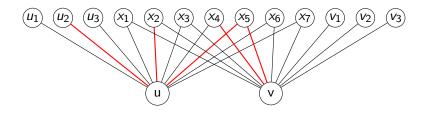
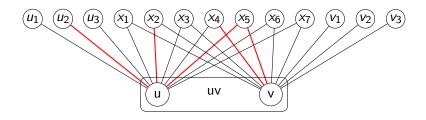

Twin-width IV: ordered graphs and matrices

<u>Édouard Bonnet</u>, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé, and Szymon Toruńczyk

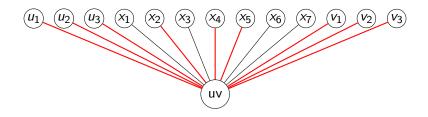
ENS Lyon, LIP


STOC 2022, Rome

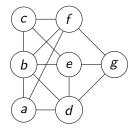
Trigraphs

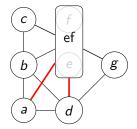

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)

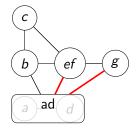
Contractions in trigraphs

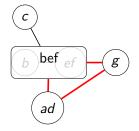

Identification of two non-necessarily adjacent vertices

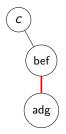
Contractions in trigraphs

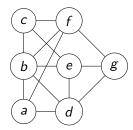


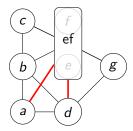

Identification of two non-necessarily adjacent vertices


Contractions in trigraphs

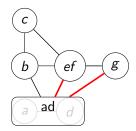



edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing

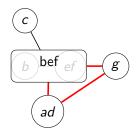




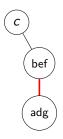
tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.


Maximum red degree = 0 overall maximum red degree = 0

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.


Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.


Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 2 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 1 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Maximum red degree = 1 overall maximum red degree = 2

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have *maximum red degree* at most d.

Theorem (B., Geniet, Kim, Thomassé, Watrigant '20 & '21)

The following classes have bounded twin-width, and O(1)-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size,
- unit interval graphs,
- K_t-minor free graphs,
- map graphs with embedding,
- d-dimensional grids,
- K_t-free unit d-dimensional ball graphs,
- Ω(log n)-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K₄,
- flat classes,
- subgraphs of every K_{t,t}-free class above,
- first-order transductions of all the above.

GRAPH FO MODEL CHECKINGParameter: $|\varphi|$ Input: A graph G and a first-order sentence $\varphi \in FO(\{E\})$ Question: $G \models \varphi$?

GRAPH FO MODEL CHECKINGParameter: $|\varphi|$ Input: A graph G and a first-order sentence $\varphi \in FO(\{E\})$ Question: $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \forall y \ (E(x, y) \Rightarrow \bigvee_{1 \leq i \leq k} x = x_i \lor y = x_i)$$

 $G \models \varphi$? \Leftrightarrow *k*-Vertex Cover

GRAPH FO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order sentence $\varphi \in FO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists y_1 \cdots \exists x_k \exists y_k \bigwedge_{\{x,y\} \in \left(\{x_1, y_1, \dots, x_k, y_k\} \right)} x \neq y$$
$$\land E(x, y) \Leftrightarrow \bigvee_{1 \leq i \leq k} (x = x_i \land y = y_i) \lor (x = y_i \land y = x_i)$$

 $G \models \varphi? \Leftrightarrow$

GRAPH FO MODEL CHECKING **Parameter:** $|\varphi|$ **Input:** A graph *G* and a first-order sentence $\varphi \in FO(\{E\})$ **Question:** $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists y_1 \cdots \exists x_k \exists y_k \bigwedge_{\substack{\{x,y\} \in \binom{\{x_1,y_1,\dots,x_k,y_k\}}{2}}} x \neq y$$

$$\wedge E(x,y) \Leftrightarrow \bigvee_{1 \leqslant i \leqslant k} (x = x_i \land y = y_i) \lor (x = y_i \land y = x_i)$$

 $G \models \varphi$? \Leftrightarrow *k*-Induced Matching

GRAPH FO MODEL CHECKING **Parameter:** $|\varphi|$ Input: A graph *G* and a first-order sentence $\varphi \in FO(\{E\})$ Question: $G \models \varphi$?

