_2$$

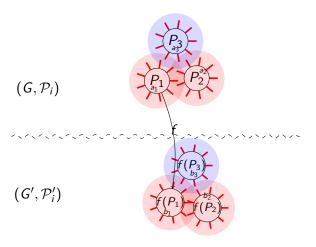
Duplicator follows the winning local strategy

Isom. $f: \mathcal{P}_i \to \mathcal{P}'_i$ with $\operatorname{ltp}_k^{FO}(G, \mathcal{P}_i, X) = \operatorname{ltp}_k^{FO}(G', \mathcal{P}'_i, f(X))$



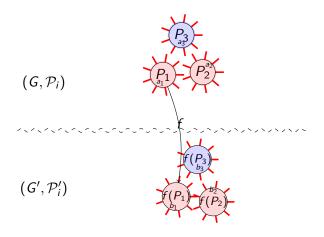
If Spoiler plays too far

Isom. $f: \mathcal{P}_i \to \mathcal{P}'_i$ with $\operatorname{ltp}_k^{FO}(G, \mathcal{P}_i, X) = \operatorname{ltp}_k^{FO}(G', \mathcal{P}'_i, f(X))$



Duplicator starts a new local game around that new part

Isom. $f: \mathcal{P}_i \to \mathcal{P}'_i$ with $\operatorname{ltp}_k^{FO}(G, \mathcal{P}_i, X) = \operatorname{ltp}_k^{FO}(G', \mathcal{P}'_i, f(X))$



Duplicator starts a new local game around that new part

$$(G, \mathcal{P}_{i+1}) \leadsto (G, \mathcal{P}_i) : X$$
 and Y are merged in Z

Partitioned local types around P

▶ only needs an update if P is at distance at most 2^{k-1} from Z

$$(G, \mathcal{P}_{i+1}) \leadsto (G, \mathcal{P}_i) : X$$
 and Y are merged in Z

Partitioned local types around P

- \triangleright only needs an update if P is at distance at most 2^{k-1} from Z
- \triangleright update only involves parts at distance at most 2^{k-1} from P

$$(G, \mathcal{P}_{i+1}) \leadsto (G, \mathcal{P}_i) : X$$
 and Y are merged in Z

Partitioned local types around P

- \triangleright only needs an update if P is at distance at most 2^{k-1} from Z
- \triangleright update only involves parts at distance at most 2^{k-1} from P
- ▶ hence at most d^{2^k} parts: conclude like MSO model checking

$$(G, \mathcal{P}_{i+1}) \leadsto (G, \mathcal{P}_i) : X$$
 and Y are merged in Z

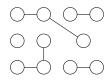
Partitioned local types around P

- \triangleright only needs an update if P is at distance at most 2^{k-1} from Z
- ightharpoonup update only involves parts at distance at most 2^{k-1} from P
- ▶ hence at most d^{2^k} parts: conclude like MSO model checking

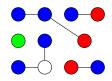
Each contraction: $O_{d,k}(1) = O(d^{2^k})$ updates in $O_{d,k}(1) = f(d,k)$ Total time: $O_{d,k}(n)$

FO interpretation: redefine the edges by a first-order formula $\varphi(x,y) = \neg E(x,y)$ (complement) $\varphi(x,y) = E(x,y) \lor \exists z E(x,z) \land E(z,y)$ (square)

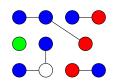
FO interpretation: redefine the edges by a first-order formula $\varphi(x,y) = \neg E(x,y)$ (complement) $\varphi(x,y) = E(x,y) \lor \exists z E(x,z) \land E(z,y)$ (square)



FO interpretation: redefine the edges by a first-order formula $\varphi(x,y) = \neg E(x,y)$ (complement) $\varphi(x,y) = E(x,y) \lor \exists z E(x,z) \land E(z,y)$ (square)



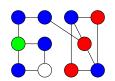
FO interpretation: redefine the edges by a first-order formula $\varphi(x,y) = \neg E(x,y)$ (complement) $\varphi(x,y) = E(x,y) \lor \exists z E(x,z) \land E(z,y)$ (square)



$$\varphi(x,y) = E(x,y) \lor (G(x) \land B(y) \land \neg \exists z R(z) \land E(y,z))$$

$$\lor (R(x) \land B(y) \land \exists z R(z) \land E(y,z) \land \neg \exists z B(z) \land E(y,z))$$

