Twin-width

Édouard Bonnet
based on joint works with Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

ENS Lyon, LIP

January 20th, 2021, tutorial at Universität Bremen

Graphs

Two outcomes between a pair of vertices:
edge or non-edge

Trigraphs

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=0$ overall maximum red degree $=0$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=1$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=1$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=0$ overall maximum red degree $=2$

Simple operations preserving small twin-width

- complementation: remains the same
- taking induced subgraphs: may only decrease
- adding one vertex linked arbitrarily: at most "doubles"

Complementation

\bar{G}

G

$$
\operatorname{tww}(\bar{G})=\operatorname{tww}(G)
$$

Complementation

Induced subgraph

Induced subgraph

Ignore absent vertices

Induced subgraph

Mimic the contractions otherwise

Adding one vertex v

Left as an exercise

Hint: Up until the very end, v shall have no incident red edge

Graphs with bounded twin-width - trees

If possible, contract two twin leaves

Graphs with bounded twin-width - trees

If not, contract a deepest leaf with its parent

Graphs with bounded twin-width - trees

If not, contract a deepest leaf with its parent

Graphs with bounded twin-width - trees

If possible, contract two twin leaves

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Generalization to bounded treewidth and even bounded rank-width

Graphs with bounded twin-width - grids

Graphs with bounded twin-width - grids

4-sequence for planar grids, $3 d$-sequence for d-dimensional grids

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Graphs with bounded twin-width - planar graphs?

Graphs with bounded twin-width - planar graphs?

For every d, a planar trigraph without planar d-contraction

Graphs with bounded twin-width - planar graphs?

For every d, a planar trigraph without planar d-contraction

More powerfool tool needed

Twin-width in the language of matrices

$$
\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Encode a bipartite graph (or, if symmetric, any graph)

Twin-width in the language of matrices

$$
\left[\begin{array}{ll|l|l|llll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Contraction of two columns (similar with two rows)

Twin-width in the language of matrices

$$
\left[\begin{array}{ll|l|lllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & r & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & r & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & r & 1 & & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & & 0 & 0 & 1
\end{array}\right]
$$

How is the twin-width (re)defined?

Twin-width in the language of matrices

$$
\left[\begin{array}{ll|l|lllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & r & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & r & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & r & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & & 0 & 0 & 1
\end{array}\right]
$$

How to tune it for non-bipartite graph?

Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive
$\left[\begin{array}{l|l|l|l|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Maximum number of non-constant zones per column or row part $=$ error value

Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Maximum number of non-constant zones per column or row part ... until there are a single row part and column part

Partition viewpoint

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are consecutive
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Twin-width as maximum error value of a contraction/division sequence

Grid minor

t-grid minor: $t \times t$-division where every cell is non-empty Non-empty cell: contains at least one 1 entry

$$
\left[\begin{array}{ll|ll|ll|ll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Grid minor

t-grid minor: $t \times t$-division where every cell is non-empty Non-empty cell: contains at least one 1 entry

$$
\left[\begin{array}{ll|ll|ll|ll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

A matrix is said t-grid free if it does not have a t-grid minor

Mixed minor

Mixed cell: not horizontal nor vertical

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Mixed minor

Mixed cell: not horizontal nor vertical

$$
\left[\begin{array}{ll|lll|lll}
11 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hdashline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
10 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Every mixed cell is witnessed by a 2×2 square $=$ corner

Mixed minor

Mixed cell: not horizontal nor vertical

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

A matrix is said t-mixed free if it does not have a t-mixed minor

Mixed value

$R_{4}\left[\begin{array}{ll|lll|l|ll}1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$
\approx (maximum) number of cells with a corner per row/column part

Mixed value

$R_{4}\left[\begin{array}{ll|lll|l|ll}1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$

But we add the number of boundaries containing a corner

Mixed value

$R_{4}\left[\begin{array}{cc|ccc|c|cc}1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ R_{3} \\ R_{2} \\ R_{1} & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ \hdashline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$
\therefore merging row parts do not increase mixed value of column part

Twin-width and mixed freeness

Theorem
If G admits a t-mixed free adjacency matrix, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Twin-width and mixed freeness

Theorem
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Twin-width and mixed freeness

Theorem
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|l|l|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Merge consecutive parts greedily

Twin-width and mixed freeness

Theorem
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Merge consecutive parts greedily

Twin-width and mixed freeness

Theorem
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Merge consecutive parts greedily

Twin-width and mixed freeness

Theorem
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed Question
For every k, is there a c_{k} such that every $n \times m 0$, 1-matrix with at least $c_{k} 1$ per row and column admits a k-grid minor?

