Fine-grained complexity of coloring geometric intersection graphs

Édouard Bonnet

Joint works with Csaba Biró, Dániel Marx, Tillmann Miltzow, and Paweł Rzążewski and Stéphan Thomassé

ToCAI, January 27th

NP-hardness vs ETH-hardness

NP-hardness:

your problem is not solvable in polynomial, unless $3\text{-}\mathrm{SAT}$ is very widely believed but do not give evidence against algorithms running in say, $2^{n^{1/100}}$.

NP-hardness vs ETH-hardness

NP-hardness:

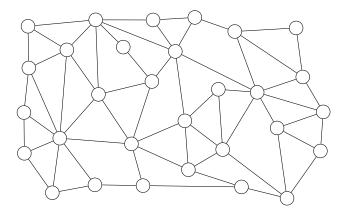
your problem is not solvable in polynomial, unless 3-SAT is very widely believed but do not give evidence against algorithms running in say, $2^{n^{1/100}}$.

ETH-hardness:

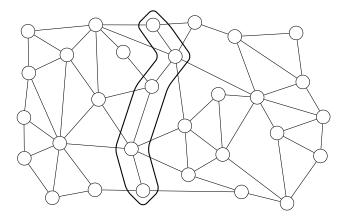
stronger assumption than P \neq NP is ETH asserting that no $2^{o(n)}$ algorithm exists for 3-SAT

Allows to prove stronger conditional lower bounds

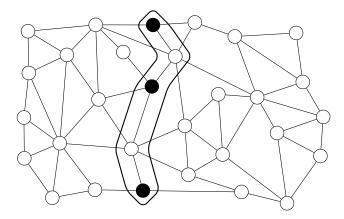
linear reduction from 3-SAT: no $2^{o(n)}$ algorithm for your problem, quadratic reduction: no $2^{o(\sqrt{n})}$ algorithm, etc.



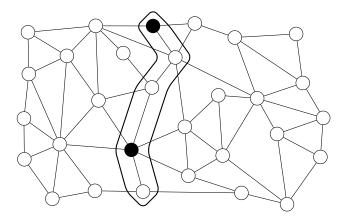
Many problems are solvable in $2^{O(\sqrt{n})}$ in **planar graphs**, and unlikely solvable in $2^{o(n)}$ in general graphs.



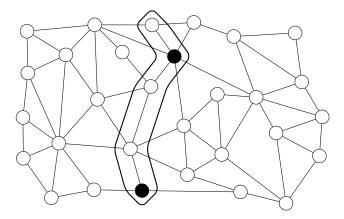
Many problems are solvable in $2^{O(\sqrt{n})}$ in **planar graphs**, and unlikely solvable in $2^{o(n)}$ in general graphs.



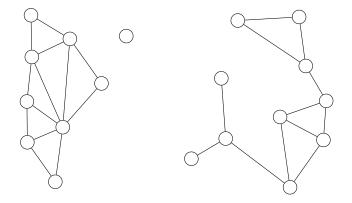
MAX INDEPENDENT SET, 3-COLORING, HAMILTONIAN PATH ...



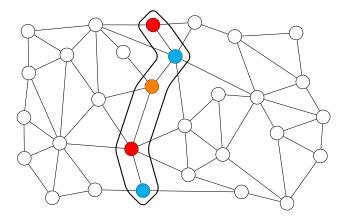
MAX INDEPENDENT SET, 3-COLORING, HAMILTONIAN PATH ...



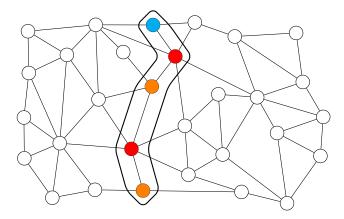
MAX INDEPENDENT SET, 3-COLORING, HAMILTONIAN PATH ...



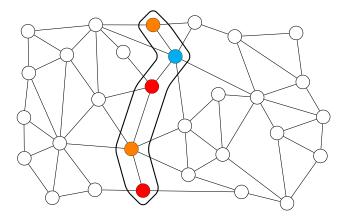
 $\frac{\text{MAX INDEPENDENT SET}, \text{ 3-COLORING, HAMILTONIAN PATH...}}{\text{Dynamic programming would spare a log } n \text{ in the exponent.}}$



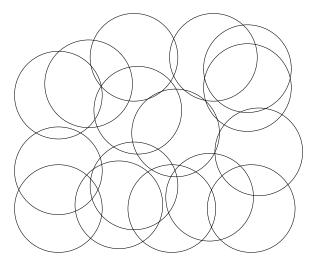
MAX INDEPENDENT SET, <u>3-COLORING</u>, HAMILTONIAN PATH...

