Treewidth Inapproximability and Tight ETH Lower Bound

Édouard Bonnet

ENS Lyon, LIP

STOC 2025, Prague

Tree-decomposition of G

Tree T and map $\beta: V(T) \rightarrow 2^{V(G)}$ such that

Tree-decomposition of G

Tree T and map $\beta: V(T) \rightarrow 2^{V(G)}$ such that

Every edge of G has both endpoints in some $bag \beta(t)$, and

Tree-decomposition of G

Tree T and map $\beta: V(T) \rightarrow 2^{V(G)}$ such that

- Every edge of G has both endpoints in some $bag \beta(t)$, and
- ▶ the *trace* of every vertex of *G* in *T* is a non-empty subtree.

Treewidth

Minimum largest bag size over all tree decompositions minus 1

- rediscovered several times in the 70's and 80's...
- made central by the Graph Minors series
- f(tw)n-time algorithms for MSO-definable problems

Treewidth

Minimum largest bag size over all tree decompositions minus 1

- rediscovered several times in the 70's and 80's...
- made central by the Graph Minors series
- f(tw)n-time algorithms for MSO-definable problems

Computing a tree decomposition?

Treewidth

Minimum largest bag size over all tree decompositions minus 1

- rediscovered several times in the 70's and 80's...
- made central by the Graph Minors series
- f(tw)n-time algorithms for MSO-definable problems

Computing a tree decomposition? NP-hard but various algorithms

width
$$2tw + 1$$
 in $2^{O(tw)}n$
width $5tw + 4$ in $2^{6.76tw}n \log n$
width tw in $2^{O(tw^2)}n^4$ width $O(tw\sqrt{\log tw})$ in $n^{O(1)}$
width tw in 1.74^n
width tw in $2^{O(tw^3)}n$
width $(1 + \varepsilon)tw$ in $2^{O(\frac{tw \log tw}{\varepsilon})}n^4$

New hardness results for $\operatorname{TREEWIDTH}$

Ruling out a PTAS:

Theorem

1.00005-approximating TREEWIDTH is NP-hard.

New hardness results for $\operatorname{TREEWIDTH}$

Ruling out a PTAS:

Theorem

1.00005-approximating TREEWIDTH is NP-hard.

Tight ETH lower bound:

Theorem Under the ETH, TREEWIDTH needs $2^{\Omega(n)}$ time on n-vertex graphs.

New hardness results for $\operatorname{TREEWIDTH}$

Ruling out a PTAS:

Theorem 1.00005-approximating TREEWIDTH is NP-hard.

Tight ETH lower bound:

Theorem Under the ETH, TREEWIDTH needs $2^{\Omega(n)}$ time on n-vertex graphs.

No approximation scheme in subexponential time:

Theorem Unless the ETH fails, there are $\delta > 1$ and c > 0 such that δ -approximating TREEWIDTH requires $2^{\Omega(n/\log^c n)}$ time. Every clique is contained in a bag

Fact

For every graph G, tree-decomposition (T,β) of G, and clique X of G, there is a $t \in V(T)$ such that $X \subseteq \beta(t)$.

Helly property for subtrees in a tree

Every clique is contained in a bag

Fact

For every graph G, tree-decomposition (T,β) of G, and clique X of G, there is a $t \in V(T)$ such that $X \subseteq \beta(t)$.

Helly property for subtrees in a tree

Tree-decompositions of co-bipartite graphs

Fact

For every co-bipartite graph G, tw(G) = pw(G).

Let t_A, t_B be such that $A \subseteq \beta(t_A), B \subseteq \beta(t_B)$

Tree-decompositions of co-bipartite graphs

Fact

For every co-bipartite graph G, tw(G) = pw(G).

Bags that are not on the $t_A - t_B$ path are useless

NP-hardness of TREEWIDTH

 $3\text{-SAT} \rightarrow_{\ell} \text{Max Cut} \rightarrow_{\ell} \text{Cutwidth} \rightarrow_{P} \text{Path}/\text{Treewidth}$

No known linear reduction for the last leg

Theorem (Arnborg, Corneil, Proskurowski '87)

Polytime reduction from CUTWIDTH on n-vertex graphs of max degree Δ to TREEWIDTH on $O(n\Delta)$ -vertex co-bipartite graphs.

