Twin-width and Sparsity

Édouard Bonnet

ENS Lyon, LIP

September 29th, 2021, Dagstuhl, Sparsity Tutorial

Graphs

Two outcomes between a pair of vertices: edge or non-edge

Trigraphs

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

edges to $N(u)\triangle N(v)$ turn red, for $N(u)\cap N(v)$ red is absorbing

A contraction sequence of G: Sequence of trigraphs $G=G_n,\,G_{n-1},\ldots,\,G_2,\,G_1$ such that G_i is obtained by performing one contraction in G_{i+1} .

A contraction sequence of G: Sequence of trigraphs $G=G_n,\,G_{n-1},\ldots,\,G_2,\,G_1$ such that G_i is obtained by performing one contraction in G_{i+1} .

A contraction sequence of G: Sequence of trigraphs $G = G_n, G_{n-1}, \ldots, G_2, G_1$ such that G_i is obtained by performing one contraction in G_{i+1} .

A contraction sequence of G: Sequence of trigraphs $G=G_n,\,G_{n-1},\ldots,\,G_2,\,G_1$ such that G_i is obtained by performing one contraction in G_{i+1} .

A contraction sequence of G: Sequence of trigraphs $G=G_n,G_{n-1},\ldots,G_2,G_1$ such that G_i is obtained by performing one contraction in G_{i+1} .

A contraction sequence of G: Sequence of trigraphs $G=G_n,\,G_{n-1},\ldots,\,G_2,\,G_1$ such that G_i is obtained by performing one contraction in G_{i+1} .

A contraction sequence of G: Sequence of trigraphs $G=G_n,\,G_{n-1},\ldots,\,G_2,\,G_1$ such that G_i is obtained by performing one contraction in G_{i+1} .

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have $maximum\ red\ degree$ at most d.

Maximum red degree = 0 overall maximum red degree = 0

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have $maximum\ red\ degree$ at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have $maximum\ red\ degree$ at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have $maximum\ red\ degree$ at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have $maximum\ red\ degree$ at most d.

 $\label{eq:maximum red degree} \mbox{Maximum red degree} = 1 \\ \mbox{overall maximum red degree} = 2 \\ \mbox{}$

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have $maximum\ red\ degree$ at most d.

 $\label{eq:maximum red degree} \mbox{Maximum red degree} = 1 \\ \mbox{overall maximum red degree} = 2 \\ \mbox{}$

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have $maximum\ red\ degree$ at most d.

Maximum red degree = 0 overall maximum red degree = 2

Simple operations preserving small twin-width

- complementation: remains the same
- ▶ taking induced subgraphs: may only decrease
- adding one vertex linked arbitrarily: at most "doubles"
- ▶ substitution, lexicographic product: max of the twin-widths

Complementation

 $\mathsf{tww}(\overline{G}) = \mathsf{tww}(G)$

Complementation

 $\mathsf{tww}(\overline{G}) = \mathsf{tww}(G)$

 $G = C_5$, $H = P_4$, substitution $G[v \leftarrow H]$

 $G = C_5$, $H = P_4$, lexicographic product G[H]

More generally any modular decomposition

More generally any modular decomposition

 $\mathsf{tww}(G[H]) = \mathsf{max}(\mathsf{tww}(G), \mathsf{tww}(H))$

Classes with bounded twin-width

- ► cographs = twin-width 0
- trees, bounded treewidth, clique-width/rank-width
- ▶ grids
- . . .

