Treewidth Inapproximability and Tight ETH
Lower Bound

Edouard Bonnet

ENS Lyon, LIP

STOC 2025, Prague

Tree-decomposition of G

:

Tree T and map §: V(T) — 2V(%) such that

Tree-decomposition of G

—0 Q\bﬂié
L) @)

Tree T and map 3 : V(T) — 2Y(%) such that
» Every edge of G has both endpoints in some bag 5(t), and

Tree-decomposition of G

As

C (¢
=l by
| @0

Tree T and map 3 : V(T) — 2Y(%) such that
» Every edge of G has both endpoints in some bag 5(t), and

» the trace of every vertex of G in T is a non-empty subtree.

Treewidth

Minimum largest bag size over all tree decompositions minus 1

» rediscovered several times in the 70's and 80's. . .
» made central by the Graph Minors series
» f(tw)n-time algorithms for MSO-definable problems

Treewidth

Minimum largest bag size over all tree decompositions minus 1
> rediscovered several times in the 70's and 80's. ..
» made central by the Graph Minors series

» f(tw)n-time algorithms for MSO-definable problems

Computing a tree decomposition?

Treewidth

Minimum largest bag size over all tree decompositions minus 1

» rediscovered several times in the 70's and 80's. . .
» made central by the Graph Minors series
» f(tw)n-time algorithms for MSO-definable problems

Computing a tree decomposition? NP-hard but various algorithms

+1in 20

width 2t width 5tw + 4 in 26-76% plog n

width tw in 20(tw?) 4 width O(tw+/logtw) in n°M)
width tw in 1. 741

W3)n twlogtw) A

. . Oo(t
width tw in 2 width (1 +&)tw in 200

New hardness results for TREEWIDTH

Ruling out a PTAS:

Theorem
1.00005-approximating TREEWIDTH is NP-hard.

New hardness results for TREEWIDTH

Ruling out a PTAS:

Theorem
1.00005-approximating TREEWIDTH is NP-hard.

Tight ETH lower bound:

Theorem
Under the ETH, TREEWIDTH needs 2n) time on n-vertex graphs.

New hardness results for TREEWIDTH

Ruling out a PTAS:

Theorem
1.00005-approximating TREEWIDTH is NP-hard.

Tight ETH lower bound:

Theorem
Under the ETH, TREEWIDTH needs 2n) time on n-vertex graphs.

No approximation scheme in subexponential time:

Theorem
Unless the ETH fails, there are § > 1 and ¢ > 0 such that
8-approximating TREEWIDTH requires 241/ 198° 1) time,

Every clique is contained in a bag

Fact
For every graph G, tree-decomposition (T, 3) of G, and clique X
of G, there is a t € V(T) such that X C [(t).

Helly property for subtrees in a tree

Every clique is contained in a bag

Fact
For every graph G, tree-decomposition (T, 3) of G, and clique X
of G, there is a t € V(T) such that X C [(t).

Helly property for subtrees in a tree

Tree-decompositions of co-bipartite graphs

Fact
For every co-bipartite graph G, tw(G) = pw(G).

ta tg
T

Let ta, tg be such that A C (ta), B C 5(tg)

Tree-decompositions of co-bipartite graphs

Fact
For every co-bipartite graph G, tw(G) = pw(G).

ta tg
T o—O0—-—(O0-0O00O000

Bags that are not on the ty—tg path are useless

NP-hardness of TREEWIDTH

3-SAT —, Max Cut —y CUTWIDTH —p PATH/TREEWIDTH

No known linear reduction for the last leg

Theorem (Arnborg, Corneil, Proskurowski '87)

Polytime reduction from CUTWIDTH on n-vertex graphs of max
degree A to TREEWIDTH on O(nA)-vertex co-bipartite graphs.

NP-hardness of TREEWIDTH

3-SAT —, Max Cut —y CUTWIDTH —p PATH/TREEWIDTH

No known linear reduction for the last leg

Theorem (Arnborg, Corneil, Proskurowski '87)

Polytime reduction from CUTWIDTH on n-vertex graphs of max
degree A to TREEWIDTH on O(nA)-vertex co-bipartite graphs.

