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Trigraphs

Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)



Contractions in trigraphs

Identification of two non-necessarily adjacent vertices
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Identification of two non-necessarily adjacent vertices



Contractions in trigraphs

edges to N(u)AN(v) turn red, for N(u) N N(v) red is absorbing



Contraction sequence

A contraction sequence of G:
Sequence of trigraphs G = G, G,_1, ..., G, Gy such that
G; is obtained by performing one contraction in Gjy1.
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Contraction sequence

A contraction sequence of G:
Sequence of trigraphs G = G, G,_1, ..., G, G1 such that
G; is obtained by performing one contraction in Gjy1.



Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.
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Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d.
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Maximum red degree = 0
overall maximum red degree = 2



Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and
O(1)-sequences can be computed in polynomial time.

Bounded rank-width, and even, boolean-width graphs,
every hereditary proper subclass of permutation graphs,
posets of bounded antichain size,

unit interval graphs,

Ki-minor free graphs,

map graphs with embedding,

d-dimensional grids,

Ki-free unit d-dimensional ball graphs,

Q(log n)-subdivisions of all the n-vertex graphs,

cubic expanders defined by iterative random 2-lifts from Ky,
flat classes,

subgraphs of every Ky -free class above,

VV VYV VYV VVVYVYVY

first-order transductions of all the above.
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GrAPH FO MODEL CHECKING Parameter: |y
Input: A graph G and a first-order sentence ¢ € FO({E})
Question: G = ¢?
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First-order model checking on graphs

GrAPH FO MODEL CHECKING Parameter: |y
Input: A graph G and a first-order sentence ¢ € FO({E})
Question: G = ¢?

Example:

(P:Elxlzl)’l"'ﬂxkﬂyk /\ X#y
Dayye(Pavisend)

N E(x,y) & \/ (x=xiNy=yi)V(x=yiNy=xi)
1<i<k

G E ¢? & k-INDUCED MATCHING




First-order model checking on graphs

GraPH FO MODEL CHECKING Parameter: |¢|
Input: A graph G and a first-order sentence ¢ € FO({E})
Question: G = ¢?

Example:

p= \/ I ¢ {s} E(s,x1) A (Vx2 & {s,x1} ~E(x1,x2)V

1<qg<k, q is odd

(3x3 € {s,x1,x0} E(x2,x3) A (Vxa---(Ixq & {5, x1,...,Xq—1} E(Xg—1,Xq)
A (Vxg+1 ~E(xq; Xg+1) V Xq+1 € {S, X1, -+, %q})) )
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First-order model checking on graphs

GraPH FO MODEL CHECKING Parameter: |¢|
Input: A graph G and a first-order sentence ¢ € FO({E})
Question: G = ¢?

Example:

p= \/ I ¢ {s} E(s,x1) A (Vx2 & {s,x1} ~E(x1,x2)V

1<qg<k, q is odd

(3x3 € {s,x1,x0} E(x2,x3) A (Vxa---(Ixq & {5, x1,...,Xq—1} E(Xg—1,Xq)
A (Vxg+1 7E(Xgs Xg+1) V Xg+1 € {S,x1,....xq})) *)))

G = ¢? & SHORT GENERALIZED GEOGRAPHY



FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order
formula

o(x,y) =—E(x,y) (complement)
o(x,y) = E(x,y) vV 3IzE(x,z) AN E(z,y) (square)



FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order

formula
o(x,y) = —~E(x,y) (complement)
o(x,y) = E(x,y) vV 3IzE(x,z) AN E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete
@@\&OQ
g—g

On®,



FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order

formula
o(x,y) = —~E(x,y) (complement)
o(x,y) = E(x,y) vV 3IzE(x,z) AN E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete
oa\e.o
S—g

o0



FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order

formula
o(x,y) = —~E(x,y) (complement)
o(x,y) = E(x,y) vV 3IzE(x,z) AN E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

cee

o0

e(x,y) = E(x,y) V (G(x) A B(y) A —3zR(z) N E(y, 2))
V(R(x) A B(y) A 3zR(z )/\E(y, z) N—3zB(z) N E(y, z))
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FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order
formula

o(x,y) = ~E(x,y) (complement)
o(x,y) = E(x,y) vV 3IzE(x,z) A E(z,y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

Theorem (B., Kim, Thomassé, Watrigant '20)

Transductions of bounded twin-width classes have bounded
twin-width.



Dependence and monadic dependence

A class € is
dependent, if the hereditary closure of every interpretation of &
misses some graph

monadically dependent, if every transduction of € misses some
graph [Baldwin, Shelah '85]



Dependence and monadic dependence

A class € is
dependent, if the hereditary closure of every interpretation of &
misses some graph

monadically dependent, if every transduction of € misses some
graph [Baldwin, Shelah '85]

Theorem (Downey, Fellows, Taylor '96)
FO model checking is AW [«]-complete on general graphs,

thus unlikely FPT on independent classes

Could it be that on every dependent class, it is FPT?



