
Twin-width and Logic

Édouard Bonnet

ENS Lyon, LIP

July 24th, Highlights’23, Kassel, Germany

Graphs

a

b

c

d

e

f

g

Two outcomes between a pair of vertices:
edge or non-edge

Trigraphs

a

b

c

d

e

f

g

Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uvuv

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing

Contraction sequence

a

b

c

d

e

f

g

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

a

b

c

d

ge

f
ef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

b

c

gef

a dad

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

c

g

ad

b efbef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

c

adg

bef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

adg

bcef

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

Contraction sequence

a

b

c

d

e

f

g

abcdefg

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

Maximum red degree = 0
overall maximum red degree = 0

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

a

b

c

d

ge

f
ef

Maximum red degree = 2
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

b

c

gef

a dad

Maximum red degree = 2
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

c

g

ad

b efbef

Maximum red degree = 2
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

c

adg

bef

Maximum red degree = 1
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

adg

bcef

Maximum red degree = 1
overall maximum red degree = 2

Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .

a

b

c

d

e

f

g

abcdefg

Maximum red degree = 0
overall maximum red degree = 2

Simple operations preserving small twin-width

I complementation: remains the same
I taking induced subgraphs: may only decrease
I adding one vertex linked arbitrarily: at most “doubles”
I substitution, lexicographic product: max of the twin-widths

Complementation

a

b

c

d

e

f

g

G

a

b

c

d

e

f

g

G

tww(G) = tww(G)

Complementation

a

b

c

d

e

f

g

G

a

b

c

d

e

f

g

G

a

b

c

d

ge

f
ef

G6

a

b

c

d

ge

f
ef

G6

tww(G) = tww(G)

Induced subgraph

a

b

c

d

e

f

g

G

a

b

c

d

e

H

tww(H) 6 tww(G)

Induced subgraph

a

b

c

d

ge

f
ef

a

b

c

d

e

H

Ignore absent vertices

Induced subgraph

b

c

gef

a dad

H

ad

b

c

e

Mimic the contractions otherwise

Induced subgraph

c

g

ad

b efbef

H

ad

be

c

Mimic the contractions otherwise

Induced subgraph

c

adg

bef

H

ad

be

c

Mimic the contractions otherwise

Induced subgraph

adg

bcef

H

ad

bce

Mimic the contractions otherwise

Induced subgraph

abcdefg

H

abcde

Mimic the contractions otherwise

Adding one vertex v (arbitrarily linked)

A B

v

G

Split every part into their part in A and in B until the very end

tww(G + v) 6 2 · tww(G) + 1

Adding one vertex v (arbitrarily linked)

A B

v

G

Split every part into their part in A and in B until the very end
tww(G + v) 6 2 · tww(G) + 1

Substitution and lexicographic product

G = C5

Substitution and lexicographic product

G = C5, H = P4, substitution G [v ← H]

Substitution and lexicographic product

G = C5, H = P4, lexicographic product G [H]

Substitution and lexicographic product

More generally any modular decomposition

Substitution and lexicographic product

More generally any modular decomposition

Substitution and lexicographic product

tww(G [H]) = max(tww(G), tww(H))

Classes with bounded twin-width

I cographs = twin-width 0
I trees, bounded treewidth, clique-width/rank-width
I grids
I . . .

Trees

If possible, contract two twin leaves

Trees

If not, contract a deepest leaf with its parent

Trees

If not, contract a deepest leaf with its parent

Trees

If possible, contract two twin leaves

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Generalization to bounded treewidth and even bounded rank-width

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

3-dimensional grids

Contains arbitrary large clique minors

3-dimensional grids

Contract the blue edges in any order → 12-sequence

3-dimensional grids

The d-dimensional grid has twin-width 6 4d (even 3d)

2-lifts, expanders with bounded twin-width

split each vertex in 2, replace each edge by 1 of the 2 matchings

but no balanced separators of size o(n)

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6

but no balanced separators of size o(n)

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6

but no balanced separators of size o(n)

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6

but no balanced separators of size o(n)

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6

but no balanced separators of size o(n)

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6
but no balanced separators of size o(n)

First example of unbounded twin-width

Line graph of a biclique a.k.a. rook graph

First example of unbounded twin-width

No pair of near twins

First example of unbounded twin-width

No pair of near twins

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅
1

12
13
14

123
124
134

1234
2

23
24

234
3

34
4

1
12
13
14

123
124
134

1234
2

23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅
1

12
13
14

123
124
134

1234
2

23
24

234
3

34
4

1
12
13
14

123
124
134

1234
2

23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅
1

12
13
14

123
124
134

1234
2

23
24

234
3

34
4

∅
1

1
12
13
14

123
124
134

1234
2

23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

1
12
13
14

123
124
134

1234
2

23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

12

2

1
12
13
14

123
124
134

1234
2

23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

1
12
13
14

123
124
134

1234

2

23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

13

3

1
12
13
14

123
124
134

1234

2

23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

14

4

1
12
13
14

123
124
134

1234

2

23
24

234

3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

123

23

1
12
13
14

123
124
134

1234

2

23
24

234

3

34

4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

124

24

1
12
13
14

123
124
134

1234

2
23

24
234

3

34

4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

134

34

1
12
13
14

123
124
134

1234

2
23
24

234

3

34

4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

1234

234

1
12
13
14

123
124
134

1234

2
23
24

234

3
34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

1
12
13
14

123
124
134

1234

2
23
24

234
3

34
4

Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.

1

2

3

4

∅

1
12
13
14

123
124
134

1234

2
23
24

234
3

34
4

Characterizing bounded twin-width via a vertex ordering

Our next goal:

Theorem ((informal) B., Kim, Thomassé, Watrigant ’20)
If each graph of a class C admits at least one simple (in a sense
that we will define) adjacency matrix then C has bounded
twin-width.

Twin-width in the language of matrices

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Encode a bipartite graph (or, if symmetric, any graph)

Twin-width in the language of matrices

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Contraction of two columns (similar with two rows)

Twin-width in the language of matrices

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
r
r
0
r
1

1
1
1
0
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

1
1
1
1
0
0
1

How is the twin-width (re)defined?

Twin-width in the language of matrices

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
r
r
0
r
1

1
1
1
0
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

1
1
1
1
0
0
1

How to tune it for non-bipartite graph?

Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Maximum number of non-constant zones per column or row part
= error value

Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Maximum number of non-constant zones per column or row part
= error value

Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Maximum number of non-constant zones per column or row part
. . . until there are a single row part and column part

Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Maximum number of non-constant zones per column or row part

Twin-width as maximum error value
of a contraction/division sequence

Grid minor

t-grid minor: t × t-division where every cell is non-empty
Non-empty cell: contains at least one 1 entry

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

4-grid minor

A matrix is said t-grid free if it does not have a t-grid minor

Grid minor

t-grid minor: t × t-division where every cell is non-empty
Non-empty cell: contains at least one 1 entry

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

4-grid minor

A matrix is said t-grid free if it does not have a t-grid minor

Mixed minor

Mixed cell: not horizontal nor vertical

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

3-mixed minor

Every mixed cell is witnessed by a 2× 2 square

Mixed minor

Mixed cell: not horizontal nor vertical

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

3-mixed minor

Every mixed cell is witnessed by a 2× 2 square = corner

Mixed minor

Mixed cell: not horizontal nor vertical

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

3-mixed minor

A matrix is said t-mixed free if it does not have a t-mixed minor

Mixed value

R1

R2

R3

R4

C2

1
0
1
0
1
1
1

0
1
1
1
0
0
1

1
1
0
0
1
1
1

0
1
0
0
0
0
0

1
0
1
1
0
0
0

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

≈ (maximum) number of cells with a corner per row/column part

Mixed value

R1

R2

R3

R4

C2

1
0
1
0
1
1
1

0
1
1
1
0
0
1

1
1
0
0
1
1
1

0
1
0
0
0
0
0

1
0
1
1
0
0
0

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

But we add the number of boundaries containing a corner

Mixed value

R1

R2

R3

R4

C2

1
0
1
0
1
1
1

0
1
1
1
0
0
1

1
1
0
0
1
1
1

0
1
0
0
0
0
0

1
0
1
1
0
0
0

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

∪

∴ merging row parts do not increase mixed value of column part

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If G admits a t-mixed free adjacency matrix, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di)i with mixed value f (t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Merge parts greedily

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di)i with mixed value f (t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Merge parts greedily

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di)i with mixed value f (t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Merge consecutive parts greedily

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di)i with mixed value f (t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Merge consecutive parts greedily

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di)i with mixed value f (t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Merge consecutive parts greedily

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di)i with mixed value f (t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Stuck, removing every other separation → f (t)
2 mixed cells per part

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Question
For every k, is there a ck such that every n×m 0, 1-matrix with at
least ck 1 per row and column admits a k-grid minor?

Conjecture (Stanley-Wilf conjecture ’80s)
Any proper permutation class contains only 2O(n) n-permutations.

Klazar showed Füredi-Hajnal ⇒ Stanley-Wilf in 2000
Marcus and Tardos showed Füredi-Hajnal in 2004

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Conjecture (reformulation of Füredi-Hajnal conjecture ’92)
For every k, there is a ck such that every n×m 0, 1-matrix with at
least ck max(n,m) 1 entries admits a k-grid minor.

Conjecture (Stanley-Wilf conjecture ’80s)
Any proper permutation class contains only 2O(n) n-permutations.

Klazar showed Füredi-Hajnal ⇒ Stanley-Wilf in 2000
Marcus and Tardos showed Füredi-Hajnal in 2004

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Conjecture (reformulation of Füredi-Hajnal conjecture ’92)
For every k, there is a ck such that every n×m 0, 1-matrix with at
least ck max(n,m) 1 entries admits a k-grid minor.

Conjecture (Stanley-Wilf conjecture ’80s)
Any proper permutation class contains only 2O(n) n-permutations.

Klazar showed Füredi-Hajnal ⇒ Stanley-Wilf in 2000
Marcus and Tardos showed Füredi-Hajnal in 2004

Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11
W

W

W

T T T

W

T

T

W

¬W ,¬T
1

Let M be an n × n 0, 1-matrix without k-grid minor

Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11
W

W

W

T T T

W

T

T

W

¬W ,¬T
1

Draw a regular n
k2 × n

k2 division on top of M

Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11
W

W

W

T T T

W

T

T

W

¬W ,¬T
1

A cell is wide if it has at least k columns with a 1

Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11

W

W

W

T T T

W

T

T

W

¬W ,¬T
1

A cell is tall if it has at least k rows with a 1

Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11

W

W

W

T T T

W

T

T

W

¬W ,¬T
1

There are less than k
(k2

k
)

wide cells per column part. Why?

Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11
W

W

W

T T T

W

T

T

W

¬W ,¬T
1

There are less than k
(k2

k
)

tall cells per row part

Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11

W

W

W

T T T

W

T

T

W

¬W ,¬T
1

In W and T, at most 2 · n
k2 · k

(k2

k
)
· k4 = 2k3(k2

k
)
n entries 1

Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11
W

W

W

T T T

W

T

T

W

¬W ,¬T
1

There are at most (k − 1)2ck
n
k2 remaining 1. Why?

Marcus-Tardos one-page inductive proof

M =

k2 × k2

W
1

1
11

1
1

T
1

11 1 11

W

W

W

T T T

W

T

T

W

¬W ,¬T
1

Choose ck = 2k4(k2

k
)

so that (k − 1)2ck
n
k2 + 2k3(k2

k
)
n 6 ckn

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di)i with mixed value f (t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Stuck, removing every other separation → f (t)
2 mixed cells per part

Impossible!

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di)i with mixed value f (t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Stuck, removing every other separation → f (t)
2 mixed cells per part

Impossible!

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di)i with mixed value f (t)
Step 2: find a contraction sequence with error value g(t)

1
0
1
0
0
0
1

0
1
0
1
0
1
1

1
1
0
0
0
1
1

1
1
1
0
0
0
1

1
1
1
1
0
0
1

0
1
0
0
0
1
1

0
0
1
1
0
0
1

1
0
0
0
1
1
0

Refinement of Di where each part coincides on the non-mixed cells

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant ’20)
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C

Unit interval graphs

Intersection graph of unit segments on the real line

Unit interval graphs

1

0

0

order by left endpoints

Unit interval graphs

1

0

0

not
mixed

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

Graph minors

Formed by vertex deletion, edge deletion, and edge contraction

A graph G is H-minor free if H is not a minor of G

A graph class is H-minor free if all its graphs are

Planar graphs are exactly the graphs without K5 or K3,3 as a minor

K5 K3,3

Graph minors

Formed by vertex deletion, edge deletion, and edge contraction

A graph G is H-minor free if H is not a minor of G

A graph class is H-minor free if all its graphs are

Planar graphs are exactly the graphs without K5 or K3,3 as a minor

K5 K3,3

Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Given a hamiltonian path, we would just use this order

Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Contracting the 2t subpaths yields a Kt,t-minor, hence a Kt-minor

Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Instead we use a specially crafted lex-DFS discovery order

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’20 & ’21)
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’20 & ’21)
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?

Different conditions imposed in the sequence of red graphs

bd degree: defines bd twin-width

bd component: redefines bd cliquewidth
bd #edges: redefines bd linear cliquewidth

Bd boolean-width ⇒ bd component twin-width

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

2 61 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

Bd boolean-width: binary tree layout s.t. every edge cut in the tree
induces a bipartition with bd # distinct neighborhoods

Bd boolean-width ⇒ bd component twin-width

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

2 61 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

There is a subtree on ` ∈ [d + 1, 2d] leaves, where d bounds the
number of single-vertex neighborhoods in a bipartition

Bd boolean-width ⇒ bd component twin-width

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

1 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

Two vertices have the same neighborhood outside of this subtree

a

Bd boolean-width ⇒ bd component twin-width

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

1 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 6

Contracting them preserves the upper bound at 2d
on the size of red connected components

Component twin-width and boolean-width are tied

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded component twin-width iff it has bounded
boolean-width/cliquewidth/rank-width.

Proof.
We just saw one direction.

Conversely, build the binary tree layout based on the contractions.
When red components merge, their subtree gets a same parent.

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded total twin-width iff it has bounded linear
boolean-width/cliquewidth/rank-width.

Component twin-width and boolean-width are tied

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded component twin-width iff it has bounded
boolean-width/cliquewidth/rank-width.