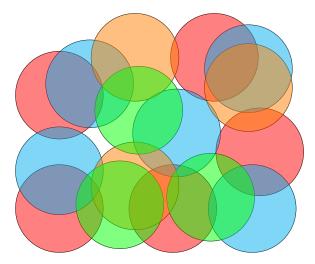


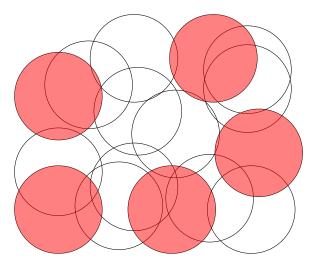
MAX INDEPENDENT SET, <u>3-COLORING</u>, HAMILTONIAN PATH...

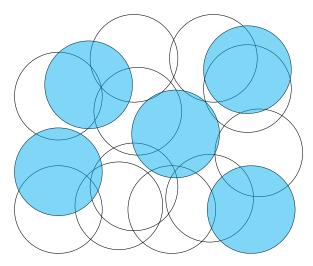


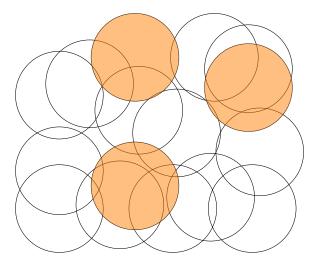
MAX INDEPENDENT SET, <u>3-COLORING</u>, HAMILTONIAN PATH...

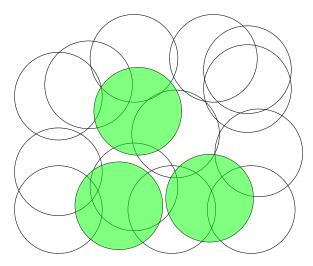












Frequency assignment in broadcast networks k-COLORING is NP-hard for any integer $k \ge 3$ the problem can be 3-approximated

Frequency assignment in broadcast networks k-COLORING is NP-hard for any integer $k \ge 3$ the problem can be 3-approximated

Is 3-COLORING as hard as 100-COLORING? $\lceil \sqrt{n} \rceil$ -COLORING?

Frequency assignment in broadcast networks k-COLORING is NP-hard for any integer $k \ge 3$ the problem can be 3-approximated

Is 3-COLORING as hard as 100-COLORING? $\lceil \sqrt{n} \rceil$ -COLORING?

For general graphs, the answer is yes: for any integer k, there is an $O^*(2^n)$ algorithm for k-COLORING and no $2^{o(n)}$ algorithm under the ETH. For planar graphs,

Frequency assignment in broadcast networks k-COLORING is NP-hard for any integer $k \ge 3$ the problem can be 3-approximated

Is 3-COLORING as hard as 100-COLORING? $\lceil \sqrt{n} \rceil$ -COLORING?

For general graphs, the answer is yes: for any integer k, there is an O*(2ⁿ) algorithm for k-COLORING and no 2^{o(n)} algorithm under the ETH.
For planar graphs, only 3-COLORING is hard!

Balanced separators for unit disks

Theorem (Smith, Wormald '98, special case) Given a collection S of n disks with ply at most l, there exists a circle Q, such that:

at most 3n/4 disks of S are entirely inside Q, at most 3n/4 disks of S are entirely outside Q, at most $O(\sqrt{n\ell})$ disks of S intersect Q.

Standard algorithm for ℓ -coloring (for unit disks)

If the ply is greater than ℓ , then more than ℓ colors are needed.

Otherwise, there is a balanced separator of size $O(\sqrt{n\ell})$ which can be exhaustively found in time $O(2^{\sqrt{n\ell} \log n})$.

Trying all the ℓ -colorings on *S* takes time $O(2^{\sqrt{n\ell \log \ell}})$.

Standard algorithm for ℓ -coloring (for unit disks)

If the ply is greater than ℓ , then more than ℓ colors are needed. Otherwise, there is a balanced separator of size $O(\sqrt{n\ell})$ which can be exhaustively found in time $O(2^{\sqrt{n\ell} \log n})$.

