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Sketching a graph - Szemerédi’s Regularity Lemma

Every graph can be vertex-partitioned into a constant number of
(balanced) parts such that there is a random-like edge set between

every but an arbitrarily small fraction of pairs of parts.



Sketching a graph - Tree decompositions

Edge cover by vertex subsets (called bags) mapping to a tree such
that the bags containing any fixed vertex map to a subtree



Sketching a graph - Tree decompositions

Edge cover by vertex subsets (called bags) mapping to a tree such
that the bags containing any fixed vertex map to a subtree



Sketching a graph - Tree decompositions

Edge cover by vertex subsets (called bags) mapping to a tree such
that the bags containing any fixed vertex map to a subtree



Limits

Two immense successes in combinatorics, algorithms, etc. but:

I the former is only meaningful in dense graphs (m = Ω(n2))
I the latter is most helpful in sparse graphs (m = O(n))

Other useful ways to approximate a graph?
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Trigraphs
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Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)



Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u v

uvuv

Identification of two non-necessarily adjacent vertices
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Contractions in trigraphs

u1 u2 u3 x1 x2 x3 x4 x5 x6 x7 v1 v2 v3

u vuv

uv

edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing



Contraction sequence

a

b

c

d

e

f

g

A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.
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A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that

Gi is obtained by performing one contraction in Gi+1.



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .
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overall maximum red degree = 0
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Simple operations preserving small twin-width

I complementation: remains the same
I taking induced subgraphs: may only decrease
I adding one vertex linked arbitrarily: at most “doubles”
I substitution and lexicographic product
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Induced subgraph
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Induced subgraph
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Induced subgraph

abcdefg

H

abcde

Mimic the contractions otherwise



Adding one vertex v arbitrarily linked

A B

v
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Split every part into their part in A and in B until the very end

tww(G + v) 6 2 · tww(G) + 1
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Substitution and lexicographic product

G = C5



Substitution and lexicographic product

G = C5, H = P4, substitution G [v ← H]



Substitution and lexicographic product

G = C5, H = P4, lexicographic product G [H]
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More generally any modular decomposition



Substitution and lexicographic product

tww(G [H]) = max(tww(G), tww(H))



Graphs with bounded twin-width – trees

If possible, contract two twin leaves
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Cannot create a red degree-3 vertex
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Cannot create a red degree-3 vertex



Graphs with bounded twin-width – trees

Generalization to bounded treewidth and even bounded rank-width



Graphs with bounded twin-width – grids

4-sequence for planar grids
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Graphs with bounded twin-width – grids

4-sequence for planar grids



3-dimensional grids

Contract the blue edges in any order → 12-sequence



3-dimensional grids

Contract the blue edges in any order → 12-sequence



3-dimensional grids

The d-dimensional grid has twin-width 6 4d (even 3d)



3-dimensional grids

Kt-free unit d-dimensional disk graphs



3-dimensional grids

Kt-free unit d-dimensional disk graphs
1-skeletons of Rips complexes of point sets in Rd with dimension

less than t have bounded twin-width



2-lifts, expanders with bounded twin-width

split each vertex in 2, replace each edge by 1 of the 2 matchings

treewidth Ω(n)
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2-lifts, expanders with bounded twin-width

Iterated 2-lifts of K4 have twin-width at most 6
treewidth Ω(n)



(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Add a red full binary tree whose leaves are the vertex set
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(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Take any subdivided edge



(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shorten it to the length of the path in the red tree
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(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Move to the next subdivided edge also of unbounded cliquewidth



(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Twin-width is not topological (in the graph-theoretic sense)



First example of unbounded twin-width

Line graph of a biclique a.k.a. rook graph
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No pair of near twins



Universal bipartite graph
No O(1)-contraction sequence:
twin-width is not an iterated identification of near twins.
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Graphs with bounded twin-width – planar graphs?

x1

y1

x2

y2

x3

y3

For every d , a planar trigraph without planar d-contraction

More powerfool tool needed



Graphs with bounded twin-width – planar graphs?

x1

y1

x2

y2

x3

y3

For every d , a planar trigraph without planar d-contraction

More powerfool tool needed



Graphs with bounded twin-width – planar graphs?

x1

y1

x2

y2

x3

y3

For every d , a planar trigraph without planar d-contraction

More powerfool tool needed



Bounded twin-width via adjacency matrices

A matrix is t-mixed free if it does not have a t × t division where
every cell has two distinct rows and two distinct columns
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Theorem (B., Kim, Thomassé, Watrigant ’20)
A graph class has bounded twin-width if and only if all its graphs
admit an O(1)-mixed free adjacency matrix.
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Unit interval graphs

Intersection graph of unit segments on the real line



Unit interval graphs
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Unit interval graphs
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No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves



Graph minors
Formed by vertex deletion, edge deletion, and edge contraction

A graph G is H-minor free if H is not a minor of G

A graph class is H-minor free if all its graphs are

Planar graphs are exactly the graphs without K5 or K3,3 as a minor

K5 K3,3
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Bounded twin-width – Kt-minor free graphs
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Given a hamiltonian path, we would just use this order



Bounded twin-width – Kt-minor free graphs
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Contracting the 2t subpaths yields a Kt,t-minor, hence a Kt-minor



Bounded twin-width – Kt-minor free graphs
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Instead we use a specially crafted lex-DFS discovery order



Better upper bounds

Theorem (Hlinený ’22)
Planar graphs have twin-width at most 11.

