
Internship report M2

Greedy algorithms for computing the
Birkhoff decomposition

Damien Lesens

Supervisors
Jérémy E. Cohen – CREATIS,

Bora Uçar – LIP

Location
ROMA team, LIP

ENS de Lyon

February–July 2024

Contents

1 Introduction 1

2 Background 2
2.1 Notation . 2
2.2 Previous works . 4
2.3 Applications . 6
2.4 Sparse coding . 7

3 OMP based algorithm for BvN decomposition 10
3.1 Algorithm . 10
3.2 Properties . 11

4 Experiments 12
4.1 Code and experimental set-up . 13
4.2 Experimental results . 13

5 Generalised Birkhoff Von Neumann decomposition 15
5.1 Overview of the difficulties . 15
5.2 Complexity improvement . 17
5.3 Experiments . 18
5.4 Applications . 18

6 Conclusion 18

A Proofs of properties on GompBvN(BPM,LP) 21

1 Introduction

A square matrix is called doubly stochastic if it has nonnegative entries, and the sum of
entries in each row and in each column is one. Birkhoff Theorem states that any doubly
stochastic matrix can be written as a convex combination of permutation matrices [4].
That is, for an n× n doubly stochastic matrix A, there exist coefficients α1, α2, . . . , αk ∈
(0, 1] with

∑k
i=1 αi = 1 and n× n permutation matrices P1,P2, . . . ,Pk such that

A = α1P1 + α2P2 + · · ·+ αkPk . (1)

This representation is called the Birkhoff-von Neumann (BvN) decomposition. A given
doubly stochastic matrix in general has multiple BvN decompositions, and there are var-
ious applications in which a decomposition with a small number of permutation matrices
is required (discussed in Section 2.3). Dufossé and Uçar [12] show that the problem of
finding a BvN decomposition of a given matrix with the minimum number of permutation
matrices is NP-complete.

In consequence, heuristic approaches to obtaining BvN decompositions with small
number of permutation matrices have been proposed and analysed [11, 12]. These heuris-
tics perform well in general on matrices arising in various applications. However, it has
been proven that there are optimal BvN decompositions that these heuristics can not
reach. The main work of my internship has been to propose, study and implement a
new family of algorithms named GompBvN based on methods used to solve the sparse
coding problem (defined in Section 2.4). GompBvN can solve optimally instances that

1

were out of reach for previously known algorithms, while showing similar performance in
other cases.

I have also studied a variant of the Birkhoff theorem which decomposes a symmetric
doubly stochastic matrix into a convex combination of symmetric permutation matrices.
I proposed a new algorithm for the problem, which improves on the asymptotic cost
of the only known algorithm while being easier to implement. To support this claim I
implemented my algorithm, making it is the first working implementation for this problem.
I will briefly present this part of my work in the last section of this report.

2 Background

This section will first introduce useful notation and concepts. I will then present previous
works and applications for the problem we are interested in.

2.1 Notation

2.1.1 Matrices

We use bold upper-case letters to refer to matrices, and bold lower-case letters to refer to
vectors. We use vec(·) to convert a matrix to a vector by stacking the columns, e.g., for
an n× n matrix A, the vector a = vec(A) is of size n2.

A permutation matrix is a square matrix consisting of zeros and ones, with exactly
a single one in each column and in each row. Let A be an n×n matrix and P be an n×n
permutation matrix. We use the notation P ⊆ A to denote that the entries of A at the
positions corresponding to the nonzero entries of P are also nonzero. That is, the nonzero
pattern of P is included in the nonzero pattern of A. We use P⊙A to denote the entry-
wise product of P and A, which selects the entries of A at the positions corresponding to
the nonzero entries of P. We also use min{P⊙A} to denote the minimum entry of A at
the nonzero positions of P and

∑
P⊙A is the sum of the entries of A at those nonzero

positions.

A matrix is doubly stochastic if it has nonnegative entries, and the sum of each row
and in each column is one. Finally, a square matrix A is called fully indecomposable, when
AQ has nonzeros on the diagonal for a permutation matrix Q, and no permutation matrix
P exists such that PAQPT is block upper diagonal [3, Ch.2]. This later definition will
appear multiple times in this report, but it is not necessary to understand it.

2.1.2 Graphs

A matching in a graph is a set of edges no two of which share a common vertex. A vertex
is said to be matched if there is an edge in the matching incident on the vertex. In a
perfect matching , all vertices are matched.

Let A be an n×n doubly stochastic matrix. The standard weighted bipartite graph
G = (R ∪ C,E) associated with A has n vertices in the set R and another n vertices in
the set C such that each ai,j ̸= 0 uniquely defines an edge (ri, cj) ∈ E in G with weight
ai,j (R stands for rows and C for columns). The other way around, any weighted bipartite
graph G can be associated with a doubly stochastic matrix A if the weight of each edge
is positive and for each node the sum of the weight of adjacent edges is 1.