Example:

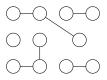
$$\varphi = \bigvee_{1 \leqslant q \leqslant k, \ q \text{ is odd}} \exists x_1 \notin \{s\} \ E(s, x_1) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor$$

 $(\exists x_3 \notin \{s, x_1, x_2\} E(x_2, x_3) \land (\forall x_4 \cdots (\exists x_q \notin \{s, x_1, \dots, x_{q-1}\} E(x_{q-1}, x_q) \land (\forall x_{q+1} \neg E(x_q, x_{q+1}) \lor x_{q+1} \in \{s, x_1, \dots, x_q\})) \cdots)))$ $G \models \varphi? \Leftrightarrow$

GRAPH FO MODEL CHECKING **Parameter:** $|\varphi|$ Input: A graph *G* and a first-order sentence $\varphi \in FO(\{E\})$ Question: $G \models \varphi$?

Example:

$$\varphi = \bigvee_{1 \leqslant q \leqslant k, \ q \text{ is odd}} \exists x_1 \notin \{s\} \ E(s, x_1) \land (\forall x_2 \notin \{s, x_1\} \ \neg E(x_1, x_2) \lor$$


$$(\exists x_3 \notin \{s, x_1, x_2\} E(x_2, x_3) \land (\forall x_4 \cdots (\exists x_q \notin \{s, x_1, \dots, x_{q-1}\} E(x_{q-1}, x_q) \land (\forall x_{q+1} \neg E(x_q, x_{q+1}) \lor x_{q+1} \in \{s, x_1, \dots, x_q\})) \cdots)))$$

$$G \models \varphi? \Leftrightarrow \text{ SHORT GENERALIZED GEOGRAPHY}$$

FO simple interpretation: redefine the edges by a first-order formula

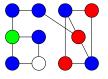
 $\begin{aligned} \varphi(x,y) &= \neg E(x,y) & (\text{complement}) \\ \varphi(x,y) &= E(x,y) \lor \exists z E(x,z) \land E(z,y) \text{ (square)} \end{aligned}$

FO simple interpretation: redefine the edges by a first-order formula

$$\begin{aligned} \varphi(x,y) &= \neg E(x,y) & (\text{complement}) \\ \varphi(x,y) &= E(x,y) \lor \exists z E(x,z) \land E(z,y) \text{ (square)} \end{aligned}$$

FO simple interpretation: redefine the edges by a first-order formula

$$\begin{aligned} \varphi(x,y) &= \neg E(x,y) & (\text{complement}) \\ \varphi(x,y) &= E(x,y) \lor \exists z E(x,z) \land E(z,y) \text{ (square)} \end{aligned}$$

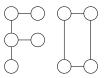

FO simple interpretation: redefine the edges by a first-order formula

$$\begin{aligned} \varphi(x,y) &= \neg E(x,y) \qquad (\text{complement}) \\ \varphi(x,y) &= E(x,y) \lor \exists z E(x,z) \land E(z,y) \text{ (square)} \end{aligned}$$

$$\varphi(x, y) = E(x, y) \lor (G(x) \land B(y) \land \neg \exists z R(z) \land E(y, z))$$

$$\lor (R(x) \land B(y) \land \exists z R(z) \land E(y, z) \land \neg \exists z B(z) \land E(y, z))$$

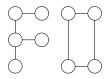
FO simple interpretation: redefine the edges by a first-order formula


$$\begin{aligned} \varphi(x,y) &= \neg E(x,y) & (\text{complement}) \\ \varphi(x,y) &= E(x,y) \lor \exists z E(x,z) \land E(z,y) \text{ (square)} \end{aligned}$$

$$\varphi(x, y) = E(x, y) \lor (G(x) \land B(y) \land \neg \exists z R(z) \land E(y, z))$$

$$\lor (R(x) \land B(y) \land \exists z R(z) \land E(y, z) \land \neg \exists z B(z) \land E(y, z))$$

FO simple interpretation: redefine the edges by a first-order formula


$$\begin{aligned} \varphi(x,y) &= \neg E(x,y) & (\text{complement}) \\ \varphi(x,y) &= E(x,y) \lor \exists z E(x,z) \land E(z,y) \text{ (square)} \end{aligned}$$

