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Two outcomes between a pair of vertices:
edge or non-edge



Trigraphs

Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)



Contractions in trigraphs

Identification of two non-necessarily adjacent vertices



Contractions in trigraphs

Identification of two non-necessarily adjacent vertices



Contractions in trigraphs

edges to N(u)AN(v) turn red, for N(u) N N(v) red is absorbing



Contraction sequence

A contraction sequence of G:
Sequence of trigraphs G = G, G,_1, ..., G, Gy such that
G; is obtained by performing one contraction in Gjy1.
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G; is obtained by performing one contraction in Gjy1.
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A contraction sequence of G:
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Contraction sequence

A contraction sequence of G:
Sequence of trigraphs G = G, G,_1, ..., G, G1 such that
G; is obtained by performing one contraction in Gjy1.



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

Maximum red degree = 0
overall maximum red degree = 0
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tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.
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Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.

abcdefg

Maximum red degree = 0
overall maximum red degree = 2



Simple operations preserving small twin-width

» complementation: remains the same
» taking induced subgraphs: may only decrease
P adding one vertex linked arbitrarily: at most “doubles”

» substitution, lexicographic product: max of the twin-widths



Complementation




Complementation




Substitution and lexicographic product




Substitution and lexicographic product

G = G5, H= P4, substitution G[v < H]



Substitution and lexicographic product

G = Gs, H= P4, lexicographic product G[H]




Substitution and lexicographic product

More generally any modular decomposition




Substitution and lexicographic product
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More generally any modular decomposition




Substitution and lexicographic product
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tww(G[H]) = max(tww(G), tww(H))




Classes with bounded twin-width

» cographs = twin-width 0

» trees, bounded treewidth, clique-width/rank-width
> grids

> ..



Trees

If possible, contract two twin leaves



Trees

If not, contract a deepest leaf with its parent



Trees

If not, contract a deepest leaf with its parent



Trees

If possible, contract two twin leaves



Trees

Cannot create a red degree-3 vertex
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Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Bounded rank-width graphs

Generalization to bounded rank-width



Bounded rank-width graphs

Two twins with respect to the exterior in a small subtree —
contraction



Bounded rank-width graphs

Red edges cluster in bounded size components




Grids
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Grids
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Grids
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Grids

O—O—C0O—=0
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4-sequence for planar grids



Grids

O—O—C0O—=0
O—O—"C0O—0
O—O—"C0O—0
O—O—0O—=0
O—O—~0CO——=0

More generally: if a “parallel” contraction of disjoint vertex pairs
go from red degree d to red degree d, then any sequentialization
has red degree at most 2d



3-dimensional grids
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Still bounded degree but contains arbitrary large clique minors



3-dimensional grids
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Contract the blue edges in any order — 12-sequence



3-dimensional grids

The d-dimensional grid has twin-width < 4d (even 3d)



2-lifts, expanders with bounded twin-width

split each vertex in 2, replace each edge by 1 of the 2 matchings



2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K; have twin-width at most 6
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Iterated 2-lifts of K; have twin-width at most 6



2-lifts, expanders with bounded twin-width

Q

[terated 2-lifts of K3 have twin-width at most 6



2-lifts, expanders with bounded twin-width
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[terated 2-lifts of K3 have twin-width at most 6
but no balanced separators of size o(n)



First example of unbounded twin-width

Line graph of a biclique a.k.a. rook graph



First example of unbounded twin-width

No pair of near twins



First example of unbounded twin-width
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No pair of near twins



Universal bipartite graph

No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.



Universal bipartite graph

No O(1)-contraction sequence:

twin-width is not an iterated identification of near twins.
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Universal bipartite graph

No O(1)-contraction sequence:

twin-width is not an iterated identification of near twins.

%9
e

VY
«:wa %

X
)




Universal bipartite graph
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Universal bipartite graph

No O(1)-contraction sequence:

twin-width is not an iterated identification of near twins.
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Universal bipartite graph

No O(1)-contraction sequence:
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Universal bipartite graph

No O(1)-contraction sequence:

twin-width is not an iterated identification of near twins.
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Universal bipartite graph
twin-width is not an iterated identification of near twins.

No O(1)-contraction sequence:
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Universal bipartite graph

No O(1)-contraction sequence:

twin-width is not an iterated identification of near twins.
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Universal bipartite graph

No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.




Universal bipartite graph

No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.