If possible, contract two twin leaves

If not, contract a deepest leaf with its parent

If not, contract a deepest leaf with its parent

If possible, contract two twin leaves

Cannot create a red degree-3 vertex

Cannot create a red degree-3 vertex

Bounded rank-width graphs

Generalization to bounded rank-width

Bounded rank-width graphs

Two twins with respect to the exterior in a small subtree \rightarrow contraction

Bounded rank-width graphs

Red edges cluster in bounded size components

4-sequence for planar grids

More generally: if a "parallel" contraction of disjoint vertex pairs go from $red\ degree\ d$ to $red\ degree\ d$, then any sequentialization has red degree at most 2d

3-dimensional grids

Still bounded degree but contains arbitrary large clique minors

3-dimensional grids

Contract the blue edges in any order ightarrow 12-sequence

3-dimensional grids

The d-dimensional grid has twin-width $\leqslant 4d$ (even 3d)

split each vertex in 2, replace each edge by 1 of the 2 matchings

Iterated 2-lifts of K_4 have twin-width at most 6

Iterated 2-lifts of K_4 have twin-width at most 6

Iterated 2-lifts of K_4 have twin-width at most 6

Iterated 2-lifts of K_4 have twin-width at most 6

Iterated 2-lifts of K_4 have twin-width at most 6 but no balanced separators of size o(n)

First example of unbounded twin-width

Line graph of a biclique a.k.a. rook graph

First example of unbounded twin-width

No pair of near twins

First example of unbounded twin-width

No pair of near twins

Planar graphs?

Planar graphs?

For every d, a planar trigraph without planar d-contraction

Planar graphs?

For every d, a planar trigraph without planar d-contraction

More powerfool tool needed

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Encode a bipartite graph (or, if symmetric, any graph)

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Contraction of two columns (similar with two rows)

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & r & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & r & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & r & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

How is the twin-width (re)defined?

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & r & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & r & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & r & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

How to tune it for non-bipartite graph?

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

1	1	1	1	1	1	1	0
0							1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
$\boxed{1}$	0	1	1	1	0	0	1

 $\label{eq:maximum number of non-constant zones per column or row part} = \mathbf{error} \ \mathbf{value}$

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

1	1	1	1	1	1	1	0
	1					0	
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Maximum number of non-constant zones per column or row part ...until there are a single row part and column part

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

1	1	1	1	1	1	1	0
	1			0			
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Twin-width as maximum error value of a contraction sequence

Grid minor

t-grid minor: $t \times t$ -division where every cell is non-empty Non-empty cell: contains at least one 1 entry

1	1	1	1	1	1	1	0
0	1	1	0	0	1 0	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0 0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1 0	0	0
_ 1	0	1	1	1	0	0	1

4-grid minor

Grid minor

t-grid minor: $t \times t$ -division where every cell is non-empty Non-empty cell: contains at least one 1 entry

1							0
0	1	1	0	0	1	0	1
0							1
0	1	0	0	1	0	1	0
1							0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

4-grid minor

A matrix is said *t*-**grid free** if it does not have a *t*-grid minor

Mixed minor

Mixed cell: not horizontal nor vertical

3-mixed minor

Mixed minor

Mixed cell: not horizontal nor vertical

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ \end{bmatrix}$$

3-mixed minor

Every mixed cell is witnessed by a 2×2 square = **corner**

Mixed minor

Mixed cell: not horizontal nor vertical

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ \end{bmatrix}$$

3-mixed minor

A matrix is said t-mixed free if it does not have a t-mixed minor

Mixed value

$$R_{4} \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ C_{2} \end{bmatrix}$$

pprox (maximum) number of cells with a corner per row/column part

Mixed value

But we add the number of boundaries containing a corner

Mixed value

 $\mathrel{\raisebox{3.5pt}{$\scriptstyle \cdot$}}$ merging row parts do not increase mixed value of column part

Theorem (B., Kim, Thomassé, Watrigant '20) If G admits a t-mixed free adjacency matrix, then $tww(G) = 2^{2^{O(t)}}$.

