Twin-width and Sparsity

Édouard Bonnet

ENS Lyon, LIP

September 29th, 2021, Dagstuhl, Sparsity Tutorial

Graphs

Two outcomes between a pair of vertices: edge or non-edge

Trigraphs

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=0$ overall maximum red degree $=0$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=1$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=1$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=0$ overall maximum red degree $=2$

Simple operations preserving small twin-width

- complementation: remains the same
- taking induced subgraphs: may only decrease
- adding one vertex linked arbitrarily: at most "doubles"
- substitution, lexicographic product: max of the twin-widths

Complementation

\bar{G}

G

$$
\operatorname{tww}(\bar{G})=\operatorname{tww}(G)
$$

Complementation

$$
\operatorname{tww}(\bar{G})=\operatorname{tww}(G)
$$

Substitution and lexicographic product

$$
G=C_{5}
$$

Substitution and lexicographic product

$G=C_{5}, H=P_{4}, \quad$ substitution $G[v \leftarrow H]$

Substitution and lexicographic product

$G=C_{5}, H=P_{4}, \quad$ lexicographic product $G[H]$

Substitution and lexicographic product

More generally any modular decomposition

Substitution and lexicographic product

More generally any modular decomposition

Substitution and lexicographic product

$\operatorname{tww}(G[H])=\max (\operatorname{tww}(G), \operatorname{tww}(H))$

Classes with bounded twin-width

- cographs $=$ twin-width 0
- trees, bounded treewidth, clique-width/rank-width
- grids

Trees

If possible, contract two twin leaves

Trees

If not, contract a deepest leaf with its parent

Trees

If not, contract a deepest leaf with its parent

Trees

If possible, contract two twin leaves

Trees

Cannot create a red degree-3 vertex

Trees

\qquad

Cannot create a red degree-3 vertex

Bounded rank-width graphs

Generalization to bounded rank-width

Bounded rank-width graphs

Two twins with respect to the exterior in a small subtree \rightarrow contraction

Bounded rank-width graphs

Red edges cluster in bounded size components

Grids

Grids

Grids

Grids

Grids

Grids

Grids

4-sequence for planar grids

Grids

More generally: if a "parallel" contraction of disjoint vertex pairs go from red degree d to red degree d, then any sequentialization has red degree at most $2 d$

3-dimensional grids

Still bounded degree but contains arbitrary large clique minors

3-dimensional grids

Contract the blue edges in any order $\rightarrow 12$-sequence

3-dimensional grids

The d-dimensional grid has twin-width $\leqslant 4 d$ (even $3 d$)

2-lifts, expanders with bounded twin-width

split each vertex in 2 , replace each edge by 1 of the 2 matchings

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K_{4} have twin-width at most 6

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K_{4} have twin-width at most 6

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K_{4} have twin-width at most 6

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K_{4} have twin-width at most 6

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K_{4} have twin-width at most 6 but no balanced separators of size $O(n)$

First example of unbounded twin-width

Line graph of a biclique a.k.a. rook graph

First example of unbounded twin-width

First example of unbounded twin-width

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Planar graphs?

Planar graphs?

For every d, a planar trigraph without planar d-contraction

Planar graphs?

For every d, a planar trigraph without planar d-contraction
More powerfool tool needed

Twin-width in the language of matrices

$$
\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Encode a bipartite graph (or, if symmetric, any graph)

Twin-width in the language of matrices

$$
\left[\begin{array}{ll|l|l|l|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Contraction of two columns (similar with two rows)

Twin-width in the language of matrices

$$
\left[\begin{array}{ll|l|lllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & r & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & r & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & r & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

How is the twin-width (re)defined?

Twin-width in the language of matrices

$$
\left[\begin{array}{ll|l|lllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & r & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & r & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & r & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & & 0 & 0 & 1
\end{array}\right]
$$

How to tune it for non-bipartite graph?

Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive
$\left[\begin{array}{l|l|l|l|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Maximum number of non-constant zones per column or row part $=$ error value

Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Maximum number of non-constant zones per column or row part
... until there are a single row part and column part

Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Twin-width as maximum error value of a contraction sequence

Grid minor

t-grid minor: $t \times t$-division where every cell is non-empty Non-empty cell: contains at least one 1 entry
$\left[\begin{array}{ll|ll|ll|ll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Grid minor

t-grid minor: $t \times t$-division where every cell is non-empty Non-empty cell: contains at least one 1 entry
$\left[\begin{array}{ll|ll|ll|ll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

A matrix is said t-grid free if it does not have a t-grid minor

Mixed minor

Mixed cell: not horizontal nor vertical

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Mixed minor

Mixed cell: not horizontal nor vertical

$$
\left[\begin{array}{cc|ccc|ccc}
11 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
10 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
10 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
10 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Every mixed cell is witnessed by a 2×2 square $=$ corner

Mixed minor

Mixed cell: not horizontal nor vertical

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

A matrix is said t-mixed free if it does not have a t-mixed minor

Mixed value

$R_{4}\left[\begin{array}{ll|lll|l|ll}1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$
\approx (maximum) number of cells with a corner per row/column part

Mixed value

$R_{4}\left[\begin{array}{ll|lll|l|ll}1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$

But we add the number of boundaries containing a corner

Mixed value

$R_{4}\left[\begin{array}{cc|ccc|c|cc}1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ R_{3} \\ R_{2} \\ R_{1} & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$
\therefore merging row parts do not increase mixed value of column part

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20) If G admits a t-mixed free adjacency matrix, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|l|l|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Merge consecutive parts greedily

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Merge consecutive parts greedily

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Merge consecutive parts greedily

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20)
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$

1 1 1 1 1 1 1 0 0 1							
0	1	1		0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1		1	1	0	0
1	-						

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part

Marcus-Tardos theorem

Theorem (Marcus and Tardos '04, Stanley-Wilf conjecture)
For every k, there is a c_{k} such that every $n \times m 0,1$-matrix with at least $c_{k} \max (n, m) 1$ entries admits a k-grid minor.

Marcus-Tardos theorem

Theorem (Marcus and Tardos '04, Stanley-Wilf conjecture)
For every k, there is a c_{k} such that every $n \times m 0$, 1-matrix with at least $c_{k} \max (n, m) 1$ entries admits a k-grid minor.

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part Impossible!

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$ Step 2: find a contraction sequence with error value $g(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Refinement of \mathcal{D}_{i} where each part coincides on the non-mixed cells

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Now to bound the twin-width of a class \mathcal{C} :

1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with \mathcal{C}

Bounded twin-width $-K_{t}$-minor free graphs

Given a hamiltonian path, we would just use this order

Bounded twin-width $-K_{t}$-minor free graphs

Contracting the $2 t$ subpaths yields a $K_{t, t}$-minor, hence a K_{t}-minor

Bounded twin-width $-K_{t}$-minor free graphs

Instead we use a specially crafted lex-DFS discovery order

A surprising and convenient equivalent

Theorem (B., Kim, Reinald, Thomassé '21+)
Twin-width and oriented twin-width are functionally equivalent.

red degree

red out-degree
(red arcs oriented from the contraction)

A surprising and convenient equivalent

Theorem (B., Kim, Reinald, Thomassé '21+)
Twin-width and oriented twin-width are functionally equivalent.

red degree

red out-degree (red arcs oriented from the contraction)

Theorem (Kotzig's theorem '55)
Planar graphs have oriented twin-width at most 9.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 \& '21)
The following classes have bounded twin-width, and $O(1)$-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_{t}-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_{t}-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K_{4},
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 \& '21)
The following classes have bounded twin-width, and $O(1)$-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_{t}-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_{t}-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K_{4},
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Can we solve problems faster, given an $O(1)$-sequence?