FO simple interpretation: redefine the edges by a first-order formula

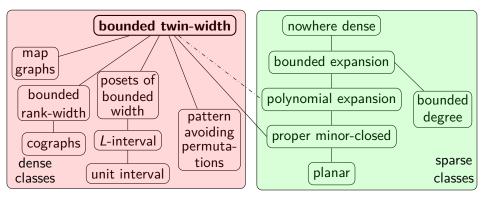
$$\begin{split} \varphi(x,y) &= \neg E(x,y) & (\text{complement}) \\ \varphi(x,y) &= E(x,y) \lor \exists z E(x,z) \land E(z,y) \text{ (square)} \end{split}$$

FO transduction: color by O(1) unary relations, interpret, delete

Theorem (B., Kim, Thomassé, Watrigant '20) Transductions of bounded twin-width classes have bounded twin-width.

Dependence and monadic dependence

A class \mathscr{C} is **dependent**, if the hereditary closure of every interpretation of \mathscr{C} misses some graph **monadically dependent**, if every transduction of \mathscr{C} misses some graph [Baldwin, Shelah '85]


Dependence and monadic dependence

A class \mathscr{C} is **dependent**, if the hereditary closure of every interpretation of \mathscr{C} misses some graph **monadically dependent**, if every transduction of \mathscr{C} misses some graph [Baldwin, Shelah '85]

Theorem (Downey, Fellows, Taylor '96) FO model checking is AW[*]-complete on general graphs, thus unlikely FPT on independent classes

Could it be that on every dependent class, it is FPT?

Classes with known tractable FO model checking

Theorem (B., Kim, Thomassé, Watrigant '20)

FO MODEL CHECKING solvable in $f(|\varphi|, d)n$ on graphs with a d-sequence.

Small classes

Small: class with at most *n*!*cⁿ* labeled graphs on [*n*]. Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) Bounded twin-width classes are small.

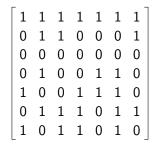
Unifies and extends the same result for: σ -free permutations [Marcus, Tardos '04] K_t -minor free graphs [Norine, Seymour, Thomas, Wollan '06]

Small classes

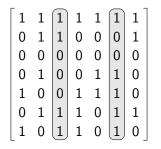
Small: class with at most *n*!*cⁿ* labeled graphs on [*n*]. Theorem (B., Geniet, Kim, Thomassé, Watrigant '21) Bounded twin-width classes are small.

Is the converse true for hereditary classes?

Conjecture (small conjecture, now refuted in general, Tww VII) A hereditary class has bounded twin-width if and only if it is small.


Recap of the main questions

- Can we efficiently approximate twin-width?
- Can we solve FO model checking on every dependent class?
- Is every hereditary small class of bounded twin-width?


Recap of the main questions

- Can we efficiently approximate twin-width?
- Can we solve FO model checking on every dependent class?
- Is every hereditary small class of bounded twin-width?

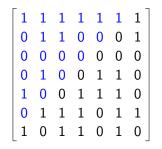
We answer all these questions positively in the case of ordered binary structures \equiv matrices on a finite alphabet

Encode a bipartite graph (or, if symmetric, a graph)

Contraction of two columns (similar with two rows)

The red degree is now the max number of r per row/column

In the non-bipartite case, we force symmetric pairs of contractions


That was not the twin-width of ordered matrices

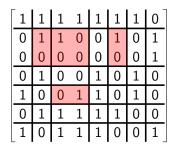
Let's also record the columns disagreeing with the contration

max (number of red entries + red degree)
row,column

If you find it too clumsy, encode the linear order

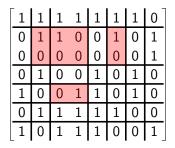
and we're back to the unordered definition

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*


1	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

1	1	1	1	1	1	1	0
0	1	1				0	
0	0	0	0	0	0	0	1
0	1	0	0	1	0	1	0
1	0	0	1	1	0	1	0
0	1	1	1	1	1	0	0
1	0	1	1	1	0	0	1


Maximum number of non-constant zones per column or row part = error value

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

Maximum number of non-constant zones per column or row part ... until there are a single row part and column part

Matrix partition: partitions of the row set and of the column set Matrix division: same but all the parts are *consecutive*