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed Conjecture (reformulation of Füredi-Hajnal conjecture '92)
For every k, there is a c_{k} such that every $n \times m 0$, 1-matrix with at least $c_{k} \max (n, m) 1$ entries admits a k-grid minor.

Stanley-Wilf conjecture / Marcus-Tardos theorem

Auxiliary 0,1-matrix with one entry per cell: a 1 iff the cell is mixed Conjecture (reformulation of Füredi-Hajnal conjecture '92)
For every k, there is a c_{k} such that every $n \times m 0$, 1-matrix with at least $c_{k} \max (n, m) 1$ entries admits a k-grid minor.

Conjecture (Stanley-Wilf conjecture '80s)
Any proper permutation class contains only $2^{O(n)} n$-permutations.
Klazar showed Füredi-Hajnal \Rightarrow Stanley-Wilf in 2000
Marcus and Tardos showed Füredi-Hajnal in 2004

Marcus-Tardos one-page inductive proof

Let M be an $n \times n 0$, 1-matrix without k-grid minor

Marcus-Tardos one-page inductive proof

Draw a regular $\frac{n}{k^{2}} \times \frac{n}{k^{2}}$ division on top of M

Marcus-Tardos one-page inductive proof

A cell is wide if it has at least k columns with a 1

Marcus-Tardos one-page inductive proof

A cell is tall if it has at least k rows with a 1

Marcus-Tardos one-page inductive proof

There are less than $k\binom{k^{2}}{k}$ wide cells per column part. Why?

Marcus-Tardos one-page inductive proof

There are less than $k\binom{k^{2}}{k}$ tall cells per row part

Marcus-Tardos one-page inductive proof

In W and T, at most $2 \cdot \frac{n}{k^{2}} \cdot k\binom{k^{2}}{k} \cdot k^{4}=2 k^{3}\binom{k^{2}}{k} n$ entries 1

Marcus-Tardos one-page inductive proof

There are at most $(k-1)^{2} c_{k} \frac{n}{k^{2}}$ remaining 1 . Why?

Marcus-Tardos one-page inductive proof

Choose $c_{k}=2 k^{4}\binom{k^{2}}{k}$ so that $(k-1)^{2} c_{k} \frac{n}{k^{2}}+2 k^{3}\binom{k^{2}}{k} n \leqslant c_{k} n$

Twin-width and mixed freeness

Theorem
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part

Twin-width and mixed freeness

Theorem
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Stuck, removing every other separation $\rightarrow \frac{f(t)}{2}$ mixed cells per part Impossible!

Twin-width and mixed freeness

Theorem
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Step 1: find a division sequence $\left(\mathcal{D}_{i}\right)_{i}$ with mixed value $f(t)$ Step 2: find a contraction sequence with error value $g(t)$
$\left[\begin{array}{l|l|ll|l|l|l|l}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Refinement of \mathcal{D}_{i} where each part coincides on the non-mixed cells

Twin-width and mixed freeness

Theorem
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Twin-width and mixed freeness

Theorem
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.
Now to bound the twin-width of a class \mathcal{C} :

1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with \mathcal{C}

Unit interval graphs

Intersection graph of unit segments on the real line

Bounded twin-width - unit interval graphs

order by left endpoints

Bounded twin-width - unit interval graphs

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

Graph minors

Formed by vertex deletion, edge deletion, and edge contraction
A graph G is H-minor free if H is not a minor of G
A graph class is H -minor free if all its graphs are

Graph minors

Formed by vertex deletion, edge deletion, and edge contraction
A graph G is H-minor free if H is not a minor of G
A graph class is H -minor free if all its graphs are

Planar graphs are exactly the graphs without K_{5} or $K_{3,3}$ as a minor

K_{5}

$K_{3,3}$

Bounded twin-width $-K_{t}$-minor free graphs

Given a hamiltonian path, we would just use this order

Bounded twin-width $-K_{t}$-minor free graphs

B_{t}		$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$		

Contracting the $2 t$ subpaths yields a $K_{t, t}$-minor, hence a K_{t}-minor

Bounded twin-width $-K_{t}$-minor free graphs

Instead we use a specially crafted lex-DFS discovery order

Theorem

The following classes have bounded twin-width, and $O(1)$-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_{t}-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_{t}-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K_{4},
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Theorem

The following classes have bounded twin-width, and $O(1)$-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_{t}-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_{t}-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K_{4},
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Can we solve problems faster, given an $O(1)$-sequence?