Trying all the ℓ -colorings on *S* takes time $O(2^{\sqrt{n\ell}\log \ell})$.

Overall running time:
$$O(2^{\sqrt{n\ell} \log n})$$
.

Theorem

For any $\alpha \in [0, 1]$, coloring n unit disks with $\ell = \Theta(n^{\alpha})$ colors cannot be solved in time $2^{o(n^{\frac{1+\alpha}{2}})} = 2^{o(\sqrt{n\ell})}$, under the ETH.

Theorem

For any $\alpha \in [0, 1]$, coloring n unit disks with $\ell = \Theta(n^{\alpha})$ colors cannot be solved in time $2^{o(n^{\frac{1+\alpha}{2}})} = 2^{o(\sqrt{n\ell})}$, under the ETH.

Constant number of colors \rightsquigarrow square root phenomenon. Linear number of colors \rightsquigarrow no subexponential-time algorithm.

Theorem

For any $\alpha \in [0, 1]$, coloring n unit disks with $\ell = \Theta(n^{\alpha})$ colors cannot be solved in time $2^{o(n^{\frac{1+\alpha}{2}})} = 2^{o(\sqrt{n\ell})}$, under the ETH.

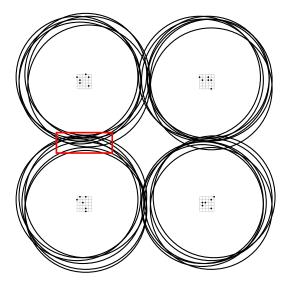
Constant number of colors \rightsquigarrow square root phenomenon. Linear number of colors \rightsquigarrow no subexponential-time algorithm.

And everything in between (hard part). For instance, \sqrt{n} -coloring cannot be done in $2^{o(n^{3/4})}$.

Roadmap

 $\ensuremath{\texttt{3-SAT}}\xspace \rightarrow \ensuremath{\texttt{2-grid}}\xspace$ 3-SAT \rightarrow 2-grid $\ensuremath{\texttt{3-SAT}}\xspace \rightarrow$ coloring unit disks

Partial 2-grid Coloring \rightarrow coloring unit disks



Partial 2-Grid Coloring

Input: An induced subgraph G of the $g \times g$ -grid, a positive integer ℓ . Each cell of this grid is mapped to a set of ℓ points (in a smaller grid $[\ell]^2$).

Question: Is there an *l*-coloring of all the points such that: two points in the same cell get different colors;

if v and w are adjacent in G, say, w = v + (1,0), p, resp. q, are points in the smaller grid of v resp. w, receiving the same color, then q has at a second coordinate which is at least the second coordinate of p?

2-Grid 3-SAT

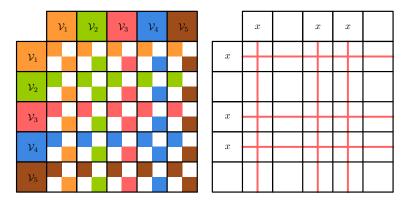
Input: A $g \times g$ grid, a positive integer k, each vertex (or cell) of the grid is associated to k variables, and a set C of constraints of two kinds:

clause constraints: for each cell of the grid, a set of pairwise variable-disjoint 3-clauses on its variables;

equality constraints: for two adjacent cells of the grid, a set of pairwise variable-disjoint equality constraints.

Question: Is there an assignment of the variables such that all constraints are satisfied?

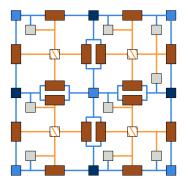
$\text{3-SAT} \rightarrow \text{2-Grid }\text{3-SAT}$



3-SAT on N variables with bounded number of occurrences (Sparsification Lemma) \rightsquigarrow split the variables into $\approx k$ blocks \rightsquigarrow split the clauses on one block into a constant number of sub-blocks (clauses vertex-disjoint)

The size of the created instance is
$$n = g^2 k$$
.
 $N = \Theta(gk) = \Theta(\sqrt{nk})$

