Twin-width

Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant
 ENS Lyon, LIP

Utrecht Algorithms seminar, September 29th 2020

Cograph generalization attempt

Iteratively identify near twins

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test

Cograph generalization

Iteratively identify near twins and keep the error degree small

It would not with that further restriction

Contraction and trigraph

Trigraph: non-edges, edges, and red edges (error)

Contraction and trigraph

edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing

Contraction sequence and twin-width

Maximum red degree $=0$ overall maximum red degree $=0$

Contraction sequence and twin-width

Maximum red degree $=2$ overall maximum red degree $=2$

Contraction sequence and twin-width

Maximum red degree $=2$ overall maximum red degree $=2$

Contraction sequence and twin-width

Maximum red degree $=2$ overall maximum red degree $=2$

Contraction sequence and twin-width

Maximum red degree $=1$ overall maximum red degree $=2$

Contraction sequence and twin-width

Maximum red degree $=1$ overall maximum red degree $=2$

Contraction sequence and twin-width

Maximum red degree $=0$ overall maximum red degree $=2$

Contraction sequence and twin-width

Sequence of 2-contractions or 2-sequence, twin-width at most 2

Maximum red degree $=0$ overall maximum red degree $=2$

Graphs with bounded twin-width - trees

If possible, contract two twin leaves

Graphs with bounded twin-width - trees

If not, contract a deepest leaf with its parent

Graphs with bounded twin-width - trees

If not, contract a deepest leaf with its parent

Graphs with bounded twin-width - trees

If possible, contract two twin leaves

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Cannot create a red degree-3 vertex

Graphs with bounded twin-width - trees

Generalization to bounded treewidth and even bounded rank-width

Graphs with bounded twin-width - grids

Graphs with bounded twin-width - grids

4-sequence for planar grids, $3 d$-sequence for d-dimensional grids

Graphs with bounded twin-width - planar graphs?

Graphs with bounded twin-width - planar graphs?

For every d, a planar trigraph without planar d-contraction

Graphs with bounded twin-width - planar graphs?

For every d, a planar trigraph without planar d-contraction

More powerfool tool needed

The origin: Permutation Pattern

The origin: Permutation Pattern

The origin: Permutation Pattern

Theorem (Guillemot, Marx '14)
Permutation Pattern can be solved in time $2^{|\sigma|^{2}}|\tau|$.

Guillemot and Marx's win-win algorithm

Theorem (Marcus, Tardos '04)
$\forall t, \exists c_{t} \forall n \times n 0,1$-matrix with $\geqslant c_{t} n$ entries 1 has a t-grid minor.
4-grid minor $\left[\begin{array}{cc|cc|cc|cc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$

Guillemot and Marx's win-win algorithm

Theorem (Marcus, Tardos '04)
$\forall t, \exists c_{t} \forall n \times n 0,1$-matrix with $\geqslant c_{t} n$ entries 1 has a t-grid minor.

$$
\text { 4-grid minor }\left[\begin{array}{cc|cc|cc|cc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

A) $\geqslant c_{|\sigma|} n$ entries $1 \rightarrow$ YES from the $|\sigma|$-grid minor.
B) $<c_{|\sigma|} n$ entries $1 \rightarrow$ merge of two "similar" rectangles

Guillemot and Marx's win-win algorithm

Theorem (Marcus, Tardos '04)
$\forall t, \exists c_{t} \forall n \times n 0,1$-matrix with $\geqslant c_{t} n$ entries 1 has a t-grid minor.
4-grid minor $\left[\begin{array}{cc|cc|cc|cc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$
A) $\geqslant q_{|\sigma|} n$ entries $1 \rightarrow$ YES from the $|\sigma|$-grid minor.
B) $<c_{|\sigma|} n$ entries $1 \rightarrow$ merge of two "similar" rectangles

If B) always happens \rightarrow DP on this merge sequence

Our generalization to the dense case - mixed minor

Mixed zone: not horizontal nor vertical

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Our generalization to the dense case - mixed minor

Mixed zone: not horizontal nor vertical

$$
\left[\begin{array}{ll|lll|lll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

A matrix is said t-mixed free if it does not have a t-mixed minor

Grid minor theorem for twin-width

Theorem (B, Kim, Thomassé, Watrigant 20)
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{O(t)}}$.