/

3-SAT —, CUTWIDTH
on bounded-degree graphs

NP-hardness of TREEWIDTH

3-SAT —, Max Cut —y CUTWIDTH —p PATH/TREEWIDTH

No known linear reduction for the last leg

Theorem (Arnborg, Corneil, Proskurowski '87)

Polytime reduction from CUTWIDTH on n-vertex graphs of max
degree A to TREEWIDTH on O(nA)-vertex co-bipartite graphs.

/\

3-SAT —, CUTWIDTH co-tripartite graphs
on bounded-degree graphs

Tree-decompositions of co-tripartite graphs

==
V.

=~

N7

e ———

AV,

Let ta, tg, tc be such that A C 3(ta), B C B(tg), C C B(tc)

Tree-decompositions of co-tripartite graphs

NAVAWS 7

N

S~

0

C tc

Bags that are not on the ty—tg, ta—tc, tg—tc paths are useless

Tree-decompositions of co-tripartite graphs

==
V.

=~

N7

AV,

C tc

B(ta) has to be a vertex cover of E(A, B) U E(A, C)U E(B, C)

3-SAT —, TREEWIDTH on co-tripartite graphs

C C

)
2
X
=
=
PR
S
2
2
X
2

0O 00
0000
(0o 00)
(0000
(0o 00)
(0000
(0000
0000

(
L
(
L
(
L

!
J
!
J
!
J

(o000
(o000
(0O 00}
(0o 00}
(OO 00}
(0o 00}
(0o 00}
(Co--00

py
X

ey
g
@
py
&

We encode variables in two cliques B (true) and C (false):
each variable is a K, , biclique, 7y is 4 times the max occurrence

3-SAT —, TREEWIDTH on co-tripartite graphs

C(Xl) C(XZ) C C(Xn)
(0] (0] (O] (0] (O] (O] (o) (O
O O @) O @) O @) O
— - : : : : : : : 5
om0 6) O |lo] (o)) (o) (o) 1o) o) 1o
31(—\x17 X4, X6) O) g L
a1(x1, xa, =x6)| O
A
31(X1,X4,X6) O [—~ %\\\r——\ e N e N ow T e N =
a1(x1, ~xa, =x6)| O O Q\ Ol (O] |O] |O] |©
oot lo] o[ysieel ol [of [off]
A . . N T N . . :
' ol |o| |of |o] |of |o] |o] |o
& =x v Vs o) W o)) 1o o) o) 1]
B(x1) B(x2) B B(xn)

The clause vertices are in a third clique A: for each 3-clause,
add one vertex per satisfying assignment linked to its literals

3-SAT —, TREEWIDTH on co-tripartite graphs

C(Xl) C(XZ) C C(Xn)
(0] (0] (O] (0] (O] (O] (o) (O
O O @) O @) O @) O
— - : : : : : : : 5
om0 6) O |lo] (o)) (o) (o) 1o) o) 1o
31(—\x17 X4, X6) O) g L
a1(x1, xa, =x6)| O
A
31(X1,X4,X6) O [—~ %\\\r——\ e N e N ow T e N =
a1(x1, ~xa, =x6)| O O Q\ Ol (O] |O] |O] |©
oot lo] o[ysieel ol [of [off]
A . . N T N . . :
' ol |o| |of |o] |of |o] |o] |o
& =x v Vs o) W o)) 1o o) o) 1]
B(x1) B(x2) B B(xn)

From an n-variable m-clause 3-SAT formula ¢, builds a graph
G := G(p) with 7m + 2yn vertices

If the formula is satisfiable, tw(G) < yn+6m+~ —1

a1 (—x1, xa, X6
ar(—x1, x4, X6
a1(—x1, ~xa, X6

[eee)

ai (Xl) X4, X6
ai (X17 X4, X6

e
.