FO interpretation: redefine the edges by a first-order formula $\varphi(x,y) = \neg E(x,y)$ (complement) $\varphi(x,y) = E(x,y) \lor \exists z E(x,z) \land E(z,y)$ (square)



$$\varphi(x,y) = E(x,y) \lor (G(x) \land B(y) \land \neg \exists z R(z) \land E(y,z))$$

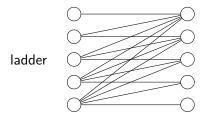
$$\lor (R(x) \land B(y) \land \exists z R(z) \land E(y,z) \land \neg \exists z B(z) \land E(y,z))$$

FO interpretation: redefine the edges by a first-order formula $\varphi(x,y) = \neg E(x,y)$ (complement) $\varphi(x,y) = E(x,y) \lor \exists z E(x,z) \land E(z,y)$ (square)

Stable and NIP for hereditary classes

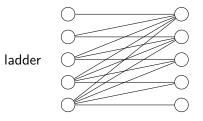
Due to [Baldwin, Shelah '85; Braunfeld, Laskowski '22]

Stable class: no transduction of the class contains all ladders **NIP class:** no transduction of the class contains all graphs



Stable and NIP for hereditary classes

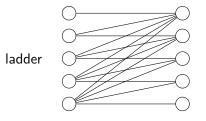
Stable class: no transduction of the class contains all ladders **NIP class:** no transduction of the class contains all graphs



Bounded-degree graphs \rightarrow stable Unit interval graphs \rightarrow NIP but not stable Interval graphs \rightarrow not NIP

Stable and NIP for hereditary classes

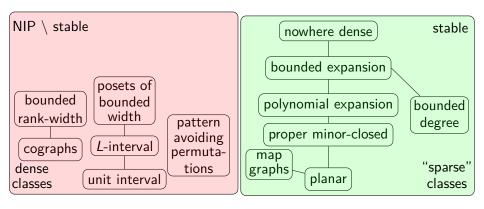
Stable class: no transduction of the class contains all ladders **NIP class:** no transduction of the class contains all graphs

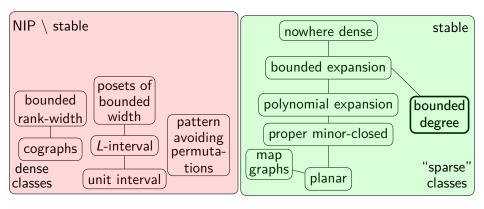


Bounded-degree graphs \to stable Unit interval graphs \to NIP but not stable Interval graphs \to not NIP

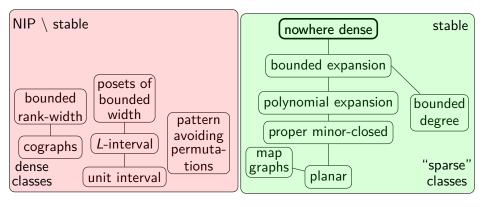
Bounded twin-width classes \rightarrow NIP, but in general not stable

Classes with known tractable FO model checking

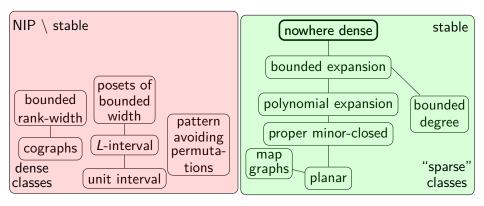




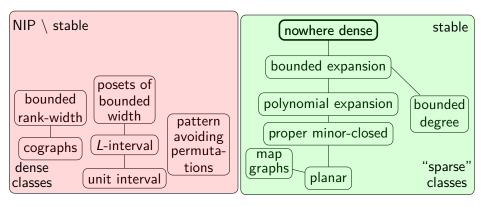
FO Model Checking solvable in $f(|\varphi|)n$ on bounded-degree graphs [Seese '96]



FO Model Checking solvable in $f(|\varphi|)n^{1+\varepsilon}$ on any nowhere dense class [Grohe, Kreutzer, Siebertz '14]

