Édouard Bonnet based on joint works with Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

ENS Lyon, LIP

January 20th, 2021, tutorial at Universität Bremen

Two outcomes between a pair of vertices: edge or non-edge

Trigraphs

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 0 overall maximum red degree = 0

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 2 overall maximum red degree = 2

$$\label{eq:maximum red degree} \begin{array}{l} \mbox{Maximum red degree} = 0 \\ \mbox{overall maximum red degree} = 2 \end{array}$$

Simple operations preserving small twin-width

- complementation: remains the same
- taking induced subgraphs: may only decrease
- adding one vertex linked arbitrarily: at most "doubles"

Complementation

G

G

 $\mathsf{tww}(\overline{G}) = \mathsf{tww}(G)$

Complementation

$$\mathsf{tww}(\overline{G}) = \mathsf{tww}(G)$$

 $\mathsf{tww}(H) \leq \mathsf{tww}(G)$

Н

Ignore absent vertices

Adding one vertex v

Left as an exercise

Hint: Up until the very end, v shall have no incident red edge

If possible, contract two twin leaves

If not, contract a deepest leaf with its parent

If not, contract a deepest leaf with its parent

If possible, contract two twin leaves

Cannot create a red degree-3 vertex

Generalization to bounded treewidth and even bounded rank-width

4-sequence for planar grids, 3d-sequence for d-dimensional grids

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence:

No O(1)-contraction sequence: twin-width is *not* an iterated identification of near twins.

No O(1)-contraction sequence: twin-width is *not* an iterated identification of near twins.

Graphs with bounded twin-width – planar graphs?

Graphs with bounded twin-width – planar graphs?

For every d, a planar trigraph without planar d-contraction

Graphs with bounded twin-width – planar graphs?

For every d, a planar trigraph without planar d-contraction

More powerfool tool needed

Encode a bipartite graph (or, if symmetric, any graph)

Contraction of two columns (similar with two rows)

How is the twin-width (re)defined?

How to tune it for non-bipartite graph?

Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

Maximum number of non-constant zones per column or row part = error value
Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

Maximum number of non-constant zones per column or row part ... until there are a single row part and column part

Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Twin-width as maximum error value of a contraction/division sequence

Grid minor

t-grid minor: $t \times t$ -division where every cell is non-empty Non-empty cell: contains at least one 1 entry

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1
4-grid minor							

Grid minor

t-grid minor: $t \times t$ -division where every cell is non-empty Non-empty cell: contains at least one 1 entry

1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1
4-grid minor							

A matrix is said *t*-grid free if it does not have a *t*-grid minor

Mixed minor

Mixed cell: not horizontal nor vertical

-									
1	1	1	1	1	1	1	0		
0	1	1	0	0	1	0	1		
0	0	0	0	0	0	0	1		
0	1	0	0	1	0	1	0		
1	0	0	1	1	0	1	0		
0	1	1	1	1	1	0	0		
1	0	1	1	1	0	0	1		
3-mixed minor									

Mixed minor

Mixed cell: not horizontal nor vertical

Every mixed cell is witnessed by a 2×2 square = corner

Mixed minor

Mixed cell: not horizontal nor vertical

A matrix is said t-mixed free if it does not have a t-mixed minor

Mixed value

pprox (maximum) number of cells with a corner per row/column part

Mixed value

But we add the number of boundaries containing a corner

Mixed value

 \therefore merging row parts do not increase mixed value of column part

Theorem

If G admits **a** t-mixed free adjacency matrix, then tww(G) = $2^{2^{O(t)}}$.

Theorem

If $\exists \sigma \text{ s.t. } Adj_{\sigma}(G)$ is t-mixed free, then tww(G) = $2^{2^{O(t)}}$.