Proof.
We just saw one direction.
Conversely, build the binary tree layout based on the contractions.
When red components merge, their subtree gets a same parent.

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded total twin-width iff it has bounded linear
boolean-width/cliquewidth/rank-width.

Component twin-width and boolean-width are tied

Theorem (B., Kim, Reinald, Thomassé ’22)
A class has bounded component twin-width iff it has bounded
boolean-width/cliquewidth/rank-width.

Proof.
We just saw one direction.
Conversely, build the binary tree layout based on the contractions.
When red components merge, their subtree gets a same parent.

Theorem (Baril, Couceiro, Lagerkvist ’22)
The component twinwidth plus one is at least the cliquewidth and
at most twice the cliquewidth.

Efficient parameterized algorithms via this characterization

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

C

Efficient parameterized algorithms via this characterization

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

C

For every red component C keep every profile
V (C)→ 2{1,2,3} \ {∅} realizable by a proper 3-coloring of G〈C〉

Efficient parameterized algorithms via this characterization

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

C

For every red component C keep every profile
V (C)→ 2{1,2,3} \ {∅} realizable by a proper 3-coloring of G〈C〉

Efficient parameterized algorithms via this characterization

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

C

For every red component C keep every profile
V (C)→ 2{1,2,3} \ {∅} realizable by a proper 3-coloring of G〈C〉

Efficient parameterized algorithms via this characterization

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

C

Some tuples of the at most d + 1 profiles
corresponding to merging red components are compatible

Efficient parameterized algorithms via this characterization

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

C

Some tuples of the at most d + 1 profiles
corresponding to merging red components are compatible

Efficient parameterized algorithms via this characterization

Solve 3-Coloring on a graph G with a contraction sequence s.t.
all red graphs have components of size at most d

C1

C2

C3

C

Some tuples of the at most d + 1 profiles
corresponding to merging red components are incompatible

Efficient parameterized algorithms via this characterization
Solve 3-Coloring on a graph G with a contraction sequence s.t.

all red graphs have components of size at most d

C1

C2

C3

C

Initialization: time 3n
Update: time 7d d2

Total: time 7d d2n
End: still a profile on the single vertex containing the whole graph?

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi) ∨ E (xi , x)

G |= ϕ? ⇔ k-Dominating Set

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi)

G |= ϕ? ⇔

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi)

G |= ϕ? ⇔ k-Independent Set

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃X1∃X2∃X3(∀x
∨

16i63
Xi (x)) ∧ ∀x∀y

∧
16i63

(Xi (x)∧Xi (y)→ ¬E (x , y))

G |= ϕ? ⇔

Formulas, sentences, and model checking

Graph FO/MSO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order/monadic second-order sen-
tence ϕ ∈ FO/MSO({E})
Question: G |= ϕ?

Example:

ϕ = ∃X1∃X2∃X3(∀x
∨

16i63
Xi (x)) ∧ ∀x∀y

∧
16i63

(Xi (x)∧Xi (y)→ ¬E (x , y))

G |= ϕ? ⇔ 3-Coloring

The lens of contraction sequences

Class of bounded constraint on red graphs efficient model-checking

linear rank-width bd #edges MSO
rank-width bd component MSO
twin-width bd degree ?

We will reprove the result in bold, and fill the ?

The lens of contraction sequences

Class of bounded constraint on red graphs efficient model-checking

linear rank-width bd #edges MSO
rank-width bd component MSO
twin-width bd degree ?

We will reprove the result in bold, and fill the ?

Courcelle’s theorems
We will reprove with contraction sequences:

Theorem (Courcelle, Makowsky, Rotics ’00)
MSO model checking can be solved in time f (|ϕ|, d) · |V (G)| given
a witness that the clique-width/component twin-width of the input
G is at most d.

generalizes

Theorem (Courcelle ’90)
MSO model checking can be solved in time f (|ϕ|, t) · |V (G)| on
graphs G of treewidth at most t.

I as the incidence graph preserves bounded treewidth,
possible edge-set quantification

I linear FPT approximation for treewidth
I (polynomial) FPT approximation for clique-width

Courcelle’s theorems
We will reprove with contraction sequences:

Theorem (Courcelle, Makowsky, Rotics ’00)
MSO model checking can be solved in time f (|ϕ|, d) · |V (G)| given
a witness that the clique-width/component twin-width of the input
G is at most d.

generalizes

Theorem (Courcelle ’90)
MSO model checking can be solved in time f (|ϕ|, t) · |V (G)| on
graphs G of treewidth at most t.
I as the incidence graph preserves bounded treewidth,

possible edge-set quantification
I linear FPT approximation for treewidth
I (polynomial) FPT approximation for clique-width

Rank-k m-types
Sets of non-equivalent formulas/sentences of quantifier rank at
most k satisfied by a fixed structure:

tpLk (A,~a ∈ Am) = {ϕ(~x) ∈ L[k] : A |= ϕ(~a)},

tpLk (A) = {ϕ ∈ L[k] : A |= ϕ}.

Theorem (folklore)
For L ∈ {FO,MSO}, the number of rank-k m-types is bounded by
a function of k and m only.

Proof.
“L[k + 1] are Boolean combinations of ∃xL[k].”

Rank-k types partition the graphs into g(k) classes.
Efficient Model Checking = quickly finding the class of the input.

Rank-k m-types
Sets of non-equivalent formulas/sentences of quantifier rank at
most k satisfied by a fixed structure:

tpLk (A,~a ∈ Am) = {ϕ(~x) ∈ L[k] : A |= ϕ(~a)},

tpLk (A) = {ϕ ∈ L[k] : A |= ϕ}.

Theorem (folklore)
For L ∈ {FO,MSO}, the number of rank-k m-types is bounded by
a function of k and m only.

Proof.
“L[k + 1] are Boolean combinations of ∃xL[k].”

Rank-k types partition the graphs into g(k) classes.
Efficient Model Checking = quickly finding the class of the input.

Rank-k m-types
Sets of non-equivalent formulas/sentences of quantifier rank at
most k satisfied by a fixed structure:

tpLk (A,~a ∈ Am) = {ϕ(~x) ∈ L[k] : A |= ϕ(~a)},

tpLk (A) = {ϕ ∈ L[k] : A |= ϕ}.

Theorem (folklore)
For L ∈ {FO,MSO}, the number of rank-k m-types is bounded by
a function of k and m only.

Proof.
“L[k + 1] are Boolean combinations of ∃xL[k].”

Rank-k types partition the graphs into g(k) classes.
Efficient Model Checking = quickly finding the class of the input.