Universal bipartite graph

No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.




Planar graphs?









Twin-width in the language of matrices

(11 111110]
01100101
000000O0TO01
01001010
10011010
01111100
10111001,

Encode a bipartite graph (or, if symmetric, any graph)



Twin-width in the language of matrices

(1 1(1)1(1)1 1 0]
0 1/1/0/0|1 0 1
0 0/0/0[0|0 0 1
0 1/0/0[1|0 1 O
1 0(0[1/1/0 1 0
0 1/1|1|1]1 0 0
1 0(1)1{1jo 0 1

Contraction of two columns (similar with two rows)



Twin-width in the language of matrices

(1 1(1)1 11 0]
01/rjl0 101
00/0/0 001
01/r/0 010
10/rl1 010
0 1/1|1 100
1 0(1J1 00 1

How is the twin-width (re)defined?



Twin-width in the language of matrices

1 1(1)1 11 0]
01/rjl0 101
00/0/0 001
01/r/l0 010
10/rl1 010
0 1/1|/1 100
1 0(1J1 00 1

How to tune it for non-bipartite graph?



Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

C1la]a]alz]]z]o]
ofi]z]ofol1]o]1
ofofofofofofo]1
of1]ofolz]o[z]0
tfofolz]1fo]1]o
oft]1]1lz1ToTo

‘1foftf1]r]ofo]1]




Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

1]1]1 1]1]1]1]o
of[1]t ofo]1]o]t
0JoJo ofo]o]o]t
JANNARNAR
1{ofo 1]1]o]1]0
o]z 1[1]1]o]o
“1fofr tfxTofolr]

Maximum number of non-constant zones per column or row part
= error value



Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

(11 1|z]1]z]o]
of1]r ofofz]o]1
olojo ofolofo]1
of1]o ofz]ofz]0
1{ofo 1]1fofz1]o
ofz]1 1fz]1ToTo
‘1]ofr 1[1fo]o1]

Maximum number of non-constant zones per column or row part
... until there are a single row part and column part



Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

1)1]1 1]1]1]1]o
o[tz ofof1]o]z
ofoflo o|ofo]o]1
0[1]o of1foJ1]o
1[oJo 1]1]o1]o
o[1{r 1]1]1]o]o
‘1]o]t 11]ofo]1]

Twin-width as maximum error value
of a contraction sequence



Grid minor

t-grid minor: t x t-division where every cell is non-empty
Non-empty cell: contains at least one 1 entry

1 1)1 1)1 1]1 0
0 1[1 ofo 1fo 1
0 0o oJo ofo 1
0 1fo of1 o1 0
1 0/0 1|1 0|10
0 1t 1f1 1]o 0

1 0|1 1|1 ofo 1]

4-grid minor



Grid minor

t-grid minor: t x t-division where every cell is non-empty
Non-empty cell: contains at least one 1 entry

1 1)1 1)1 1]1 0
0 1[1 ofo 1fo 1
0 0o oJo ofo 1
0 1fo of1 o1 0
1 0/0 1|1 0|10
0 1t 1f1 1]o 0

1 0|1 1|1 ofo 1]

4-grid minor

A matrix is said t-grid free if it does not have a t-grid minor



Mixed minor

Mixed cell: not horizontal nor vertical
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Mixed minor

Mixed cell: not horizontal nor vertical

S o s E N [ R O
0 1|1 0 of1 0
0 0]0 0 0f0 O
0 1]o 0 1]0 1
1 0/0 1 1|0 1
0 1|1 1 1[1 O
1 0[1 1 1]0 0

3-mixed minor

= O OO0 ~H|+—

Every mixed cell is witnessed by a 2 x 2 square = corner



Mixed minor

Mixed cell: not horizontal nor vertical
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A matrix is said t-mixed free if it does not have a t-mixed minor



Mixed value

1 0f1 0 0|10 1
1 0f1 0 0J0J0 1

0 110 0 1]0]1 O

1 1{0 0 1J0|1 O

Re1 111 0 0|11 O

R3

2

R

~ (maximum) number of cells with a corner per row/column part



Mixed value
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But we add the number of boundaries containing a corner



Mixed value
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*. merging row parts do not increase mixed value of column part



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)

If G admits a t-mixed free adjacency matrix, then tww(G) = 22%0),



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 22°".



