Fine-grained complexity of coloring geometric intersection graphs

Édouard Bonnet joint work with Csaba Biró, Dániel Marx, Tillmann Miltzow, and Paweł Rzążewski

Middlesex University, London

7 April 2017, EuroCG, Malmö

NP-hard for any integer $k \ge 3$

Subexponential algorithms?

NP-hardness:

your problem is not solvable in polynomial, unless $3\text{-}\mathrm{SAT}$ is very widely believed but do not give evidence against algorithms running in say, $2^{n^{1/100}}$.

Subexponential algorithms?

NP-hardness:

your problem is not solvable in polynomial, unless 3-SAT is very widely believed but do not give evidence against algorithms running in say, $2^{n^{1/100}}$.

ETH-hardness:

stronger assumption than P \neq NP is ETH asserting that no $2^{o(n)}$ algorithm exists for 3-SAT

Allows to prove stronger conditional lower bounds

linear reduction from 3-SAT: no $2^{o(n)}$ algorithm for your problem, quadratic reduction: no $2^{o(\sqrt{n})}$ algorithm, etc.

Many problems are solvable in $2^{O(\sqrt{n})}$ in **planar graphs**, and unlikely solvable in $2^{o(n)}$ in general graphs.

Many problems are solvable in $2^{O(\sqrt{n})}$ in **planar graphs**, and unlikely solvable in $2^{o(n)}$ in general graphs.

MAX INDEPENDENT SET, 3-COLORING, HAMILTONIAN PATH ...

MAX INDEPENDENT SET, 3-COLORING, HAMILTONIAN PATH ...

MAX INDEPENDENT SET, 3-COLORING, HAMILTONIAN PATH ...

 $\frac{\text{MAX INDEPENDENT SET}, \text{ 3-COLORING, HAMILTONIAN PATH...}}{\text{Dynamic programming would spare a log } n \text{ in the exponent.}}$

MAX INDEPENDENT SET, <u>3-COLORING</u>, HAMILTONIAN PATH...

MAX INDEPENDENT SET, <u>3-COLORING</u>, HAMILTONIAN PATH...

MAX INDEPENDENT SET, <u>3-COLORING</u>, HAMILTONIAN PATH...

Smith and Wormald '98: $\forall n$ disks with ply ℓ ,

Smith and Wormald '98: $\forall n$ disks with ply ℓ , \exists **O**

Standard algorithm for ℓ -coloring

If the ply is greater than ℓ , then more than ℓ colors are needed. Otherwise, there is a balanced separator *S* of size $O(\sqrt{n\ell})$ which can be exhaustively found in time $O(2^{\sqrt{n\ell} \log n})$.

Trying all the ℓ -colorings on S takes time $O(2^{\sqrt{n\ell}\log \ell})$.

Standard algorithm for ℓ -coloring

If the ply is greater than ℓ , then more than ℓ colors are needed. Otherwise, there is a balanced separator *S* of size $O(\sqrt{n\ell})$ which can be exhaustively found in time $O(2^{\sqrt{n\ell} \log n})$.

Trying all the ℓ -colorings on S takes time $O(2^{\sqrt{n\ell}\log \ell})$.

Overall running time:
$$O(2^{\sqrt{n\ell} \log n})$$
.

Theorem

For any $\alpha \in [0, 1]$, coloring n unit disks with $\ell = \Theta(n^{\alpha})$ colors cannot be solved in time $2^{o(n^{\frac{1+\alpha}{2}})} = 2^{o(\sqrt{n\ell})}$, under the ETH.

Theorem

For any $\alpha \in [0, 1]$, coloring n unit disks with $\ell = \Theta(n^{\alpha})$ colors cannot be solved in time $2^{o(n^{\frac{1+\alpha}{2}})} = 2^{o(\sqrt{n\ell})}$, under the ETH.

Constant number of colors \rightsquigarrow square root phenomenon. Linear number of colors \rightsquigarrow no subexponential-time algorithm.

Theorem

For any $\alpha \in [0, 1]$, coloring n unit disks with $\ell = \Theta(n^{\alpha})$ colors cannot be solved in time $2^{o(n^{\frac{1+\alpha}{2}})} = 2^{o(\sqrt{n\ell})}$, under the ETH.

Constant number of colors \rightsquigarrow square root phenomenon. Linear number of colors \rightsquigarrow no subexponential-time algorithm.

And everything in between (hard part). For instance, \sqrt{n} -coloring cannot be done in $2^{o(n^{3/4})}$.

Roadmap

 $\ensuremath{\texttt{3-SAT}}\xspace \rightarrow \ensuremath{\texttt{2-grid}}\xspace$ 3-SAT \rightarrow 2-grid $\ensuremath{\texttt{3-SAT}}\xspace \rightarrow$ coloring unit disks

Partial 2-grid Coloring \rightarrow coloring unit disks

2-Grid 3-SAT

Input: A $g \times g$ grid, a positive integer k, each vertex (or cell) of the grid is associated to k variables, and a set C of constraints of two kinds:

clause constraints: for each cell of the grid, a set of pairwise variable-disjoint 3-clauses on its variables;

equality constraints: for two adjacent cells of the grid, a set of pairwise variable-disjoint equality constraints.

Question: Is there an assignment of the variables such that all constraints are satisfied?

$3\text{-SAT} \rightarrow 2\text{-Grid} 3\text{-SAT}$

3-SAT on N variables with bounded number of occurrences (Sparsification Lemma) \rightsquigarrow split the clauses into $\approx g$ blocks \rightsquigarrow split again the clauses on one block into a constant number of sub-blocks (clauses vertex-disjoint)

The size of the created instance is
$$n = g^2 k$$
.
 $N = \Theta(gk) = \Theta(\sqrt{nk})$

2-Grid 3-SAT \rightarrow Partial 2-Grid Coloring

clause checking gadget

even variable assignment cell

odd variable assignment cell

local reference cell

wires

consistency checking gadget

Encoding information and reference coloring

Wires

Permutation

Independence

Clauses

Consistency gadget (also crossing)

even variable assignment cell

odd variable assignment cell

local reference cell

wires

consistency checking gadget

Generalization to higher dimension

Theorem

For $\alpha \in [0, 1]$ and dimension $d \ge 2$, coloring n unit d-balls with $\ell = \Theta(n^{\alpha})$ colors cannot be solved in time $2^{n^{\frac{d-1+\alpha}{d}-\epsilon}} \approx 2^{o(n^{1-1/d}\ell^{1/d})}$ for any $\epsilon > 0$, under the ETH.

The first step in the chain is trickier: the higher dimensional grid should embed the SAT instance in a more compact way.

The second and third steps work similarly.

Generalization to other shapes

Smith and Wormald's result is more general. The almost tight lower bound also generalizes.

Fatness of the family is crucial:

Theorem

4-coloring axis-parallel segment intersection graphs (2-Dir) is not solvable in $2^{o(n)}$, under the ETH.

Generalization to other shapes

Smith and Wormald's result is more general. The almost tight lower bound also generalizes.

Fatness of the family is crucial:

Theorem

4-coloring axis-parallel segment intersection graphs (2-Dir) is not solvable in $2^{o(n)}$, under the ETH.

Thanks for your attention!