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Theorem (B., Kim, Thomassé, Watrigant '20)

If $\exists \sigma$ s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
				1			
1	0	0	1	1	0	1	0
				1			
1	0	1	1	1	0	0	1

Merge consecutive parts greedily

Theorem (B., Kim, Thomassé, Watrigant '20)

If $\exists \sigma$ s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0				1	
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Merge consecutive parts greedily

Theorem (B., Kim, Thomassé, Watrigant '20)

If $\exists \sigma$ s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

1	1	1	1	1	1	1	0
	1			0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Merge consecutive parts greedily

Theorem (B., Kim, Thomassé, Watrigant '20)

If $\exists \sigma$ s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Stuck, removing every other separation $ightarrow rac{f(t)}{2}$ mixed cells per part

Marcus-Tardos theorem

Theorem (Marcus and Tardos '04, Stanley-Wilf conjecture)

For every k, there is a c_k such that every $n \times m \ 0, 1$ -matrix with at least $c_k \max(n, m) \ 1$ entries admits a k-grid minor.

Marcus-Tardos theorem

Theorem (Marcus and Tardos '04, Stanley-Wilf conjecture)

For every k, there is a c_k such that every $n \times m \ 0, 1$ -matrix with at least $c_k \max(n, m) \ 1$ entries admits a k-grid minor.

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Theorem (B., Kim, Thomassé, Watrigant '20)

If $\exists \sigma$ s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

[1]	1	1	1	1	1	1	0
	1		0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
$\overline{1}$	0	1	1	1	0	0	1

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part

Theorem (B., Kim, Thomassé, Watrigant '20)

If $\exists \sigma$ s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

	1		1	1	1	1	0
	1			0			
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1		1			
1	0	1	1	1	0	0	1

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part **Impossible!**

```
Theorem (B., Kim, Thomassé, Watrigant '20)
```

If $\exists \sigma$ s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

Step 2: find a contraction sequence with error value g(t)

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1				
0	1	1				0	
1	0	1	1	1	0	0	1

Refinement of \mathcal{D}_i where each part coincides on the non-mixed cells

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Twin-width and mixed freeness

Theorem (B., Kim, Thomassé, Watrigant '20) If $\exists \sigma$ s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Now to bound the twin-width of a class C:

- 1) Find a good vertex-ordering procedure
- 2) Argue that, in this order, a t-mixed minor would conflict with $\mathcal C$

Given a hamiltonian path, we would just use this order

Bounded twin-width – K_t -minor free graphs

B_t		1	1	1	1	1
B_4	1		1	1	1	1
B_3	1		1	1	1	1
B_2	1		1	1	1	1
B_1		1	1	1	1	1
	$\overline{A_1}$		$\overline{A_2}$	$\overline{A_3}$	$\overline{A_4}$	$\overline{A_t}$

Contracting the 2t subpaths yields a $K_{t,t}$ -minor, hence a K_t -minor

Bounded twin-width – K_t -minor free graphs

B_t		1	1	1	1	1
B_4	1		1	1	1	1
B_3	1		1	1	1	1
B_2	1		1	1	1	1
B_1		1	1	1	1	1
	$\overline{A_1}$		$\overline{A_2}$	$\overline{A_3}$	$\overline{A_4}$	$\overline{A_t}$

Instead we use a specially crafted lex-DFS discovery order

A surprising and convenient equivalent

Theorem (B., Kim, Reinald, Thomassé '21+)

Twin-width and oriented twin-width are functionally equivalent.

red out-degree (red arcs oriented from the contraction)

A surprising and convenient equivalent

Theorem (B., Kim, Reinald, Thomassé '21+)

Twin-width and oriented twin-width are functionally equivalent.

Theorem (Kotzig's theorem '55)

Planar graphs have oriented twin-width at most 9.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- ▶ Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- \triangleright K_t -minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- ► K_t-free unit d-dimensional ball graphs,
- $ightharpoonup \Omega(\log n)$ -subdivisions of all the n-vertex graphs,
- ▶ cubic expanders defined by iterative random 2-lifts from K₄,
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- ▶ Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- $ightharpoonup K_t$ -minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- ► K_t-free unit d-dimensional ball graphs,
- $ightharpoonup \Omega(\log n)$ -subdivisions of all the n-vertex graphs,
- \triangleright cubic expanders defined by iterative random 2-lifts from K_4 ,
- ▶ strong products of two bounded twin-width classes, one with bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?