)
)
)
31(X17 X4, ﬁXﬁ)
)
)
)

®O®®

a1 (x1, —xa, Xe

>

1 =x1V x4V Xq

C(x) C(x) C(xn)
(O] (@) (@) (O] (@] (@) (O] (O
O @ @ |[O| @ |@f |O] |O
: i : : : : : v
O (@ (@ |0 |® @ O] |O
O @® © @ (@ O ©
[®[0] () [e] (O] (O] (@] (@]
@ |0l |®@ |O| |0| |@| |@®
: : : : : : : : v
@ O] O] |@ |Of |O @ |@®
@ ©) O © © © \© @
B(x1) B(x2) B(xn)

B(ts) comprises the variable vertices of a satisfying assignment A,
and all the clause vertices but the m corresponding to A

If the formula is satisfiable, tw(G) < yn+6m+~ —1

a1 (—x1, xa, X6
ar(—x1, x4, X6
a1(—x1, ~xa, X6

[eee)

ai (Xl) X4, X6
ai (X17 X4, X6

)
)
)
31(X17 X4, ﬁXﬁ)
)
)
)

®O®®

a1 (x1, —xa, Xe

>

1 =x1V x4V Xq

toward tg: add B(x;) and remove C(x;) for each x;

C(x1) C(x2) C(xn)
(O] (@) (®) (O] (@ (® (O] (O
o| |e| |e®| |o| |®@| |®] |o] |0
R e e e e o I O I I R | R
lot-Te| | |of |e| |e] o] |0
) @)@ O @ (®© O O
\\~ = — — — — — — —
%f\g o) (@ (0] (0] (@) (@
o o4l [®| |o] |o] |@| |@
: S e B : : : : ~
o| |®| |0 |®| |O] |0O] |®| |®
@ @ © @° O O @ @
B(x1) B(x2) B(xn)
|B(ta)| = yn+6m
set to false

If the formula is satisfiable, tw(G) < yn+6m+~ —1

a1 (—x1, xa, X6
ar(—x1, x4, X6
a1(—x1, ~xa, X6

[eee)

ai (Xl) X4, X6
ai (X17 X4, X6

)
)
)
31(X17 X4, ﬁXﬁ)
)
)
)

®O®®

a1 (x1, —xa, Xe

>

1 =x1V x4V Xq

toward tg: add B(x;) and remove C(x;) for each x;

C(x1) C(x2) C(xn)
(O] (O] (@) (0] (@ (@) (O] (0O
ol o] |e| |o| |®| |e®| o] |o
R e e e e o I O I I R | R
lot-T10] |@f [of |e] |e] |o] |o
o) 9@ 9 @ (®© O ©
\\~ = — — — — — — —
%f\g o) (@ (0] (0] (@) (@
o o4l [®| |o] |o] |@| |@
: S e B : : : : ~
o| |®| |0 |®| |O] |0O] |®| |®
@ @ © @° O O @ @
B(x1) B(x2) B(xn)
|B(ta)| = yn+6m
set to false

If the formula is satisfiable, tw(G) < yn+6m+~ —1

a1 (—x1, xa, X6
ar(—x1, x4, X6
a1(—x1, ~xa, X6

[eee)

ai (Xl) X4, X6
ai (X17 X4, X6

)
)
)
31(X17 X4, ﬁXﬁ)
)
)
)

®O®®

a1 (x1, —xa, Xe

>

1 =x1V x4V Xq

C(Xl) C(Xg) C(Xn)
(@) (@) (® (O] (@) (@) (O] (O]
@ @ |® |O @ |® (O] O
: i : B : : v
I o (@ (@ |O| |® |® |O| |O
<@ o) 1@ O (® @ (O 1O
\\~ —~ = — — — — — —
[@[0] (O] [®] (O] [O] (@] (@
@ (O @ |O| (O] |@| |@
: B : : : : ~
@® (O] |0 (@ [Of |0 @ @
©® © © @ © 9 @ (@
B(x1) B(x2) B(xn)

1B(tA)| = yn+6m

toward tc: add C(x;) and remove B(x;) for each x; set to true

If the formula is satisfiable, tw(G) < yn+6m+~ —1

a1 (—x1, xa, X6
ar(—x1, x4, X6
a1(—x1, ~xa, X6

[eee)

ai (Xl) X4, X6
ai (X17 X4, X6

)
)
)
31(X17 X4, ﬁXﬁ)
)
)
)