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 227

Step 1: find a division sequence (D;); with mixed value f(t)
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Merge consecutive parts greedily



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 227

Step 1: find a division sequence (D;); with mixed value f(t)
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Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 2™

Step 1: find a division sequence (D;); with mixed value f(t)

1]1]1 1]1]1]1]o0
oftfr ofofz]oft
ofofo ofofofof1
o[t]o of1]o]1]0
1]o]o 1[1]o[1]0
o[tz 11]1]o]o
‘1{ofr 1]tfofo]1]

Merge consecutive parts greedily



Twin-width and mixed freeness
Theorem (B., Kim, Thomassé, Watrigant '20)
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 2270,

Step 1: find a division sequence (D;); with mixed value f(t)

1]1]1 1]1]1]1]o0
oftfr ofofz]oft
ofofo ofofofof1
o[t]o of1]o]1]o
1]o]o 1[1]o[1]0
o[tz 1[1]1]o]o
‘1{ofr 1]tfofo]1]

Stuck, removing every other separation — @ mixed cells per part



Marcus-Tardos theorem

Theorem (Marcus and Tardos '04, Stanley-Wilf conjecture)

For every k, there is a ¢, such that every n x m 0, 1-matrix with at
least cx max(n, m) 1 entries admits a k-grid minor.



Marcus-Tardos theorem

Theorem (Marcus and Tardos '04, Stanley-Wilf conjecture)

For every k, there is a ¢, such that every n x m 0, 1-matrix with at
least cx max(n, m) 1 entries admits a k-grid minor.

Augxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 22

Step 1: find a division sequence (D;); with mixed value f(t)
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Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If 3o s.t. Adj,(G) is t-mixed free, then tww(G) = 22

Step 1: find a division sequence (D;); with mixed value f(t)

1
1
0
1
0
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1
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0

Stuck, removing every other separation
Impossible!
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Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If do s.t. Adj,(G) is t-mixed free, then tww(G) = 5200

Step 1: find a division sequence (D;); with mixed value f(t)
Step 2: find a contraction sequence with error value g(t)

1]1]1 1]1]1]1]o
oft]r ofofz]oft
0JoJo oJojofof1
o]1Jo of1]o]1]0
1{ofo 1[1]o]1]0
o[tz 1[1]1]o]o
‘1{of1 1]1]ofo]1]

Refinement of D; where each part coincides on the non-mixed cells



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If o s.t. Adj,(G) is t-mixed free, then tww(G) = 5200



Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If o s.t. Adj,(G) is t-mixed free, then tww(G) = 5200

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C



Bounded twin-width — K;-minor free graphs

Given a hamiltonian path, we would just use this order



Bounded twin-width — K;-minor free graphs

Bt 14 Mo 1
Byl 1 1 1 1 1
B; 1 1} 1 1
B 1 1 1 1 1
B: 111 1 1
Al A A A A

Contracting the 2t subpaths yields a K; :-minor, hence a K;-minor



Bounded twin-width — K;-minor free graphs

B g 1 1
Bi|l 1 1, 1 1
B; 1 1} 1 1
B 1 1 1 1 1
B; 11 1 1 1
A1 A Asz As At

Instead we use a specially crafted lex-DFS discovery order



A surprising and convenient equivalent

Theorem (B., Kim, Reinald, Thomassé '21+)

Twin-width and oriented twin-width are functionally equivalent.

Q—O—0O—0O—C—0
080.0.0.080
"%
OQQ,Q.Q’AO @)
QQQ‘QSQ.QaQ
Q.Q.QQQ.Q.Q
AT IXT ]
=F~O——0—0
red degree red out-degree
(red arcs oriented from the contraction)




A surprising and convenient equivalent

Theorem (B., Kim, Reinald, Thomassé '21+)

Twin-width and oriented twin-width are functionally equivalent.

Q—O—0O—0O—C—0
080.0.0.080
000.0.0’1‘0 @)
OQOaOSO.OaO
0.0.0a0.0.0
AL L

red degree red out-degree
(red arcs oriented from the contraction)

Theorem (Kotzig's theorem '55)
Planar graphs have oriented twin-width at most 9.



Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.

