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Complexity of Subgraph Isomorphism
“Is H in G?” generalizes k-Clique

NP-complete, W[1]-complete parameterized by p := |V (H)|

no f (p)no(p), no f (p)no(p/ log p) for cubic H, with n := |V (G)|

f (p, tw(G))n, by Courcelle’s theorem
2O(p)ntw(H)+1, by color coding (Alon, Yuster, Zwick ’95)

2O(p log p)nO(1), when G is Kt-minor free, by treewidth-p coloring
2O(p/ log p)nO(1), when G is apex-minor free and H connected
2O(√p log2 p)nO(1), if further H has bounded-degree

In sharp contrast: no 2o(n/ log n), when G is series-parallel, H is a
tree, and both graphs have only one vertex of degree more than 3.

Theorem (Pilipczuk, Siebertz ’19)
Subgraph Isomorphism can be solved in time 2O(p log p)nO(1)

and polynomial space, when G is Kt-minor free.
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Treedepth

Treedepth of G: smallest height of a forest F such that G is a
subgraph of the ancestor-descendant closure of F .

F

clos(F )

G has treedepth at most 4G has treedepth 4
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p-Centered colorings are treedepth-p colorings

Treedepth-p coloring: every subgraph induced by a set X of at
most p colors have treedepth at most |X |.

Such an ind. subgraph G gets |X | colors of the p-centered coloring

In each CC of G , one color appears exactly once
Set the corresponding vertices to be roots of the forest

The rest of the CC has at most |X | − 1 colors → recurse
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Reducing to graphs of treedepth 6 p := |V (H)|

G ∈ C excluding a minor →
nO(1)

p-centered coloring with pO(1) colors

∀ color set X of size p:
treedepth decomposition F of G ′ := G [{v |v has a color in X}]
→
(pO(1)

p
)
nO(1) = 2O(p log p)nO(1)

Solve “is H in G ′?” helped by F

A solution cannot escape since it receives at most p colors
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Color coding step

H G

Give each vertex a random color between 1 and p
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Color coding step

H G

Repeating this 100pp times, well color a solution with prob. 0.999



Color coding step

H G

Repeating this ppn times, well color a solution a.a.s.



Derandomization

Theorem (Alon, Yuster, Zwick ’95)
One can compute in polynomial-time a family F of pO(1) log n
functions f : V (G)→ {1, . . . , p2} such that for every set
X ⊆ V (G) of size p there exists f ∈ F injective on X.

p-perfect family: every vertex subset of size p is multicolored
(no repetition of colors) by at least one function of the family.
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Derandomization

Theorem (Alon, Yuster, Zwick ’95)
One can compute in polynomial-time a family F of pO(1) log n
functions f : V (G)→ {1, . . . , p2} such that for every set
X ⊆ V (G) of size p there exists f ∈ F injective on X.

p-perfect family: every vertex subset of size p is multicolored
(no repetition of colors) by at least one function of the family.

Theorem (Schmidt, Siegal ’90)
One can compute in polynomial-time a family G of 2O(p) functions
f : {1, . . . , p2} → {1, . . . , p} such that for every set
X ⊆ {1, . . . , p2} of size p there exists g ∈ G injective on X.

F ′ = {σ ◦ g ◦ f | f ∈ F and g ∈ G and σ ∈ Sp}
|F ′| = p! · 2O(p) · pO(1) log n = 2O(p log p) log n



Colored Subgraph Isomorphism
on bounded treedepth graphs

We are now left with proving:
Theorem (Pilipczuk, Siebertz ’19)
Colored Subgraph Isomorphism can be solved in time
2O(p log p)nO(1) and polynomial space, when G is given with a
treedepth decomposition of depth at most p.

H G

F 6 p
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dynamic-programming
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Chld(u): set of children of u
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Some notations for the upcoming
dynamic-programming

u

Tail(u): set of strict ancestors of u



Some notations for the upcoming
dynamic-programming

u

Desc(u): set of descendants of u, including u



Chunk

H

X
D

disjoint pair (X ,D),
H[X ] connected, and

NH(X ) ⊆ D
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A tuple (u,X ,D, γ)
u ∈ V (G)

(X ,D) is a chunk
γ : D → Tail(u) injective



Subproblems

H

X
D

G

u

u

u

A tuple (u,X ,D, γ)
u ∈ V (G)

(X ,D) is a chunk
γ : D → Tail(u) injective



Subproblems

H

X
D

G

u

u

u

Val(u,X ,D, γ) =
Is there γ′ : X → Desc(u) such that

γ ∪ γ′ is a (color-preserving) subgraph embedding?
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Subproblems

H

X
D

G

u

u
u

How many tuples (u,X ,D, γ)?
6 n · 3p · pp = 2O(p log p)n



Computing Val, u is a leaf of F

Val(u, ∅,D, γ) = [γ is a subgraph embedding]

Val(u, {w},D, γ) = [u is colored w and γ ∪ {w → u} is a s.e.]



Computing Val, u is a leaf of F

Val(u, ∅,D, γ) = [γ is a subgraph embedding]

Val(u, {w},D, γ) = [u is colored w and γ ∪ {w → u} is a s.e.]



Computing Val, u is a not a leaf of F

If u has not a color of X :
Val(u,X ,D, γ) =

∨
v∈Chld(u)

Val(v ,X ,D, γ)

If u is colored w ∈ X :
Val(u,X ,D, γ) =

∨
v∈Chld(u)

Val(v ,X ,D, γ) ∨

∧
Z∈CC(X−{w})

∨
v∈Chld(u)

Val(v ,Z ,D ∪ {w}, γ ∪ {w → u})
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Algorithm

Compute
∨

r root of F
Val(r ,X , ∅, ∅) for every X CC of H

If all positive answers → overall solution. Why?

Disjointness. That was the point of color coding.
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Complexity

Space: polynomial, calling stack bounded by treedepth

Time: 2O(p log p)nO(1) all recursive calls are different.
A non-root call defines a unique parent tuple.
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Summary

p color classes of a p-centered coloring have treedepth p

Color coding for solution disjointness

Treedepth DP allows polyspace, as opposed to treewidth DP

An example of such an algorithm, notion of chunk

Thank you for your attention!
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