NP-hardness of TREEWIDTH

 $3\text{-SAT} \rightarrow_{\ell} \text{Max Cut} \rightarrow_{\ell} \text{Cutwidth} \rightarrow_{P} \text{Path}/\text{Treewidth}$

No known linear reduction for the last leg

Theorem (Arnborg, Corneil, Proskurowski '87)

Polytime reduction from CUTWIDTH on n-vertex graphs of max degree Δ to TREEWIDTH on $O(n\Delta)$ -vertex co-bipartite graphs.

 $\operatorname{3-SAT} \to_\ell \operatorname{CUTWIDTH}$ on bounded-degree graphs

NP-hardness of TREEWIDTH

 $3\text{-SAT} \rightarrow_{\ell} \text{Max Cut} \rightarrow_{\ell} \text{Cutwidth} \rightarrow_{P} \text{Path}/\text{Treewidth}$

No known linear reduction for the last leg

Theorem (Arnborg, Corneil, Proskurowski '87)

Polytime reduction from CUTWIDTH on n-vertex graphs of max degree Δ to TREEWIDTH on $O(n\Delta)$ -vertex co-bipartite graphs.

Tree-decompositions of co-tripartite graphs

Let t_A, t_B, t_C be such that $A \subseteq \beta(t_A), B \subseteq \beta(t_B), C \subseteq \beta(t_C)$

Tree-decompositions of co-tripartite graphs

Bags that are not on the t_A-t_B , t_A-t_C , t_B-t_C paths are useless

Tree-decompositions of co-tripartite graphs

 $eta(t_{\mathbb{A}})$ has to be a vertex cover of $E(A,B) \cup E(A,C) \cup E(B,C)$

$3\text{-SAT} \rightarrow_{\ell} \text{TREEWIDTH}$ on co-tripartite graphs

We encode variables in two cliques B (true) and C (false): each variable is a $K_{\gamma,\gamma}$ biclique, γ is 4 times the max occurrence

 $3\text{-SAT} \rightarrow_{\ell} \text{TREEWIDTH}$ on co-tripartite graphs

The *clause* vertices are in a third clique A: for each 3-clause, add one vertex per satisfying assignment linked to its literals

 $3\text{-SAT} \rightarrow_{\ell} \text{TREEWIDTH}$ on co-tripartite graphs

From an *n*-variable *m*-clause 3-SAT formula φ , builds a graph $G := G(\varphi)$ with $7m + 2\gamma n$ vertices

 $\beta(t_{\wedge})$ comprises the variable vertices of a satisfying assignment \mathcal{A} , and all the *clause* vertices but the *m* corresponding to \mathcal{A}

 $|\beta(t_{\Lambda})| = \gamma n + 6m$ toward t_B : add $B(x_i)$ and remove $C(x_i)$ for each x_i set to false

 $|\beta(t_{\Lambda})| = \gamma n + 6m$ toward t_B : add $B(x_i)$ and remove $C(x_i)$ for each x_i set to false

 $|\beta(t_{\wedge})| = \gamma n + 6m$ toward t_C : add $C(x_i)$ and remove $B(x_i)$ for each x_i set to true

 $|\beta(t_{\wedge})| = \gamma n + 6m$ toward t_C : add $C(x_i)$ and remove $B(x_i)$ for each x_i set to true

 $|\beta(t_{\Lambda})| = \gamma n + 6m$ toward t_A : add occurrences of x_i in A and remove $B(x_i)$ or $C(x_i)$

 $|\beta(t_{\Lambda})| = \gamma n + 6m$ toward t_A : add occurrences of x_i in A and remove $B(x_i)$ or $C(x_i)$

 $|\beta(t_{\Lambda})| = \gamma n + 6m$ toward t_A : add occurrences of x_i in A and remove $B(x_i)$ or $C(x_i)$

 $\beta(t_{\mathbb{A}})$ is a vertex cover of $E(A, B) \cup E(A, C) \cup E(B, C)$

No point in partially intersecting some $B(x_i)$ or $C(x_i)$

By def of γ , a min vertex cover contains exactly one of $B(x_i)$, $C(x_i)$

Then, one *clause* vertex can be spared per satisfied clause

$\operatorname{TREEWIDTH}$ is APX-hard

Theorem

1.00005-approximating TREEWIDTH is NP-hard.

TREEWIDTH is APX-hard

Theorem

1.00005-approximating TREEWIDTH is NP-hard.

Theorem (Berman, Karpinski, Scott '03)

For any $\varepsilon > 0$, it is NP-hard to distinguish m-clause 4-OCC 3-SAT instances where

• at least $(1 - \varepsilon)m$ clauses are satisfiable, or

• at most $(\frac{1015}{1016} + \varepsilon)m$ clauses are satisfiable.

