The geometry of twin-width

Édouard Bonnet

ENS Lyon, LIP

June 30th, 2022, Datashape seminar

Sketching a graph - Szemerédi's Regularity Lemma

Every graph can be vertex-partitioned into a constant number of (balanced) parts such that there is a random-like edge set between every but an arbitrarily small fraction of pairs of parts.

Sketching a graph - Tree decompositions

Sketching a graph - Tree decompositions

Edge cover by vertex subsets (called bags) mapping to a tree such that the bags containing any fixed vertex map to a subtree

Sketching a graph - Tree decompositions

Edge cover by vertex subsets (called bags) mapping to a tree such that the bags containing any fixed vertex map to a subtree

Limits

Two immense successes in combinatorics, algorithms, etc. but:

- the former is only meaningful in dense graphs $\left(m=\Omega\left(n^{2}\right)\right)$
- the latter is most helpful in sparse graphs $(m=O(n))$

Limits

Two immense successes in combinatorics, algorithms, etc. but:

- the former is only meaningful in dense graphs $\left(m=\Omega\left(n^{2}\right)\right)$
- the latter is most helpful in sparse graphs $(m=O(n))$

Other useful ways to approximate a graph?

Trigraphs

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

Identification of two non-necessarily adjacent vertices

Contractions in trigraphs

edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Contraction sequence

A contraction sequence of G :
Sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}$ such that G_{i} is obtained by performing one contraction in G_{i+1}.

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=0$ overall maximum red degree $=0$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=2$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=1$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=1$ overall maximum red degree $=2$

Twin-width

$\operatorname{tww}(G)$: Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $=0$ overall maximum red degree $=2$

Simple operations preserving small twin-width

- complementation: remains the same
- taking induced subgraphs: may only decrease
- adding one vertex linked arbitrarily: at most "doubles"
- substitution and lexicographic product

Complementation

\bar{G}

G

$$
\operatorname{tww}(\bar{G})=\operatorname{tww}(G)
$$

Complementation

$$
\operatorname{tww}(\bar{G})=\operatorname{tww}(G)
$$

Induced subgraph

H

G

$$
\operatorname{tww}(H) \leqslant \operatorname{tww}(G)
$$

Induced subgraph

Ignore absent vertices

Induced subgraph

Mimic the contractions otherwise

Adding one vertex v arbitrarily linked

Split every part into their part in A and in B until the very end

Adding one vertex v arbitrarily linked

Split every part into their part in A and in B until the very end $\operatorname{tww}(G+v) \leqslant 2 \cdot \operatorname{tww}(G)+1$

Substitution and lexicographic product

$$
G=C_{5}
$$

Substitution and lexicographic product

$G=C_{5}, H=P_{4}, \quad$ substitution $G[v \leftarrow H]$

Substitution and lexicographic product

$G=C_{5}, H=P_{4}, \quad$ lexicographic product $G[H]$

Substitution and lexicographic product

More generally any modular decomposition

Substitution and lexicographic product

More generally any modular decomposition

Substitution and lexicographic product

$\operatorname{tww}(G[H])=\max (\operatorname{tww}(G), \operatorname{tww}(H))$

Graphs with bounded twin-width - trees

If possible, contract two twin leaves

Graphs with bounded twin-width - trees

If not, contract a deepest leaf with its parent

Graphs with bounded twin-width - trees

If not, contract a deepest leaf with its parent

Graphs with bounded twin-width - trees

If possible, contract two twin leaves

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Generalization to bounded treewidth and even bounded rank-width

Graphs with bounded twin-width - grids

4-sequence for planar grids

3-dimensional grids

3-dimensional grids

Contract the blue edges in any order $\rightarrow 12$-sequence

3-dimensional grids

The d-dimensional grid has twin-width $\leqslant 4 d$ (even $3 d$)

3-dimensional grids

K_{t}-free unit d-dimensional disk graphs

3-dimensional grids

K_{t} free unit d-dimensional disk graphs
1-skeletons of Rips complexes of point sets in \mathbb{R}^{d} with dimension
less than t have bounded twin-width

2-lifts, expanders with bounded twin-width

split each vertex in 2 , replace each edge by 1 of the 2 matchings

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K_{4} have twin-width at most 6

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K_{4} have twin-width at most 6

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K_{4} have twin-width at most 6

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K_{4} have twin-width at most 6