2-Grid 3-SAT \rightarrow Partial 2-Grid Coloring



clause checking gadget

even variable assignment cell

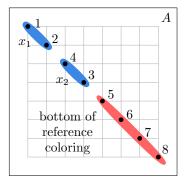
odd variable assignment cell

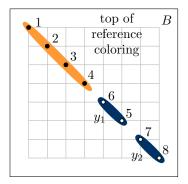
local reference cell

wires

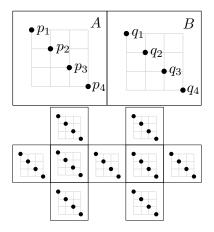
consistency checking gadget

Encoding information and reference coloring

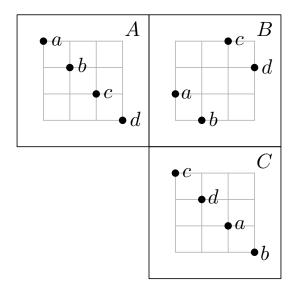


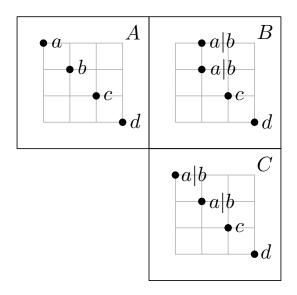


Wires

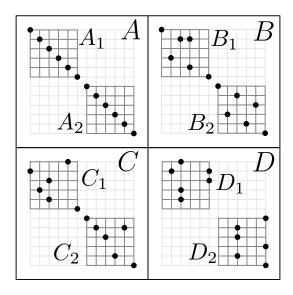


Permutation

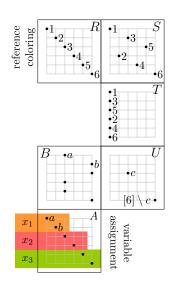


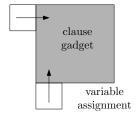


Independence

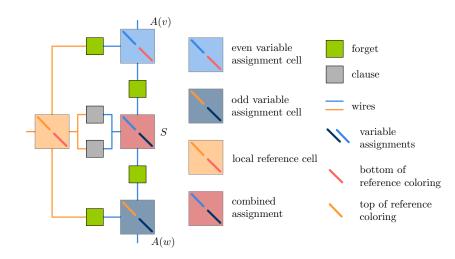


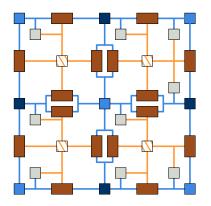
Clauses

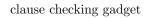




Consistency gadget (also crossing)







even variable assignment cell

odd variable assignment cell

local reference cell

wires

consistency checking gadget

Higher dimension

Theorem

For $\alpha \in [0, 1]$ and dimension $d \ge 2$, coloring n unit d-balls with $\ell = \Theta(n^{\alpha})$ colors cannot be solved in time $2^{n^{\frac{d-1+\alpha}{d}-\epsilon}}$ for any $\epsilon > 0$, under the ETH.

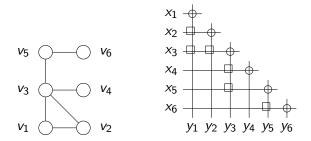
The first step in the chain is trickier: the higher dimensional grid should embed the SAT instance in a more compact way.

The second and third steps work similarly.

(Longer and longer) Segments

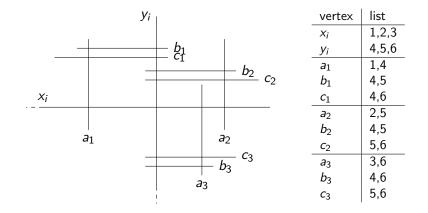
Theorem

6-coloring 2-Dir is not solvable in $2^{o(n)}$, under the ETH.

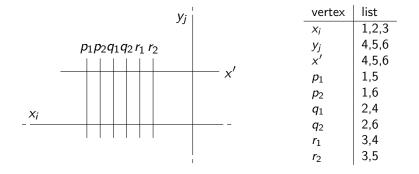


Reduction from 3-coloring on degree-4 graphs to list 6-coloring of segment intersection graphs.

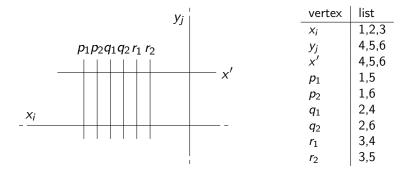
The x_i 's lists are [1, 2, 3], the y_j 's lists are [4, 5, 6]. Circles are equality gadgets $(1 \equiv 4, 2 \equiv 5, 3 \equiv 6)$, squares are inequality gadgets. Equality



Inequality



Inequality



Some extra gadgets permit to remove the lists.

Same lower bound for 4 colors. What happens with 3-colors? (whiteboard) Thanks for your attention!