### Twin-width — Part 2

Édouard Bonnet

ENS Lyon, LIP

10th October 2024, New Tools in Parameterized Complexity: Paths, Cuts, and Decomposition, Dagstuhl

#### Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- Bounded rank-width or clique-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size,
- unit interval graphs,
- K<sub>t</sub>-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K<sub>t</sub>-free unit d-dimensional ball graphs,
- Ω(log n)-subdivisions of all the n-vertex graphs,
- strong products of two bounded twin-width classes, one with bounded degree,
- (given) first-order transductions of the above.

#### Given a *d*-sequence, one can solve

any problem definable with a FO sentence  $\varphi$  in time  $f(d, \varphi)|V(G)|$ . special cases like *k*-INDEPENDENT SET in time  $2^{O_d(k)}|V(G)|$ 



### How hard is computing twin-width?

### Theorem (Bergé, B., Déprés '22)

It is NP-complete to decide if the twin-width is at most 4.

#### Question

Given a graph G and an integer d, is it possible to either provide an f(d)-sequence of G or correctly conclude that tww(G) > d, in time  $g(d)|V(G)|^{O(1)}$  or  $|V(G)|^{g(d)}$ ?

### How hard is computing twin-width?

### Theorem (Bergé, B., Déprés '22)

It is NP-complete to decide if the twin-width is at most 4.

#### Question

Given a graph G and an integer d, is it possible to either provide an f(d)-sequence of G or correctly conclude that tww(G) > d, in time  $g(d)|V(G)|^{O(1)}$  or  $|V(G)|^{g(d)}$ ?

#### Theorem (Balabán, Ganian, Rocton '24)

There is an FPT algorithm that computes (2-approximates) twin-width parameterized by feedback edge number (vertex integrity).

#### Question

*Is there an FPT (XP) f(OPT)-approximation algorithm for twin-width parameterized by pathwidth, treewidth, rank-width?* 

# Unconditional parameterized algorithms (À la Guillemot-Marx)

# k-grid permutation



Here with k = 3, it has every 3-permutation as subpermutation

# The 6 minimal families of unbounded twin-width

Theorem (B., Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk '22)  $\exists f, g \ s.t., given an n \times n$  adjacency matrix  $Adj_{\prec}(G)$ , in time  $g(k)n^{O(1)}$  one can find an f(k)-sequence of  $(G, \prec)$  or one of the six following encodings of a k-grid permutation submatrix:



Semi-induced matching/antimatching, and 4 half-graphs or ladders

# Ordered binary structures

Theorem (B., Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk '22) Let  $\mathcal{C}$  be a hereditary class of ordered graphs. There is an FPT f(OPT)-approximation for twin-width on  $\mathcal{C}$ , and the following are equivalent.

- (1)  $\mathscr{C}$  has bounded twin-width.
- (2)  $\mathscr{C}$  is dependent.
- (3)  $\mathscr{C}$  contains  $2^{O(n)}$  ordered n-vertex graphs.
- (4)  $\mathscr{C}$  contains less than  $\sum_{k=0}^{\lfloor n/2 \rfloor} {n \choose 2k} k!$  ordered n-vertex graphs, for some n.
- (5) *C* does not include one of 25 hereditary ordered graph classes with unbounded twin-width.
- (6) FO-model checking is fixed-parameter tractable on C (assuming FPT ≠ AW[\*]).

#### Twin-width win-win

Goal: compute FO-definable parameter p in FPT time in C.

Show that  $\exists f$  non-decreasing, such that  $\forall G \in C$  an f(p(G))-sequence of G can be computed in FPT time

- Width > f(k): report p(G) > k
- Width  $\leq f(k)$ : use FO model checking algorithm

#### Twin-width win-win

Goal: compute FO-definable parameter p in FPT time in C.

Show that  $\exists f$  non-decreasing, such that  $\forall G \in C$  an f(p(G))-sequence of G can be computed in FPT time

- Width > f(k): report p(G) > k
- Width  $\leq f(k)$ : use FO model checking algorithm

→ k-BICLIQUE in visibility graphs of 1.5D terrains → k-INDEPENDENT SET in visibility graphs of simple polygons [B., Chakraborty, Kim, Köhler, Lopes, Thomassé '22]

## Visibility graphs of 1.5D terrains

Order along x-coordinates



### Visibility graphs of 1.5D terrains

Order along x-coordinates



k-BICLIQUE and k-LADDER are FPT in this class

Ordering along the boundary of the polygon





Ordering along the boundary of the polygon







### Extractions

Here we only need a decreasing pattern





### Extractions

Here we only need a decreasing pattern





### Extractions

Here we only need a decreasing pattern



By Ramsey's theorem, we can assume that the  $\alpha_i$ s and the  $\beta_i$ s both induce a clique.