®O®®

a1 (x1, —xa, Xe

>

1 =x1V x4V Xq

C(Xl) C(Xg) C(Xn)
(@) (@) (® (O] (@) (@) (O] (O]
@ @ |® |O @ |® (O] O
: i : B : : v
I o (@ (@ |O| |® |® |O| |O
<@ o) 1@ O (® @ (O 1O
\\~ —~ = — — — — — —
[oRfo] Q] [e] (O] O] (@] (@
Ol (Ol (@ |O| (O] |@| |@
: B : : : : ~
Ol O] |0 |@| [Of |0 @ @
© © © @ © 9 @ (@
B(x1) B(x2) B(xn)

1B(tA)| = yn+6m

toward tc: add C(x;) and remove B(x;) for each x; set to true

If the formula is satisfiable, tw(G) < yn+6m+~ —1

a1 (—x1, xa, X6
ar(—x1, x4, X6
a1(—x1, ~xa, X6

[eee)

ai (Xl) X4, X6
ai (X17 X4, X6

)
)
)
31(X17 X4, ﬁXﬁ)
)
)
)

®O®®

a1 (x1, —xa, Xe

>

1 =x1V x4V Xq

C(Xl) C(Xg) C(Xn)
(0] (@) (® (O] (@ (@) (O] (O]
O| @ |@®f |O| @ (@ [O] O
: i : B : : v
I O (@ (@ |0 |® @ O] |O
<9 @)@ O (@ @ (O 1O
\\~ —~ = — — — — — —
[@[0] (O] [®] (O] [O] (@] (@
@ (O @ |O| (O] |@| |@
: B : : : : ~
@® (O] |0 (@ [Of |0 @ @
©® © © @ © 9 @ (@
B(x1) B(x2) B(xn)

1B(tA)| = yn+6m

toward ta: add occurrences of x; in A and remove B(x;) or C(x;)

If the formula is satisfiable, tw(G) < yn+6m+~ —1

a1 (—x1, xa, X6
ar(—x1, x4, X6
a1(—x1, ~xa, X6

s e

ai (Xl) X4, X6
ai (X17 X4, X6

)
)
)
31(X17 X4, ﬁXﬁ)
)
)
)

®O®®

a1 (x1, —xa, Xe

>

1 =x1V x4V Xq

C(Xl) C(Xg) C(Xn)
(0] (@) (® (O] (@ (@) (O] (O]
O| @ |@®f |O| @ (@ [O] O
: i : B : : v
I O (@ (@ |0 |® @ O] |O
<9 @)@ O (@ @ (O 1O
\\~ —~ = — — — — — —
[@[0] (O] [®] (O] [O] (@] (@
@ (O @ |O| (O] |@| |@
: B : : : : ~
@® (O] |0 (@ [Of |0 @ @
©® © © @ © 9 @ (@
B(x1) B(x2) B(xn)

1B(tA)| = yn+6m

toward ta: add occurrences of x; in A and remove B(x;) or C(x;)

If the formula is satisfiable, tw(G) < yn+6m+~ —1

a1 (—x1, xa, X6
ar(—x1, x4, X6
a1(—x1, ~xa, X6

s e

ai (Xl) X4, X6
ai (X17 X4, X6

)
)
)
31(X17 X4, ﬁXﬁ)
)
)
)

®O®®

a1 (x1, —xa, Xe

>

1 =x1V x4V Xq

C(Xl) C(Xg) C(Xn)
(0] (@) (® (O] (@ (@) (O] (O]
O| @ |@®f |O| @ (@ [O] O
: i : B : : v
I O (@ (@ |0 |® @ O] |O
<9 @)@ O (@ @ (O 1O
\\~ —~ = — — — — — —
[oRfo] Q] [e] (O] O] (@] (@
Ol (Ol (@ |O| (O] |@| |@
: B : : : : ~
Ol O] |0 |@| [Of |0 @ @
© © © @ © 9 @ (@
B(x1) B(x2) B(xn)