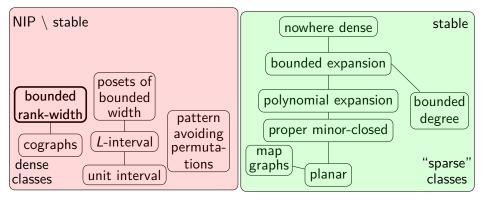


End of the story for the subgraph-closed classes tractable FO Model Checking \Leftrightarrow nowhere dense \Leftrightarrow stable

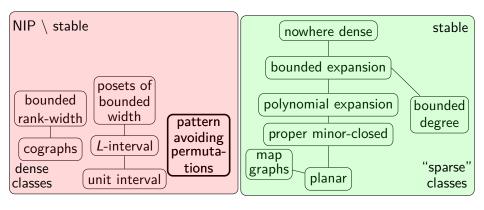


New program: transductions of nowhere dense classes

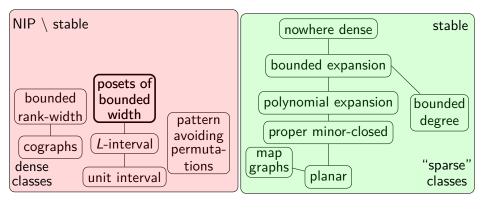
Not sparse anymore but still stable



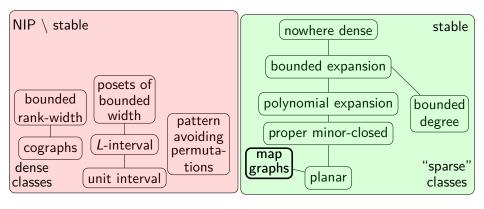
 ${
m MSO_1\ Model\ Checking\ solvable\ in\ } f(|\varphi|,w)n$ on graphs of rank-width w [Courcelle, Makowsky, Rotics '00]



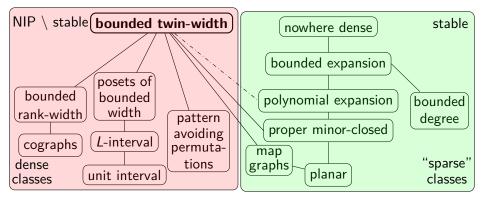
Is σ a subpermutation of τ ? solvable in $f(|\sigma|)|\tau|$ [Guillemot, Marx '14]



FO Model Checking solvable in $f(|\varphi|, w)n^2$ on posets of width w [GHLOORS '15]



FO Model Checking solvable in $f(|\varphi|)n^{O(1)}$ on map graphs [Eickmeyer, Kawarabayashi '17]



FO Model Checking solvable in $f(|\varphi|, d)n$ on graphs with a d-sequence [B., Kim, Thomassé, Watrigant '20]

First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)

For every class $\mathcal C$ of binary structures with bounded twin-width and transduction $\mathcal T$, the class $\mathcal T(\mathcal C)$ has bounded twin-width.

First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)

For every class $\mathcal C$ of binary structures with bounded twin-width and transduction $\mathcal T$, the class $\mathcal T(\mathcal C)$ has bounded twin-width.

- Making copies does not change the twin-width
- Adding a unary relation at most doubles it

First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant '20)

For every class $\mathcal C$ of binary structures with bounded twin-width and transduction $\mathcal T$, the class $\mathcal T(\mathcal C)$ has bounded twin-width.

- ▶ Making copies does not change the twin-width
- Adding a unary relation at most doubles it
- Refine parts of the partition sequence by partitioned local type

 Extension to enumeration of FO model checking with contraction sequences [Gajarský, Pilipczuk, Przybyszewski, Toruńczyk '22]

- Extension to enumeration of FO model checking with contraction sequences [Gajarský, Pilipczuk, Przybyszewski, Toruńczyk '22]
- Twin-width is key for ordered graphs [B, Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk '22]

- Extension to enumeration of FO model checking with contraction sequences [Gajarský, Pilipczuk, Przybyszewski, Toruńczyk '22]
- Twin-width is key for ordered graphs [B, Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk '22]
- Progress on stable/structurally sparse classes, e.g. [Dreier, Mählmann, Siebertz '23]

- Extension to enumeration of FO model checking with contraction sequences [Gajarský, Pilipczuk, Przybyszewski, Toruńczyk '22]
- Twin-width is key for ordered graphs [B, Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk '22]
- Progress on stable/structurally sparse classes, e.g. [Dreier, Mählmann, Siebertz '23]
- Bounded flip-width [Toruńczyk '23] common generalization of bounded expansion and bounded twin-width