Classes with known tractable FO model checking
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Theorem (B., Kim, Thomassé, Watrigant '20)
FO MoDEL CHECKING solvable in f(||, d)n on graphs with a d-sequence.



Small classes

Small: class with at most n!c” labeled graphs on [n].

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)

Bounded twin-width classes are small.

Unifies and extends the same result for:
o-free permutations  [Marcus, Tardos '04]
Ki-minor free graphs [Norine, Seymour, Thomas, Wollan '06]



Small classes

Small: class with at most nlc” labeled graphs on [n].

Theorem (B., Geniet, Kim, Thomassé, Watrigant '21)
Bounded twin-width classes are small.

Is the converse true for hereditary classes?

Conjecture (small conjecture, now refuted in general, Tww VII)
A hereditary class has bounded twin-width if and only if it is small.



Recap of the main questions

» Can we efficiently approximate twin-width?
» Can we solve FO model checking on every dependent class?

» Is every hereditary small class of bounded twin-width?



Recap of the main questions

» Can we efficiently approximate twin-width?
» Can we solve FO model checking on every dependent class?

» Is every hereditary small class of bounded twin-width?

We answer all these questions positively in the case of
ordered binary structures = matrices on a finite alphabet



Twin-width for unordered matrices

(111111 1]
0110001
000000O
0100110
1001110
0111011
101101 0]

Encode a bipartite graph (or, if symmetric, a graph)



Twin-width for unordered matrices

1 1(1)1 1(1)1
0 1/1/0 0/0|1
0 0/0/0 0/0]0O
0 1/0/0 1(1]0
1 0l0/1 1]1]0
0 1/1/1 0/1]1
101 o0(1o0]

Contraction of two columns (similar with two rows)



Twin-width for unordered matrices

1 1(1)1 1 1
01/rl00 1
00[0/]00 O
01(rl01 0
10(rl11 0
0 1/1/10 1
1o(yro o0

The red degree is now the max number of r per row/column



Twin-width for unordered matrices

1 1(1)1 1 1
0 1(r[0 0 1
00/0[]00 0
01(rf0 1 0
10(rl1 1 0
0 1(1/1 0 1
10110 0]

In the non-bipartite case, we force symmetric pairs of contractions



Twin-width for matrices

1 1(1)1 1(1)1
0 1]1/0 0l0|1
0 0[0/0 0l0|0O
0 1/0/0 1(1]0
1 0l0l1 1]1]0
0 1/1/1 0/1]1
101 ol1o0]

That was not the twin-width of ordered matrices



Twin-width for matrices

11 (1)(1)(1) 1
0 1|r|lojlo] 1
0 oloflo|lo] o
0 1|rllo|[1] O
1 o|rl|1l|z] o
0 1|1|l1]lo] 1
11 0 WY 0]

Let's also record the columns disagreeing with the contration



Twin-width for matrices

I—‘\\O\D—‘]
I—‘I—‘l—‘OOOi—‘]
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=

max (number of red entries + red degree)
row,column



Twin-width for matrices

(111111 1]
0110001
000000O0O
0100110
1001110
0111011
1011010]

If you find it too clumsy, encode the linear order



Twin-width for matrices

(333333 1]
2332201
2222000
2320110
3201110
2111011
101 1010]

and we're back to the unordered definition



Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive
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Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

1]1]1 1]1]1]1]o
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0JoJo ofo]o]o]t
JANNARNAR
1{ofo 1]1]o]1]0
o]z 1[1]1]o]o
“1fofr tfxTofolr]

Maximum number of non-constant zones per column or row part
= error value



Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

(11 1|z]1]z]o]
of1]r ofofz]o]1
olojo ofolofo]1
of1]o ofz]ofz]0
1{ofo 1]1fofz1]o
ofz]1 1fz]1ToTo
‘1]ofr 1[1fo]o1]

Maximum number of non-constant zones per column or row part
... until there are a single row part and column part



Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are consecutive

1)1]1 1]1]1]1]o
o[tz ofof1]o]z
ofoflo o|ofo]o]1
0[1]o of1foJ1]o
1[oJo 1]1]o1]o
o[1{r 1]1]1]o]o
‘1]o]t 11]ofo]1]

Twin-width as maximum error value
of a contraction sequence



Matrix FO model checking

Signature for 0,1-matrices o = {R(), <(?) E()}
(E?) becomes E1(2), ce Et(z) for [0, t]-matrices)
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Signature for 0,1-matrices o = {R(), <(?) E()}
(E?) becomes E1(2)7 ce Et(z) for [0, t]-matrices)