Cographs form the unique *maximal hereditary* class in which every¹ graph has two *twins*

¹provided it has at least two vertices

Cographs form the unique *maximal hereditary* class in which every graph has two *twins*

Is there another algorithmic scheme based on this definition?

¹provided it has at least two vertices

Cographs form the unique *maximal hereditary* class in which every¹ graph has two *twins*

$$\widehat{1}$$
 $\widehat{1}$ $\widehat{1}$

$$\bigcirc$$
 \bigcirc \bigcirc \bigcirc

Let's try with $\alpha(G)$, and store in a vertex its inner max solution

¹provided it has at least two vertices

Cographs form the unique *maximal hereditary* class in which every¹ graph has two *twins*

We can find a pair of false/true twins

¹provided it has at least two vertices

Cographs form the unique *maximal hereditary* class in which every¹ graph has two *twins*

Sum them if they are false twins

¹provided it has at least two vertices

Cographs form the unique *maximal hereditary* class in which every¹ graph has two *twins*

Max them if they are true twins

¹provided it has at least two vertices

d-sequence: $G = G_n, G_{n-1}, \dots, G_2, G_1 = K_1$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k.

d-sequence: $G = G_n, G_{n-1}, \dots, G_2, G_1 = K_1$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k.

 $d^{2k}n^2$ red connected subgraphs, actually only $d^{2k}n = 2^{O_d(k)}n$

d-sequence: $G = G_n, G_{n-1}, \dots, G_2, G_1 = K_1$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k.

 $d^{2k}n^2$ red connected subgraphs, actually only $d^{2k}n = 2^{O_d(k)}n$

In G_n : red connected subgraphs are singletons, so are the solutions. In G_1 : If solution of size at least k, global solution.

d-sequence: $G = G_n, G_{n-1}, \dots, G_2, G_1 = K_1$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k.

 $d^{2k}n^2$ red connected subgraphs, actually only $d^{2k}n = 2^{O_d(k)}n$

In G_n : red connected subgraphs are singletons, so are the solutions. In G_1 : If solution of size at least k, global solution.

How to go from the partial solutions of G_{i+1} to those of G_i ?

Best partial solution inhabiting •?

3 unions of $\leqslant d+2$ red connected subgraphs to consider in G_{i+1} with u, or v, or both

Other (almost) single-exponential parameterized algorithms

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)

Given a d-sequence $G = G_n, \ldots, G_1 = K_1$,

- ► k-Independent Set,
- ► *k*-Clique,
- ightharpoonup (r, k)-Scattered Set,
- ▶ k-DOMINATING SET. and
- ightharpoonup (r, k)-Dominating Set

can be solved in time $2^{O(k)}n$, whereas Subgraph Isomorphism and Induced Subgraph Isomorphism can be solved in time $2^{O(k \log k)}n$.

Other (almost) single-exponential parameterized algorithms

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)

Given a d-sequence $G = G_n, \ldots, G_1 = K_1$,

- ► k-Independent Set,
- ► *k*-Clique,
- ightharpoonup (r, k)-Scattered Set,
- ▶ k-DOMINATING SET, and
- ightharpoonup (r, k)-Dominating Set

can be solved in time $2^{O(k)}n$, whereas Subgraph Isomorphism and Induced Subgraph Isomorphism can be solved in time $2^{O(k \log k)}n$.

A more general FPT algorithm?

Graph FO Model Checking Parameter: $|\varphi|$

Input: A graph G and a first-order sentence $\varphi \in FO(\{E\})$

Question: $G \models \varphi$?

GRAPH FO MODEL CHECKING

Parameter: $|\varphi|$

Input: A graph G and a first-order sentence $\varphi \in FO(\{E\})$

Question: $G \models \varphi$?

