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Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)



Contractions in trigraphs
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uvuv

Identification of two non-necessarily adjacent vertices
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Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing



Contraction sequence
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A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.
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Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .
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Maximum red degree = 0
overall maximum red degree = 0
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Twin-width
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a

b

c

d

e

f

g

abcdefg

Maximum red degree = 0
overall maximum red degree = 2



Simple operations preserving small twin-width

I complementation: remains the same
I taking induced subgraphs: may only decrease
I adding one vertex linked arbitrarily: at most “doubles”
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Induced subgraph
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Induced subgraph
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Induced subgraph
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Induced subgraph
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Induced subgraph

abcdefg

H

abcde

Mimic the contractions otherwise



Adding one vertex v

Left as an exercise

A B

v

G

Hint: Up until the very end, v shall have no incident red edge



Graphs with bounded twin-width – trees

If possible, contract two twin leaves



Graphs with bounded twin-width – trees

If not, contract a deepest leaf with its parent



Graphs with bounded twin-width – trees

If not, contract a deepest leaf with its parent



Graphs with bounded twin-width – trees

If possible, contract two twin leaves



Graphs with bounded twin-width – trees

Cannot create a red degree-3 vertex
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Graphs with bounded twin-width – trees

Cannot create a red degree-3 vertex



Graphs with bounded twin-width – trees

Generalization to bounded treewidth and even bounded rank-width



Graphs with bounded twin-width – grids

4-sequence for planar grids, 3d-sequence for d-dimensional grids



Graphs with bounded twin-width – grids

4-sequence for planar grids, 3d-sequence for d-dimensional grids



Graphs with bounded twin-width – grids

4-sequence for planar grids, 3d-sequence for d-dimensional grids



Graphs with bounded twin-width – grids

4-sequence for planar grids, 3d-sequence for d-dimensional grids



Graphs with bounded twin-width – grids

4-sequence for planar grids, 3d-sequence for d-dimensional grids



Graphs with bounded twin-width – grids

4-sequence for planar grids, 3d-sequence for d-dimensional grids



Graphs with bounded twin-width – grids

4-sequence for planar grids, 3d-sequence for d-dimensional grids



Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Graphs with bounded twin-width – planar graphs?
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For every d , a planar trigraph without planar d-contraction

More powerfool tool needed
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Twin-width in the language of matrices
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Encode a bipartite graph (or, if symmetric, any graph)



Twin-width in the language of matrices
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Contraction of two columns (similar with two rows)
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How is the twin-width (re)defined?



Twin-width in the language of matrices
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Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive
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= error value
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Partition viewpoint

Matrix partition: partitions of the row set and of the column set
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Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive
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Maximum number of non-constant zones per column or row part

Twin-width as maximum error value
of a contraction/division sequence



Grid minor

t-grid minor: t × t-division where every cell is non-empty
Non-empty cell: contains at least one 1 entry
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A matrix is said t-grid free if it does not have a t-grid minor
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Mixed minor

Mixed cell: not horizontal nor vertical
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Mixed cell: not horizontal nor vertical
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Mixed value
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≈ (maximum) number of cells with a corner per row/column part
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But we add the number of boundaries containing a corner
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∪

∴ merging row parts do not increase mixed value of column part



Twin-width and mixed freeness

Theorem
If G admits a t-mixed free adjacency matrix, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di )i with mixed value f (t)
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Twin-width and mixed freeness

Theorem
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .
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Stuck, removing every other separation → f (t)
2 mixed cells per part



Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed

Question
For every k, is there a ck such that every n×m 0, 1-matrix with at
least ck 1 per row and column admits a k-grid minor?

Conjecture (Stanley-Wilf conjecture ’80s)
Any proper permutation class contains only 2O(n) n-permutations.

Klazar showed Füredi-Hajnal ⇒ Stanley-Wilf in 2000
Marcus and Tardos showed Füredi-Hajnal in 2004
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Klazar showed Füredi-Hajnal ⇒ Stanley-Wilf in 2000
Marcus and Tardos showed Füredi-Hajnal in 2004
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Marcus-Tardos one-page inductive proof
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Let M be an n × n 0, 1-matrix without k-grid minor
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k2 division on top of M
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A cell is wide if it has at least k columns with a 1
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A cell is tall if it has at least k rows with a 1
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Choose ck = 2k4(k2

k
)

so that (k − 1)2ck
n
k2 + 2k3(k2

k
)
n 6 ckn



Twin-width and mixed freeness

Theorem
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di )i with mixed value f (t)
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Stuck, removing every other separation → f (t)
2 mixed cells per part

Impossible!
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Twin-width and mixed freeness

Theorem
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Step 1: find a division sequence (Di )i with mixed value f (t)
Step 2: find a contraction sequence with error value g(t)
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Refinement of Di where each part coincides on the non-mixed cells



Twin-width and mixed freeness

Theorem
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C
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Theorem
If ∃σ s.t. Adjσ(G) is t-mixed free, then tww(G) = 22O(t) .