- Extension to enumeration of FO model checking with contraction sequences [Gajarský, Pilipczuk, Przybyszewski, Toruńczyk '22]
- Twin-width is key for ordered graphs [B, Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk '22]
- Progress on stable/structurally sparse classes, e.g. [Dreier, Mählmann, Siebertz '23]
- Bounded flip-width [Toruńczyk '23] common generalization of bounded expansion and bounded twin-width
- ► Hope that structures from NIP classes decompose into an "ordered part" and a "stable part"

Stable and structurally sparse classes

Conjecture (Ossona de Mendez)

Every monadically stable class is the FO transduction of a nowhere dense class.

Morally: Stability coincides with structural sparsity

Stable and structurally sparse classes

Conjecture (Ossona de Mendez)

Every monadically stable class is the FO transduction of a nowhere dense class.

Shown among classes of bounded linear cliquewidth, cliquewidth, and now twin-width:

Theorem (Gajarský, Pilipczuk, Toruńczyk '22)

Every stable class of bounded twin-width is the FO transduction of a class of bounded twin-width without arbitrarily large bicliques.

Stable and structurally sparse classes

Conjecture (Ossona de Mendez)

Every monadically stable class is the FO transduction of a nowhere dense class.

Shown among classes of bounded linear cliquewidth, cliquewidth, and now twin-width:

Theorem (Gajarský, Pilipczuk, Toruńczyk '22, Tww II '21)

Every stable class of bounded twin-width is the FO transduction of a class of bounded expansion.

The lens of contraction sequences

Class of bounded	FO transduction of	constraint on red graphs	efficient MC
linear rank-width	linear order	bd #edges	MSO
rank-width	tree order	bd component	MSO
twin-width	?	bd degree	FO

Compiling bounded twin-width graphs as p-f permutations

Our next goal:

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21)

A class of binary structures has bounded twin-width if and only if it is a first-order transduction of a proper permutation class.

Compiling bounded twin-width graphs as p-f permutations

Our next goal:

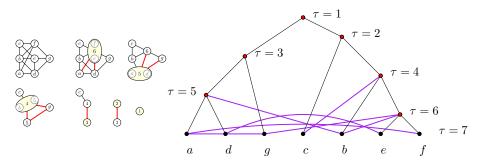
Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21)

A class of binary structures has bounded twin-width if and only if it is a first-order transduction of a proper permutation class.

We already know the "if" part, thus we want to show:

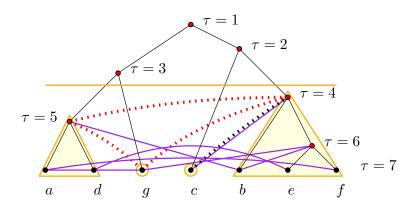
 \forall class \mathcal{C} of bounded twin-width, \exists permutation class \mathcal{P} avoiding one permutation and an FO transduction \mathcal{T} such that $\mathcal{C} \subseteq \mathcal{T}(\mathcal{P})$.

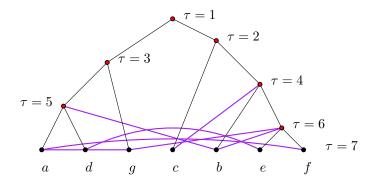
Twin-decomposition



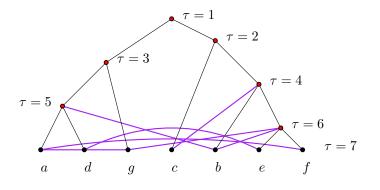
Contraction tree + transversal adjacencies (bicliques) + time au

Reading out trigraphs from a twin-decomposition

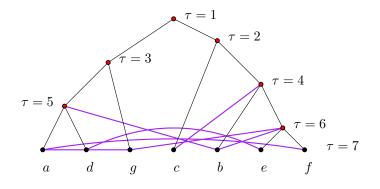




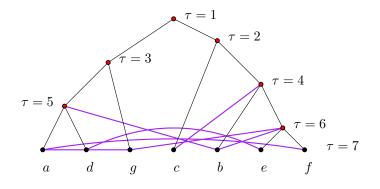
Twin-model: tree edges T, transversal edges V Example: T(3,5), V(4,c)