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \bigvee_{1 \leqslant i \leqslant k} x = x_i \lor \bigvee_{1 \leqslant i \leqslant k} E(x, x_i) \lor E(x_i, x)$$

$$G \models \varphi? \Leftrightarrow$$

Graph FO Model Checking Parameter: $|\varphi|$

Input: A graph G and a first-order sentence $\varphi \in FO(\{E\})$

Question: $G \models \varphi$?

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \bigvee_{1 \leqslant i \leqslant k} x = x_i \lor \bigvee_{1 \leqslant i \leqslant k} E(x, x_i) \lor E(x_i, x)$$

$$G \models \varphi$$
? \Leftrightarrow k-Dominating Set

Graph FO Model Checking Parameter: $|\varphi|$

Input: A graph G and a first-order sentence $\varphi \in FO(\{E\})$

Question: $G \models \varphi$?

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leqslant i < j \leqslant k} \neg (x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

$$G \models \varphi? \Leftrightarrow$$

Graph FO Model Checking Parameter: $|\varphi|$

Input: A graph G and a first-order sentence $\varphi \in FO(\{E\})$

Question: $G \models \varphi$?

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leqslant i < j \leqslant k} \neg (x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

$$G \models \varphi$$
? $\Leftrightarrow k$ -Independent Set

FO Model Checking solvable in $f(|\varphi|)n$ on bounded-degree graphs [Seese '96]

FO Model Checking solvable in $f(|\varphi|)n^{1+\varepsilon}$ on any nowhere dense class [Grohe, Kreutzer, Siebertz '14]

End of the story for the subgraph-closed classes tractable FO MODEL CHECKING ⇔ nowhere dense

 MSO_1 MODEL CHECKING solvable in $f(|\varphi|, w)n$ on graphs of rank-width w [Courcelle, Makowsky, Rotics '00]

Is σ a subpermutation of τ ? solvable in $f(|\sigma|)|\tau|$ [Guillemot, Marx '14]

FO Model Checking solvable in $f(|\varphi|, w)n^2$ on posets of width w [GHLOORS '15]

FO Model Checking solvable in $f(|\varphi|)n^{O(1)}$ on map graphs [Eickmeyer, Kawarabayashi '17]

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|,d)n$ on graphs with a d-sequence [B., Kim, Thomassé, Watrigant '20]

Classes with known tractable FO model checking

Every transduction of a bounded twin-width class has bounded twin-width [B., Kim, Thomassé, Watrigant '20]

Classic width-measures via contraction sequences

Theorem (B., Kim, Reinald, Thomassé '21+)

Component twin-width is functionally equivalent to rank-width. Total twin-width is functionally equivalent to linear rank-width.

The sparse regime captures treewidth and pathwidth

Classic width-measures via contraction sequences

Theorem (B., Kim, Reinald, Thomassé '21+)

Component twin-width is functionally equivalent to rank-width. Total twin-width is functionally equivalent to linear rank-width.

Alternative proof of Courcelle, Makowsky, Rotics's theorem: FO model checking approach using Feferman-Vaught instead of Gaifman's theorem

Sparse classes with bounded twin-width

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)

Let C a hereditary class of bounded twin-width. TFAE:

- graphs in C have d-grid free adjacency matrices;
- \triangleright graphs in C are $K_{t,t}$ -free;
- graphs in C have linearly many edges;
- ightharpoonup The subgraph-closure of $\mathcal C$ has bounded twin-width;
- C has bounded expansion.

Sparse classes with bounded twin-width

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)

Let C a hereditary class of bounded twin-width. TFAE:

- graphs in C have d-grid free adjacency matrices;
- \triangleright graphs in \mathcal{C} are $K_{t,t}$ -free;
- graphs in C have linearly many edges;
- ightharpoonup The subgraph-closure of C has bounded twin-width;
- C has bounded expansion.

Still an interesting family of classes including bounded queue/stack number, K_t -minor free, and some expander classes

Does polynomial expansion imply bounded twin-width?

χ -boundedness

 \mathcal{C} χ -bounded: $\exists f, \forall G \in \mathcal{C}, \ \chi(G) \leqslant f(\omega(G))$

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)

Every twin-width class is χ -bounded.