One cograph definition

Cographs form the unique maximal hereditary class in which every ${ }^{1}$ graph has two twins
${ }^{1}$ provided it has at least two vertices

One cograph definition

Cographs form the unique maximal hereditary class in which every ${ }^{1}$ graph has two twins

Is there another algorithmic scheme based on this definition?
${ }^{1}$ provided it has at least two vertices

One cograph definition

Cographs form the unique maximal hereditary class in which every ${ }^{1}$ graph has two twins
(1) (1) (1) (1)
(1) (1) (1) (1)
(1) (1) (1) (1)
(1) (1) (1) (1)

Let's try with $\alpha(G)$, and store in a vertex its inner max solution

One cograph definition

Cographs form the unique maximal hereditary class in which every ${ }^{1}$ graph has two twins
(1) (1) (1) (1)
(1) (1) (1) (1)

We can find a pair of false/true twins

One cograph definition

Cographs form the unique maximal hereditary class in which every ${ }^{1}$ graph has two twins

Sum them if they are false twins

One cograph definition

Cographs form the unique maximal hereditary class in which every ${ }^{1}$ graph has two twins

Max them if they are true twins

Example of k-Independent Set

d-sequence: $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}=K_{1}$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k.

Example of k-Independent Set

d-sequence: $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}=K_{1}$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k. $d^{2 k} n^{2}$ red connected subgraphs, actually only $d^{2 k} n=2^{O_{d}(k)} n$

Example of k-Independent SET

d-sequence: $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}=K_{1}$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k. $d^{2 k} n^{2}$ red connected subgraphs, actually only $d^{2 k} n=2^{O_{d}(k)} n$

In G_{n} : red connected subgraphs are singletons, so are the solutions.
In G_{1} : If solution of size at least k, global solution.

Example of k-Independent SET

d-sequence: $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}=K_{1}$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k.
$d^{2 k} n^{2}$ red connected subgraphs, actually only $d^{2 k} n=2^{O_{d}(k)} n$
In G_{n} : red connected subgraphs are singletons, so are the solutions.
In G_{1} : If solution of size at least k, global solution.
How to go from the partial solutions of G_{i+1} to those of G_{i} ?

Best partial solution inhabiting •?

3 unions of $\leqslant d+2$ red connected subgraphs to consider in G_{i+1} with u, or v, or both

Other (almost) single-exponential parameterized algorithms

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Given a d-sequence $G=G_{n}, \ldots, G_{1}=K_{1}$,

- k-Independent Set,
- k-Clique,
- (r, k)-Scattered Set,
- k-Dominating Set, and
- (r, k)-Dominating Set
can be solved in time $2^{O(k)} n$, whereas Subgraph Isomorphism and Induced Subgraph Isomorphism can be solved in time $2^{O(k \log k)}$ n.

Other (almost) single-exponential parameterized algorithms

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Given a d-sequence $G=G_{n}, \ldots, G_{1}=K_{1}$,

- k-Independent Set,
- k-Clique,
- (r, k)-Scattered Set,
- k-Dominating Set, and
- (r, k)-Dominating Set
can be solved in time $2^{O(k)} n$, whereas Subgraph Isomorphism and Induced Subgraph Isomorphism can be solved in time $2^{O(k \log k)}$ n.

A more general FPT algorithm?

First-order model checking on graphs

Graph FO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order sentence $\varphi \in F O(\{E\})$
Question: $G \models \varphi$?

First-order model checking on graphs

Graph FO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order sentence $\varphi \in F O(\{E\})$
Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall x \bigvee_{1 \leqslant i \leqslant k} x=x_{i} \vee \bigvee_{1 \leqslant i \leqslant k} E\left(x, x_{i}\right) \vee E\left(x_{i}, x\right)
$$

$G \models \varphi ? \Leftrightarrow$

First-order model checking on graphs

Graph FO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order sentence $\varphi \in F O(\{E\})$
Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall x \bigvee_{1 \leqslant i \leqslant k} x=x_{i} \vee \bigvee_{1 \leqslant i \leqslant k} E\left(x, x_{i}\right) \vee E\left(x_{i}, x\right)
$$

