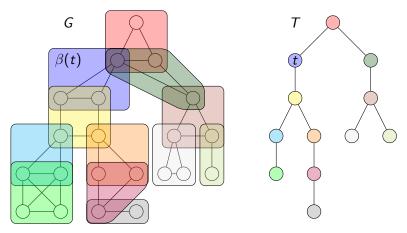
Treewidth Inapproximability and Tight ETH Lower Bound

Édouard Bonnet

ENS Lyon, LIP

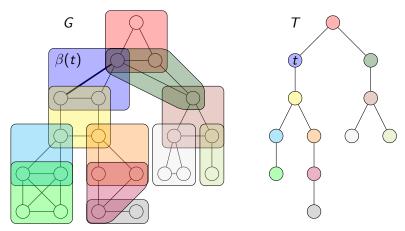
LOGALG 2025, Vienna

Tree-decomposition of *G*



Tree T and map $\beta:V(T) o 2^{V(G)}$ such that

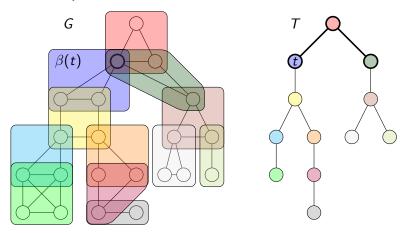
Tree-decomposition of *G*



Tree T and map $\beta:V(T)\to 2^{V(G)}$ such that

lacktriangle Every edge of G has both endpoints in some $bag\ eta(t)$, and

Tree-decomposition of *G*



Tree T and map $\beta:V(T)\to 2^{V(G)}$ such that

- lacktriangle Every edge of G has both endpoints in some $bag\ eta(t)$, and
- ▶ the *trace* of every vertex of *G* in *T* is a non-empty subtree.

Treewidth

Minimum largest bag size over all tree decompositions minus 1

- rediscovered several times in the 70's and 80's...
- made central by the Graph Minors series
- ightharpoonup f(tw)n-time algorithms for MSO-definable problems

Treewidth

Minimum largest bag size over all tree decompositions minus 1

- rediscovered several times in the 70's and 80's...
- made central by the Graph Minors series
- ightharpoonup f(tw)n-time algorithms for MSO-definable problems

Computing a tree decomposition?

Treewidth

Minimum largest bag size over all tree decompositions minus 1

- rediscovered several times in the 70's and 80's...
- ▶ made central by the *Graph Minors* series
- ightharpoonup f(tw)*n*-time algorithms for MSO-definable problems

Computing a tree decomposition? NP-hard but various algorithms

New hardness results for TREEWIDTH

Ruling out a PTAS:

Theorem

1.00005-approximating Treewidth is NP-hard.

New hardness results for TREEWIDTH

Ruling out a PTAS:

Theorem

1.00005-approximating Treewidth is NP-hard.

Tight ETH lower bound:

Theorem

Under the ETH, Treewidth needs $2^{\Omega(n)}$ time on n-vertex graphs.

New hardness results for TREEWIDTH

Ruling out a PTAS:

Theorem

1.00005-approximating Treewidth is NP-hard.

Tight ETH lower bound:

Theorem

Under the ETH, Treewidth needs $2^{\Omega(n)}$ time on n-vertex graphs.

No approximation scheme in subexponential time:

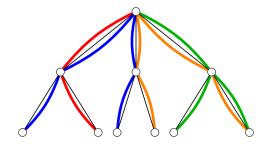
Theorem

Unless the ETH fails, there are $\delta > 1$ and c > 0 such that δ -approximating TREEWIDTH requires $2^{\Omega(n/\log^c n)}$ time.

Every clique is contained in a bag

Fact

For every graph G, tree-decomposition (T, β) of G, and clique X of G, there is a $t \in V(T)$ such that $X \subseteq \beta(t)$.

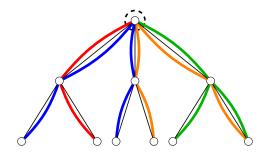


Helly property for subtrees in a tree

Every clique is contained in a bag

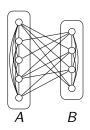
Fact

For every graph G, tree-decomposition (T, β) of G, and clique X of G, there is a $t \in V(T)$ such that $X \subseteq \beta(t)$.