> M = R(x) iff x is a row index
» M= x <y iff x is a smaller index than y
> M= E(x,y) iff My, =1



Matrix FO model checking

Signature for 0,1-matrices o = {R(), <(?) E()}
(E?) becomes E1(2)7 ce Et(z) for [0, t]-matrices)

> M = R(x) iff x is a row index
» M= x <y iff x is a smaller index than y
> M= E(x,y) iff My, =1

tractable class: FO model checking solvable in time f(¢)|M|°()



Growth of classes

Our matrix classes are closed under taking submatrices
» Small class: #n x n matrices is 20(")

» Subfactorial: ultimately, #n x n matrices < n!

No non-trivial automorphism in totally ordered structures,
so no need for labels



Equivalences in the matrix language

Theorem
For every matrix class M, the following are equivalent.

(i) M has bounded twin-width.
(i) M has bounded grid rank. (division property)

(iii) M is pattern-avoiding.
(not including any of 6 “permutation-universal” classes)

(iv) M is dependent.

(v) M is monadically dependent.

(vi) M has subfactorial growth.

(vii) M is small.
(viii) M is tractable. (only if FPT # AW[x].)
)

(ix) M has no large rich division. (division property)



The 6 permutation-universal classes
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Roadmap
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Equivalences in the ordered graph language

Theorem
Let € be a hereditary class of ordered graphs. The following are
equivalent.

1) € has bounded twin-width.
2
3

) € is monadically dependent.
)
4) € is small.
)
)

€ is dependent.

5) € contains 2°(") ordered n-vertex graphs.

(
(
(
(
(
(

6) € contains less than Z,L(”:/gJ (o) k! ordered n-vertex graphs,
for some n.

(7) € does not include one of 25 hereditary ordered graph classes
Ms )y, and P with unbounded twin-width.

(8) FO-model checking is fixed-parameter tractable on €.



k-Rich division

Division



k-Rich division

Division such that for each, say, column part C




k-Rich division

Division such that for each, say, column part C no removal of k
row parts



k-Rich division

Division such that for each, say, column part C no removal of k
row parts leaves C with less than k distinct column vectors



Large rich division = unbounded twin-width

Fix an 2k(k + 1)-rich division D, and assume there is a k-sequence S



Large rich division = unbounded twin-width

G o e

G
Consider the first time a part of S intersects 3 parts of D



Large rich division = unbounded twin-width

G G

G

There are at most k other column parts intersecting Cj (red degree of C;)

e




Large rich division = unbounded twin-width

G Ch e
Rl I .
Ri
.J - -
G
G

Each such part C, is non-constant in at most 2k zones of D



Large rich division = unbounded twin-width

Thus removing 2k(k + 1) row parts of D — < k + 1 distinct columns



No large rich division = bounded twin-width

Build greedily a division where every part contradicts the richness
» can only be stopped by a large rich division

P turned into a contraction sequence as in Tww |



No large rich division = bounded twin-width

Build greedily a division where every part contradicts the richness
» can only be stopped by a large rich division

P turned into a contraction sequence as in Tww |

— approximation of twin-width for ordered binary structures

Theorem
There is a fixed-parameter algorithm, which, given an ordered
binary structure G and a parameter k, either outputs

> 220K sequence of G, implying that tww(G) = 20", or
» a 2k(k + 1)-rich division of M(G), implying that tww(G) > k.
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k-rank division

rank > k | rank > k | rank > k | rank > k

rank > k | rank > k | rank > k | rank > k

rank > k | rank > k | rank > k | rank > k

rank > k | rank > k | rank > k | rank > k

k-by-k division where every cell has rank at least k



k-rank division

rank > k | rank > k | rank > k | rank > k

rank > k | rank > k | rank > k | rank > k

rank > k | rank > k | rank > k | rank > k

rank > k | rank > k | rank > k | rank > k

Grid rank of M = largest k such that M admits a k-rank division



Large rich division = unbounded grid rank

Fix a large rich division D



Large rich division = unbounded grid rank

an it i EEuIE)

Red zones = large rank; Blue zones = first of its column to
contain a particular row vector



Large rich division = unbounded grid rank

SRRt me

=

Marcus-Tardos theorem applied to the colored zones — division D’



Large rich division = unbounded grid rank

Coarser division , 1 zone of = 2k x 2k zones of D’



Large rich division = unbounded grid rank

A zone of containing a red zone has large rank



Large rich division = unbounded grid rank

Other zones have diagonals of blue zones



Large rich division = unbounded grid rank

2k distinct row vectors in each zone of



Regularizing with Ramsey’s theorem
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