$G \models \varphi ? \Leftrightarrow k$-Dominating Set

First-order model checking on graphs

Graph FO Model Checking
Parameter: $|\varphi|$
Input: A graph G and a first-order sentence $\varphi \in F O(\{E\})$
Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \bigwedge_{1 \leqslant i<j \leqslant k} \neg\left(x_{i}=x_{j}\right) \wedge \neg E\left(x_{i}, x_{j}\right) \wedge \neg E\left(x_{j}, x_{i}\right)
$$

$G \models \varphi ? \Leftrightarrow$

First-order model checking on graphs

Graph FO Model Checking
Parameter: $|\varphi|$
Input: A graph G and a first-order sentence $\varphi \in F O(\{E\})$
Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \bigwedge_{1 \leqslant i<j \leqslant k} \neg\left(x_{i}=x_{j}\right) \wedge \neg E\left(x_{i}, x_{j}\right) \wedge \neg E\left(x_{j}, x_{i}\right)
$$

$G \models \varphi ? \Leftrightarrow k$-Independent Set

Classes with known tractable FO model checking

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|) n$ on bounded-degree graphs [Seese '96]

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|) n^{1+\varepsilon}$ on any nowhere dense class [Grohe, Kreutzer, Siebertz '14]

Classes with known tractable FO model checking

End of the story for the subgraph-closed classes tractable FO Model Checking \Leftrightarrow nowhere dense

Classes with known tractable FO model checking

MSO_{1} Model Checking solvable in $f(|\varphi|, w) n$ on graphs of rank-width w [Courcelle, Makowsky, Rotics '00]

Classes with known tractable FO model checking

Is σ a subpermutation of τ ? solvable in $f(|\sigma|)|\tau|$ [Guillemot, Marx '14]

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|, w) n^{2}$ on posets of width w [GHLOORS '15]

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|) n^{O(1)}$ on map graphs
[Eickmeyer, Kawarabayashi '17]

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|, d) n$ on graphs with a d-sequence [B., Kim, Thomassé, Watrigant '20]

Classes with known tractable FO model checking

Every transduction of a bounded twin-width class has bounded twin-width [B., Kim, Thomassé, Watrigant '20]

Classic width-measures via contraction sequences

Theorem (B., Kim, Reinald, Thomassé '21+)
Component twin-width is functionally equivalent to rank-width. Total twin-width is functionally equivalent to linear rank-width.

Component twin-width: max red component size

Total twin-width: max number of red edges

The sparse regime captures treewidth and pathwidth

Classic width-measures via contraction sequences

Theorem (B., Kim, Reinald, Thomassé '21+)
Component twin-width is functionally equivalent to rank-width. Total twin-width is functionally equivalent to linear rank-width.

Component twin-width: max red component size

Total twin-width: max number of red edges

Alternative proof of Courcelle, Makowsky, Rotics's theorem:
FO model checking approach using Feferman-Vaught instead of Gaifman's theorem

Sparse classes with bounded twin-width

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Let \mathcal{C} a hereditary class of bounded twin-width. TFAE:

- graphs in \mathcal{C} have d-grid free adjacency matrices;
- graphs in \mathcal{C} are $K_{t, t}$-free;
- graphs in \mathcal{C} have linearly many edges;
- The subgraph-closure of \mathcal{C} has bounded twin-width;
- \mathcal{C} has bounded expansion.

Sparse classes with bounded twin-width

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)

Let \mathcal{C} a hereditary class of bounded twin-width. TFAE:

- graphs in \mathcal{C} have d-grid free adjacency matrices;
- graphs in \mathcal{C} are $K_{t, t^{-}}$free;
- graphs in \mathcal{C} have linearly many edges;
- The subgraph-closure of \mathcal{C} has bounded twin-width;
- \mathcal{C} has bounded expansion.

Still an interesting family of classes including bounded queue/stack number, K_{t}-minor free, and some expander classes

Does polynomial expansion imply bounded twin-width?