FO Ehrenfeucht-Fraissé game

A B

b1a1

a2

b2

a3

b2

a3

2-player game on two σ-structures A,B (for us, colored graphs)

A[a1, . . . , ak]

FO Ehrenfeucht-Fraissé game

A Bb1

a1

a2

b2

a3

b2

a3

At each round, Spoiler picks a structure (B) and a vertex therein

A[a1, . . . , ak]

FO Ehrenfeucht-Fraissé game

A Bb1a1

a2

b2

a3

b2

a3

Duplicator answers with a vertex in the other structure

A[a1, . . . , ak]

FO Ehrenfeucht-Fraissé game

A Bb1a1

a2

b2

a3

b2

a3

After q rounds, Duplicator wishes that ai 7→ bi is an isomorphism
between A[a1, . . . , ak] and B[b1, . . . , bk]

FO Ehrenfeucht-Fraissé game

A Bb1a1

a2

b2

a3

b2

a3

After q rounds, Duplicator wishes that ai 7→ bi is an isomorphism
between A[a1, . . . , ak] and B[b1, . . . , bk]

FO Ehrenfeucht-Fraissé game

A Bb1a1

a2

b2

a3

b2

a3

When no longer possible, Spoiler wins

A[a1, . . . , ak]

FO Ehrenfeucht-Fraissé game

A Bb1a1

a2

b2

a3

b2

a3

When no longer possible, Spoiler wins

A[a1, . . . , ak]

FO Ehrenfeucht-Fraissé game

A Bb1a1

a2

b2

a3

b2

a3

If Duplicator can survive k rounds, we write A ≡FO
k B

Here A ≡FO
2 B and A 6≡FO

3 B

MSO Ehrenfeucht-Fraissé game

A B

Same game but Spoiler can now play set moves

MSO Ehrenfeucht-Fraissé game

A B

Same game but Spoiler can now play set moves

MSO Ehrenfeucht-Fraissé game

A B

To which Duplicator answers a set in the other structure

MSO Ehrenfeucht-Fraissé game

A B

Again we write A ≡MSO
k B if Duplicator can survive k rounds

k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
For every σ-structures A,B and logic L ∈ {FO,MSO},

A ≡Lk B if and only if tpLk (A) = tpLk (B).

Proof.
Induction on k.

(⇒) L[k + 1] formulas are Boolean combinations of ∃xϕ or ∃Xϕ
where ϕ ∈ L[k]. Use the answer of Duplicator to x = a or X = A.

(⇐) If tpLk+1(A) = tpLk+1(B), then the type tpLk (A, a) is equal to
some tpLk (B, b). Move a can be answered by playing b.

k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
For every σ-structures A,B and logic L ∈ {FO,MSO},

A ≡Lk B if and only if tpLk (A) = tpLk (B).

Proof.
Induction on k.

(⇒) L[k + 1] formulas are Boolean combinations of ∃xϕ or ∃Xϕ
where ϕ ∈ L[k]. Use the answer of Duplicator to x = a or X = A.

(⇐) If tpLk+1(A) = tpLk+1(B), then the type tpLk (A, a) is equal to
some tpLk (B, b). Move a can be answered by playing b.

k-round EF games capture rank-k types

Theorem (Ehrenfeucht-Fraissé)
For every σ-structures A,B and logic L ∈ {FO,MSO},

A ≡Lk B if and only if tpLk (A) = tpLk (B).

Proof.
Induction on k.

(⇒) L[k + 1] formulas are Boolean combinations of ∃xϕ or ∃Xϕ
where ϕ ∈ L[k]. Use the answer of Duplicator to x = a or X = A.

(⇐) If tpLk+1(A) = tpLk+1(B), then the type tpLk (A, a) is equal to
some tpLk (B, b). Move a can be answered by playing b.

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E ,U1, . . . ,Ud)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph Gi

tpMSO
k (G ,Pi ,C) = {ϕ ∈ MSOE ,U1,...,Ud (k) : (G〈C〉,Pi〈C〉) |= ϕ}.

C1, τ1

C2, τ2

C3, τ3

For each v ∈ V (G), tpk(G ,Pn, {v}) = type of K1
tpk(G ,P1, {V (G)}) = type of G

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E ,U1, . . . ,Ud)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph Gi

tpMSO
k (G ,Pi ,C) = {ϕ ∈ MSOE ,U1,...,Ud (k) : (G〈C〉,Pi〈C〉) |= ϕ}.

C1, τ1

C2, τ2

C3, τ3

For each v ∈ V (G), tpk(G ,Pn, {v}) = type of K1
tpk(G ,P1, {V (G)}) = type of G

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E ,U1, . . . ,Ud)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph Gi

tpMSO
k (G ,Pi ,C) = {ϕ ∈ MSOE ,U1,...,Ud (k) : (G〈C〉,Pi〈C〉) |= ϕ}.

C1, τ1

C2, τ2

C3, τ3

τ = tpMSO
k (G ,Pi ,C) based on the τj = tpMSO

k (G ,Pi+1,Cj)?

MSO model checking for component twin-width d
Partitioned sentences: sentences on (E ,U1, . . . ,Ud)-structures,
interpreted as a graph vertex partitioned in d parts

Maintain for every red component C of every trigraph Gi

tpMSO
k (G ,Pi ,C) = {ϕ ∈ MSOE ,U1,...,Ud (k) : (G〈C〉,Pi〈C〉) |= ϕ}.

B

X Y
C1, τ1

C2, τ2

C3, τ3

C arises from C1, . . . ,Cd ′ : τ = F (τ1, . . . , τd ′ ,B,X ,Y)

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

Duplicator combines her strategies in the red components

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

If Spoiler plays a vertex in the component of type τ1,

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

Duplicator answers the corresponding winning move

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

Same in the component of type τ2

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

Same in the component of type τ2

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

Same in the component of type τ2

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

Same in the component of type τ2

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

and so on

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4

b5

a5

a6

b6

a7

b7

and so on

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

and so on

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

and so on

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

and so on

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

and so on

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

If Spoiler plays a set, Duplicator looks at the intersection with C1,

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

If Spoiler plays a set, Duplicator looks at the intersection with C1,

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

calls her winning strategy in C ′1

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

same for the other components

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

same for the other components

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

same for the other components

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

and plays the union

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

that fully defines the winning strategy of Duplicator

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

that fully defines the winning strategy of Duplicator

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

that fully defines the winning strategy of Duplicator

Showing τ = F (τ1, . . . , τd ′,B,X ,Y) via MSO EF game

C1, τ1

C2, τ2

C3, τ3

C ′1, τ1

C ′2, τ2

C ′3, τ3

a1

b1

b2

a2

a3

b3

a4

b4
b5

a5

a6

b6

a7

b7

that fully defines the winning strategy of Duplicator

Turning it into a uniform algorithm

Reminder:
I #non-equivalent partitioned sentences of rank k: f (d , k)
I #rank-k partitioned types bounded by g(d , k) = 2f (d ,k)

For each newly observed type τ ,
I keep a representative (H,P)τ on at most (d + 1)g(d ,k) vertices
I determine the 0, 1-vector of satisfied sentences on (H,P)τ
I record the value of F (τ1, . . . , τd ′ ,B,X ,Y) for future uses

To decide G |= ϕ, look at position ϕ in the 0, 1-vector of tpMSO
k (G)

Turning it into a uniform algorithm

Reminder:
I #non-equivalent partitioned sentences of rank k: f (d , k)
I #rank-k partitioned types bounded by g(d , k) = 2f (d ,k)

For each newly observed type τ ,
I keep a representative (H,P)τ on at most (d + 1)g(d ,k) vertices
I determine the 0, 1-vector of satisfied sentences on (H,P)τ
I record the value of F (τ1, . . . , τd ′ ,B,X ,Y) for future uses

To decide G |= ϕ, look at position ϕ in the 0, 1-vector of tpMSO
k (G)

k-Independent Set given a d-sequence

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: For every connected subset D of size at most k of
the red graph of every Gi , store in T [D, i] one largest
independent set in G〈D〉 intersecting every vertex of D.