Twin-model: tree edges T, transversal edges VFull twin-model: ancestor-descendant relation \prec , V $Example: 2 \prec e$

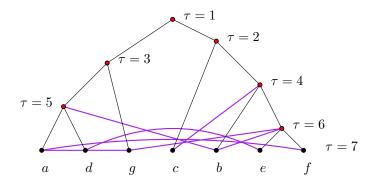


Twin-model: tree edges T, transversal edges VFull twin-model: ancestor-descendant relation \prec , VOrdered twin-model: T, tree pre-order <, V 1 < 3 < 5 < a < d < g < 2 < c < 4 < b < 6 < e < f



Twin-model: tree edges T, transversal edges VFull twin-model: ancestor-descendant relation \prec , VOrdered twin-model: T, tree pre-order <, V

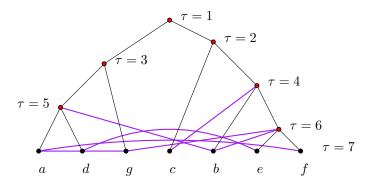
Why full twin-models?



One can FO reconstruct the initial graph from a full twin-model

$$E(x,y) := \exists x' \exists y' \ (x' \preceq x \ \land \ y' \preceq y \ \land \ V(x',y'))$$

Why full twin-models?

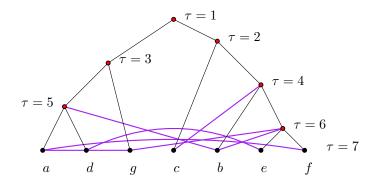


One can FO reconstruct the initial graph from a full twin-model

$$E(x,y) := \exists x' \exists y' \ (x' \leq x \ \land \ y' \leq y \ \land \ V(x',y'))$$

Example: $E(c,f)$ since $c \leq c$, $4 \leq f$, $V(4,c)$

Why full twin-models?

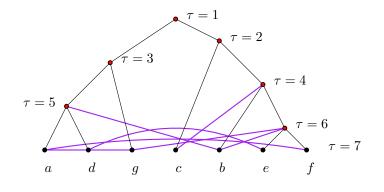


One can FO reconstruct the initial graph from a full twin-model

$$E(x,y) := \exists x' \exists y' (x' \leq x \land y' \leq y \land V(x',y'))$$

but not from a mere twin-model, in general

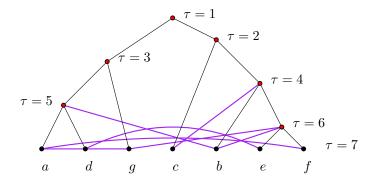
Why ordered twin-models?



A linear order

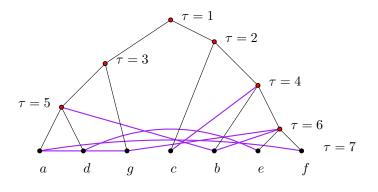
$$1 < 3 < 5 < a < d < g < 2 < c < 4 < b < 6 < e < f$$
 brings us closer to a permutation (\equiv two linear orders)

Full and ordered twin-models are transduction equivalent



$$x \prec y := x < y \land \forall x < z \le y \forall w T(z, w) \rightarrow x \le w$$

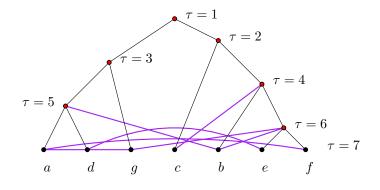
Full and ordered twin-models are transduction equivalent



$$x \prec y := x < y \land \forall x < z \leq y \ \forall w \ T(z, w) \rightarrow x \leq w$$

y is a strict descendant of x if it comes after in the pre-order, and every neighbor w (in the tree) of any intermediate z (possibly y) comes (non-strictly) after x

Full and ordered twin-models are transduction equivalent



To define x < y from \prec , mark each left child with one color, and express that the before-last vertex on the path from x to the least ancestor of x and y is marked (or simply $x \prec y$)

Done and left to do

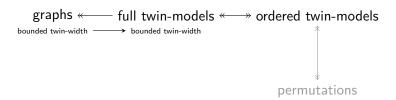
graphs \leftarrow full twin-models \leftarrow ordered twin-models bounded twin-width