TREEWIDTH is APX-hard

Theorem

1.00005-approximating TREEWIDTH is NP-hard.

Theorem (Berman, Karpinski, Scott '03)

For any $\varepsilon > 0$, it is NP-hard to distinguish m-clause 4-OCC 3-SAT instances where

- at least $(1 \varepsilon)m$ clauses are satisfiable, or
- at most $(\frac{1015}{1016} + \varepsilon)m$ clauses are satisfiable.

Hence to distinguish between treewidth

▶ at most
$$\gamma rac{3m}{4} + (6 + arepsilon)m + \gamma - 1$$
, or

• at least
$$\gamma \frac{3m}{4} + (7 - \frac{1015}{1016} - \varepsilon)m - 1.$$

 $\gamma:=$ 14, and we get the claimed inapproximability ratio

$\operatorname{TREEWIDTH}$ is ETH-hard

Theorem Under the ETH, TREEWIDTH needs $2^{\Omega(n)}$ time on n-vertex graphs.

TREEWIDTH is ETH-hard

Theorem Under the ETH, TREEWIDTH needs $2^{\Omega(n)}$ time on n-vertex graphs.

Theorem (Impagliazzo, Paturi, Zane '01)

There is a constant B such that n-variable B-OCC 3-SAT requires $2^{\Omega(n)}$ time, unless the ETH fails.

TREEWIDTH is ETH-hard

Theorem Under the ETH, TREEWIDTH needs $2^{\Omega(n)}$ time on n-vertex graphs.

Theorem (Impagliazzo, Paturi, Zane '01)

There is a constant B such that n-variable B-OCC 3-SAT requires $2^{\Omega(n)}$ time, unless the ETH fails.

 $\gamma := 4B$, get *m*-clause φ by $\gamma + 1$ duplications

 ${\it G}:={\it G}(arphi)$ has at most $7{\it B}(\gamma+1){\it n}+2\gamma(\gamma+1){\it n}={\it O}({\it n})$ vertices

- φ satisfiable \Rightarrow tw(G) $\leqslant \gamma(\gamma + 1)n + 6m + \gamma 1$
- φ unsatisfiable \Rightarrow tw(G) $\ge \gamma(\gamma + 1)n + 6m + \gamma$.

 $T{\rm REEWIDTH}$ has no subexponential approximation scheme

Theorem

Unless the ETH fails, there are $\delta > 1$ and c > 0 such that δ -approximating TREEWIDTH requires $2^{\Omega(n/\log^c n)}$ time.

 $T{\rm REEWIDTH}$ has no subexponential approximation scheme

Theorem

Unless the ETH fails, there are $\delta > 1$ and c > 0 such that δ -approximating TREEWIDTH requires $2^{\Omega(n/\log^c n)}$ time.

Theorem (Bafna, Minzer, Vyas '25)

For any $r \in (\frac{7}{8}, 1)$, there is a constant c := c(r) such that any *r*-approximation algorithm for *m*-clause 3-SAT-log^c *m* requires $2^{\Omega(m/\log^c m)}$ time, unless the ETH fails.

 $T{\rm REEWIDTH}$ has no subexponential approximation scheme

Theorem

Unless the ETH fails, there are $\delta > 1$ and c > 0 such that δ -approximating TREEWIDTH requires $2^{\Omega(n/\log^c n)}$ time.

Theorem (Bafna, Minzer, Vyas '25)

For any $r \in (\frac{7}{8}, 1)$, there is a constant c := c(r) such that any *r*-approximation algorithm for *m*-clause 3-SAT-log^c *m* requires $2^{\Omega(m/\log^c m)}$ time, unless the ETH fails.

Hence the following algorithm is essentially best possible

Theorem (Korhonen, Lokshtanov '23)

For any $\varepsilon > 0$, a tree-decomposition of G of width $(1 + \varepsilon)tw(G)$ can be computed in $2^{O(\frac{tw(G)\log tw(G)}{\varepsilon})}n^4$ time.

Open questions

- Tighten the gap between 1.00005 and $O(\sqrt{\log tw})$.
- Improved parameterized lower bounds?
- Hardness for other parameters or problems?

Open questions

- Tighten the gap between 1.00005 and $O(\sqrt{\log tw})$.
- Improved parameterized lower bounds?
- Hardness for other parameters or problems?

Thank you for your attention!