χ-boundedness

$\mathcal{C} \chi$-bounded: $\exists f, \forall G \in \mathcal{C}, \chi(G) \leqslant f(\omega(G))$
Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Every twin-width class is χ-bounded.
More precisely, every graph G of twin-width at most d admits a proper $(d+2)^{\omega(G)-1}$-coloring.

χ-boundedness

$\mathcal{C} \chi$-bounded: $\exists f, \forall G \in \mathcal{C}, \chi(G) \leqslant f(\omega(G))$
Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Every twin-width class is χ-bounded.
More precisely, every graph G of twin-width at most d admits a proper $(d+2)^{\omega(G)-1}$-coloring.

Are they polynomially χ-bounded? i.e., $\chi(G)=O\left(\omega(G)^{d}\right)$
Bounded twin-width graphs do satisfy strong Erdős-Hajnal

$d+2$-coloring in the triangle-free case

Algorithm: Start from $G_{1}=K_{1}$, color its unique vertex 1 , and rewind the d-sequence. A contraction seen backward is a split and we shall find colors for the two new vertices.

$d+2$-coloring in the triangle-free case

Algorithm: Start from $G_{1}=K_{1}$, color its unique vertex 1 , and rewind the d-sequence. A contraction seen backward is a split and we shall find colors for the two new vertices.

z has only red incident edges $\rightarrow d+2$-nd color available to v

$d+2$-coloring in the triangle-free case

Algorithm: Start from $G_{1}=K_{1}$, color its unique vertex 1 , and rewind the d-sequence. A contraction seen backward is a split and we shall find colors for the two new vertices.

z incident to at least one black edge \rightarrow non-edge between u and v

Twin-decomposition

Sparse model for bounded twin-width graphs (degeneracy of the blue graph by orienting)

Twin-decomposition

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21+) A class of binary structures has bounded twin-width if and only if it is an FO transduction of a proper permutation class.

Small classes

Small: class with at most $n!2^{O(n)}$ labeled graphs on [n].
Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Bounded twin-width classes are small.
Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21+) ...even at most $2^{O(n)}$ graphs up to isomorphism.

Unifies and extends the same result for: σ-free permutations [Marcus, Tardos '04] K_{t}-minor free graphs [Norine, Seymour, Thomas, Wollan '06]

Small classes

Small: class with at most $n!2^{O(n)}$ labeled graphs on $[n]$.
Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Bounded twin-width classes are small.
Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21+)
...even at most $2^{O(n)}$ graphs up to isomorphism.

Subcubic graphs, interval graphs, triangle-free unit segment graphs have unbounded twin-width

Small classes

Small: class with at most $n!2^{O(n)}$ labeled graphs on [n].
Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Bounded twin-width classes are small.
Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21+)
...even at most $2^{O(n)}$ graphs up to isomorphism.

The converse for hereditary classes does not hold
Theorem (B., Geniet, Tessera, Thomassé '21+)
There is a randomized construction of a finitely-generated group whose hereditary class of finite restrictions of the Cayley graph has unbounded twin-width (and yet is small).

The case of ordered binary structures

Theorem (B., Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk '21+)
Let \mathscr{C} be a hereditary class of ordered graphs. TFAE:
(1) \mathscr{C} has bounded twin-width;
(2) \mathscr{C} is monadically dependent;
(3) \mathscr{C} is dependent;
(4) \mathscr{C} contains $2^{O(n)}$ ordered n-vertex graphs;
(5) \mathscr{C} contains less than $\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} k$! ordered n-vertex graphs;
(6) \mathscr{C} does not include one of 24 minimal hereditary classes of ordered graphs with unbounded twin-width.
(7) FO-model checking is fixed-parameter tractable on \mathscr{C}.

Open questions

Algorithm to compute/approximate twin-width in general
Explicit examples of bounded-degree graphs of unbounded twin-width

Fully classify classes with tractable FO model checking
Some more classes could have bounded twin-width: polynomial expansion, $K_{t, t}$-free string graphs, etc.

Could smallness alone be algorithmically exploitable?