Theorem

If
$$\exists \sigma$$
 s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

Merge consecutive parts greedily

Theorem

If
$$\exists \sigma$$
 s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

Merge consecutive parts greedily

Theorem

If
$$\exists \sigma \text{ s.t. } Adj_{\sigma}(G)$$
 is t-mixed free, then tww(G) = $2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

Merge consecutive parts greedily

Theorem

If
$$\exists \sigma$$
 s.t. $Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed Question

For every k, is there a c_k such that every $n \times m 0, 1$ -matrix with at least $c_k 1$ per row and column admits a k-grid minor?

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed Conjecture (reformulation of Füredi-Hajnal conjecture '92) For every k, there is a c_k such that every $n \times m$ 0,1-matrix with at least $c_k \max(n, m)$ 1 entries admits a k-grid minor.

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed Conjecture (reformulation of Füredi-Hajnal conjecture '92) For every k, there is a c_k such that every $n \times m$ 0,1-matrix with at least $c_k \max(n, m)$ 1 entries admits a k-grid minor.

Conjecture (Stanley-Wilf conjecture '80s)

Any proper permutation class contains only $2^{O(n)}$ n-permutations.

Klazar showed Füredi-Hajnal \Rightarrow Stanley-Wilf in 2000 Marcus and Tardos showed Füredi-Hajnal in 2004

Let *M* be an $n \times n$ 0, 1-matrix without *k*-grid minor

Draw a regular $\frac{n}{k^2} \times \frac{n}{k^2}$ division on top of M

A cell is wide if it has at least k columns with a 1

A cell is *tall* if it has at least k rows with a 1

There are less than $k\binom{k^2}{k}$ wide cells per column part. Why?

There are less than $k\binom{k^2}{k}$ tall cells per row part

In W and T, at most $2 \cdot \frac{n}{k^2} \cdot k \binom{k^2}{k} \cdot k^4 = 2k^3 \binom{k^2}{k} n$ entries 1

There are at most $(k-1)^2 c_k \frac{n}{k^2}$ remaining 1. Why?

Choose $c_k = 2k^4\binom{k^2}{k}$ so that $(k-1)^2 c_k \frac{n}{k^2} + 2k^3\binom{k^2}{k}n \leqslant c_k n$

Theorem If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then tww(G) = $2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part

Theorem If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then tww(G) = $2^{2^{O(t)}}$.

Step 1: find a division sequence $(\mathcal{D}_i)_i$ with mixed value f(t)

Theorem If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then tww(G) = $2^{2^{O(t)}}$.

Step 1: find a division sequence $(D_i)_i$ with mixed value f(t)Step 2: find a contraction sequence with error value g(t)

Refinement of \mathcal{D}_i where each part coincides on the non-mixed cells

Theorem If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Theorem If $\exists \sigma \ s.t. \ Adj_{\sigma}(G)$ is t-mixed free, then $tww(G) = 2^{2^{O(t)}}$.

Now to bound the twin-width of a class C:

1) Find a good vertex-ordering procedure

2) Argue that, in this order, a *t*-mixed minor would conflict with C

Unit interval graphs

Intersection graph of unit segments on the real line

Bounded twin-width - unit interval graphs

order by left endpoints

Bounded twin-width - unit interval graphs

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves
Graph minors

Formed by **vertex deletion**, **edge deletion**, and **edge contraction** A graph *G* is *H*-minor free if *H* is not a minor of *G*

A graph class is *H*-minor free if all its graphs are

Graph minors

Formed by **vertex deletion**, **edge deletion**, and **edge contraction** A graph *G* is *H*-minor free if *H* is not a minor of *G* A graph class is *H*-minor free if all its graphs are

Planar graphs are exactly the graphs without K_5 or $K_{3,3}$ as a minor

Bounded twin-width – K_t -minor free graphs

Given a hamiltonian path, we would just use this order

Bounded twin-width – K_t -minor free graphs

Contracting the 2t subpaths yields a $K_{t,t}$ -minor, hence a K_t -minor

Bounded twin-width – K_t -minor free graphs

Instead we use a specially crafted lex-DFS discovery order

Theorem

The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_t-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_t-free unit d-dimensional ball graphs,
- Ω(log n)-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K₄,
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Theorem

The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_t-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_t-free unit d-dimensional ball graphs,
- Ω(log n)-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K₄,
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Can we solve problems faster, given an O(1)-sequence?