2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K_{4} have twin-width at most 6 treewidth $\Omega(n)$
$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Add a red full binary tree whose leaves are the vertex set
$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Take any subdivided edge
$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Shorten it to the length of the path in the red tree
$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Zip the subdivided edge in the tree
$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Zip the subdivided edge in the tree
$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Zip the subdivided edge in the tree
$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Zip the subdivided edge in the tree
$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Zip the subdivided edge in the tree
$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Zip the subdivided edge in the tree
$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Zip the subdivided edge in the tree

($\geqslant 2 \log n$)-subdivisions have twin-width at most 4

Move to the next subdivided edge also of unbounded cliquewidth

$(\geqslant 2 \log n)$-subdivisions have twin-width at most 4

Twin-width is not topological (in the graph-theoretic sense)

First example of unbounded twin-width

Line graph of a biclique a.k.a. rook graph

First example of unbounded twin-width

First example of unbounded twin-width

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Universal bipartite graph

No $O(1)$-contraction sequence:
twin-width is not an iterated identification of near twins.

Graphs with bounded twin-width - planar graphs?

Graphs with bounded twin-width - planar graphs?

For every d, a planar trigraph without planar d-contraction

Graphs with bounded twin-width - planar graphs?

For every d, a planar trigraph without planar d-contraction
More powerfool tool needed

Bounded twin-width via adjacency matrices

A matrix is t-mixed free if it does not have a $t \times t$ division where every cell has two distinct rows and two distinct columns

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Bounded twin-width via adjacency matrices

A matrix is t-mixed free if it does not have a $t \times t$ division where every cell has two distinct rows and two distinct columns

$$
\left[\begin{array}{ll|lll|lll}
11 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 10 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
\hdashline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Bounded twin-width via adjacency matrices

A matrix is t-mixed free if it does not have a $t \times t$ division where every cell has two distinct rows and two distinct columns

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Theorem (B., Kim, Thomassé, Watrigant '20)
A graph class has bounded twin-width if and only if all its graphs admit an $O(1)$-mixed free adjacency matrix.

Unit interval graphs

Intersection graph of unit segments on the real line

Unit interval graphs

order by left endpoints

Unit interval graphs

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

Graph minors

Formed by vertex deletion, edge deletion, and edge contraction
A graph G is H-minor free if H is not a minor of G
A graph class is H -minor free if all its graphs are

Graph minors

Formed by vertex deletion, edge deletion, and edge contraction A graph G is H-minor free if H is not a minor of G A graph class is H-minor free if all its graphs are

Planar graphs are exactly the graphs without K_{5} or $K_{3,3}$ as a minor

K_{5}

$K_{3,3}$

Bounded twin-width $-K_{t}$-minor free graphs

Given a hamiltonian path, we would just use this order

Bounded twin-width $-K_{t}$-minor free graphs

Contracting the $2 t$ subpaths yields a $K_{t, t}$-minor, hence a K_{t}-minor

Bounded twin-width $-K_{t}$-minor free graphs

Instead we use a specially crafted lex-DFS discovery order

Better upper bounds

Theorem (Hlinený '22)
Planar graphs have twin-width at most 11.
Theorem (B., Kwon, Wood '22)
Graphs of genus g have twin-width $O(g)$.

Better upper bounds

Theorem (Hlinený '22)
Planar graphs have twin-width at most 11.
Theorem (B., Kwon, Wood '22)
Graphs of genus g have twin-width $O(g)$.

Inspired and based on the recent graph product structure theorem:
Theorem (Dujmovic, Joret, Micek, Morin, Ueckerdt, Wood '19)
Every planar graph is the subgraph of the strong product of a path and a graph of treewidth at most 8.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20, '21)

The following classes have bounded twin-width, and
$O(1)$-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_{t}-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_{t}-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K_{4},
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20, '21)

The following classes have bounded twin-width, and
$O(1)$-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_{t}-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_{t}-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K_{4},
- strong products of two bounded twin-width classes, one with bounded degree, etc.

First-order model checking on graphs

Graph FO Model Checking Parameter: $|\varphi|$
Input: A graph G and a first-order sentence $\varphi \in F O(\{E\})$
Question: $G \models \varphi$?

First-order model checking on graphs

> Graph FO Model Checking Input: A graph G and a first-order sentence $\varphi \in F O(\{E\})$ Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall x \forall y\left(E(x, y) \Rightarrow \bigvee_{1 \leqslant i \leqslant k} x=x_{i} \vee y=x_{i}\right)
$$

$G \models \varphi$? $\Leftrightarrow k$-Vertex Cover

First-order model checking on graphs

Graph FO Model Checking
Parameter: $|\varphi|$
Input: A graph G and a first-order sentence $\varphi \in F O(\{E\})$
Question: $G \models \varphi$?