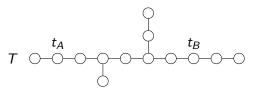
Helly property for subtrees in a tree

Tree-decompositions of co-bipartite graphs



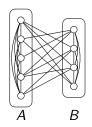
Fact

For every co-bipartite graph G, tw(G) = pw(G).



Let t_A, t_B be such that $A \subseteq \beta(t_A), B \subseteq \beta(t_B)$

Tree-decompositions of co-bipartite graphs



Fact

For every co-bipartite graph G, tw(G) = pw(G).



Bags that are not on the t_A - t_B path are useless

NP-hardness of TREEWIDTH

3-SAT \rightarrow_{ℓ} MAX CUT \rightarrow_{ℓ} CUTWIDTH \rightarrow_{P} PATH/TREEWIDTH

No known linear reduction for the last leg

Theorem (Arnborg, Corneil, Proskurowski '87)

Polytime reduction from Cutwidth on n-vertex graphs of max degree Δ to Treewidth on $O(n\Delta)$ -vertex co-bipartite graphs.

NP-hardness of TREEWIDTH

3-SAT \rightarrow_{ℓ} MAX CUT \rightarrow_{ℓ} CUTWIDTH \rightarrow_{P} PATH/TREEWIDTH

No known linear reduction for the last leg

Theorem (Arnborg, Corneil, Proskurowski '87)

Polytime reduction from Cutwidth on n-vertex graphs of max degree Δ to Treewidth on $O(n\Delta)$ -vertex co-bipartite graphs.

?3-SAT \rightarrow_{ℓ} CUTWIDTH

on bounded-degree graphs

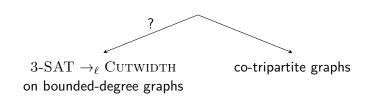
NP-hardness of TREEWIDTH

3-SAT \rightarrow_{ℓ} MAX CUT \rightarrow_{ℓ} CUTWIDTH \rightarrow_{P} PATH/TREEWIDTH

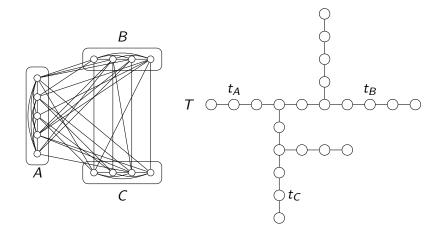
No known linear reduction for the last leg

Theorem (Arnborg, Corneil, Proskurowski '87)

Polytime reduction from Cutwidth on n-vertex graphs of max degree Δ to Treewidth on $O(n\Delta)$ -vertex co-bipartite graphs.

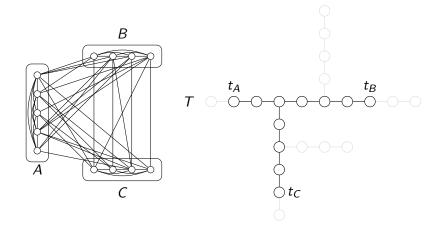


Tree-decompositions of co-tripartite graphs



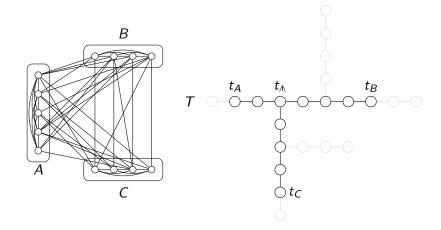
Let t_A, t_B, t_C be such that $A \subseteq \beta(t_A), B \subseteq \beta(t_B), C \subseteq \beta(t_C)$

Tree-decompositions of co-tripartite graphs



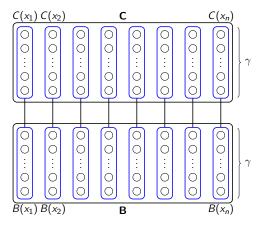
Bags that are not on the t_A - t_B , t_A - t_C , t_B - t_C paths are useless

Tree-decompositions of co-tripartite graphs



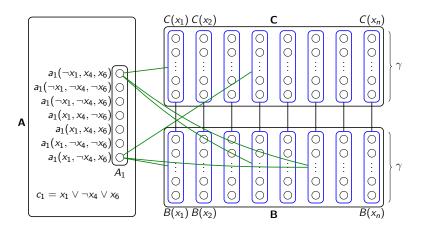
 $\beta(t_{\mathbb{A}})$ has to be a vertex cover of $E(A,B) \cup E(A,C) \cup E(B,C)$