Cographs

A single vertex is a cograph,

Cographs

as well as the union of two cographs,

Cographs

Cographs

Many NP-hard problems are polytime solvable on cographs

Cographs

Let's try to compute the NP-hard $\alpha(G)$, independence number

Cographs

In case of a disjoint union: combine the solutions

Cographs

In case of a complete join: pick the larger one

Cographs

Equivalent cograph definition

Cographs form the unique maximal hereditary class in which every ${ }^{1}$ graph has two twins
${ }^{1}$ provided it has at least two vertices

Equivalent cograph definition

Cographs form the unique maximal hereditary class in which every ${ }^{1}$ graph has two twins ...wait a minute
${ }^{1}$ provided it has at least two vertices

Equivalent cograph definition

Cographs form the unique maximal hereditary class in which every ${ }^{1}$ graph has two twins ...yes, they coincide with twin-width $\mathbf{0}$

Equivalent cograph definition

Cographs form the unique maximal hereditary class in which every ${ }^{1}$ graph has two twins ...yes, they coincide with twin-width $\mathbf{0}$

Is there another algorithmic scheme based on this definition?
${ }^{1}$ provided it has at least two vertices

Equivalent cograph definition

Cographs form the unique maximal hereditary class in which every ${ }^{1}$ graph has two twins ...yes, they coincide with twin-width 0

Let's try with $\alpha(G)$, and store in a vertex its inner max solution

Equivalent cograph definition

Cographs form the unique maximal hereditary class in which every ${ }^{1}$ graph has two twins ...yes, they coincide with twin-width 0

We can find a pair of false/true twins

Equivalent cograph definition

Cographs form the unique maximal hereditary class in which every ${ }^{1}$ graph has two twins ...yes, they coincide with twin-width $\mathbf{0}$

Sum them if they are false twins

Equivalent cograph definition

Cographs form the unique maximal hereditary class in which every ${ }^{1}$ graph has two twins ...yes, they coincide with twin-width 0

Max them if they are true twins

Equivalent cograph definition

Cographs form the unique maximal hereditary class in which every ${ }^{1}$ graph has two twins ...yes, they coincide with twin-width 0

Why does it eventually compute $\alpha(G)$?

Example of k-Independent Set

d-sequence: $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}=K_{1}$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k.

Example of k-Independent SEt

d-sequence: $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}=K_{1}$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k. $d^{2 k} n^{2}$ red connected subgraphs, actually only $d^{2 k} n=2^{O_{d}(k)} n$

Example of k-Independent SEt

d-sequence: $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}=K_{1}$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k. $d^{2 k} n^{2}$ red connected subgraphs, actually only $d^{2 k} n=2^{O_{d}(k)} n$

In G_{n} : red connected subgraphs are singletons, so are the solutions.
In G_{1} : If solution of size at least k, global solution.

Example of k-Independent Set

d-sequence: $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}=K_{1}$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k.
$d^{2 k} n^{2}$ red connected subgraphs, actually only $d^{2 k} n=2^{O_{d}(k)} n$
In G_{n} : red connected subgraphs are singletons, so are the solutions.
In G_{1} : If solution of size at least k, global solution.
How to go from the partial solutions of G_{i+1} to those of G_{i} ?

Best partial solution inhabiting \bullet ?

3 unions of $\leqslant d+2$ red connected subgraphs to consider in G_{i+1} with u, or v, or both

Other (almost) single-exponential parameterized algorithms

Theorem
Given a d-sequence $G=G_{n}, \ldots, G_{1}=K_{1}$,

- k-Independent Set,
- k-Clique,
- (r, k)-Scattered Set,
- k-Dominating Set, and
- (r, k)-Dominating Set
can be solved in time $2^{O(k)} n$, whereas Subgraph Isomorphism and Induced Subgraph IsOMORPHISM can be solved in time $2^{O(k \log k)} n$.

Other (almost) single-exponential parameterized algorithms

Theorem
Given a d-sequence $G=G_{n}, \ldots, G_{1}=K_{1}$,

- k-Independent Set,
- k-Clique,
- (r, k)-Scattered Set,
- k-Dominating Set, and
- (r, k)-Dominating Set
can be solved in time $2^{O(k)} n$, whereas Subgraph Isomorphism and Induced Subgraph IsOMORPHISM can be solved in time $2^{O(k \log k)} n$.

A more general FPT algorithm?