#### Geometric arguments



Quadrangle  $\alpha_2 \alpha_3 \beta_3 \beta_2$  is not self-crossing

#### Geometric arguments



Quadrangle  $\alpha_2\alpha_3\beta_3\beta_2$  has to be convex

#### Geometric arguments



Then  $\alpha_2, \alpha_3, \beta_3, \beta_2$  induce  $K_4$ , a contradiction

Theorem (B., Giocanti, Ossona de Mendez, Thomassé '23) Given two  $n \times n \mathbb{F}_q$ -matrices A, B of twin-width at most d, one can compute AB in time  $O_{d,q}(n^2 \log n)$ .

Theorem (B., Giocanti, Ossona de Mendez, Thomassé '23) Given two  $n \times n \mathbb{F}_q$ -matrices A, B of twin-width at most d, one can compute AB in time  $O_{d,q}(n^2 \log n)$ .

Consequence of:

- O<sub>d,q</sub>(n<sup>2</sup> log n) time f(OPT)-approximation for twin-width of ordered binary structures,
- ► FO+MOD interpretations preserve bounded twin-width,
- squaring is an FO+MOD interpretation, and

Theorem (Gajarský, Pilipczuk, Przybyszewski, Toruńczyk '22) Given an FO(+MOD) interpretation  $\varphi(x_1, \ldots, x_k)$  and a binary structure G with a d-sequence, a data structure can be computed in time  $O_{d,\varphi}(n^{1+\varepsilon})$  that answers queries "does  $\varphi(v_1, \ldots, v_k)$  hold in G?" in time  $O_{d,\varphi}(1/\varepsilon)$ .

Theorem (B., Giocanti, Ossona de Mendez, Thomassé '23) Given two  $n \times n \mathbb{F}_q$ -matrices A, B of twin-width at most d, one can compute AB in time  $O_{d,q}(n^2 \log n)$ .

Consequence of:

- O<sub>d,q</sub>(n<sup>2</sup> log n) time f(OPT)-approximation for twin-width of ordered binary structures,
- ► FO+MOD interpretations preserve bounded twin-width,
- squaring is an FO+MOD interpretation, and

Theorem (Gajarský, Pilipczuk, Przybyszewski, Toruńczyk '22) Given an FO(+MOD) interpretation  $\varphi(x_1, \ldots, x_k)$  and a binary structure G with a d-sequence, a data structure can be computed in time  $O_{d,\varphi}(n^{1+\varepsilon})$  that answers queries "does  $\varphi(v_1, \ldots, v_k)$  hold in G?" in time  $O_{d,\varphi}(1/\varepsilon)$ .

 $\varphi_1(r,c)$  holds in  $\widehat{M} \equiv$  there is a 1-entry at row r, column c of  $M^2$ .

Theorem (B., Giocanti, Ossona de Mendez, Thomassé '23) Given two  $n \times n \mathbb{F}_q$ -matrices A, B of twin-width at most d, one can compute AB in time  $O_{d,q}(n^2 \log n)$ .

Consequence of:

- O<sub>d,q</sub>(n<sup>2</sup> log n) time f(OPT)-approximation for twin-width of ordered binary structures,
- a d-sequence can be turned into a twin-decomposition of width d in time O<sub>d</sub>(n<sup>2</sup>), and
- $q^{O(d)}n$ -time algorithm for the twin-decomposition of  $M^2$ .



# Approximation algorithms

### Balanced contraction sequences

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) For every *d*, there is a *D* such that every *n*-vertex graph with twin-width at most *d* iteratively admits  $\frac{n}{D}$  disjoint pairs that can be contracted in a *D*-sequence.

### Balanced contraction sequences

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) For every d, there is a D such that every n-vertex graph with twin-width at most d iteratively admits  $\frac{n}{D}$  disjoint pairs that can be contracted in a D-sequence.