Grid minor theorem for twin-width

Theorem (B, Kim, Thomassé, Watrigant 20)
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{0(t)}}$.
Now to bound the twin-width of a class \mathcal{C} :

1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with \mathcal{C}

Grid minor theorem for twin-width

Theorem (B, Kim, Thomassé, Watrigant 20)
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{0(t)}}$.
Now to bound the twin-width of a class \mathcal{C} :

1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with \mathcal{C}

Cutting after the $t / 2$-th division of the t-grid minor

Grid minor theorem for twin-width

Theorem (B, Kim, Thomassé, Watrigant 20)
If $\exists \sigma$ s.t. $\operatorname{Adj}_{\sigma}(G)$ is t-mixed free, then $\operatorname{tww}(G)=2^{2^{0(t)}}$.
Now to bound the twin-width of a class \mathcal{C} :

1) Find a good vertex-ordering procedure
2) Argue that, in this order, a t-mixed minor would conflict with \mathcal{C}

One of the shaded areas contains a $t / 2$-grid minor on disjoint sets

Bounded twin-width - unit interval graphs

order by left endpoints

Bounded twin-width - unit interval graphs

No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves

Bounded twin-width $-K_{t}$-minor free graphs

Given a hamiltonian path, we would just use this order

Bounded twin-width $-K_{t}$-minor free graphs

B_{t}		$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$		

Contracting the $2 t$ subpaths yields a $K_{t, t}$-minor, hence a K_{t}-minor

Bounded twin-width $-K_{t}$-minor free graphs

Instead we use a specially crafted lex-DFS discovery order

Theorem

The following classes have bounded twin-width, and $O(1)$-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_{t}-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_{t}-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K_{4},
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Theorem

The following classes have bounded twin-width, and $O(1)$-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- K_{t}-minor free graphs,
- map graphs,
- subgraphs of d-dimensional grids,
- K_{t}-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K_{4},
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Can we solve problems faster, given an $O(1)$-sequence?

Example of k-Independent Set

d-sequence: $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}=K_{1}$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k.

Example of k-Independent SEt

d-sequence: $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}=K_{1}$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k. $d^{2 k} n^{2}$ red connected subgraphs, actually only $d^{2 k} n=2^{O_{d}(k)} n$

Example of k-Independent SEt

d-sequence: $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}=K_{1}$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k. $d^{2 k} n^{2}$ red connected subgraphs, actually only $d^{2 k} n=2^{O_{d}(k)} n$

In G_{n} : red connected subgraphs are singletons, so are the solutions.
In G_{1} : If solution of size at least k, global solution.

Example of k-Independent Set

d-sequence: $G=G_{n}, G_{n-1}, \ldots, G_{2}, G_{1}=K_{1}$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most k.
$d^{2 k} n^{2}$ red connected subgraphs, actually only $d^{2 k} n=2^{O_{d}(k)} n$
In G_{n} : red connected subgraphs are singletons, so are the solutions.
In G_{1} : If solution of size at least k, global solution.
How to go from the partial solutions of G_{i+1} to those of G_{i} ?

Best partial solution inhabiting \bullet ?

3 unions of $\leqslant d+2$ red connected subgraphs to consider in G_{i+1} with u, or v, or both

Other (almost) single-exponential parameterized algorithms

Theorem
Given a d-sequence $G=G_{n}, \ldots, G_{1}=K_{1}$,

- k-Independent Set,
- k-Clique,
- (r, k)-Scattered Set,
- k-Dominating Set, and
- (r, k)-Dominating Set
can be solved in time $2^{O_{d}(k)} n$, whereas Subgraph Isomorphism and Induced Subgraph IsOMORPHISM can be solved in time $2^{O_{d}(k \log k)} n$.

Other (almost) single-exponential parameterized algorithms

Theorem
Given a d-sequence $G=G_{n}, \ldots, G_{1}=K_{1}$,

- k-Independent Set,
- k-Clique,
- (r, k)-Scattered Set,
- k-Dominating Set, and
- (r, k)-Dominating Set
can be solved in time $2^{O_{d}(k)} n$, whereas Subgraph Isomorphism and Induced Subgraph IsOMORPHISM can be solved in time $2^{O_{d}(k \log k)} n$.

A more general FPT algorithm?

First-order model checking on graphs

Graph FO Model Checking Parameter: $|\varphi|$ Input: A graph G and a first-order sentence $\varphi \in F O\left(\left\{E_{2},={ }_{2}\right\}\right)$ Question: $G \models \varphi$?