First-order model checking on graphs

Graph FO Model Checking Parameter: $|\varphi|$ Input: A graph G and a first-order sentence $\varphi \in F O\left(\left\{E_{2},={ }_{2}\right\}\right)$ Question: $G \models \varphi$?

First-order model checking on graphs

> Graph FO Model Checking \quad Parameter: $|\varphi|$ Input: A graph G and a first-order sentence $\varphi \in F O\left(\left\{E_{2},=2\right\}\right)$ Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall x \bigvee_{1 \leqslant i \leqslant k} x=x_{i} \vee \bigvee_{1 \leqslant i \leqslant k} E\left(x, x_{i}\right) \vee E\left(x_{i}, x\right)
$$

$G \models \varphi ? \Leftrightarrow$

First-order model checking on graphs

Graph FO Model Checking
Parameter: $|\varphi|$
Input: A graph G and a first-order sentence $\varphi \in F O\left(\left\{E_{2},=2\right\}\right)$
Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall x \bigvee_{1 \leqslant i \leqslant k} x=x_{i} \vee \bigvee_{1 \leqslant i \leqslant k} E\left(x, x_{i}\right) \vee E\left(x_{i}, x\right)
$$

$G \models \varphi ? \Leftrightarrow k$-Dominating Set

First-order model checking on graphs

> Graph FO Model Checking Input: A graph G and a first-order sentence $\varphi \in F O\left(\left\{E_{2},=2\right\}\right)$ Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \bigwedge_{1 \leqslant i<j \leqslant k} \neg\left(x_{i}=x_{j}\right) \wedge \neg E\left(x_{i}, x_{j}\right) \wedge \neg E\left(x_{j}, x_{i}\right)
$$

$G \models \varphi ? \Leftrightarrow$

First-order model checking on graphs

> Graph FO Model Checking Parameter: $|\varphi|$ Input: A graph G and a first-order sentence $\varphi \in F O\left(\left\{E_{2},=2\right\}\right)$ Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \bigwedge_{1 \leqslant i<j \leqslant k} \neg\left(x_{i}=x_{j}\right) \wedge \neg E\left(x_{i}, x_{j}\right) \wedge \neg E\left(x_{j}, x_{i}\right)
$$

$G \models \varphi ? \Leftrightarrow k$-Independent Set

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
$\varphi(x, y)=\neg E(x, y)$
(complement)
$\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y)$ (square)

FO transduction: color by $O(1)$ unary relations, interpret, delete

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y)=\neg E(x, y) \quad$ (complement) $\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y)$ (square)

FO transduction: color by $O(1)$ unary relations, interpret, delete

$$
\begin{aligned}
& \varphi(x, y)=E(x, y) \vee(G(x) \wedge B(y) \wedge \neg \exists z R(z) \wedge E(y, z)) \\
& \vee(R(x) \wedge B(y) \wedge \exists z R(z) \wedge E(y, z) \wedge \neg \exists z B(z) \wedge E(y, z))
\end{aligned}
$$

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y)=\neg E(x, y)$ (complement)
$\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y)$ (square)

FO transduction: color by $O(1)$ unary relations, interpret, delete

$$
\begin{gathered}
\varphi(x, y)=E(x, y) \vee(G(x) \wedge B(y) \wedge \neg \exists z R(z) \wedge E(y, z)) \\
\vee(R(x) \wedge B(y) \wedge \exists z R(z) \wedge E(y, z) \wedge \neg \exists z B(z) \wedge E(y, z))
\end{gathered}
$$

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula $\varphi(x, y)=\neg E(x, y)$ (complement)
$\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y)$ (square)

FO transduction: color by $O(1)$ unary relations, interpret, delete

Theorem
Bounded twin-width is preserved by transduction.

Monadically Stable and NIP

Stable class: no transduction of the class contains all ladders NIP class: no transduction of the class contains all graphs

Monadically Stable and NIP

Stable class: no transduction of the class contains all ladders NIP class: no transduction of the class contains all graphs

Bounded-degree graphs \rightarrow stable Unit interval graphs \rightarrow NIP but not stable Interval graphs \rightarrow not NIP

Monadically Stable and NIP

Stable class: no transduction of the class contains all ladders NIP class: no transduction of the class contains all graphs

Bounded-degree graphs \rightarrow stable Unit interval graphs \rightarrow NIP but not stable Interval graphs \rightarrow not NIP

Bounded twin-width classes \rightarrow NIP but not stable in general

Classes with known tractable FO model checking

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|) n$ on bounded-degree graphs [Seese '96]