Bounded rank-width, and even, boolean-width graphs,
every hereditary proper subclass of permutation graphs,
posets of bounded antichain size (seen as digraphs),
unit interval graphs,

Ki-minor free graphs,

map graphs,

subgraphs of d-dimensional grids,

Ki-free unit d-dimensional ball graphs,

Q(log n)-subdivisions of all the n-vertex graphs,

cubic expanders defined by iterative random 2-lifts from Ky,

VV VvV VYVYyVVYVYVY

strong products of two bounded twin-width classes, one with
bounded degree, etc.



Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.

Bounded rank-width, and even, boolean-width graphs,
every hereditary proper subclass of permutation graphs,
posets of bounded antichain size (seen as digraphs),
unit interval graphs,

K¢-minor free graphs,

map graphs,

subgraphs of d-dimensional grids,

Ki-free unit d-dimensional ball graphs,

Q(log n)-subdivisions of all the n-vertex graphs,

cubic expanders defined by iterative random 2-lifts from Ky,

VV VvV VYVYyVVYVYVY

strong products of two bounded twin-width classes, one with
bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?



One cograph definition

Cographs form the unique maximal hereditary class in which every!
graph has two twins

provided it has at least two vertices



One cograph definition

Cographs form the unique maximal hereditary class in which every!
graph has two twins

Is there another algorithmic scheme based on this definition?

provided it has at least two vertices



One cograph definition

Cographs form the unique maximal hereditary class in which every!
graph has two twins

Let's try with «(G), and store in a vertex its inner max solution

provided it has at least two vertices



One cograph definition

Cographs form the unique maximal hereditary class in which every!
graph has two twins

We can find a pair of false/true twins

provided it has at least two vertices



One cograph definition

Cographs form the unique maximal hereditary class in which every!
graph has two twins

VGt oC

Sum them if they are false twins

4

provided it has at least two vertices



One cograph definition

Cographs form the unique maximal hereditary class in which every!
graph has two twins

G-(1)-3 13 €
LR _>_>...
S e Co

Max them if they are true twins

4

provided it has at least two vertices



Example of k-INDEPENDENT SET

d-sequence: G = G,, Gp_1,..., Gy, G1 = K3

Algorithm: Compute by dynamic programming a best partial
solution in each red connected subgraph of size at most k.
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Algorithm: Compute by dynamic programming a best partial
solution in each red connected subgraph of size at most k.

d?n? red connected subgraphs, actually only d2kn = 294(K)



Example of k-INDEPENDENT SET
d-sequence: G = G,, Gp_1,..., Gy, G1 = K3

Algorithm: Compute by dynamic programming a best partial
solution in each red connected subgraph of size at most k.

d?n? red connected subgraphs, actually only d2kn = 294(K)

In G,: red connected subgraphs are singletons, so are the solutions.
In Gp: If solution of size at least k, global solution.



Example of k-INDEPENDENT SET

d-sequence: G = G,, Gp_1,..., Gy, G1 = K3

Algorithm: Compute by dynamic programming a best partial
solution in each red connected subgraph of size at most k.

d?n? red connected subgraphs, actually only d2kn = 294(K)

In G,: red connected subgraphs are singletons, so are the solutions.
In Gp: If solution of size at least k, global solution.

How to go from the partial solutions of G;;; to those of G;?



inhabiti

Best partial solution



Git1

3 unions of < d 4 2 red connected subgraphs to consider in

oth

b

with u, or v, or



Other (almost) single-exponential parameterized
algorithms

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Given a d-sequence G = G,,..., G, = K1,

> k-INDEPENDENT SET,

» k-CLIQUE,

» (r,k)-SCATTERED SET,

» k-DOMINATING SET, and

» (r, k)-DOMINATING SET

can be solved in time 2°(K)p,
whereas SUBGRAPH ISOMORPHISM and INDUCED SUBGRAPH
ISOMORPHISM can be solved in time 20(klogk) .



Other (almost) single-exponential parameterized
algorithms

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Given a d-sequence G = G,,..., G, = K1,

> k-INDEPENDENT SET,

» k-CLIQUE,

» (r,k)-SCATTERED SET,

» k-DOMINATING SET, and

» (r, k)-DOMINATING SET

can be solved in time 2°(K)p,
whereas SUBGRAPH ISOMORPHISM and INDUCED SUBGRAPH
ISOMORPHISM can be solved in time 20(klogk) .

A more general FPT algorithm?



First-order model checking on graphs

GrAPH FO MODEL CHECKING Parameter: |y
Input: A graph G and a first-order sentence ¢ € FO({E})
Question: G = ¢?