Twin-width as maximum error value of a contraction sequence

Matrix FO model checking

Signature for 0,1-matrices $\sigma = \{R^{(1)}, <^{(2)}, E^{(2)}\}$ ($E^{(2)}$ becomes $E_1^{(2)}, \ldots, E_t^{(2)}$ for [0, t]-matrices)

Matrix FO model checking

Signature for 0,1-matrices $\sigma = \{R^{(1)}, <^{(2)}, E^{(2)}\}$ ($E^{(2)}$ becomes $E_1^{(2)}, \ldots, E_t^{(2)}$ for [0, t]-matrices)

•
$$M \models R(x)$$
 iff x is a row index

•
$$M \models x < y$$
 iff x is a smaller index than y

•
$$M \models E(x, y)$$
 iff $M_{x,y} = 1$

Matrix FO model checking

Signature for 0,1-matrices $\sigma = \{R^{(1)}, <^{(2)}, E^{(2)}\}$ ($E^{(2)}$ becomes $E_1^{(2)}, \ldots, E_t^{(2)}$ for [0, t]-matrices)

•
$$M \models R(x)$$
 iff x is a row index

•
$$M \models x < y$$
 iff x is a smaller index than y

•
$$M \models E(x, y)$$
 iff $M_{x,y} = 1$

tractable class: FO model checking solvable in time $f(\varphi)|M|^{O(1)}$

Growth of classes

Our matrix *classes* are closed under taking submatrices

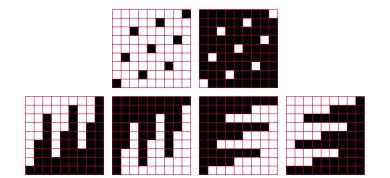
- Small class: $\#n \times n$ matrices is $2^{O(n)}$
- Subfactorial: ultimately, $\#n \times n$ matrices < n!

No non-trivial automorphism in totally ordered structures, so no need for labels

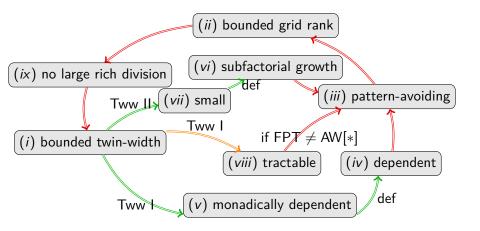
Equivalences in the matrix language

Theorem

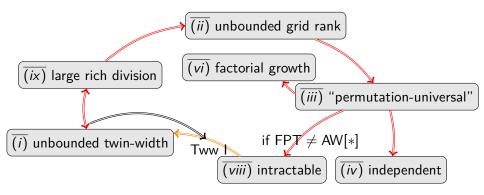
For every matrix class \mathcal{M} , the following are equivalent.


- (i) \mathcal{M} has bounded twin-width.
- (*ii*) *M* has bounded grid rank. (division property)
- (iii) *M* is pattern-avoiding.
 (not including any of 6 "permutation-universal" classes)
- (iv) \mathcal{M} is dependent.
- (v) \mathcal{M} is monadically dependent.
- (vi) \mathcal{M} has subfactorial growth.

(vii) \mathcal{M} is small.

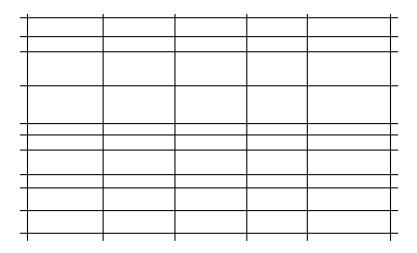

(viii) \mathcal{M} is tractable. (only if $\mathsf{FPT} \neq \mathsf{AW}[*]$.)

(ix) \mathcal{M} has no large rich division. (division property)