$3\text{-SAT} \rightarrow_{\ell} \text{TREEWIDTH on co-tripartite graphs}$



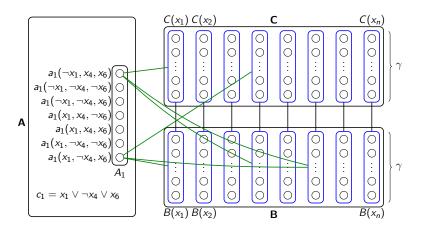
We encode variables in two cliques B (true) and C (false): each variable is a $K_{\gamma,\gamma}$ biclique, γ is 4 times the max occurrence

$3\text{-SAT} \rightarrow_{\ell} \text{TREEWIDTH on co-tripartite graphs}$

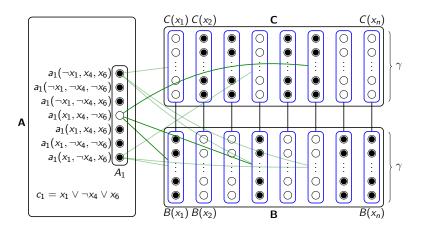


The *clause* vertices are in a third clique A: for each 3-clause, add one vertex per satisfying assignment linked to its literals

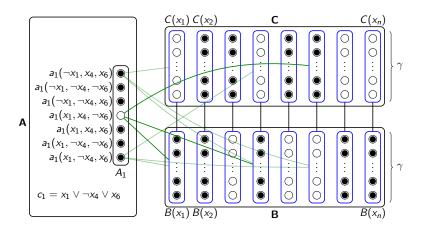
$3\text{-SAT} \rightarrow_{\ell} \text{TREEWIDTH on co-tripartite graphs}$



From an n-variable m-clause 3-SAT formula φ , builds a graph $G:=G(\varphi)$ with $7m+2\gamma n$ vertices

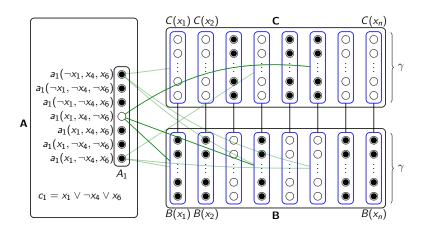


 $\beta(t_{\mathbb{A}})$ comprises the *variable* vertices of a satisfying assignment \mathcal{A} , and all the *clause* vertices but the *m* corresponding to \mathcal{A}



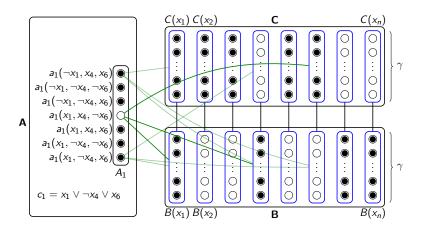
$$|\beta(t_{\wedge})| = \gamma n + 6m$$

toward t_B : add $B(x_i)$ and remove $C(x_i)$ for each x_i set to false

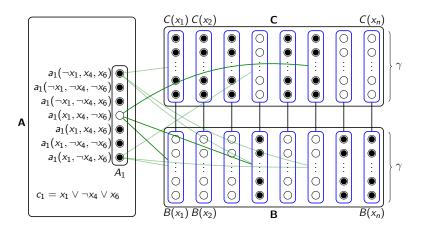


$$|\beta(t_{\wedge})| = \gamma n + 6m$$

toward t_B : add $B(x_i)$ and remove $C(x_i)$ for each x_i set to false



 $|\beta(t_{\mathbb{A}})| = \gamma n + 6m$ toward t_{C} : add $C(x_{i})$ and remove $B(x_{i})$ for each x_{i} set to true

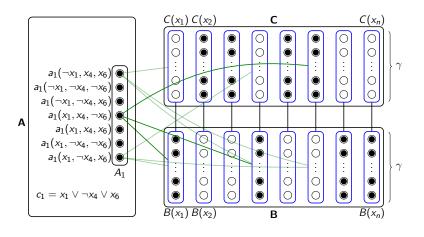


 $|\beta(t_{\mathbb{A}})| = \gamma n + 6m$ toward t_{C} : add $C(x_{i})$ and remove $B(x_{i})$ for each x_{i} set to true