Consequence: We can turn a *d*-sequence into a *balanced D*-sequence S, i.e., such that  $\forall P_i \in S, \forall P \in P_i, |P| \leq D_i^n$ 



# Approximating Max Independent Set

In general graphs: an  $n^{1-\varepsilon}$ -approximation or r(n)-approximation in time  $\exp(\frac{n^{1-\varepsilon}}{r(n)^{1+\varepsilon}})$  are unlikely

### Approximating Max Independent Set

In general graphs: an  $n^{1-\varepsilon}$ -approximation or r(n)-approximation in time  $\exp(\frac{n^{1-\varepsilon}}{r(n)^{1+\varepsilon}})$  are unlikely



### Approximating MAX INDEPENDENT SET

In general graphs: an  $n^{1-\varepsilon}$ -approximation or r(n)-approximation in time  $\exp(\frac{n^{1-\varepsilon}}{r(n)^{1+\varepsilon}})$  are unlikely



D+1-color the red graph of  $G/\mathcal{P}_{\sqrt{n}}$  in polynomial time

### Approximating MAX INDEPENDENT SET

In general graphs: an  $n^{1-\varepsilon}$ -approximation or r(n)-approximation in time  $\exp(\frac{n^{1-\varepsilon}}{r(n)^{1+\varepsilon}})$  are unlikely



Solve MIS in  $G[P_j]$  for every  $P_j \in \mathcal{P}_{\sqrt{n}}$  in  $2^{O(D\sqrt{n})}$  time

### Approximating MAX INDEPENDENT SET

In general graphs: an  $n^{1-\varepsilon}$ -approximation or r(n)-approximation in time  $\exp(\frac{n^{1-\varepsilon}}{r(n)^{1+\varepsilon}})$  are unlikely



Solve weighted MIS in  $G/\mathcal{P}_{\sqrt{n}}[C_i]$ ,  $\forall i \in [D+1]$  in  $2^{O(\sqrt{n})}$  time

# Approximating $\operatorname{Max}$ INDEPENDENT SET

In general graphs: an  $n^{1-\varepsilon}$ -approximation or r(n)-approximation in time  $\exp(\frac{n^{1-\varepsilon}}{r(n)^{1+\varepsilon}})$  are unlikely



A heaviest such solution is a (D + 1)-approximation

### Approximating MIS given a d-sequence

Theorem (Bergé, B., Déprés, Watrigant '23) MIS can be  $O_d(1)$ -approximated in time  $2^{O_d(\sqrt{n})}$ .

### Approximating MIS given a d-sequence

Theorem (Bergé, B., Déprés, Watrigant '23) MIS can be  $O_d(1)$ -approximated in time  $2^{O_d(\sqrt{n})}$ .

Instead of exactly solving instances of size  $O_d(\sqrt{n})$ , recurse Theorem (Bergé, B., Déprés, Watrigant '23) MIS can be  $O_d(1)^{2^q-1}$ -approximated in time  $2^{O_{d,q}(n^{2^{-q}})}$ ,  $\forall q \in \mathbb{N}$ .

### Approximating MIS given a d-sequence

Theorem (Bergé, B., Déprés, Watrigant '23) MIS can be  $O_d(1)$ -approximated in time  $2^{O_d(\sqrt{n})}$ .

Instead of exactly solving instances of size  $O_d(\sqrt{n})$ , recurse Theorem (Bergé, B., Déprés, Watrigant '23) MIS can be  $O_d(1)^{2^q-1}$ -approximated in time  $2^{O_{d,q}(n^{2^{-q}})}$ ,  $\forall q \in \mathbb{N}$ .

Setting  $q := \log \frac{\varepsilon \log n}{O_d(1)}$ 

Theorem (Bergé, B., Déprés, Watrigant '23) MIS can be  $n^{\varepsilon}$ -approximated in polynomial time.

### COLORING, MAX INDUCED MATCHING

Similar results for these problems



### Open questions

 $\ensuremath{\mathsf{FPT}}\xspace/\ensuremath{\mathsf{XP}}\xspace$  approximation of twin-width (parameterized by larger parameters)

Find an explicit family of bounded-degree graphs with unbounded twin-width (counting-free argument)

Practical FPT algorithms (for the problems on polygons/terrains)

Better than  $n^{\varepsilon}$ -approximation for MIS given O(1)-sequences? (every such approximation would then self-improve)

More unexpected uses of the FO model checking algorithm on bounded twin-width (like [HJLMPSS '23] for Directed Multicut with three terminal pairs parameterized by cutset size)

### Open questions

 $\ensuremath{\mathsf{FPT}}\xspace/\ensuremath{\mathsf{XP}}\xspace$  approximation of twin-width (parameterized by larger parameters)

Find an explicit family of bounded-degree graphs with unbounded twin-width (counting-free argument)

Practical FPT algorithms (for the problems on polygons/terrains)

Better than  $n^{\varepsilon}$ -approximation for MIS given O(1)-sequences? (every such approximation would then self-improve)

More unexpected uses of the FO model checking algorithm on bounded twin-width (like [HJLMPSS '23] for Directed Multicut with three terminal pairs parameterized by cutset size)

#### Thank you for your attention!