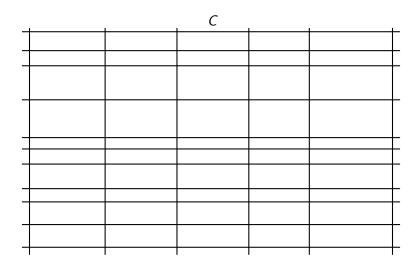

The 6 permutation-universal classes

Roadmap

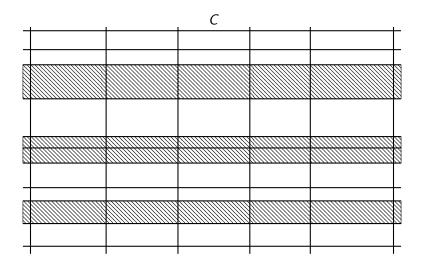
Roadmap

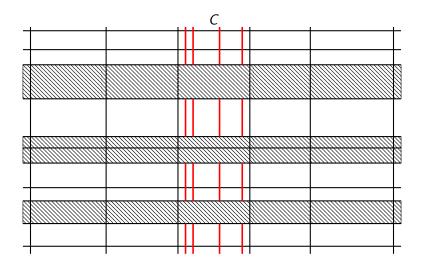


Equivalences in the ordered graph language

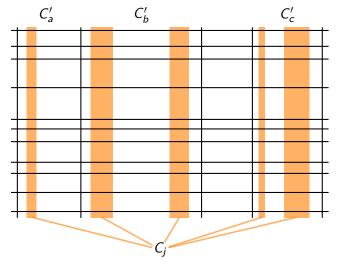

Theorem

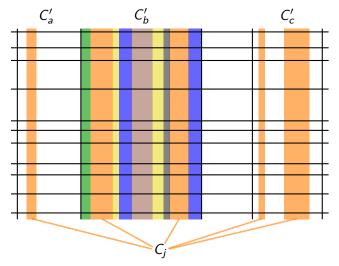
Let \mathscr{C} be a hereditary class of ordered graphs. The following are equivalent.

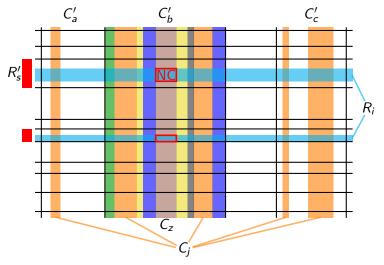

- (1) \mathscr{C} has bounded twin-width.
- (2) C is monadically dependent.
- (3) C is dependent.
- (4) \mathscr{C} is small.
- (5) \mathscr{C} contains $2^{O(n)}$ ordered n-vertex graphs.
- (6) \mathscr{C} contains less than $\sum_{k=0}^{\lfloor n/2 \rfloor} {n \choose 2k} k!$ ordered n-vertex graphs, for some n.
- (7) \mathscr{C} does not include one of 25 hereditary ordered graph classes $\mathscr{M}_{s,\lambda,\rho}$ and \mathscr{P} with unbounded twin-width.
- (8) FO-model checking is fixed-parameter tractable on \mathscr{C} .

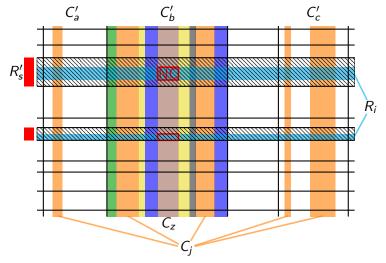

Division

Division such that for each, say, column part C


Division such that for each, say, column part ${\cal C}$ no removal of k row parts


Division such that for each, say, column part C no removal of k row parts leaves C with less than k distinct column vectors


Fix an 2k(k+1)-rich division \mathcal{D} , and assume there is a k-sequence \mathcal{S}


Consider the first time a part of ${\mathcal S}$ intersects 3 parts of ${\mathcal D}$

There are at most k other column parts intersecting C'_{b} (red degree of C_{j})

Each such part C_z is non-constant in at most 2k zones of \mathcal{D}

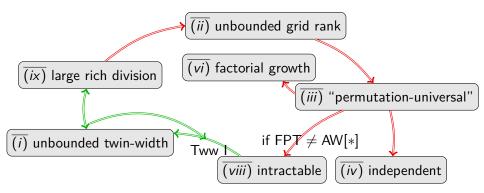
Thus removing 2k(k+1) row parts of $\mathcal{D} \to \leqslant k+1$ distinct columns

Build greedily a division where every part contradicts the richness

- can only be stopped by a large rich division
- turned into a contraction sequence as in Tww I

No large rich division \Rightarrow bounded twin-width

Build greedily a division where every part contradicts the richness


- can only be stopped by a large rich division
- turned into a contraction sequence as in Tww I
- \rightarrow approximation of twin-width for ordered binary structures

