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Tree T and map 3 : V(T) — 2Y(%) such that
» Every edge of G has both endpoints in some bag 5(t), and

» the trace of every vertex of G in T is a non-empty subtree.
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» rediscovered several times in the 70's and 80's. . .
» made central by the Graph Minors series
» f(tw)n-time algorithms for MSO-definable problems

Computing a tree decomposition? NP-hard but various algorithms
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New hardness results for TREEWIDTH

Ruling out a PTAS:

Theorem
1.00005-approximating TREEWIDTH is NP-hard.

Tight ETH lower bound:

Theorem
Under the ETH, TREEWIDTH needs 2n) time on n-vertex graphs.

No approximation scheme in subexponential time:

Theorem
Unless the ETH fails, there are § > 1 and ¢ > 0 such that
8-approximating TREEWIDTH requires 241/ 198° 1) time,



Every clique is contained in a bag

Fact
For every graph G, tree-decomposition (T, 3) of G, and clique X
of G, there is a t € V(T) such that X C [(t).
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Tree-decompositions of co-bipartite graphs

Fact
For every co-bipartite graph G, tw(G) = pw(G).
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Let ta, tg be such that A C (ta), B C 5(tg)



Tree-decompositions of co-bipartite graphs

Fact
For every co-bipartite graph G, tw(G) = pw(G).
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Bags that are not on the ty—tg path are useless
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3-SAT —, Max Cut —y CUTWIDTH —p PATH/TREEWIDTH

No known linear reduction for the last leg

Theorem (Arnborg, Corneil, Proskurowski '87)

Polytime reduction from CUTWIDTH on n-vertex graphs of max
degree A to TREEWIDTH on O(nA)-vertex co-bipartite graphs.
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on bounded-degree graphs



Tree-decompositions of co-tripartite graphs
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Let ta, tg, tc be such that A C 3(ta), B C B(tg), C C B(tc)



Tree-decompositions of co-tripartite graphs

NAVAWS 7

N

S~

0

C tc
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Tree-decompositions of co-tripartite graphs
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B(ta) has to be a vertex cover of E(A, B) U E(A, C)U E(B, C)



3-SAT —, TREEWIDTH on co-tripartite graphs
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We encode variables in two cliques B (true) and C (false):
each variable is a K, , biclique, 7y is 4 times the max occurrence



3-SAT —, TREEWIDTH on co-tripartite graphs
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The clause vertices are in a third clique A: for each 3-clause,
add one vertex per satisfying assignment linked to its literals
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From an n-variable m-clause 3-SAT formula ¢, builds a graph
G := G(p) with 7m + 2yn vertices
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B(ts) comprises the variable vertices of a satisfying assignment A,
and all the clause vertices but the m corresponding to A
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B(tp) is a vertex cover of E(A,B)U E(A,C)U E(B, C)
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No point in partially intersecting some B(x;) or C(x;)
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Then, one clause vertex can be spared per satisfied clause
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Theorem
1.00005-approximating TREEWIDTH is NP-hard.

Theorem (Berman, Karpinski, Scott '03)

For any € > 0, it is NP-hard to distinguish m-clause 4-Occ
3-SAT instances where

» at least (1 — e)m clauses are satisfiable, or

> at most (% + €)m clauses are satisfiable.

Hence to distinguish between treewidth
> at most y¥2 4+ (64+¢e)m+~ —1, or
> at Ieasty%"—k(?—%—e)m—l.

~v := 14, and we get the claimed inapproximability ratio
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TREEWIDTH is ETH-hard

Theorem
Under the ETH, TREEWIDTH needs 2n) time on n-vertex graphs.

Theorem (Impagliazzo, Paturi, Zane '01)

There is a constant B such that n-variable B-Occ 3-SAT
requires 29(n) time, unless the ETH fails.

~ := 4B, get m-clause ¢ by 7 + 1 duplications
G := G(y) has at most 7B(y + 1)n + 2y(y + 1)n = O(n) vertices

» ¢ satisfiable = tw(G) < y(y+1)n+6m+~y—1
» ¢ unsatisfiable = tw(G) > y(y+ 1)n+ 6m + 7.
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TREEWIDTH has no subexponential approximation scheme

Theorem
Unless the ETH fails, there are 6 > 1 and ¢ > 0 such that
§-approximating TREEWIDTH requires 2947/ 108°n) tjme.

Theorem (Bafna, Minzer, Vyas '25)

For any r € (§,1), there is a constant c := c(r) such that any
r-approximation algorithm for m-clause 3-SAT-log® m requires
2Q(m/ log® m) time, unless the ETH fails.

Hence the following algorithm is essentially best possible

Theorem (Korhonen, Lokshtanov '23)
For any € > 0, a tree-decomposition of G of width (1 + &)tw(G)

tw(G) log tw|
(b

. (6) .
can be computed in 2° )n?* time.



Open questions

» Tighten the gap between 1.00005 and O(+/log tw).
» Improved parameterized lower bounds?
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Thank you for your attention!