A single vertex is a cograph,

as well as the union of two cographs,

and the complete join of two cographs.

Many NP-hard problems are polytime solvable on cographs

Let's try to compute the NP-hard $\alpha(G)$, independence number

In case of a disjoint union: combine the solutions

In case of a complete join: pick the larger one

Cographs form the unique maximal hereditary class in which every 1 graph has two twins

¹provided it has at least two vertices

Cographs form the unique *maximal hereditary* class in which every¹ graph has two *twins* ...wait a minute

¹provided it has at least two vertices

Cographs form the unique maximal hereditary class in which every¹ graph has two *twins* ...yes, they coincide with **twin-width 0**

¹provided it has at least two vertices

Cographs form the unique maximal hereditary class in which every¹ graph has two *twins* ...yes, they coincide with **twin-width** 0

Is there another algorithmic scheme based on this definition?

¹provided it has at least two vertices

Cographs form the unique maximal hereditary class in which every¹ graph has two *twins* ...yes, they coincide with **twin-width** 0

Let's try with $\alpha(G)$, and store in a vertex its inner max solution

¹provided it has at least two vertices

Cographs form the unique *maximal hereditary* class in which every¹ graph has two *twins* ...yes, they coincide with **twin-width 0**

We can find a pair of false/true twins

¹provided it has at least two vertices

Cographs form the unique maximal hereditary class in which every¹ graph has two *twins* ...yes, they coincide with **twin-width** 0

Sum them if they are false twins

¹provided it has at least two vertices

Cographs form the unique *maximal hereditary* class in which every¹ graph has two *twins* ...yes, they coincide with **twin-width 0**

Max them if they are true twins

¹provided it has at least two vertices

Cographs form the unique *maximal hereditary* class in which every¹ graph has two *twins* ...yes, they coincide with **twin-width 0**

Why does it eventually compute $\alpha(G)$?

¹provided it has at least two vertices

d-sequence: $G = G_n, G_{n-1}, \ldots, G_2, G_1 = K_1$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k.

d-sequence: $G = G_n, G_{n-1}, \ldots, G_2, G_1 = K_1$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k.

 $d^{2k}n^2$ red connected subgraphs, actually only $d^{2k}n = 2^{O_d(k)}n$

d-sequence: $G = G_n, G_{n-1}, \ldots, G_2, G_1 = K_1$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k.

 $d^{2k}n^2$ red connected subgraphs, actually only $d^{2k}n = 2^{O_d(k)}n$

In G_n : red connected subgraphs are singletons, so are the solutions. In G_1 : If solution of size at least k, global solution.

d-sequence: $G = G_n, G_{n-1}, ..., G_2, G_1 = K_1$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k.

 $d^{2k}n^2$ red connected subgraphs, actually only $d^{2k}n = 2^{O_d(k)}n$

In G_n : red connected subgraphs are singletons, so are the solutions. In G_1 : If solution of size at least k, global solution.

How to go from the partial solutions of G_{i+1} to those of G_i ?

Best partial solution inhabiting •?

3 unions of $\leqslant d + 2$ red connected subgraphs to consider in G_{i+1} with u, or v, or both

Other (almost) single-exponential parameterized algorithms

Theorem

Given a d-sequence $G = G_n, \ldots, G_1 = K_1$,

- ▶ *k*-Independent Set,
- ▶ k-CLIQUE,
- ▶ (r, k)-Scattered Set,
- ► *k*-DOMINATING SET, and
- (r, k)-Dominating Set

can be solved in time $2^{O(k)}n$,

whereas SUBGRAPH ISOMORPHISM and INDUCED SUBGRAPH ISOMORPHISM can be solved in time $2^{O(k \log k)}n$.