More precisely, every graph G of twin-width at most d admits a proper $(d+2)^{\omega(G)-1}$ -coloring.

χ -boundedness

 \mathcal{C} χ -bounded: $\exists f, \forall G \in \mathcal{C}, \ \chi(G) \leqslant f(\omega(G))$

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)

Every twin-width class is χ -bounded.

More precisely, every graph G of twin-width at most d admits a proper $(d+2)^{\omega(G)-1}$ -coloring.

Are they polynomially χ -bounded? i.e., $\chi(G) = O(\omega(G)^d)$

Bounded twin-width graphs do satisfy strong Erdős-Hajnal

d + 2-coloring in the triangle-free case

Algorithm: Start from $G_1 = K_1$, color its unique vertex 1, and rewind the *d*-sequence. A contraction seen backward is a split and we shall find colors for the two new vertices.

d + 2-coloring in the triangle-free case

Algorithm: Start from $G_1 = K_1$, color its unique vertex 1, and rewind the *d*-sequence. A contraction seen backward is a split and we shall find colors for the two new vertices.

z has only red incident edges $\rightarrow d + 2$ -nd color available to v

d + 2-coloring in the triangle-free case

Algorithm: Start from $G_1 = K_1$, color its unique vertex 1, and rewind the d-sequence. A contraction seen backward is a split and we shall find colors for the two new vertices.

z incident to at least one black edge \rightarrow non-edge between u and v

Twin-decomposition

Sparse model for bounded twin-width graphs (degeneracy of the blue graph by orienting)

Twin-decomposition

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21+)

A class of binary structures has bounded twin-width if and only if it is an FO transduction of a proper permutation class.

Small classes

```
Small: class with at most n!2^{O(n)} labeled graphs on [n].
Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Bounded twin-width classes are small.
```

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21+) ... even at most $2^{O(n)}$ graphs up to isomorphism.

```
Unifies and extends the same result for: \sigma-free permutations [Marcus, Tardos '04] K_t-minor free graphs [Norine, Seymour, Thomas, Wollan '06]
```

Small classes

Small: class with at most $n!2^{O(n)}$ labeled graphs on [n].

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) Bounded twin-width classes are small.

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21+) ...even at most $2^{O(n)}$ graphs up to isomorphism.

Subcubic graphs, interval graphs, triangle-free unit segment graphs have **unbounded** twin-width

Small classes

Small: class with at most $n!2^{O(n)}$ labeled graphs on [n].

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)

Bounded twin-width classes are small.

Theorem (B., Nešetřil, Ossona de Mendez, Siebertz, Thomassé '21+) ... even at most $2^{O(n)}$ graphs up to isomorphism.

The converse for hereditary classes does not hold

Theorem (B., Geniet, Tessera, Thomassé '21+)

There is a randomized construction of a finitely-generated group whose hereditary class of finite restrictions of the Cayley graph has unbounded twin-width (and yet is small).

The case of ordered binary structures

Theorem (B., Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk '21+)

Let $\mathscr C$ be a hereditary class of ordered graphs. TFAE:

- (1) & has bounded twin-width;
- (2) & is monadically dependent;
- (3) \mathscr{C} is dependent;
- (4) \mathscr{C} contains $2^{O(n)}$ ordered n-vertex graphs;
- (5) \mathscr{C} contains less than $\sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} k!$ ordered n-vertex graphs;
- (6) & does not include one of 24 minimal hereditary classes of ordered graphs with unbounded twin-width.
- (7) FO-model checking is fixed-parameter tractable on \mathscr{C} .

Open questions

Algorithm to compute/approximate twin-width in general

Explicit examples of bounded-degree graphs of unbounded twin-width

Fully classify classes with tractable FO model checking

Some more classes could have bounded twin-width: polynomial expansion, $K_{t,t}$ -free string graphs, etc.

Could smallness alone be algorithmically exploitable?