First-order model checking on graphs

> Graph FO Model Checking \quad Parameter: $|\varphi|$ Input: A graph G and a first-order sentence $\varphi \in F O\left(\left\{E_{2},=2\right\}\right)$ Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall x \bigvee_{1 \leqslant i \leqslant k} x=x_{i} \vee \bigvee_{1 \leqslant i \leqslant k} E\left(x, x_{i}\right) \vee E\left(x_{i}, x\right)
$$

$G \models \varphi ? \Leftrightarrow$

First-order model checking on graphs

Graph FO Model Checking
Parameter: $|\varphi|$
Input: A graph G and a first-order sentence $\varphi \in F O\left(\left\{E_{2},=2\right\}\right)$
Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall x \bigvee_{1 \leqslant i \leqslant k} x=x_{i} \vee \bigvee_{1 \leqslant i \leqslant k} E\left(x, x_{i}\right) \vee E\left(x_{i}, x\right)
$$

$G \models \varphi ? \Leftrightarrow k$-Dominating Set

First-order model checking on graphs

> Graph FO Model Checking Input: A graph G and a first-order sentence $\varphi \in F O\left(\left\{E_{2},=2\right\}\right)$ Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \bigwedge_{1 \leqslant i<j \leqslant k} \neg\left(x_{i}=x_{j}\right) \wedge \neg E\left(x_{i}, x_{j}\right) \wedge \neg E\left(x_{j}, x_{i}\right)
$$

$G \models \varphi ? \Leftrightarrow$

First-order model checking on graphs

> Graph FO Model Checking Parameter: $|\varphi|$ Input: A graph G and a first-order sentence $\varphi \in F O\left(\left\{E_{2},=2\right\}\right)$ Question: $G \models \varphi$?

Example:

$$
\varphi=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \bigwedge_{1 \leqslant i<j \leqslant k} \neg\left(x_{i}=x_{j}\right) \wedge \neg E\left(x_{i}, x_{j}\right) \wedge \neg E\left(x_{j}, x_{i}\right)
$$

$G \models \varphi ? \Leftrightarrow k$-Independent Set

Classes with known tractable FO model checking

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|) n$ on bounded-degree graphs [Seese '96]

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|) n^{1+\varepsilon}$ on any nowhere dense class [Grohe, Kreutzer, Siebertz '14]

Classes with known tractable FO model checking

End of the story for the classes closed by taking subgraphs tractable FO Model Checking \Leftrightarrow nowhere dense

Classes with known tractable FO model checking

New program: dense (hence not subgraph-closed) classes

Classes with known tractable FO model checking

MSO_{1} Model Checking solvable in $f(|\varphi|, w) n$ on graphs of rank-width w [Courcelle, Makowsky, Rotics '00]

Classes with known tractable FO model checking

Is σ a subpermutation of τ ? solvable in $f(|\sigma|)|\tau|$
[Guillemot, Marx '14]

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|, w) n^{2}$ on posets of width w [GHLOORS '15]

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|) n^{O(1)}$ on map graphs [Eickmeyer, Kawarabayashi '17]

Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|, d) n$ on graphs with a d-sequence [B, Kim, Thomassé, Watrigant '20+]

Workflow of the FO model checking algorithm

Workflow of the FO model checking algorithm

Direct examples: trees, bounded rank-width, grids, d-dimensional grids, unit interval graphs, K_{t}-free unit ball graphs

Workflow of the FO model checking algorithm

Detour via mixed minor for: pattern-avoiding permutations, bounded width posets, K_{t}-minor free graphs

Workflow of the FO model checking algorithm

Let us see a snapshot of the FO model checking

DP for FO model checking with d-sequence

DP for FO model checking with d-sequence

only $f(d, \ell)$ trees

Small classes

Small: class with at most $n!c^{n}$ labeled graphs on $[n]$.
Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
Bounded twin-width classes are small.

Unifies and extends the same result for: σ-free permutations [Marcus, Tardos '04] K_{t}-minor free graphs [Norine, Seymour, Thomas, Wollan '06]

Small classes

Small: class with at most $n!c^{n}$ labeled graphs on $[n]$. Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
Bounded twin-width classes are small.

Subcubic graphs, interval graphs, triangle-free unit segment graphs have unbounded twin-width

Small classes

Small: class with at most $n!c^{n}$ labeled graphs on [n].
Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
Bounded twin-width classes are small.

Is the converse true for hereditary classes?
Conjecture (small conjecture)
A hereditary class has bounded twin-width if and only if it is small.

Future directions

Obvious questions:

Algorithm to compute/approximate twin-width in general Fully classify classes with tractable FO model checking Small conjecture, polynomial expansion

Future directions

Obvious questions:
Algorithm to compute/approximate twin-width in general Fully classify classes with tractable FO model checking
Small conjecture, polynomial expansion

Other directions we are exploring:
Better approximation algorithms on bounded twin-width classes Twin-width of Cayley graphs of finitely generated groups

Future directions

Obvious questions:

Algorithm to compute/approximate twin-width in general Fully classify classes with tractable FO model checking
Small conjecture, polynomial expansion

Other directions we are exploring:
Better approximation algorithms on bounded twin-width classes Twin-width of Cayley graphs of finitely generated groups

On arxiv
Twin-width I: tractable FO model checking [BKTW '20]
Twin-width II: small classes [BGKTW '20]
Twin-width III: Max Independent Set and Coloring [BGKTW '20]