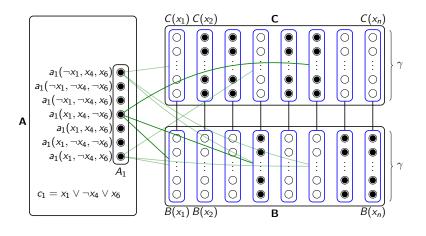


$$|\beta(t_{\mathbb{A}})| = \gamma n + 6m$$

toward t_A : add occurrences of x_i in A and remove $B(x_i)$ or $C(x_i)$



 $|\beta(t_{\mathbb{A}})| = \gamma n + 6m$ toward t_A : add occurrences of x_i in A and remove $B(x_i)$ or $C(x_i)$



$$|\beta(t_{\mathbb{A}})| = \gamma n + 6m$$

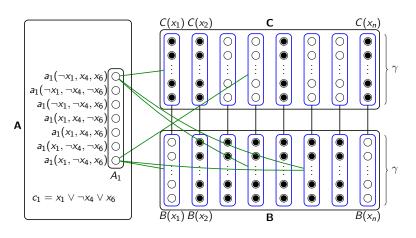
toward t_A : add occurrences of x_i in A and remove $B(x_i)$ or $C(x_i)$

If $\leqslant m'$ clauses are satisfiable, $\mathsf{tw}(\mathit{G}) \geqslant \gamma \mathit{n} + 7\mathit{m} - \mathit{m}' - 1$



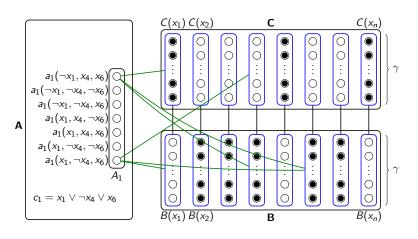
 $\beta(t_{\mathbb{A}})$ is a vertex cover of $E(A,B) \cup E(A,C) \cup E(B,C)$

If $\leqslant m'$ clauses are satisfiable, $\mathsf{tw}(\mathsf{G}) \geqslant \gamma n + 7m - m' - 1$



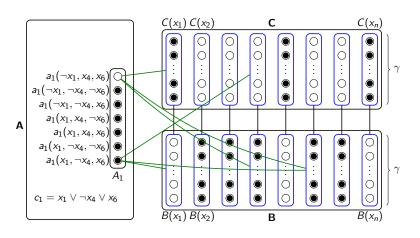
No point in partially intersecting some $B(x_i)$ or $C(x_i)$

If $\leqslant m'$ clauses are satisfiable, $\mathsf{tw}(\mathit{G}) \geqslant \gamma \mathit{n} + 7\mathit{m} - \mathit{m}' - 1$



By def of γ , a min vertex cover contains exactly one of $B(x_i)$, $C(x_i)$

If $\leqslant m'$ clauses are satisfiable, $\mathsf{tw}(\mathit{G}) \geqslant \gamma \mathit{n} + 7\mathit{m} - \mathit{m}' - 1$



Then, one clause vertex can be spared per satisfied clause

TREEWIDTH is APX-hard

Theorem

1.00005-approximating Treewidth is NP-hard.

TREEWIDTH is APX-hard

Theorem

1.00005-approximating Treewidth is NP-hard.

Theorem (Berman, Karpinski, Scott '03)

For any $\varepsilon > 0$, it is NP-hard to distinguish m-clause 4-OCC 3-SAT instances where

- lacktriangle at least (1-arepsilon)m clauses are satisfiable, or
- ▶ at most $(\frac{1015}{1016} + \varepsilon)$ m clauses are satisfiable.

TREEWIDTH is APX-hard

Theorem

1.00005-approximating Treewidth is NP-hard.

Theorem (Berman, Karpinski, Scott '03)

For any $\varepsilon > 0$, it is NP-hard to distinguish m-clause 4-OCC 3-SAT instances where

- lacktriangle at least (1-arepsilon)m clauses are satisfiable, or
- ▶ at most $(\frac{1015}{1016} + \varepsilon)$ m clauses are satisfiable.