Initialization: T [{v}, n] = {v}

End: T [{V (G)}, 1] = IS of size at least k or largest IS in G

Running time: d2kn2 red connected subgraphs,
actually only d2kn = 2Od (k)n updates

How to compute T [D, i] from all the T [D′, i + 1]?

k-Independent Set given a d-sequence

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: For every connected subset D of size at most k of
the red graph of every Gi , store in T [D, i] one largest
independent set in G〈D〉 intersecting every vertex of D.

Initialization: T [{v}, n] = {v}

End: T [{V (G)}, 1] = IS of size at least k or largest IS in G

Running time: d2kn2 red connected subgraphs,
actually only d2kn = 2Od (k)n updates

How to compute T [D, i] from all the T [D′, i + 1]?

k-Independent Set given a d-sequence

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: For every connected subset D of size at most k of
the red graph of every Gi , store in T [D, i] one largest
independent set in G〈D〉 intersecting every vertex of D.

Initialization: T [{v}, n] = {v}

End: T [{V (G)}, 1] = IS of size at least k or largest IS in G

Running time: d2kn2 red connected subgraphs,
actually only d2kn = 2Od (k)n updates

How to compute T [D, i] from all the T [D′, i + 1]?

k-Independent Set: Update of partial solutions

Gi

z

Gi+1

u
v

Best partial solution inhabiting •?

with u, or v , or both

k-Independent Set: Update of partial solutions

Gi

z

Gi+1

u
v

3 unions of 6 d + 2 red connected subgraphs to consider in Gi+1
with u, or v , or both

FO model checking on graphs of bounded twin-width

We will now generalize the previous algorithm to:

Theorem (B., Kim, Thomassé, Watrigant ’20)
FO model checking can be solved in time f (|ϕ|, d) · |V (G)| on
graphs G given with a d-sequence.

Add Gaifman’s locality to our MSO model checking algorithm

Following [Gajarský, Pilipczuk, Przybyszewski, Toruńczyk ’22]

FO model checking on graphs of bounded twin-width

We will now generalize the previous algorithm to:

Theorem (B., Kim, Thomassé, Watrigant ’20)
FO model checking can be solved in time f (|ϕ|, d) · |V (G)| on
graphs G given with a d-sequence.

Add Gaifman’s locality to our MSO model checking algorithm

Following [Gajarský, Pilipczuk, Przybyszewski, Toruńczyk ’22]

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...

P2 is at distance at most 2k−2 from {P1} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
P2 is at distance at most 2k−2 from {P1} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
P2 is at distance at most 2k−2 from {P1} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
P3 is at distance at most 2k−3 from {P1,P2} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
P3 is at distance at most 2k−3 from {P1,P2} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
P4 is at distance at most 2k−4 from {P1,P2,P3} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
P4 is at distance at most 2k−4 from {P1,P2,P3} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
Pq is at distance at most 2k−q from {P1, ...,Pq−1} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
Pq is at distance at most 2k−q from {P1, ...,Pq−1} in (G ,Pi)

Local tuple of parts

P1

P2

P3

P4

P5

(P1,P2, . . . ,Pq) is local around P1 if...
Pq is at distance at most 2k−q from {P1, ...,Pq−1} in (G ,Pi)

Partitioned local sentences and types

A prenex sentence is partitioned local around X in (G ,Pi) if of the
form Qx1 ∈ X Qx2 ∈ P2 . . . Qxk ∈ Pk ψ(x1, . . . , xk) with
I ψ is quantifier-free, and
I (X ,P2, . . . ,Pk) local around X in (G ,Pi).

And the corresponding types:

ltpFO
k (G ,Pi ,X) = {ϕ : qr(ϕ) 6 k,

ϕ is partitioned local around X in (G ,Pi),

(G ,Pi) |= ϕ}.

Partitioned local sentences and types

A prenex sentence is partitioned local around X in (G ,Pi) if of the
form Qx1 ∈ X Qx2 ∈ P2 . . . Qxk ∈ Pk ψ(x1, . . . , xk) with
I ψ is quantifier-free, and
I (X ,P2, . . . ,Pk) local around X in (G ,Pi).

And the corresponding types:

ltpFO
k (G ,Pi ,X) = {ϕ : qr(ϕ) 6 k,

ϕ is partitioned local around X in (G ,Pi),

(G ,Pi) |= ϕ}.

Partitioned local sentences/types in (G ,Pn) and (G ,P1)

Initialization of the dynamic programming

In (G ,Pn = {{v} : v ∈ V (G)}): for every v ∈ V (G),
Qx1 ∈ {v} Qx2 ∈ {v} . . . Qxk ∈ {v} ψ ≡ ψ(v , v , . . . , v)

Partitioned local types are easy to compute in (G ,Pn)

Output of the dynamic programming

In (G ,P1 = {V (G)}):
Qx1 ∈ V (G) Qx2 ∈ V (G) . . . Qxk ∈ V (G) ψ ≡ classic sentences

The partitioned local type in (G ,P1) coincides with the type of G

Partitioned local sentences/types in (G ,Pn) and (G ,P1)

Initialization of the dynamic programming

In (G ,Pn = {{v} : v ∈ V (G)}): for every v ∈ V (G),
Qx1 ∈ {v} Qx2 ∈ {v} . . . Qxk ∈ {v} ψ ≡ ψ(v , v , . . . , v)

Partitioned local types are easy to compute in (G ,Pn)

Output of the dynamic programming

In (G ,P1 = {V (G)}):
Qx1 ∈ V (G) Qx2 ∈ V (G) . . . Qxk ∈ V (G) ψ ≡ classic sentences

The partitioned local type in (G ,P1) coincides with the type of G

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1
P2

a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Local strategies win the global game

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1

P2
a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Say, Spoiler plays in P1

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1

P2
a2

P3a3

f (P1)
b1

f (P2)
b2

f (P3)
b3

f

Duplicator answers in f (P1) following the local game around P1

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1

P2
a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Now when Spoiler plays close to P1 or f (P1)

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1
P2

a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Duplicator follows the winning local strategy

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1
P2

a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Duplicator follows the winning local strategy

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1
P2

a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

If Spoiler plays too far

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1
P2

a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Duplicator starts a new local game around that new part

Partitioned local types give the partitioned types
Isom. f : Pi → P ′i with ltpFO

k (G ,Pi ,X) = ltpFO
k (G ′,P ′i , f (X))

(G ,Pi)

(G ′,P ′i)

P1a1
P2

a2

P3a3

f (P1)
b1 f (P2)

b2

f (P3)
b3

f

Duplicator starts a new local game around that new part

Concluding as in the MSO model checking algorithm

(G ,Pi+1) (G ,Pi) : X and Y are merged in Z

Partitioned local types around P
I only needs an update if P is at distance at most 2k−1 from Z

I update only involves parts at distance at most 2k−1 from P
I hence at most d2k parts: conclude like MSO model checking

Each contraction: Od ,k(1) = O(d2k) updates in Od ,k(1) = f (d , k)
Total time: Od ,k(n)

Concluding as in the MSO model checking algorithm

(G ,Pi+1) (G ,Pi) : X and Y are merged in Z

Partitioned local types around P
I only needs an update if P is at distance at most 2k−1 from Z
I update only involves parts at distance at most 2k−1 from P