1B(tA)| = yn+6m

toward ta: add occurrences of x; in A and remove B(x;) or C(x;)

If < m' clauses are satisfiable, tw(G) > yn+7m —m' — 1

C(Xl) C(XZ) C C(Xn)
(0] (0] (O] (0] (O] (O] (o) (O
O O @) O @) O @) O
— - : : : : : : : 5
s 6) O |lo] (o)) (o) (o) 1o) o) 1o
31(—\x17 —1Xa, X6) O) g L
a1(x1, xa, =x6)| O
A
31(X1,X4,X6) O [—~ %\\\r——\ e N e N ow T e N =
a1(x1, ~xa, =x6)| O O Q\ Ol (O] |O] |O] |©
o st Jlo o[ysisel ol [of [off]
A . . N T N . . :
' ol |o| |of |o] |of |o] |o] |o
& =x v Vs o) W o)) 1o o) o) 1]
B(x1) B(x2) B B(xn)

B(tp) is a vertex cover of E(A,B)U E(A,C)U E(B, C)

If < m' clauses are satisfiable, tw(G) > yn+7m —m' — 1

a1 (—x1, xa, X6
ar(—x1, x4, X6
a1(—x1, ~xa, X6

ai (Xl) X4, X6
ai (X17 X4, X6

)
)
)
31(X17 X4, ﬁXﬁ)
)
)
)

a1 (x1, —xa, Xe

Q000000

1 =x1V x4V Xq

C(x1) C(x2) C C(xn)
(@) (@) (O] (O] (@] (O] (O] (@
®| |® |O]| |Oo]| |®| [Of |O] |@
o| |o| |or 0] |e| o] |o] |@
e (@10 0 (@ (0o (O @
—— » 7 (S 7 (S 7 [
[—~ SN — — — — — —
0] el fe@) (@] (@] (@) (® (O
o| |®| T&l Tell® (@ |® [O

H T T 1T ; = : : :
o| @ @ |@| |® (@ (@ |O
O @ @ @ @ (¢ |® ©
B(x1) B(x2) B B(xn)

No point in partially intersecting some B(x;) or C(x;)

If < m' clauses are satisfiable, tw(G) > yn+7m —m' — 1

a1 (—x1, xa, X6
ar(—x1, x4, X6
a1(—x1, ~xa, X6

ai (Xl) X4, X6
ai (X17 X4, X6

)
)
)
31(X17 X4, ﬁXﬁ)
)
)
)

a1 (x1, —xa, Xe

Q000000

c1=x1V-x3V X

By def of -, a min vertex cover contains exactly one of B(x;), C(x;)

C(x1) C(x2) C C(xn)
(@) (O] (O] (O] (@] (O] (O] (@
@ O O] |O] @ |O |O] |@®
o| |o| |or o] |e| |of |o] |e
® O9 © @ O (© @
—— » 7 (S 7 (S 7 [
[—~ SN — — — — — —
0] el fe) (@] (O] (@) (@) (O
O| |®| &l Te{lO| |@| |®| [O
H T 11—+ . = . : .
ol e @ @ |O @ @ (O
O @ @ @ O @ |® ©
B(x1) B(x2) B B(xn)

If < m' clauses are satisfiable, tw(G) > yn+7m —m' — 1

a1 (—x1, xa, X6
ar(—x1, x4, X6
a1(—x1, ~xa, X6

ai (Xl) X4, X6
ai (X17 X4, X6

)
)
)
31(X17 X4, ﬁXﬁ)
)
)
)

a1 (x1, —xa, Xe

reeo00e®w®)

1 =x1V x4V Xq

C(x1) C(x2) C C(xn)
(@) (0] (0] (0] (@ (O] (O] (@
®| [0 |o| |o| |®| |o] |o] |e
o| |o| |or o] |e| |of |o] |e
e 1010 1o @ (O o) (@
7 » —— | —— | —— |
[—~ SN — — — — — —
0] f[elfe) (@ (O] (@) (®) (O
o| |e| Tel Tei 0| |@| |®| |O
H T T 1T ; = : : :
ol |e| |®| |®| |o] |e| @ |0
O @ @ @ O @ @ ©
B(x1) B(x2) B B(xn)

Then, one clause vertex can be spared per satisfied clause

TREEWIDTH is APX-hard

Theorem
1.00005-approximating TREEWIDTH is NP-hard.