Other (almost) single-exponential parameterized algorithms

Theorem

Given a d-sequence $G = G_n, \ldots, G_1 = K_1$,

- ▶ *k*-Independent Set,
- ▶ k-CLIQUE,
- ▶ (r, k)-Scattered Set,
- ► *k*-DOMINATING SET, and
- (r, k)-Dominating Set

can be solved in time $2^{O(k)}n$,

whereas SUBGRAPH ISOMORPHISM and INDUCED SUBGRAPH ISOMORPHISM can be solved in time $2^{O(k \log k)}n$.

A more general FPT algorithm?

GRAPH FO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$ **Question:** $G \models \varphi$?

GRAPH FO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \bigvee_{1 \leqslant i \leqslant k} x = x_i \lor \bigvee_{1 \leqslant i \leqslant k} E(x, x_i) \lor E(x_i, x)$$

 $G \models \varphi? \Leftrightarrow$

GRAPH FO MODEL CHECKING **Parameter:** $|\varphi|$ Input: A graph *G* and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$ Question: $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \bigvee_{1 \leqslant i \leqslant k} x = x_i \lor \bigvee_{1 \leqslant i \leqslant k} E(x, x_i) \lor E(x_i, x)$$

 $G \models \varphi$? \Leftrightarrow *k*-Dominating Set

GRAPH FO MODEL CHECKING **Parameter:** $|\varphi|$ Input: A graph *G* and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$ Question: $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leq i < j \leq k} \neg (x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

 $G \models \varphi? \Leftrightarrow$
First-order model checking on graphs

GRAPH FO MODEL CHECKING **Parameter:** $|\varphi|$ Input: A graph *G* and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$ Question: $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leqslant i < j \leqslant k} \neg (x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

 $G \models \varphi? \Leftrightarrow k$ -Independent Set

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO transduction: color by O(1) unary relations, interpret, delete

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO transduction: color by O(1) unary relations, interpret, delete

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO transduction: color by O(1) unary relations, interpret, delete

 $\varphi(x, y) = E(x, y) \lor (G(x) \land B(y) \land \neg \exists z R(z) \land E(y, z))$ $\lor (R(x) \land B(y) \land \exists z R(z) \land E(y, z) \land \neg \exists z B(z) \land E(y, z))$

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO transduction: color by O(1) unary relations, interpret, delete

$$\varphi(x, y) = E(x, y) \lor (G(x) \land B(y) \land \neg \exists z R(z) \land E(y, z))$$

$$\lor (R(x) \land B(y) \land \exists z R(z) \land E(y, z) \land \neg \exists z B(z) \land E(y, z))$$

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO transduction: color by O(1) unary relations, interpret, delete

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y) = \neg E(x, y)$ (complement) $\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y)$ (square)

FO transduction: color by O(1) unary relations, interpret, delete

Theorem Bounded twin-width is preserved by transduction.

Monadically Stable and NIP

Stable class: no transduction of the class contains all ladders **NIP class:** no transduction of the class contains all graphs

Monadically Stable and NIP

Stable class: no transduction of the class contains all ladders **NIP class:** no transduction of the class contains all graphs

Bounded-degree graphs \rightarrow stable Unit interval graphs \rightarrow NIP but not stable Interval graphs \rightarrow not NIP

Monadically Stable and NIP

Stable class: no transduction of the class contains all ladders **NIP class:** no transduction of the class contains all graphs

Bounded-degree graphs \rightarrow stable Unit interval graphs \rightarrow NIP but not stable Interval graphs \rightarrow not NIP

Bounded twin-width classes \rightarrow NIP but not stable in general

FO MODEL CHECKING solvable in $f(|\varphi|)n$ on bounded-degree graphs [Seese '96]

FO MODEL CHECKING solvable in $f(|\varphi|)n^{1+\varepsilon}$ on any nowhere dense class [Grohe, Kreutzer, Siebertz '14]

New program: transductions of nowhere dense classes Not sparse anymore but still stable