I hence at most d2k parts: conclude like MSO model checking

Each contraction: Od ,k(1) = O(d2k) updates in Od ,k(1) = f (d , k)
Total time: Od ,k(n)

Concluding as in the MSO model checking algorithm

(G ,Pi+1) (G ,Pi) : X and Y are merged in Z

Partitioned local types around P
I only needs an update if P is at distance at most 2k−1 from Z
I update only involves parts at distance at most 2k−1 from P
I hence at most d2k parts: conclude like MSO model checking

Each contraction: Od ,k(1) = O(d2k) updates in Od ,k(1) = f (d , k)
Total time: Od ,k(n)

Concluding as in the MSO model checking algorithm

(G ,Pi+1) (G ,Pi) : X and Y are merged in Z

Partitioned local types around P
I only needs an update if P is at distance at most 2k−1 from Z
I update only involves parts at distance at most 2k−1 from P
I hence at most d2k parts: conclude like MSO model checking

Each contraction: Od ,k(1) = O(d2k) updates in Od ,k(1) = f (d , k)
Total time: Od ,k(n)

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

First-order interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Stable and NIP for hereditary classes

Due to [Baldwin, Shelah ’85; Braunfeld, Laskowski ’22]

Stable class: no transduction of the class contains all ladders
NIP class: no transduction of the class contains all graphs

ladder

Bounded-degree graphs → stable
Unit interval graphs → NIP but not stable
Interval graphs → not NIP

Bounded twin-width classes → NIP, but in general not stable

Stable and NIP for hereditary classes

Stable class: no transduction of the class contains all ladders
NIP class: no transduction of the class contains all graphs

ladder

Bounded-degree graphs → stable
Unit interval graphs → NIP but not stable
Interval graphs → not NIP

Bounded twin-width classes → NIP, but in general not stable

Stable and NIP for hereditary classes

Stable class: no transduction of the class contains all ladders
NIP class: no transduction of the class contains all graphs

ladder

Bounded-degree graphs → stable
Unit interval graphs → NIP but not stable
Interval graphs → not NIP

Bounded twin-width classes → NIP, but in general not stable

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

nowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

stable

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

NIP \ stable

FO Model Checking solvable in f (|ϕ|)n on bounded-degree graphs

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

nowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

stable

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

NIP \ stable

FO Model Checking solvable in f (|ϕ|)n on bounded-degree graphs
[Seese ’96]

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere densenowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

stable

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

NIP \ stable

FO Model Checking solvable in f (|ϕ|)n1+ε on any nowhere dense class
[Grohe, Kreutzer, Siebertz ’14]

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere densenowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

stable

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

NIP \ stable

End of the story for the subgraph-closed classes
tractable FO Model Checking ⇔ nowhere dense ⇔ stable

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere densenowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

stable

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

NIP \ stable

New program: transductions of nowhere dense classes
Not sparse anymore but still stable

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

nowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

stable

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

NIP \ stable

MSO1 Model Checking solvable in f (|ϕ|,w)n on graphs of rank-width w
[Courcelle, Makowsky, Rotics ’00]

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

nowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

stable

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions

map
graphs

dense
classes

NIP \ stable

Is σ a subpermutation of τ? solvable in f (|σ|)|τ |
[Guillemot, Marx ’14]

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

nowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

stable

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

NIP \ stable

FO Model Checking solvable in f (|ϕ|,w)n2 on posets of width w
[GHLOORS ’15]

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

nowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

stable

bounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions

map
graphsdense

classes

NIP \ stable

FO Model Checking solvable in f (|ϕ|)nO(1) on map graphs
[Eickmeyer, Kawarabayashi ’17]

Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

nowhere dense

bounded
degree

bounded
degree

map
graphs “sparse”

classes

stablebounded twin-width

bounded
rank-width

cographs

bounded
rank-width

posets of
bounded

width

L-interval

unit interval

posets of
bounded

width

pattern
avoiding
permuta-

tions

pattern
avoiding
permuta-

tions
map

graphs

dense
classes

NIP \ stable

FO Model Checking solvable in f (|ϕ|, d)n on graphs with a d-sequence
[B., Kim, Thomassé, Watrigant ’20]

First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant ’20)
For every class C of binary structures with bounded twin-width and
transduction T, the class T(C) has bounded twin-width.

I Making copies does not change the twin-width
I Adding a unary relation at most doubles it
I Refine parts of the partition sequence by partitioned local type

First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant ’20)
For every class C of binary structures with bounded twin-width and
transduction T, the class T(C) has bounded twin-width.

I Making copies does not change the twin-width
I Adding a unary relation at most doubles it

I Refine parts of the partition sequence by partitioned local type

First-order transductions preserve bounded twin-width

Theorem (B., Kim, Thomassé, Watrigant ’20)
For every class C of binary structures with bounded twin-width and
transduction T, the class T(C) has bounded twin-width.

I Making copies does not change the twin-width
I Adding a unary relation at most doubles it
I Refine parts of the partition sequence by partitioned local type

More about FO model checking

I Extension to enumeration of FO model checking with
contraction sequences [Gajarský, Pilipczuk, Przybyszewski,
Toruńczyk ’22]

I Twin-width is key for ordered graphs [B, Giocanti, Ossona de
Mendez, Simon, Thomassé, Toruńczyk ’22]

I Progress on stable/structurally sparse classes,
e.g. [Dreier, Mählmann, Siebertz ’23]

I Bounded flip-width [Toruńczyk ’23] common generalization of
bounded expansion and bounded twin-width

I Hope that structures from NIP classes decompose into an
“ordered part” and a “stable part”

More about FO model checking

I Extension to enumeration of FO model checking with
contraction sequences [Gajarský, Pilipczuk, Przybyszewski,
Toruńczyk ’22]

I Twin-width is key for ordered graphs [B, Giocanti, Ossona de
Mendez, Simon, Thomassé, Toruńczyk ’22]

I Progress on stable/structurally sparse classes,
e.g. [Dreier, Mählmann, Siebertz ’23]

I Bounded flip-width [Toruńczyk ’23] common generalization of
bounded expansion and bounded twin-width

I Hope that structures from NIP classes decompose into an
“ordered part” and a “stable part”

More about FO model checking

I Extension to enumeration of FO model checking with
contraction sequences [Gajarský, Pilipczuk, Przybyszewski,
Toruńczyk ’22]

I Twin-width is key for ordered graphs [B, Giocanti, Ossona de
Mendez, Simon, Thomassé, Toruńczyk ’22]

I Progress on stable/structurally sparse classes,
e.g. [Dreier, Mählmann, Siebertz ’23]

I Bounded flip-width [Toruńczyk ’23] common generalization of
bounded expansion and bounded twin-width

I Hope that structures from NIP classes decompose into an
“ordered part” and a “stable part”

More about FO model checking

I Extension to enumeration of FO model checking with
contraction sequences [Gajarský, Pilipczuk, Przybyszewski,
Toruńczyk ’22]

I Twin-width is key for ordered graphs [B, Giocanti, Ossona de
Mendez, Simon, Thomassé, Toruńczyk ’22]

I Progress on stable/structurally sparse classes,
e.g. [Dreier, Mählmann, Siebertz ’23]

I Bounded flip-width [Toruńczyk ’23] common generalization of
bounded expansion and bounded twin-width

I Hope that structures from NIP classes decompose into an
“ordered part” and a “stable part”

More about FO model checking

I Extension to enumeration of FO model checking with
contraction sequences [Gajarský, Pilipczuk, Przybyszewski,
Toruńczyk ’22]

I Twin-width is key for ordered graphs [B, Giocanti, Ossona de
Mendez, Simon, Thomassé, Toruńczyk ’22]

I Progress on stable/structurally sparse classes,
e.g. [Dreier, Mählmann, Siebertz ’23]

I Bounded flip-width [Toruńczyk ’23] common generalization of
bounded expansion and bounded twin-width

I Hope that structures from NIP classes decompose into an
“ordered part” and a “stable part”

Stable and structurally sparse classes

Conjecture (Ossona de Mendez)
Every monadically stable class is the FO transduction of a nowhere
dense class.