Now to bound the twin-width of a class C:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with C



Unit interval graphs

Intersection graph of unit segments on the real line



Bounded twin-width – unit interval graphs

1

0

0

order by left endpoints



Bounded twin-width – unit interval graphs

1

0

0

not
mixed

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves



Graph minors

Formed by vertex deletion, edge deletion, and edge contraction

A graph G is H-minor free if H is not a minor of G

A graph class is H-minor free if all its graphs are

Planar graphs are exactly the graphs without K5 or K3,3 as a minor

K5 K3,3
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Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Given a hamiltonian path, we would just use this order



Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Contracting the 2t subpaths yields a Kt,t-minor, hence a Kt-minor



Bounded twin-width – Kt-minor free graphs

A1 A2 A3 A4 At

B1

B2

B3

B4

Bt

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1
1 1

1
1

1

1

1

Instead we use a specially crafted lex-DFS discovery order



Theorem
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?
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Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

A single vertex is a cograph,

+

+ ∪

• ∪ • +

• • • •
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G1 G2

∪
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G1 G2
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as well as the union of two cographs,
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Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

Many NP-hard problems are polytime solvable on cographs
+

+ ∪

• ∪ • +

• • • •



Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

Let’s try to compute the NP-hard α(G), independence number

+
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• ∪ • +

• • • •



Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

In case of a disjoint union: combine the solutions
+

+ ∪

• ∪ • +

• • • •
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•
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G1 G2

+
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In case of a complete join: pick the larger one
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Cographs

•

1

G1 G2

∪

α(G1) + α(G2)

G1 G2

+

max{α(G1), α(G2)}

In case of a complete join: pick the larger one

max

max +

1 + 1 max

1 1 1 1



Equivalent cograph definition

Cographs form the unique maximal hereditary class in which every1

graph has two twins

1
1
1
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1
1
1
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1
1
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1
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1
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1

1
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3
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5
→ 7
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1

4

3
→ 7 4

1

1
. . .

Is there another algorithmic scheme based on this definition?

1provided it has at least two vertices
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Let’s try with α(G), and store in a vertex its inner max solution

1provided it has at least two vertices



Equivalent cograph definition

Cographs form the unique maximal hereditary class in which every1

graph has two twins ...yes, they coincide with twin-width 0
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We can find a pair of false/true twins

1provided it has at least two vertices



Equivalent cograph definition

Cographs form the unique maximal hereditary class in which every1
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Sum them if they are false twins

1provided it has at least two vertices



Equivalent cograph definition

Cographs form the unique maximal hereditary class in which every1
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1provided it has at least two vertices



Equivalent cograph definition

Cographs form the unique maximal hereditary class in which every1

graph has two twins ...yes, they coincide with twin-width 0
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Why does it eventually compute α(G)?

1provided it has at least two vertices



Example of k-Independent Set

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: Compute by dynamic programming a best partial
solution in each red connected subgraph of size at most k.

d2kn2 red connected subgraphs, actually only d2kn = 2Od (k)n

In Gn: red connected subgraphs are singletons, so are the solutions.
In G1: If solution of size at least k, global solution.

How to go from the partial solutions of Gi+1 to those of Gi?
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Example of k-Independent Set

d-sequence: G = Gn,Gn−1, . . . ,G2,G1 = K1

Algorithm: Compute by dynamic programming a best partial
solution in each red connected subgraph of size at most k.

d2kn2 red connected subgraphs, actually only d2kn = 2Od (k)n

In Gn: red connected subgraphs are singletons, so are the solutions.
In G1: If solution of size at least k, global solution.
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Gi

z

Gi+1

u
v

Best partial solution inhabiting •?

with u, or v , or both



Gi

z

Gi+1

u
v

3 unions of 6 d + 2 red connected subgraphs to consider in Gi+1
with u, or v , or both



Other (almost) single-exponential parameterized
algorithms

Theorem
Given a d-sequence G = Gn, . . . ,G1 = K1,
I k-Independent Set,
I k-Clique,
I (r , k)-Scattered Set,
I k-Dominating Set, and
I (r , k)-Dominating Set

can be solved in time 2O(k)n,
whereas Subgraph Isomorphism and Induced Subgraph
Isomorphism can be solved in time 2O(k log k)n.

A more general FPT algorithm?



Other (almost) single-exponential parameterized
algorithms

Theorem
Given a d-sequence G = Gn, . . . ,G1 = K1,
I k-Independent Set,
I k-Clique,
I (r , k)-Scattered Set,
I k-Dominating Set, and
I (r , k)-Dominating Set

can be solved in time 2O(k)n,
whereas Subgraph Isomorphism and Induced Subgraph
Isomorphism can be solved in time 2O(k log k)n.

A more general FPT algorithm?



First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E2,=2})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi ) ∨ E (xi , x)

G |= ϕ? ⇔
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First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E2,=2})
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Example:
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First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E2,=2})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi )

G |= ϕ? ⇔



First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E2,=2})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk
∧

16i<j6k
¬(xi = xj) ∧ ¬E (xi , xj) ∧ ¬E (xj , xi )

G |= ϕ? ⇔ k-Independent Set



FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem
Bounded twin-width is preserved by transduction.
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FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

Theorem
Bounded twin-width is preserved by transduction.