MSO₁ MODEL CHECKING solvable in $f(|\varphi|, w)n$ on graphs of rank-width w [Courcelle, Makowsky, Rotics '00]

Is σ a subpermutation of τ ? solvable in $f(|\sigma|)|\tau|$ [Guillemot, Marx '14]

FO MODEL CHECKING solvable in $f(|\varphi|, w)n^2$ on posets of width w [GHLOORS '15]

FO MODEL CHECKING solvable in $f(|\varphi|)n^{O(1)}$ on map graphs [Eickmeyer, Kawarabayashi '17]

FO MODEL CHECKING solvable in $f(|\varphi|, d)n$ on graphs with a *d*-sequence

Direct examples: **trees**, bounded rank-width, **grids**, *d*-dimensional grids, K_t -free unit ball graphs

Detour via mixed minor for: pattern-avoiding permutations, unit intervals, bounded width posets, K_t -minor free graphs

Generalization of what we saw for k-INDEPENDENT SET

Small classes

Small: class with at most $n!c^n$ labeled graphs on [n].

Theorem Bounded twin-width classes are small.

Unifies and extends the same result for: σ -free permutations [Marcus, Tardos '04] K_t -minor free graphs [Norine, Seymour, Thomas, Wollan '06]

Small classes

Small: class with at most $n!c^n$ labeled graphs on [n].

Theorem Bounded twin-width classes are small.

Subcubic graphs, interval graphs, triangle-free unit segment graphs have **unbounded** twin-width

Small classes

Small: class with at most $n!c^n$ labeled graphs on [n].

Theorem Bounded twin-width classes are small.

Is the converse true for hereditary classes?

Conjecture (small conjecture)

A hereditary class has bounded twin-width if and only if it is small.

$\chi ext{-boundedness}$

 \mathcal{C} χ -bounded: $\exists f, \forall G \in \mathcal{C}, \ \chi(G) \leqslant f(\omega(G))$

Theorem Every twin-width class is χ -bounded. More precisely, every graph G of twin-width at most d admits a proper $(d + 2)^{\omega(G)-1}$ -coloring.

χ -boundedness

 \mathcal{C} χ -bounded: $\exists f, \forall G \in \mathcal{C}, \ \chi(G) \leqslant f(\omega(G))$

Theorem Every twin-width class is χ -bounded. More precisely, every graph G of twin-width at most d admits a proper $(d+2)^{\omega(G)-1}$ -coloring.

Polynomially χ -bounded? i.e., $\chi(G) = O(\omega(G)^d)$

d + 2-coloring in the triangle-free case

Algorithm: Start from $G_1 = K_1$, color its unique vertex 1, and rewind the *d*-sequence. A contraction seen backward is a split and we shall find colors for the two new vertices.

d + 2-coloring in the triangle-free case

Algorithm: Start from $G_1 = K_1$, color its unique vertex 1, and rewind the *d*-sequence. A contraction seen backward is a split and we shall find colors for the two new vertices.

z has only red incident edges $\rightarrow d + 2$ -nd color available to v

d + 2-coloring in the triangle-free case

Algorithm: Start from $G_1 = K_1$, color its unique vertex 1, and rewind the *d*-sequence. A contraction seen backward is a split and we shall find colors for the two new vertices.

z incident to at least one black edge ightarrow non-edge between u and v

Future directions

Main questions:

Algorithm to compute/approximate twin-width in general Fully classify classes with tractable FO model checking Small conjecture

Better approximation algorithms on bounded twin-width classes Twin-width of Cayley graphs of finitely generated groups...

Future directions

Main questions:

Algorithm to compute/approximate twin-width in general Fully classify classes with tractable FO model checking Small conjecture

Better approximation algorithms on bounded twin-width classes Twin-width of Cayley graphs of finitely generated groups. . .

On arxiv Twin-width I: tractable FO model checking [BKTW '20] Twin-width II: small classes [BGKTW '20] Twin-width III: Max Independent Set and Coloring [BGKTW '20]