First-order model checking on graphs

GrAPH FO MODEL CHECKING Parameter: |y
Input: A graph G and a first-order sentence ¢ € FO({E})
Question: G = ¢?

Example:

@ = dxyIxp - - - AxVx \/ X=x;V \/ E(x, x;) V E(x;, x)

1<i<k 1<i<k

GEp? &




First-order model checking on graphs

GrAPH FO MODEL CHECKING Parameter: |y
Input: A graph G and a first-order sentence ¢ € FO({E})
Question: G = ¢?

Example:

@ = dxyIxp - - - AxVx \/ X=x;V \/ E(x, x;) V E(x;, x)

1<i<k 1<i<k

G = ¢? & k-DOMINATING SET




First-order model checking on graphs

GrAPH FO MODEL CHECKING Parameter: |¢|
Input: A graph G and a first-order sentence ¢ € FO({E})
Question: G | ¢?

Example:

@ = Ixq3Ixg - - - Ixx /\ =(xi = xj) A =E(xi, X)) A —E(x;, x;)
1<i<j<k

GEp? &




First-order model checking on graphs

GrAPH FO MODEL CHECKING Parameter: |¢|
Input: A graph G and a first-order sentence ¢ € FO({E})
Question: G | ¢?

Example:

@ = Ixq3Ixg - - - Ixx /\ =(xi = xj) A =E(xi, X)) A —E(x;, x;)
1<i<j<k

G = ¢? & k-INDEPENDENT SET
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Classes with known tractable FO model checking

bounded
rank-width

posets of
bounded
width

nowhere dense

[bounded expansion

[polynomial expansion]
\

pattern

bounded
degree

avoiding [proper minor—closed}
cographs | (L-interval) | permyta- map
dense — tions I “sparse”
\classes unit interval ] classes
- J

FO MODEL CHECKING solvable in f(|¢|)n on bounded-degree graphs

[Seese "96]



Classes with known tractable FO model checking
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classes
N\

bounded
rank-width
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degree

“sparse”
classes
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FO MoDEL CHECKING solvable in f(|¢|)n** on any nowhere dense class

[Grohe, Kreutzer, Siebertz '14]



Classes with known tractable FO model checking
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End of the story for the subgraph-closed classes
tractable FO MODEL CHECKING < nowhere dense



Classes with known tractable FO model checking
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MSO; MODEL CHECKING solvable in f(|¢|, w)n on graphs of rank-width w
[Courcelle, Makowsky, Rotics '00]
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Is o a subpermutation of 77 solvable in f(|o|)|7|

[Guillemot, Marx '14]



Classes with known tractable FO model checking
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FO MoDEL CHECKING solvable in f(|¢|, w)n? on posets of width w

[GHLOORS '15]



Classes with known tractable FO model checking
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[Eickmeyer, Kawarabayashi '17]

on map graphs




Classes with known tractable FO model checking
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FO MoODEL CHECKING solvable in f(|p], d)n on graphs with a d-sequence
[B., Kim, Thomassé, Watrigant '20]



Classes with known tractable FO model checking
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Every transduction of a bounded twin-width class has bounded twin-width
[B., Kim, Thomassé, Watrigant '20]



Classic width-measures via contraction sequences

Theorem (B., Kim, Reinald, Thomassé '21+)

Component twin-width is functionally equivalent to rank-width.
Total twin-width is functionally equivalent to linear rank-width.

Component twin-width: Total twin-width:
max red component size max number of red edges

The sparse regime captures treewidth and pathwidth



Classic width-measures via contraction sequences

Theorem (B., Kim, Reinald, Thomassé '21+)

Component twin-width is functionally equivalent to rank-width.
Total twin-width is functionally equivalent to linear rank-width.

Component twin-width: Total twin-width:
max red component size max number of red edges

Alternative proof of Courcelle, Makowsky, Rotics's theorem:
FO model checking approach using Feferman-Vaught instead of
Gaifman's theorem



Sparse classes with bounded twin-width

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Let C a hereditary class of bounded twin-width. TFAE:
» graphs in C have d-grid free adjacency matrices;
» graphs in C are K; t-free;
» graphs in C have linearly many edges;
» The subgraph-closure of C has bounded twin-width;
>

C has bounded expansion.