Monadically Stable and NIP

Stable class: no transduction of the class contains all ladders
NIP class: no transduction of the class contains all graphs

ladder

Bounded-degree graphs → stable
Unit interval graphs → NIP but not stable
Interval graphs → not NIP

Bounded twin-width classes → NIP but not stable in general
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FO Model Checking solvable in f (|ϕ|)n on bounded-degree graphs
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FO Model Checking solvable in f (|ϕ|)n on bounded-degree graphs
[Seese ’96]
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FO Model Checking solvable in f (|ϕ|)n1+ε on any nowhere dense class
[Grohe, Kreutzer, Siebertz ’14]
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End of the story for the subgraph-closed classes
tractable FO Model Checking ⇔ nowhere dense ⇔ stable
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New program: transductions of nowhere dense classes
Not sparse anymore but still stable
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MSO1 Model Checking solvable in f (|ϕ|,w)n on graphs of rank-width w
[Courcelle, Makowsky, Rotics ’00]
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Is σ a subpermutation of τ? solvable in f (|σ|)|τ |
[Guillemot, Marx ’14]
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FO Model Checking solvable in f (|ϕ|,w)n2 on posets of width w
[GHLOORS ’15]
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FO Model Checking solvable in f (|ϕ|)nO(1) on map graphs
[Eickmeyer, Kawarabayashi ’17]
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FO Model Checking solvable in f (|ϕ|, d)n on graphs with a d-sequence



Workflow of the FO model checking algorithm
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d-contraction sequence
G = Gn, . . . ,G1 = K1
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nO(1)

reduced morphism-tree
MT ′`(G) of size h(`)

reduced morphism-tree
MT ′`(G) of size h(`)

Query G |= ϕ
for any prenex ϕ of depth `

Query G |= ϕ
for any prenex ϕ of depth `

O`,d(n)

O`(1)

Direct examples: trees, bounded rank-width, grids, d-dimensional grids,
Kt-free unit ball graphs
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Workflow of the FO model checking algorithm
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O`(1)

Detour via mixed minor for: pattern-avoiding permutations,
unit intervals, bounded width posets, Kt-minor free graphs



Workflow of the FO model checking algorithm

graph G
of bounded twin-width

graph G
of bounded twin-width t-mixed-free order

t-mixed-free order

d-contraction sequence
G = Gn, . . . ,G1 = K1

d-contraction sequence
G = Gn, . . . ,G1 = K1nO(1) nO(1)

nO(1)

reduced morphism-tree
MT ′`(G) of size h(`)

reduced morphism-tree
MT ′`(G) of size h(`)

Query G |= ϕ
for any prenex ϕ of depth `

Query G |= ϕ
for any prenex ϕ of depth `

O`,d(n)

O`(1)

Generalization of what we saw for k-Independent Set

Generalization of what we saw for k-Independent Set



Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem
Bounded twin-width classes are small.

Unifies and extends the same result for:
σ-free permutations [Marcus, Tardos ’04]
Kt-minor free graphs [Norine, Seymour, Thomas, Wollan ’06]



Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem
Bounded twin-width classes are small.

Subcubic graphs, interval graphs, triangle-free unit segment graphs
have unbounded twin-width



Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem
Bounded twin-width classes are small.

Is the converse true for hereditary classes?

Conjecture (small conjecture)
A hereditary class has bounded twin-width if and only if it is small.



χ-boundedness

C χ-bounded: ∃f , ∀G ∈ C, χ(G) 6 f (ω(G))

Theorem
Every twin-width class is χ-bounded.
More precisely, every graph G of twin-width at most d admits a
proper (d + 2)ω(G)−1-coloring.

Polynomially χ-bounded? i.e., χ(G) = O(ω(G)d )
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d + 2-coloring in the triangle-free case

Algorithm: Start from G1 = K1, color its unique vertex 1, and
rewind the d-sequence. A contraction seen backward is a
split and we shall find colors for the two new vertices.

NGi [z ] NGi+1 [u, v ]

z has only red incident edges → d + 2-nd color available to v
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d + 2-coloring in the triangle-free case

Algorithm: Start from G1 = K1, color its unique vertex 1, and
rewind the d-sequence. A contraction seen backward is a
split and we shall find colors for the two new vertices.

NGi [z ] NGi+1 [u, v ]

z incident to at least one black edge → non-edge between u and v



Future directions

Main questions:
Algorithm to compute/approximate twin-width in general
Fully classify classes with tractable FO model checking
Small conjecture
Better approximation algorithms on bounded twin-width classes
Twin-width of Cayley graphs of finitely generated groups. . .

On arxiv
Twin-width I: tractable FO model checking [BKTW ’20]
Twin-width II: small classes [BGKTW ’20]
Twin-width III: Max Independent Set and Coloring [BGKTW ’20]
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