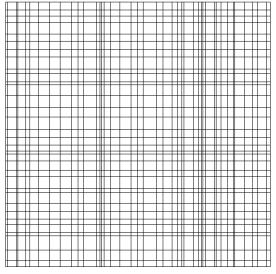
Theorem

There is a fixed-parameter algorithm, which, given an ordered binary structure G and a parameter k, either outputs

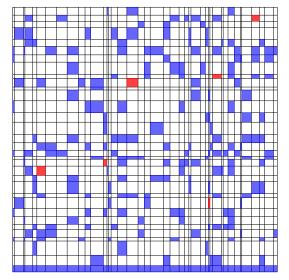
- ▶ a $2^{O(k^4)}$ -sequence of G, implying that tww(G) = $2^{O(k^4)}$, or
- ▶ a 2k(k+1)-rich division of M(G), implying that tww(G) > k.

Roadmap

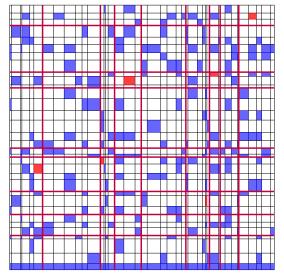
k-rank division

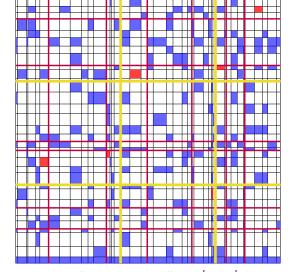

$rank \ge k$	$rank \ge k$	$rank \ge k$	$rank \ge k$
$rank \ge k$	$rank \ge k$	$rank \ge k$	$rank \geqslant k$
$rank \ge k$	$rank \ge k$	$rank \ge k$	$rank \geqslant k$
$rank \ge k$	$rank \ge k$	$rank \ge k$	$rank \ge k$

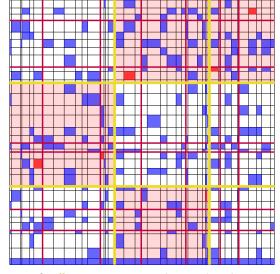
k-by-k division where every cell has rank at least k

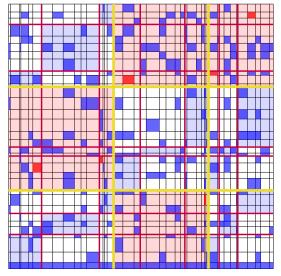

k-rank division

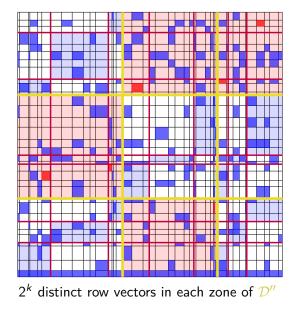
rank $\geq k$	$rank \ge k$	$rank \ge k$	$rank \ge k$
$rank \geqslant k$	$rank \ge k$	$rank \ge k$	$rank \ge k$
$rank \ge k$	$rank \ge k$	$rank \ge k$	$rank \ge k$
$rank \ge k$	$rank \ge k$	$rank \ge k$	$rank \ge k$

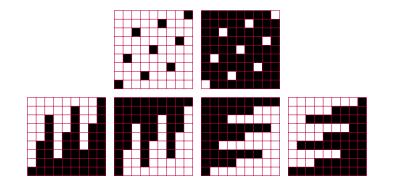

Grid rank of M =largest k such that M admits a k-rank division

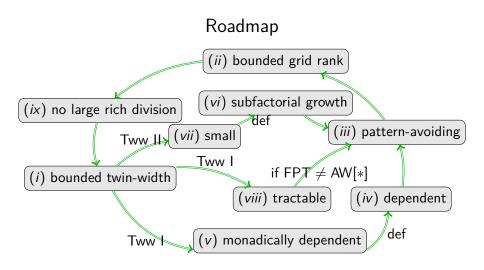

Fix a large rich division ${\cal D}$


Red zones = large rank; Blue zones = first of its column to contain a particular row vector


Marcus-Tardos theorem applied to the colored zones ightarrow division \mathcal{D}'


Coarser division \mathcal{D}'' , 1 zone of $\mathcal{D}'' \equiv 2^k \times 2^k$ zones of \mathcal{D}'


A zone of $\mathcal{D}^{\prime\prime}$ containing a red zone has large rank



Other zones have diagonals of blue zones

Regularizing with Ramsey's theorem