Hence to distinguish between treewidth

- ▶ at most $\gamma \frac{3m}{4} + (6 + \varepsilon)m + \gamma 1$, or
- ▶ at least $\gamma \frac{3m}{4} + (7 \frac{1015}{1016} \varepsilon)m 1$.

 $\gamma:=$ 14, and we get the claimed inapproximability ratio

TREEWIDTH is ETH-hard

Theorem

Under the ETH, Treewidth needs $2^{\Omega(n)}$ time on n-vertex graphs.

TREEWIDTH is ETH-hard

Theorem

Under the ETH, Treewidth needs $2^{\Omega(n)}$ time on n-vertex graphs.

Theorem (Impagliazzo, Paturi, Zane '01)

There is a constant B such that n-variable B-Occ 3-SAT requires $2^{\Omega(n)}$ time, unless the ETH fails.

TREEWIDTH is ETH-hard

Theorem

Under the ETH, Treewidth needs $2^{\Omega(n)}$ time on n-vertex graphs.

Theorem (Impagliazzo, Paturi, Zane '01)

There is a constant B such that n-variable B-Occ 3-SAT requires $2^{\Omega(n)}$ time, unless the ETH fails.

$$\gamma:=4B$$
, get *m*-clause φ by $\gamma+1$ duplications

$$G:=G(\varphi)$$
 has at most $7B(\gamma+1)n+2\gamma(\gamma+1)n=O(n)$ vertices

- φ satisfiable \Rightarrow tw $(G) \leqslant \gamma(\gamma+1)n+6m+\gamma-1$
- φ unsatisfiable \Rightarrow tw(G) $\geqslant \gamma(\gamma+1)n+6m+\gamma$.

${\it Treewidth}$ has no subexponential approximation scheme

Theorem

Unless the ETH fails, there are $\delta > 1$ and c > 0 such that δ -approximating Treewidth requires $2^{\Omega(n/\log^c n)}$ time.

TREEWIDTH has no subexponential approximation scheme

Theorem

Unless the ETH fails, there are $\delta > 1$ and c > 0 such that δ -approximating TREEWIDTH requires $2^{\Omega(n/\log^c n)}$ time.

Theorem (Bafna, Minzer, Vyas, Yun '25)

For any $r \in (\frac{7}{8}, 1)$, there is a constant c := c(r) such that any r-approximation algorithm for m-clause 3-SAT- $\log^c m$ requires $2^{\Omega(m/\log^c m)}$ time, unless the ETH fails.

Treewidth has no subexponential approximation scheme

Theorem

Unless the ETH fails, there are $\delta>1$ and c>0 such that δ -approximating TREEWIDTH requires $2^{\Omega(n/\log^c n)}$ time.

Theorem (Bafna, Minzer, Vyas, Yun '25)

For any $r \in (\frac{7}{8}, 1)$, there is a constant c := c(r) such that any r-approximation algorithm for m-clause 3-SAT- $\log^c m$ requires $2^{\Omega(m/\log^c m)}$ time, unless the ETH fails.

Hence the following algorithm is essentially best possible

Theorem (Korhonen, Lokshtanov '23)

For any $\varepsilon>0$, a tree-decomposition of G of width $(1+\varepsilon)tw(G)$ can be computed in $2^{O(\frac{tw(G)\log tw(G)}{\varepsilon})}n^4$ time.

Perspectives

From the same hardness of VERTEX COVER in tripartite graphs:

Theorem (B., Neuen, Sokołowski '25)

1.0003-approximating Treedepth is NP-hard. Under the ETH, Treedepth needs $2^{\Omega(n)}$ time on n-vertex graphs.

- ▶ Tighten the gap between 1.00005 and $O(\sqrt{\log tw})$.
- Improved parameterized lower bounds?

Perspectives

From the same hardness of $VERTEX\ COVER$ in tripartite graphs:

Theorem (B., Neuen, Sokołowski '25)

1.0003-approximating Treedepth is NP-hard. Under the ETH, Treedepth needs $2^{\Omega(n)}$ time on n-vertex graphs.

- ▶ Tighten the gap between 1.00005 and $O(\sqrt{\log tw})$.
- Improved parameterized lower bounds?

Thank you for your attention!