This correspondence between matrices and bipartite graph is central to the under-
standing of the BvN decomposition. Indeed, for a given matrix A a permutation matrix

2

C

R

 7 4 0
1 5 5
3 2 6



= 2

 1 0 0
0 0 1
0 1 0

+

 5 4 0
1 5 3
3 0 6


(a) Matrix representation

R C

7
4 1

5
5

3

2

6

(b) Graph representation

Figure 1: Example of the equivalence between the matrix and graph representation. Rows form
the set of nodes R on the left and columns the set C on the right. The entries of the matrix and
the edge labels should be divided by 11 for the matrix to be doubly-stochastic. After subtracting
a permutation matrices, an entry of the matrix is put to zero and now all rows and columns sum
to 9. The corresponding perfect matching in represented in red in the graph

P with P ⊆ A corresponds to a unique perfect matching in the bipartite graph of A. An
example with a 3 by 3 matrix is represented in Figure 1. The weight of a perfect matching
is

∑
P⊙A where P is the permutation associated with this matching.

In the following, we will use m = |E| to denote the number of edges of a graph
G = (V,E).

2.1.3 Polytopes

A polyhedra P in dimension d is the intersection of a finite number of half spaces of Rd,
i.e.,

P = {x ∈ Rd|Ax ≤ b}

with A ∈ Rk×d and b ∈ Rk. The sign ≤ used for vectors means that every entry of the
vector is less than the other. Each line of A gives the coefficients for the linear constraints
x has to verify to be in the polyhedra.

A polytope is the convex hull of a finite number of points in Rd, i.e.

P = {x ∈ Rd|x =
∑
i

λiyi,
∑
i

λi = 1, λi ≥ 0}

with yi ∈ Rd for all i. The points yi are called the vertices of the polytope. The
Minkowski-Weyl Theorem establishes that any bounded polyhedra is a polytope. In this
case, the linear constraints defining its boundaries are called the faces of the polytope and
intersection of faces are edges.

One could reformulate Birkhoff’s Theorem using the terminology of polytopes in
the following way: the polyhedra on Rn×n defined by the constraints:

n∑
i=1

aij = 1 for all j ∈ {1, . . . , n} (2a)

n∑
j=1

aij = 1 for all i ∈ {1, . . . , n} (2b)

3

aij ≥ 0 for all (i, j) ∈ {1, . . . , n}2 (2c)

is exactly the polytope whose vertices are the permutation matrices.

2.1.4 Optimization problems

In this report we will use optimisation problems as sub-routines for our algorithms.

Linear programs (LP) are problems that can be expressed in a standard form as

Find a vector x maximizing cTx
subject to Ax ≤ b
and x ≥ 0

(LP)

with A ∈ Rk×d, b ∈ Rk and c ∈ Rd in other words the problem is to maximize a linear
function over a polytope. The problem is in P and there are many efficient algorithms to
solve it.

A quadratic program (QP) can be expressed as

Find a vector x minimizing 1
2x

TQx+ cTx
subject to Ax ≤ b
and x ≥ 0

(QP)

with Q ∈ Rd×d. In this general formulation this problem is NP-hard, but if the objective
has the form ||Bx− r||22, with ||v||2 = vTv then it is in P (more precisely it is in P if the
objective is convex). It is equivalent to minimizing a quadratic function on a polytope.

Dropping the linear constraints, we get a least squares (LS) problem of the form

Find a vector x minimizing ||Bx− r||2 . (LS)

2.2 Previous works

In this subsection we give an overview of the known heuristics to get an optimal BvN
decomposition.

2.2.1 Birkhoff’s theorem

Birkhoff’s original proof [4] of the existence of a BvN decomposition of the form (1) is
constructive.

First, find a permutation matrix P0 ⊆ A. To prove the existence of such a per-
mutation Birkhoff uses the “graph view” of A. Indeed, as we observed earlier, finding a
permutation P0 ⊆ A is equivalent to finding a perfect matching in the weighted bipartite
graph associated with A. I will not give the details here, but Birkhoff’s proof makes use
of Hall’s marriage theorem [16] to show that such perfect matching always exists in a
bipartite graph with positive weights such that for each node the sum of the weight of
adjacent edges is equal.

Then, set α0 = min{P0 ⊙A}, i.e., take α0 to be the smallest edge weight among
the edges of the perfect matching. The central observation now is that if we define A(1) =
A− α0P0, then

1
1−α0

A(1) is doubly stochastic. Indeed, we removed exactly α0 from each
line and each column so the sum of each line and each column is now 1 − α0. We can
thus repeat the process with A(1): find P1 ⊆ A(1), subtract it and repeat. A step of this
algorithm is represented in Figure 1.

4

This process will end as at each iteration we set to zero at least one entry of A.
Finding a perfect matching in a bipartite graph can be done in O(

√
nm) time [17], and

we repeat the process at most m times.

Algorithm 1 is a pseudo-code for Birkhoff’s constructive proof.