Done and left to do

graphs
$$\leftarrow$$
 full twin-models \leftarrow ordered twin-models bounded twin-width \longrightarrow bounded twin-width

Mimicking a good contraction sequence on a full twin-model yields a good contraction sequence

Done and left to do



Past this point *bounded twin-width* is preserved by the FO transductions, and we just need to show that:

ordered twin-models and permutations are transduction equivalent

Sparsity of the twin-model

Twin-models have bounded twin-width and degeneracy

Sparsity of the twin-model

Twin-models have bounded twin-width and degeneracy

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) Bounded twin-width and degeneracy \Rightarrow bounded expansion.

Sparsity of the twin-model

Twin-models have bounded twin-width and degeneracy

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)

Bounded twin-width and degeneracy ⇒ bounded expansion.

Theorem (Nešetřil, Ossona de Mendez '08)

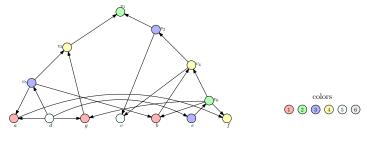
Bounded expansion ⇒ bounded star chromatic number.

I.e., proper O(1)-coloring such that every two colors induce a disjoint union of stars

Encoding: Ordered twin-models to permutations

Fix a star coloring and orient edges away from centers of stars

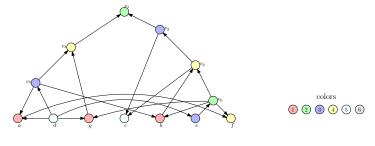
 $\rightarrow \ \mathsf{bounded} \ \mathsf{in\text{-}degree}$



Encoding: Ordered twin-models to permutations

Fix a star coloring and orient edges away from centers of stars

ightarrow bounded in-degree



List in the pre-order traversal:

- ightharpoonup <1: the incoming arcs
- $ightharpoonup <_2$: the outgoing arcs

where an arc is a copy of its out-vertex with color of its in-vertex

Decoding: Permutations to ordered twin-models

Guess the block ends (color 1)

$$3 < 6 < 8 < 11 < 12 < 15 < 17 < 20 < 23 < 26 < 28 < 30 < 33$$
 is the tree pre-order (on the domain of the image)

Decoding: Permutations to ordered twin-models

Guess the block ends (color 1)

$$3 < 6 < 8 < 11 < 12 < 15 < 17 < 20 < 23 < 26 < 28 < 30 < 33$$
 is the tree pre-order (on the domain of the image)

Two vertices are adjacent if their blocks along $<_1$ and $<_2$ contain a same element (namely, their linking arc)

Decoding: Permutations to ordered twin-models

Guess the block ends (color 1)

$$3 < 6 < 8 < 11 < 12 < 15 < 17 < 20 < 23 < 26 < 28 < 30 < 33$$
 is the tree pre-order (on the domain of the image)

Two vertices are adjacent if their blocks along $<_1$ and $<_2$ contain a same element (namely, their linking arc)

Use an extra color for the transversal edges (color 2)

Recent developments

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21)

A class of binary structures has bounded twin-width if and only if it is a first-order transduction of a proper permutation class.

Recent developments

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21)

A class of binary structures has bounded twin-width if and only if it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé '23)

Pattern-free permutations are bounded products of separable permutations.

Recent developments

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21)

A class of binary structures has bounded twin-width if and only if it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé '23)

Pattern-free permutations are bounded products of separable permutations.

As a consequence of these two results,

Corollary (B., Bourneuf, Geniet, Thomassé '23)

There is a proper permutation class \mathcal{P} such that every class of binary structures has bounded twin-width if and only if it is a first-order transduction of \mathcal{P} .

The lens of contraction sequences

Class of bounded	FO transduction of	constr. on red graphs	efficient MC
linear rank-width	linear order	bd #edges	MSO
rank-width	tree order	bd component	MSO
twin-width	proper perm. class	bd degree	FO

The lens of contraction sequences

Class of bounded	FO transduction of	constr. on red graphs	efficient MC
linear rank-width	linear order	bd #edges	MSO
rank-width	tree order	bd component	MSO
twin-width	proper perm. class	bd degree	FO

Thank you for your attention!