Sparse classes with bounded twin-width

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Let C a hereditary class of bounded twin-width. TFAE:
» graphs in C have d-grid free adjacency matrices;
» graphs in C are K; t-free;
» graphs in C have linearly many edges;
» The subgraph-closure of C has bounded twin-width;
» C has bounded expansion.

Still an interesting family of classes including bounded queue/stack
number, Ki-minor free, and some expander classes

Does polynomial expansion imply bounded twin-width?



x-boundedness

C x-bounded: 3, VG € C, x(G) < f(w(G))

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Every twin-width class is x-bounded.

More precisely, every graph G of twin-width at most d admits a
proper (d + 2)*(®)=1_coloring.



x-boundedness

C x-bounded: 3, VG € C, x(G) < f(w(G))

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)

Every twin-width class is x-bounded.
More precisely, every graph G of twin-width at most d admits a
proper (d + 2)*(®)=1_coloring.

Are they polynomially x-bounded? i.e., x(G) = O(w(G)9)

Bounded twin-width graphs do satisfy strong Erdés-Hajnal



d + 2-coloring in the triangle-free case

Algorithm: Start from G; = Ki, color its unique vertex 1, and
rewind the d-sequence. A contraction seen backward is a
split and we shall find colors for the two new vertices.



d + 2-coloring in the triangle-free case

Algorithm: Start from G; = Ki, color its unique vertex 1, and
rewind the d-sequence. A contraction seen backward is a
split and we shall find colors for the two new vertices.

NG,' [Z] NGIH [u’ V]
®

z has only red incident edges — d + 2-nd color available to v



d + 2-coloring in the triangle-free case

Algorithm: Start from G; = Ki, color its unique vertex 1, and
rewind the d-sequence. A contraction seen backward is a
split and we shall find colors for the two new vertices.

NG,' [Z] NGi+1 [u7 V]

z incident to at least one black edge — non-edge between v and v



Twin-decomposition

Sparse model for bounded twin-width graphs
(degeneracy of the blue graph by orienting)



Twin-decomposition

Theorem (B., Nesetfil, Ossona de Mendez, Siebertz, Thomassé '21+)

A class of binary structures has bounded twin-width if and only if
it is an FO transduction of a proper permutation class.



Small classes

Small: class with at most n!2°(") |abeled graphs on [n].

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)

Bounded twin-width classes are small.

Theorem (B., Neset¥il, Ossona de Mendez, Siebertz, Thomassé '21+)

...even at most 290" graphs up to isomorphism.

Unifies and extends the same result for:
o-free permutations  [Marcus, Tardos '04]
Ki-minor free graphs [Norine, Seymour, Thomas, Wollan '06]



Small classes

Small: class with at most n!2°(") |abeled graphs on [n].
Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)

Bounded twin-width classes are small.

Theorem (B., Neset¥il, Ossona de Mendez, Siebertz, Thomassé '21+)

...even at most 290" graphs up to isomorphism.

Subcubic graphs, interval graphs, triangle-free unit segment graphs
have unbounded twin-width



Small classes

Small: class with at most n!2°(") |abeled graphs on [n].

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Bounded twin-width classes are small.

Theorem (B., Neset¥il, Ossona de Mendez, Siebertz, Thomassé '21+)
...even at most 29(" graphs up to isomorphism.

The converse for hereditary classes does not hold

Theorem (B., Geniet, Tessera, Thomassé '21+)

There is a randomized construction of a finitely-generated group
whose hereditary class of finite restrictions of the Cayley graph has
unbounded twin-width (and yet is small).



The case of ordered binary structures

Theorem (B., Giocanti, Ossona de Mendez, Simon, Thomassé,
Torunczyk '21+)

Let € be a hereditary class of ordered graphs. TFAE:
(1) € has bounded twin-width;
(2
(3
(
(
(

) € is monadically dependent;
)

4) € contains 20" ordered n-vertex graphs;
)
)

€ is dependent;
5) € contains less than Z,L(":/gj (,4) k! ordered n-vertex graphs;

€ does not include one of 24 minimal hereditary classes of
ordered graphs with unbounded twin-width.

6

(7) FO-model checking is fixed-parameter tractable on 6.



Open questions

Algorithm to compute/approximate twin-width in general

Explicit examples of bounded-degree graphs of unbounded
twin-width

Fully classify classes with tractable FO model checking

Some more classes could have bounded twin-width: polynomial
expansion, K -free string graphs, etc.

Could smallness alone be algorithmically exploitable?