Example:

$$
\begin{gathered}
\varphi=\exists x_{1} \exists y_{1} \cdots \exists x_{k} \exists y_{k} \bigwedge_{\{x, y\} \in\left(\underset{\left\{x_{1}, y_{1}, \ldots, x_{2}, y_{k}\right\}}{ }\right)} x \neq y \\
\wedge E(x, y) \Leftrightarrow \bigvee_{1 \leqslant i \leqslant k}\left(x=x_{i} \wedge y=y_{i}\right) \vee\left(x=y_{i} \wedge y=x_{i}\right)
\end{gathered}
$$

$$
G \models \varphi ? \Leftrightarrow
$$

First-order model checking on graphs

Graph FO Model Checking
Parameter: $|\varphi|$
Input: A graph G and a first-order sentence $\varphi \in F O(\{E\})$
Question: $G \models \varphi$?

Example:

$$
\begin{gathered}
\varphi=\exists x_{1} \exists y_{1} \cdots \exists x_{k} \exists y_{k} \bigwedge_{\{x, y\} \in\left(\frac{\left\{x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right\}}{2}\right)} x \neq y \\
\wedge E(x, y) \Leftrightarrow \bigvee_{1 \leqslant i \leqslant k}\left(x=x_{i} \wedge y=y_{i}\right) \vee\left(x=y_{i} \wedge y=x_{i}\right) \\
G \models \varphi ? \Leftrightarrow k \text {-INDUCED MATCHING }
\end{gathered}
$$

First-order model checking on graphs

Graph FO Model Checking
 Parameter: $|\varphi|$
 Input: A graph G and a first-order sentence $\varphi \in F O(\{E\})$
 Question: $G \models \varphi$?

Example:
$\varphi=\bigvee_{1 \leqslant q \leqslant k, q \text { is odd }} \exists x_{1} \notin\{s\} E\left(s, x_{1}\right) \wedge\left(\forall x_{2} \notin\left\{s, x_{1}\right\} \neg E\left(x_{1}, x_{2}\right) \vee\right.$
$\left(\exists x_{3} \notin\left\{s, x_{1}, x_{2}\right\} E\left(x_{2}, x_{3}\right) \wedge\left(\forall x_{4} \cdots\left(\exists x_{q} \notin\left\{s, x_{1}, \ldots, x_{q-1}\right\} E\left(x_{q-1}, x_{q}\right)\right.\right.\right.$ $\left.\left.\left.\left.\wedge\left(\forall x_{q+1} \neg E\left(x_{q}, x_{q+1}\right) \vee x_{q+1} \in\left\{s, x_{1}, \ldots, x_{q}\right\}\right)\right) \cdots\right)\right)\right)$
$G \models \varphi ? \Leftrightarrow$

First-order model checking on graphs

```
Graph FO Model Checking
Parameter: \(|\varphi|\)
Input: A graph \(G\) and a first-order sentence \(\varphi \in F O(\{E\})\)
Question: \(G \models \varphi\) ?
```

Example:
$\varphi=\bigvee_{1 \leqslant q \leqslant k, q \text { is odd }} \exists x_{1} \notin\{s\} E\left(s, x_{1}\right) \wedge\left(\forall x_{2} \notin\left\{s, x_{1}\right\} \neg E\left(x_{1}, x_{2}\right) \vee\right.$
$\left(\exists x_{3} \notin\left\{s, x_{1}, x_{2}\right\} E\left(x_{2}, x_{3}\right) \wedge\left(\forall x_{4} \cdots\left(\exists x_{q} \notin\left\{s, x_{1}, \ldots, x_{q-1}\right\} E\left(x_{q-1}, x_{q}\right)\right.\right.\right.$

$$
\left.\left.\left.\left.\wedge\left(\forall x_{q+1} \neg E\left(x_{q}, x_{q+1}\right) \vee x_{q+1} \in\left\{s, x_{1}, \ldots, x_{q}\right\}\right)\right) \cdots\right)\right)\right)
$$

$G \models \varphi$? \Leftrightarrow Short Generalized Geography

Classes with known tractable FO model checking

Theorem (B., Kim, Thomassé, Watrigant '20)
FO Model Checking solvable in $f(|\varphi|, d) n$ on graphs with a d-sequence.

FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order formula
$\begin{array}{ll}\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\ \varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }\end{array}$

FO transduction: color by $O(1)$ unary relations, interpret, delete

FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order formula
$\begin{array}{ll}\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\ \varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }\end{array}$

FO transduction: color by $O(1)$ unary relations, interpret, delete

FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

$$
\begin{aligned}
& \varphi(x, y)=E(x, y) \vee(G(x) \wedge B(y) \wedge \neg \exists z R(z) \wedge E(y, z)) \\
& \vee(R(x) \wedge B(y) \wedge \exists z R(z) \wedge E(y, z) \wedge \neg \exists z B(z) \wedge E(y, z))
\end{aligned}
$$

FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

$$
\begin{aligned}
& \varphi(x, y)=E(x, y) \vee(G(x) \wedge B(y) \wedge \neg \exists z R(z) \wedge E(y, z)) \\
& \vee(R(x) \wedge B(y) \wedge \exists z R(z) \wedge E(y, z) \wedge \neg \exists z B(z) \wedge E(y, z))
\end{aligned}
$$

FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order formula

$$
\begin{array}{ll}
\varphi(x, y)=\neg E(x, y) & \text { (complement) } \\
\varphi(x, y)=E(x, y) \vee \exists z E(x, z) \wedge E(z, y) & \text { (square) }
\end{array}
$$

FO transduction: color by $O(1)$ unary relations, interpret, delete

Theorem (B., Kim, Thomassé, Watrigant '20)
Transductions of bounded twin-width classes have bounded twin-width.

Small classes

Small: class with at most $n!c^{n}$ labeled graphs on [n].
Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Bounded twin-width classes are small.

Unifies and extends the same result for: σ-free permutations [Marcus, Tardos '04] K_{t}-minor free graphs [Norine, Seymour, Thomas, Wollan '06]

Small classes

Small: class with at most $n!c^{n}$ labeled graphs on [n].
Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Bounded twin-width classes are small.

Is the converse true for hereditary classes?
Conjecture (small conjecture)
A hereditary class has bounded twin-width if and only if it is small.

Small classes

Small: class with at most $n!c^{n}$ labeled graphs on [n].
Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Bounded twin-width classes are small.

Is the converse true for hereditary classes?
Conjecture (refuted: B., Geniet, Tessera, Thomassé '22)
A hereditary class has bounded twin-width if and only if it is small.

Interval graphs, unit disk graphs, triangle-free unit segment graphs have unbounded twin-width

since there are too many such graphs

The transduction tool

Our stability

- adding noise keeps twin-width tamed
- robust notion for finite model theory
- indeed bounded twin-width is the right limit for tractability of FO model checking in ordered graphs (Twin-width IV)
- concrete example: biclique-free segment graphs have bounded twin-width by FO transducing from planar graphs

Reduced parameters

A graph class has bounded reduced X if all its members admit a contraction sequence whose red graphs have bounded X

Reduced parameters

A graph class has bounded reduced X if all its members admit a contraction sequence whose red graphs have bounded X

red graphs have bounded ...	characterize bounded ...
outdegree	(oriented) twin-width
degree	twin-width
degree + treewidth	reduced (degree + treewidth)
cutwidth	reduced cutwidth
bandwidth	reduced bandwidth
bandwidth with fixed order	stretch-width
component size	cliquewidth (sparse: treewidth)
number of edges*	linear cliquewidth (sparse: pathwidth)

Reduced parameters

A graph class has bounded reduced X if all its members admit a contraction sequence whose red graphs have bounded X
red graphs have bounded ... characterize bounded ...
outdegree
degree
degree + treewidth
cutwidth
bandwidth
bandwidth with fixed order component size number of edges*
(oriented) twin-width
twin-width
reduced (degree + treewidth)
reduced cutwidth
reduced bandwidth
stretch-width
cliquewidth (sparse: treewidth)
linear cliquewidth (sparse: pathwidth)

Long subdivisions of general graphs have unbounded stretch-width

Different conditions imposed on the red graphs

bd degree: defines bd twin-width

bd component: redefines bd cliquewidth

bd outdegree: defines bd oriented twin-width

bd \#edges: redefines bd linear cliquewidth

Some directions and questions

- Twin-width of higher arity structures? Simplicial complexes?
- Do compact 3-manifolds have uniformly bounded twin-width? (shamelessly borrowed from Kristóf's research project)
- Draw uniformly at random n points in $[0,1]^{d}$ (or from a different distribution), grow balls from radius 0 to $\sqrt{d} / 2$, and track the largest twin-width of the intersection graph. Asymptotics of this function of n ?
- Bound the twin-width of some geometric graph classes when half-graphs are forbidden.