TREEWIDTH is APX-hard

Theorem
1.00005-approximating TREEWIDTH is NP-hard.

Theorem (Berman, Karpinski, Scott '03)
For any € > 0, it is NP-hard to distinguish m-clause 4-Occ
3-SAT instances where

» at least (1 — e)m clauses are satisfiable, or

> at most (% + €)m clauses are satisfiable.

TREEWIDTH is APX-hard

Theorem
1.00005-approximating TREEWIDTH is NP-hard.

Theorem (Berman, Karpinski, Scott '03)

For any € > 0, it is NP-hard to distinguish m-clause 4-Occ
3-SAT instances where

» at least (1 — e)m clauses are satisfiable, or

> at most (% + €)m clauses are satisfiable.

Hence to distinguish between treewidth
> at most y¥2 4+ (64+¢e)m+~ —1, or
> at Ieasty%"—k(?—%—e)m—l.

~v := 14, and we get the claimed inapproximability ratio

TREEWIDTH is ETH-hard

Theorem
Under the ETH, TREEWIDTH needs 2n) time on n-vertex graphs.

TREEWIDTH is ETH-hard

Theorem
Under the ETH, TREEWIDTH needs 2n) time on n-vertex graphs.

Theorem (Impagliazzo, Paturi, Zane '01)

There is a constant B such that n-variable B-Occ 3-SAT
requires 29(n) time, unless the ETH fails.

TREEWIDTH is ETH-hard

Theorem
Under the ETH, TREEWIDTH needs 2n) time on n-vertex graphs.

Theorem (Impagliazzo, Paturi, Zane '01)

There is a constant B such that n-variable B-Occ 3-SAT
requires 29(n) time, unless the ETH fails.

~ := 4B, get m-clause ¢ by 7 + 1 duplications
G := G(y) has at most 7B(y + 1)n + 2y(y + 1)n = O(n) vertices

» ¢ satisfiable = tw(G) < y(y+1)n+6m+~y—1
» ¢ unsatisfiable = tw(G) > y(y+ 1)n+ 6m + 7.

TREEWIDTH has no subexponential approximation scheme

Theorem
Unless the ETH fails, there are § > 1 and ¢ > 0 such that
§-approximating TREEWIDTH requires 2947/ 108°n) tjme.

TREEWIDTH has no subexponential approximation scheme

Theorem
Unless the ETH fails, there are § > 1 and ¢ > 0 such that
§-approximating TREEWIDTH requires 2947/ 108°n) tjme.

Theorem (Bafna, Minzer, Vyas '25)

For any r € (§,1), there is a constant c := c(r) such that any
r-approximation algorithm for m-clause 3-SAT-log® m requires
28Um/log"m) time unless the ETH fails.

TREEWIDTH has no subexponential approximation scheme

Theorem
Unless the ETH fails, there are 6 > 1 and ¢ > 0 such that
§-approximating TREEWIDTH requires 2947/ 108°n) tjme.

Theorem (Bafna, Minzer, Vyas '25)

For any r € (§,1), there is a constant c := c(r) such that any
r-approximation algorithm for m-clause 3-SAT-log® m requires
2Q(m/ log® m) time, unless the ETH fails.

Hence the following algorithm is essentially best possible

Theorem (Korhonen, Lokshtanov '23)
For any € > 0, a tree-decomposition of G of width (1 + &)tw(G)

tw(G) log tw|
(b

. (6) .
can be computed in 2°)n?* time.

Open questions

» Tighten the gap between 1.00005 and O(+/log tw).
» Improved parameterized lower bounds?

» Hardness for other parameters or problems?

Open questions

» Tighten the gap between 1.00005 and O(+/log tw).
» Improved parameterized lower bounds?

» Hardness for other parameters or problems?

Thank you for your attention!