Morally: Stability coincides with structural sparsity

Shown among classes of bounded linear cliquewidth, cliquewidth,
and now twin-width:

Stable and structurally sparse classes

Conjecture (Ossona de Mendez)
Every monadically stable class is the FO transduction of a nowhere
dense class.

Shown among classes of bounded linear cliquewidth, cliquewidth,
and now twin-width:

Theorem (Gajarský, Pilipczuk, Toruńczyk ’22)
Every stable class of bounded twin-width is the FO transduction of
a class of bounded twin-width without arbitrarily large bicliques.

Stable and structurally sparse classes

Conjecture (Ossona de Mendez)
Every monadically stable class is the FO transduction of a nowhere
dense class.

Shown among classes of bounded linear cliquewidth, cliquewidth,
and now twin-width:

Theorem (Gajarský, Pilipczuk, Toruńczyk ’22, Tww II ’21)
Every stable class of bounded twin-width is the FO transduction of
a class of bounded expansion.

The lens of contraction sequences

Class of bounded FO transduction of constraint on red graphs efficient MC

linear rank-width linear order bd #edges MSO
rank-width tree order bd component MSO
twin-width ? bd degree FO

Compiling bounded twin-width graphs as p-f permutations

Our next goal:

Theorem (B., Nešeťril, Ossona de Mendez, Siebertz, Thomassé ’21)
A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

We already know the “if” part, thus we want to show:

∀ class C of bounded twin-width, ∃ permutation class P avoiding
one permutation and an FO transduction T such that C ⊆T(P).

Compiling bounded twin-width graphs as p-f permutations

Our next goal:

Theorem (B., Nešeťril, Ossona de Mendez, Siebertz, Thomassé ’21)
A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

We already know the “if” part, thus we want to show:

∀ class C of bounded twin-width, ∃ permutation class P avoiding
one permutation and an FO transduction T such that C ⊆T(P).

Twin-decomposition

c f

b e g

a d

c

b g

a d

6

f

e

c

b g
6

a d5

c

b g
5

5

4

c

3

4

3

2

1

a d g c b e f

τ = 1

τ = 2

τ = 3

τ = 4

τ = 5

τ = 6

τ = 7

Contraction tree + transversal adjacencies (bicliques) + time τ

Reading out trigraphs from a twin-decomposition

a d g c b e f

τ = 1

τ = 2

τ = 3

τ = 4

τ = 5

τ = 6

τ = 7

Twin-models

a d g c b e f

τ = 1

τ = 2

τ = 3

τ = 4

τ = 5

τ = 6

τ = 7

Twin-model: tree edges T , transversal edges V
Example: T (3, 5), V (4, c)

Full twin-model: ancestor–descendant relation ≺, V

Ordered twin-model: T , tree pre-order <, V

Twin-models

a d g c b e f

τ = 1

τ = 2

τ = 3

τ = 4

τ = 5

τ = 6

τ = 7

Twin-model: tree edges T , transversal edges V

Full twin-model: ancestor–descendant relation ≺, V
Example: 2 ≺ e

Ordered twin-model: T , tree pre-order <, V

Twin-models

a d g c b e f

τ = 1

τ = 2

τ = 3

τ = 4

τ = 5

τ = 6

τ = 7

Twin-model: tree edges T , transversal edges V

Full twin-model: ancestor–descendant relation ≺, V

Ordered twin-model: T , tree pre-order <, V
1 < 3 < 5 < a < d < g < 2 < c < 4 < b < 6 < e < f

Twin-models

a d g c b e f

τ = 1

τ = 2

τ = 3

τ = 4

τ = 5

τ = 6

τ = 7

Twin-model: tree edges T , transversal edges V

Full twin-model: ancestor–descendant relation ≺, V

Ordered twin-model: T , tree pre-order <, V

1 < 3 < 5 < a < d < g < 2 < c < 4 < b < 6 < e < f

Why full twin-models?

a d g c b e f

τ = 1

τ = 2

τ = 3

τ = 4

τ = 5

τ = 6

τ = 7

One can FO reconstruct the initial graph from a full twin-model

E (x , y) := ∃x ′∃y ′
(
x ′ � x ∧ y ′ � y ∧ V (x ′, y ′)

)

but not from a mere twin-model, in general

Why full twin-models?

a d g c b e f

τ = 1

τ = 2

τ = 3

τ = 4

τ = 5

τ = 6

τ = 7

One can FO reconstruct the initial graph from a full twin-model

E (x , y) := ∃x ′∃y ′
(
x ′ � x ∧ y ′ � y ∧ V (x ′, y ′)

)
Example: E (c, f) since c � c, 4 � f , V (4, c)

but not from a mere twin-model, in general

Why full twin-models?

a d g c b e f

τ = 1

τ = 2

τ = 3

τ = 4

τ = 5

τ = 6

τ = 7

One can FO reconstruct the initial graph from a full twin-model

E (x , y) := ∃x ′∃y ′
(
x ′ � x ∧ y ′ � y ∧ V (x ′, y ′)

)
but not from a mere twin-model, in general

Why ordered twin-models?

a d g c b e f

τ = 1

τ = 2

τ = 3

τ = 4

τ = 5

τ = 6

τ = 7

A linear order

1 < 3 < 5 < a < d < g < 2 < c < 4 < b < 6 < e < f

brings us closer to a permutation (≡ two linear orders)

Full and ordered twin-models are transduction equivalent

a d g c b e f

τ = 1

τ = 2

τ = 3

τ = 4

τ = 5

τ = 6

τ = 7

x ≺ y := x < y ∧ ∀x < z ≤ y ∀w T (z ,w)→ x ≤ w

y is a strict descendant of x if it comes after in the pre-order, and
every neighbor w (in the tree) of any intermediate z (possibly y)

comes (non-strictly) after x

Full and ordered twin-models are transduction equivalent

a d g c b e f

τ = 1

τ = 2

τ = 3

τ = 4

τ = 5

τ = 6

τ = 7

x ≺ y := x < y ∧ ∀x < z ≤ y ∀w T (z ,w)→ x ≤ w

y is a strict descendant of x if it comes after in the pre-order, and
every neighbor w (in the tree) of any intermediate z (possibly y)

comes (non-strictly) after x

Full and ordered twin-models are transduction equivalent

a d g c b e f

τ = 1

τ = 2

τ = 3

τ = 4

τ = 5

τ = 6

τ = 7

To define x < y from ≺, mark each left child with one color,
and express that the before-last vertex on the path from x to the

least ancestor of x and y is marked (or simply x ≺ y)

Done and left to do

graphs full twin-models ordered twin-models
bounded twin-width

bounded twin-width

permutations

Mimicking a good contraction sequence on a full twin-model yields
a good contraction sequence

ordered twin-models and permutations are transduction equivalent

Done and left to do

graphs full twin-models ordered twin-models
bounded twin-width bounded twin-width

permutations

Mimicking a good contraction sequence on a full twin-model yields
a good contraction sequence

Done and left to do

graphs full twin-models ordered twin-models
bounded twin-width bounded twin-width

permutations

Past this point bounded twin-width is preserved by the FO
transductions, and we just need to show that:

ordered twin-models and permutations are transduction equivalent

Sparsity of the twin-model

Twin-models have bounded twin-width and degeneracy

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Bounded twin-width and degeneracy ⇒ bounded expansion.