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|) n^{1+\varepsilon}$ on any nowhere dense class [Grohe, Kreutzer, Siebertz '14]

Classes with known tractable FO model checking

End of the story for the subgraph-closed classes tractable FO Model Checking \Leftrightarrow nowhere dense \Leftrightarrow stable

Classes with known tractable FO model checking

New program: transductions of nowhere dense classes Not sparse anymore but still stable

Classes with known tractable FO model checking

MSO_{1} Model Checking solvable in $f(|\varphi|, w) n$ on graphs of rank-width w [Courcelle, Makowsky, Rotics '00]

Classes with known tractable FO model checking

Is σ a subpermutation of τ ? solvable in $f(|\sigma|)|\tau|$
[Guillemot, Marx '14]

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|, w) n^{2}$ on posets of width w [GHLOORS '15]

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|) n^{O(1)}$ on map graphs [Eickmeyer, Kawarabayashi '17]

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|, d) n$ on graphs with a d-sequence

Workflow of the FO model checking algorithm

Workflow of the FO model checking algorithm

Direct examples: trees, bounded rank-width, grids, d-dimensional grids, K_{t}-free unit ball graphs

Workflow of the FO model checking algorithm

Detour via mixed minor for: pattern-avoiding permutations, unit intervals, bounded width posets, K_{t}-minor free graphs

Workflow of the FO model checking algorithm

Generalization of what we saw for k-Independent Set

Small classes

Small: class with at most $n!c^{n}$ labeled graphs on [n].
Theorem
Bounded twin-width classes are small.

Unifies and extends the same result for:
σ-free permutations [Marcus, Tardos '04]
K_{t}-minor free graphs [Norine, Seymour, Thomas, Wollan '06]

Small classes

Small: class with at most $n!c^{n}$ labeled graphs on [n].
Theorem
Bounded twin-width classes are small.

Subcubic graphs, interval graphs, triangle-free unit segment graphs have unbounded twin-width

Small classes

Small: class with at most $n!c^{n}$ labeled graphs on [n].
Theorem
Bounded twin-width classes are small.

Is the converse true for hereditary classes?
Conjecture (small conjecture)
A hereditary class has bounded twin-width if and only if it is small.

χ-boundedness

$\mathcal{C} \chi$-bounded: $\exists f, \forall G \in \mathcal{C}, \chi(G) \leqslant f(\omega(G))$
Theorem
Every twin-width class is χ-bounded.
More precisely, every graph G of twin-width at most d admits a proper $(d+2)^{\omega(G)-1}$-coloring.

χ-boundedness

$\mathcal{C} \chi$-bounded: $\exists f, \forall G \in \mathcal{C}, \chi(G) \leqslant f(\omega(G))$
Theorem
Every twin-width class is χ-bounded.
More precisely, every graph G of twin-width at most d admits a proper $(d+2)^{\omega(G)-1}$-coloring.

Polynomially χ-bounded? i.e., $\chi(G)=O\left(\omega(G)^{d}\right)$

$d+2$-coloring in the triangle-free case

Algorithm: Start from $G_{1}=K_{1}$, color its unique vertex 1 , and rewind the d-sequence. A contraction seen backward is a split and we shall find colors for the two new vertices.

$d+2$-coloring in the triangle-free case

Algorithm: Start from $G_{1}=K_{1}$, color its unique vertex 1 , and rewind the d-sequence. A contraction seen backward is a split and we shall find colors for the two new vertices.

z has only red incident edges $\rightarrow d+2$-nd color available to v

$d+2$-coloring in the triangle-free case

Algorithm: Start from $G_{1}=K_{1}$, color its unique vertex 1 , and rewind the d-sequence. A contraction seen backward is a split and we shall find colors for the two new vertices.

z incident to at least one black edge \rightarrow non-edge between u and v

Future directions

Main questions:

Algorithm to compute/approximate twin-width in general
Fully classify classes with tractable FO model checking
Small conjecture
Better approximation algorithms on bounded twin-width classes Twin-width of Cayley graphs of finitely generated groups. . .

Future directions

Main questions:

Algorithm to compute/approximate twin-width in general
Fully classify classes with tractable FO model checking
Small conjecture
Better approximation algorithms on bounded twin-width classes Twin-width of Cayley graphs of finitely generated groups. . .

On arxiv
Twin-width I: tractable FO model checking [BKTW '20]
Twin-width II: small classes [BGKTW '20]
Twin-width III: Max Independent Set and Coloring [BGKTW '20]

