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▶ Every edge of G has both endpoints in some bag β(t), and
▶ the trace of every vertex of G in T is a non-empty subtree.
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Treewidth
Minimum largest bag size over all tree decompositions minus 1

▶ rediscovered several times in the 70’s and 80’s. . .
▶ made central by the Graph Minors series
▶ f (tw)n-time algorithms for MSO-definable problems

Computing a tree decomposition? NP-hard but various algorithms

width 2tw + 1 in 2O(tw)n
width 5tw + 4 in 26.76twn log n

width tw in 2O(tw2)n4

width tw in 2O(tw3)n
width tw in 1.74n

width O(tw
√

log tw) in nO(1)

width (1 + ε)tw in 2O( tw log tw
ε

)n4
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New hardness results for Treewidth

Ruling out a PTAS:

Theorem
1.00005-approximating Treewidth is NP-hard.

Tight ETH lower bound:

Theorem
Under the ETH, Treewidth needs 2Ω(n) time on n-vertex graphs.

No approximation scheme in subexponential time:

Theorem
Unless the ETH fails, there are δ > 1 and c > 0 such that
δ-approximating Treewidth requires 2Ω(n/ logc n) time.
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Every clique is contained in a bag

Fact
For every graph G, tree-decomposition (T , β) of G, and clique X
of G, there is a t ∈ V (T ) such that X ⊆ β(t).

Helly property for subtrees in a tree
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Tree-decompositions of co-bipartite graphs

A B

Fact
For every co-bipartite graph G, tw(G) = pw(G).

T
tA tB

Let tA, tB be such that A ⊆ β(tA), B ⊆ β(tB)



Tree-decompositions of co-bipartite graphs

A B

Fact
For every co-bipartite graph G, tw(G) = pw(G).

tA tB
T

Bags that are not on the tA–tB path are useless



NP-hardness of Treewidth
3-SAT →ℓ Max Cut →ℓ Cutwidth →P Path/Treewidth

No known linear reduction for the last leg

Theorem (Arnborg, Corneil, Proskurowski ’87)
Polytime reduction from Cutwidth on n-vertex graphs of max
degree ∆ to Treewidth on O(n∆)-vertex co-bipartite graphs.

?

3-SAT →ℓ Cutwidth
on bounded-degree graphs

co-tripartite graphs
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Tree-decompositions of co-tripartite graphs
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Let tA, tB, tC be such that A ⊆ β(tA), B ⊆ β(tB), C ⊆ β(tC )



Tree-decompositions of co-tripartite graphs
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Bags that are not on the tA–tB, tA–tC , tB–tC paths are useless



Tree-decompositions of co-tripartite graphs

A
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tA tB

tC

t∧pp

β(t∧pp ) has to be a vertex cover of E (A, B) ∪ E (A, C) ∪ E (B, C)



3-SAT →ℓ Treewidth on co-tripartite graphs
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c1 = x1 ∨ ¬x4 ∨ x6

We encode variables in two cliques B (true) and C (false):
each variable is a Kγ,γ biclique, γ is 4 times the max occurrence
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The clause vertices are in a third clique A: for each 3-clause,
add one vertex per satisfying assignment linked to its literals
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From an n-variable m-clause 3-SAT formula φ, builds a graph
G := G(φ) with 7m + 2γn vertices



If the formula is satisfiable, tw(G) ⩽ γn + 6m + γ − 1
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β(t∧pp ) comprises the variable vertices of a satisfying assignment A,
and all the clause vertices but the m corresponding to A
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If ⩽ m′ clauses are satisfiable, tw(G) ⩾ γn + 7m − m′ − 1
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β(t∧pp ) is a vertex cover of E (A, B) ∪ E (A, C) ∪ E (B, C)
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No point in partially intersecting some B(xi) or C(xi)
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Then, one clause vertex can be spared per satisfied clause



Treewidth is APX-hard

Theorem
1.00005-approximating Treewidth is NP-hard.

Theorem (Berman, Karpinski, Scott ’03)
For any ε > 0, it is NP-hard to distinguish m-clause 4-Occ
3-SAT instances where
▶ at least (1 − ε)m clauses are satisfiable, or
▶ at most (1015

1016 + ε)m clauses are satisfiable.

Hence to distinguish between treewidth
▶ at most γ 3m

4 + (6 + ε)m + γ − 1, or
▶ at least γ 3m

4 + (7 − 1015
1016 − ε)m − 1.

γ := 14, and we get the claimed inapproximability ratio
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Treewidth is ETH-hard

Theorem
Under the ETH, Treewidth needs 2Ω(n) time on n-vertex graphs.

Theorem (Impagliazzo, Paturi, Zane ’01)
There is a constant B such that n-variable B-Occ 3-SAT
requires 2Ω(n) time, unless the ETH fails.

γ := 4B, get m-clause φ by γ + 1 duplications

G := G(φ) has at most 7B(γ + 1)n + 2γ(γ + 1)n = O(n) vertices

▶ φ satisfiable ⇒ tw(G) ⩽ γ(γ + 1)n + 6m + γ − 1
▶ φ unsatisfiable ⇒ tw(G) ⩾ γ(γ + 1)n + 6m + γ.
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Treewidth has no subexponential approximation scheme

Theorem
Unless the ETH fails, there are δ > 1 and c > 0 such that
δ-approximating Treewidth requires 2Ω(n/ logc n) time.

Theorem (Bafna, Minzer, Vyas ’25)
For any r ∈ (7

8 , 1), there is a constant c := c(r) such that any
r-approximation algorithm for m-clause 3-SAT-logc m requires
2Ω(m/ logc m) time, unless the ETH fails.

Hence the following algorithm is essentially best possible

Theorem (Korhonen, Lokshtanov ’23)
For any ε > 0, a tree-decomposition of G of width (1 + ε)tw(G)
can be computed in 2O( tw(G) log tw(G)

ε
)n4 time.
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can be computed in 2O( tw(G) log tw(G)

ε
)n4 time.
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Open questions

▶ Tighten the gap between 1.00005 and O(
√

log tw).
▶ Improved parameterized lower bounds?
▶ Hardness for other parameters or problems?

Thank you for your attention!
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