Theorem (Nešeťril, Ossona de Mendez ’08)
Bounded expansion ⇒ bounded star chromatic number.

I.e., proper O(1)-coloring such that every two colors induce
a disjoint union of stars

Sparsity of the twin-model

Twin-models have bounded twin-width and degeneracy

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Bounded twin-width and degeneracy ⇒ bounded expansion.

Theorem (Nešeťril, Ossona de Mendez ’08)
Bounded expansion ⇒ bounded star chromatic number.

I.e., proper O(1)-coloring such that every two colors induce
a disjoint union of stars

Sparsity of the twin-model

Twin-models have bounded twin-width and degeneracy

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Bounded twin-width and degeneracy ⇒ bounded expansion.

Theorem (Nešeťril, Ossona de Mendez ’08)
Bounded expansion ⇒ bounded star chromatic number.

I.e., proper O(1)-coloring such that every two colors induce
a disjoint union of stars

Encoding: Ordered twin-models to permutations
Fix a star coloring and orient edges away from centers of stars
→ bounded in-degree

a d g c b e f

v1

v3

v2

v4

v5

v6

<1

<2 v1 v1 v3 v3 a v5b f a v5 a g e d v3 g v1 c v2 c v2 c v4 g v4 b v6v4 b f v6 e f

v1 v1v1 v3 v3 v3 v5 v5 a a a d ggg v2v2 ccc v4v4v4 bb b v6v6 ee ff f

1 2 3 4 5 6

colors

List in the pre-order traversal:
I <1: the incoming arcs
I <2: the outgoing arcs

where an arc is a copy of its out-vertex with color of its in-vertex

Encoding: Ordered twin-models to permutations
Fix a star coloring and orient edges away from centers of stars
→ bounded in-degree

a d g c b e f

v1

v3

v2

v4

v5

v6

<1

<2 v1 v1 v3 v3 a v5b f a v5 a g e d v3 g v1 c v2 c v2 c v4 g v4 b v6v4 b f v6 e f

v1 v1v1 v3 v3 v3 v5 v5 a a a d ggg v2v2 ccc v4v4v4 bb b v6v6 ee ff f

1 2 3 4 5 6

colors

List in the pre-order traversal:
I <1: the incoming arcs
I <2: the outgoing arcs

where an arc is a copy of its out-vertex with color of its in-vertex

Decoding: Permutations to ordered twin-models

Guess the block ends (color 1)

<1

<2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

333027283224221326212319162017181154122914107113182595623

A(3) A(6) A(8) A(11) A(12) A(15) A(17) A(20) A(23) A(26) A(28) A(30) A(33)

B(3)B(6) B(8) B(11) B(12) B(15) B(17) B(20) B(23) B(26) B(28) B(30) B(33)

3 < 6 < 8 < 11 < 12 < 15 < 17 < 20 < 23 < 26 < 28 < 30 < 33

is the tree pre-order (on the domain of the image)

Two vertices are adjacent if their blocks along <1 and <2 contain
a same element (namely, their linking arc)

Use an extra color for the transversal edges (color 2)

Decoding: Permutations to ordered twin-models

Guess the block ends (color 1)

<1

<2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

333027283224221326212319162017181154122914107113182595623

A(3) A(6) A(8) A(11) A(12) A(15) A(17) A(20) A(23) A(26) A(28) A(30) A(33)

B(3)B(6) B(8) B(11) B(12) B(15) B(17) B(20) B(23) B(26) B(28) B(30) B(33)

3 < 6 < 8 < 11 < 12 < 15 < 17 < 20 < 23 < 26 < 28 < 30 < 33

is the tree pre-order (on the domain of the image)

Two vertices are adjacent if their blocks along <1 and <2 contain
a same element (namely, their linking arc)

Use an extra color for the transversal edges (color 2)

Decoding: Permutations to ordered twin-models

Guess the block ends (color 1)

<1

<2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

333027283224221326212319162017181154122914107113182595623

A(3) A(6) A(8) A(11) A(12) A(15) A(17) A(20) A(23) A(26) A(28) A(30) A(33)

B(3)B(6) B(8) B(11) B(12) B(15) B(17) B(20) B(23) B(26) B(28) B(30) B(33)

3 < 6 < 8 < 11 < 12 < 15 < 17 < 20 < 23 < 26 < 28 < 30 < 33

is the tree pre-order (on the domain of the image)

Two vertices are adjacent if their blocks along <1 and <2 contain
a same element (namely, their linking arc)

Use an extra color for the transversal edges (color 2)

Recent developments

Theorem (B., Nešeťril, Ossona de Mendez, Siebertz, Thomassé ’21)
A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé ’23)
Pattern-free permutations are bounded products of separable
permutations.

As a consequence of these two results,

Corollary (B., Bourneuf, Geniet, Thomassé ’23)
There is a proper permutation class P such that every class of
binary structures has bounded twin-width if and only if it is
a first-order transduction of P.

Recent developments

Theorem (B., Nešeťril, Ossona de Mendez, Siebertz, Thomassé ’21)
A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé ’23)
Pattern-free permutations are bounded products of separable
permutations.

As a consequence of these two results,

Corollary (B., Bourneuf, Geniet, Thomassé ’23)
There is a proper permutation class P such that every class of
binary structures has bounded twin-width if and only if it is
a first-order transduction of P.

Recent developments

Theorem (B., Nešeťril, Ossona de Mendez, Siebertz, Thomassé ’21)
A class of binary structures has bounded twin-width if and only if
it is a first-order transduction of a proper permutation class.

Theorem (B., Bourneuf, Geniet, Thomassé ’23)
Pattern-free permutations are bounded products of separable
permutations.

As a consequence of these two results,

Corollary (B., Bourneuf, Geniet, Thomassé ’23)
There is a proper permutation class P such that every class of
binary structures has bounded twin-width if and only if it is
a first-order transduction of P.

The lens of contraction sequences

Class of bounded FO transduction of constr. on red graphs efficient MC

linear rank-width linear order bd #edges MSO
rank-width tree order bd component MSO
twin-width proper perm. class bd degree FO

Thank you for your attention!

The lens of contraction sequences

Class of bounded FO transduction of constr. on red graphs efficient MC

linear rank-width linear order bd #edges MSO
rank-width tree order bd component MSO
twin-width proper perm. class bd degree FO

Thank you for your attention!