Theorem (B., Kwon, Wood ’22)
Graphs of genus g have twin-width O(g).

Inspired and based on the recent graph product structure theorem:

Theorem (Dujmovic, Joret, Micek, Morin, Ueckerdt, Wood ’19)
Every planar graph is the subgraph of the strong product of a path
and a graph of treewidth at most 8.
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Theorem (B., Geniet, Kim, Thomassé, Watrigant ’20, ’21)
The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Is this filtration any useful?
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The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.
I Bounded rank-width, and even, boolean-width graphs,
I every hereditary proper subclass of permutation graphs,
I posets of bounded antichain size (seen as digraphs),
I unit interval graphs,
I Kt-minor free graphs,
I map graphs,
I subgraphs of d-dimensional grids,
I Kt-free unit d-dimensional ball graphs,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I strong products of two bounded twin-width classes, one with

bounded degree, etc.

Is this filtration any useful?



First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi ) ∨ E (xi , x)

G |= ϕ? ⇔
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Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Example:
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∧
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First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃y1 · · · ∃xk∃yk
∧

{x ,y}∈({x1,y1,...,xk ,yk }
2 )

x 6= y

∧ E (x , y)⇔
∨

16i6k
(x = xi ∧ y = yi ) ∨ (x = yi ∧ y = xi )

G |= ϕ? ⇔ k-Induced Matching



First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Example:

ϕ =
∨

16q6k, q is odd
∃x1 /∈ {s} E (s, x1) ∧ (∀x2 /∈ {s, x1} ¬E (x1, x2)∨

(∃x3 /∈ {s, x1, x2} E (x2, x3) ∧ (∀x4 · · · (∃xq /∈ {s, x1, . . . , xq−1}E (xq−1, xq)

∧ (∀xq+1 ¬E (xq, xq+1) ∨ xq+1 ∈ {s, x1, . . . , xq})) · · · )))

G |= ϕ? ⇔



First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Example:

ϕ =
∨

16q6k, q is odd
∃x1 /∈ {s} E (s, x1) ∧ (∀x2 /∈ {s, x1} ¬E (x1, x2)∨

(∃x3 /∈ {s, x1, x2} E (x2, x3) ∧ (∀x4 · · · (∃xq /∈ {s, x1, . . . , xq−1}E (xq−1, xq)

∧ (∀xq+1 ¬E (xq, xq+1) ∨ xq+1 ∈ {s, x1, . . . , xq})) · · · )))

G |= ϕ? ⇔ Short Generalized Geography



Classes with known tractable FO model checking

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

bounded
degree

sparse
classes

bounded twin-width

bounded
rank-width

cographs

posets of
bounded

width

L-interval

unit interval

pattern
avoiding
permuta-

tions

map
graphs

dense
classes

Theorem (B., Kim, Thomassé, Watrigant ’20)
FO Model Checking solvable in f (|ϕ|, d)n on graphs with a d-sequence.



FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order
formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B., Kim, Thomassé, Watrigant ’20)
Transductions of bounded twin-width classes have bounded
twin-width.
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Transductions of bounded twin-width classes have bounded
twin-width.



FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order
formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B., Kim, Thomassé, Watrigant ’20)
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Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Bounded twin-width classes are small.

Unifies and extends the same result for:
σ-free permutations [Marcus, Tardos ’04]
Kt-minor free graphs [Norine, Seymour, Thomas, Wollan ’06]



Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Bounded twin-width classes are small.

Is the converse true for hereditary classes?

Conjecture (small conjecture)
A hereditary class has bounded twin-width if and only if it is small.



Small classes

Small: class with at most n!cn labeled graphs on [n].

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Bounded twin-width classes are small.

Is the converse true for hereditary classes?

Conjecture (refuted: B., Geniet, Tessera, Thomassé ’22)
A hereditary class has bounded twin-width if and only if it is small.



Interval graphs, unit disk graphs, triangle-free unit
segment graphs have unbounded twin-width

A B C

A

B
C

A

B
C

since there are too many such graphs



The transduction tool

Our stability

I adding noise keeps twin-width tamed
I robust notion for finite model theory
I indeed bounded twin-width is the right limit for tractability of

FO model checking in ordered graphs (Twin-width IV)
I concrete example: biclique-free segment graphs have bounded

twin-width by FO transducing from planar graphs



Reduced parameters

A graph class has bounded reduced X if all its members admit a
contraction sequence whose red graphs have bounded X

red graphs have bounded ... characterize bounded ...

outdegree (oriented) twin-width
degree twin-width
degree + treewidth reduced (degree + treewidth)
cutwidth reduced cutwidth
bandwidth reduced bandwidth
bandwidth with fixed order stretch-width
component size cliquewidth (sparse: treewidth)
number of edges∗ linear cliquewidth (sparse: pathwidth)

Long subdivisions of general graphs have unbounded stretch-width
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Different conditions imposed on the red graphs

bd degree: defines bd twin-width
bd outdegree: defines bd oriented twin-width

bd component: redefines bd cliquewidth
bd #edges: redefines bd linear cliquewidth



Some directions and questions

I Twin-width of higher arity structures? Simplicial complexes?
I Do compact 3-manifolds have uniformly bounded twin-width?

(shamelessly borrowed from Kristóf’s research project)
I Draw uniformly at random n points in [0, 1]d (or from

a different distribution), grow balls from radius 0 to
√

d/2,
and track the largest twin-width of the intersection graph.
Asymptotics of this function of n?

I Bound the twin-width of some geometric graph classes when
half-graphs are forbidden.