Algorithm 1 Birkhoff’s original algorithm

1: Input: A: a doubly stochastic matrix
2: Output: α1, . . . , αk and P1, . . . ,Pk, where A =

∑k
i=1 αiPi

3: Let A(0) ← A and i← 1
4: while A(i−1) ̸= 0 do
5: find a permutation matrix Pi ⊆ A(i−1)

6: αi ← min{Pi ⊙A(i−1)}
7: A(i) ← A(i−1) − αiPi

8: i← i+ 1
9: end while

10: k ← i− 1

Based on the observation that at line 7 we annihilate at least one entry, Markus-
Ree theorem [26] states that for a dense matrix, Birkhoff’s algorithm will obtain at most
k ≤ n2 − 2n+ 2 permutation matrices. Brualdi and Gibson [7] and Brualdi [6] show that
for a sparse, fully indecomposable doubly stochastic matrix with τ nonzeros, the relation
k ≤ τ − 2n+ 2 holds.

We can also obtain a lower bound on k (the number of permutation matrices) by
observing that at each iteration we set to zero at most one entry per line and per column.
Hence k ≥ dmax where dmax is the maximum number of nonzeros in a row or a column. It
is also the maximum degree in the graph G associated with A, hence the name dmax.

In his original proof, Birkhoff selects at line 5 a permutation which touches a min-
imum nonzero entry in A. One can select any permutation inside A(i−1), and that is
why we can say that Birkhoff actually gives a family of heuristics, differentiating from
each other by the way a permutation matrix is selected at each step. Picking a well cho-
sen permutation matrix can greatly reduce the number of components produced by the
algorithm, as we will see next.

2.2.2 BvN greedy

The coefficient picked for a permutation Pi at line 6 is αi = min{Pi ⊙ A(i−1)}. Also,
another stopping criterion for the while loop would be

∑j−1
i=1 αi = 1. In consequence, if one

wants to make the most progress in the algorithm, it makes sense to pick a permutation
that maximizes min{Pi ⊙ A(i−1)}. This idea is proposed and studied by Dufossé and
Uçar [12]. The resulting algorithm is called BvNG (for BvN greedy).

At each step, BvNG chooses a perfect matching M in G = (R ∪ C,E) which

maximizes minrk,cj∈M A
(i−1)
k,j . The problem of finding a perfect matching whose minimum

edge weight is maximum amongst all perfect matchings is called the bottleneck matching
problem (BPM). For the example of Figure 1, the identity matrix with bottleneck value 5
is such a perfect matching. One way to solve it is to find the value b among edge weights
such that there is a perfect matching in G = (R ∪ C,E ∩ {(i, j)|ai,j ≥ b}, but not in
G = (R ∪ C,E ∩ {(i, j)|ai,j > b}. This value can be found by binary search on the set of
edge weights.

5

Panagiotas et al. [31] use a different method to solve this problem which I will not
explain here. They show that their method is faster and more stable in practice, and
provide a C implementation. This is the state of the art algorithm, which I use in Section
4 for the experiments.

Dufossé and Uçar show that this heuristic is very efficient in general compared to
Birkhoff’s original algorithm, obtaining a number of permutation more than 40 times
smaller on some real life instances (see Section 4).

However, Dufossé et al. [11] also show that all heuristics in the family of Algorithm
1 are flawed since they put to zero an entry of A at each step. In particular, no algo-
rithm from this family, nor similar algorithms making sequential greedy decisions about
coefficients without revising them, can always find optimal solutions, even if they test all
available permutations. To show this they construct a class of matrices for which Birkhoff
type algorithms will never find the optimal solution. They start by associating each letter
from a to j with 2p for p = 0, . . . , 9 in the lexicographic order. Then, the matrix

A =
1

1023


a+ b d+ i c+ h e+ j f + g
e+ g a+ c b+ i d+ f h+ j
f + j e+ h d+ g b+ c a+ i
d+ h b+ f a+ j g + i c+ e
c+ i g + j e+ f a+ h b+ d


is doubly stochastic, as is (

In×n 0n×5

05×n A

)
, (3)

for any n ≥ 0, where In×n is the n× n identity matrix and 0n×5 and 0n×5 are matrices of
zeros. An optimal decomposition of (3) requires ten permutation matrices corresponding
to the ten letters, and Dufossé et al. show that any algorithm annihilating an entry in the
first iteration without revising the coefficients cannot find it.

This is a strong motivation for finding another family of heuristics that could over-
come this flaw inherent to Birkhoff type algorithms. Furthermore, we will see later that
this type of difficult instances can be extended to a more general class of matrices and
that the proposed family of heuristics can find optimal solutions on those cases.

2.3 Applications

Before diving into the main contribution of this report, let me introduce some of the
applications of the sparse Birkhoff-von Neumann decomposition problem.

2.3.1 Matrix decomposition

The BvN decomposition can be used to decompose a large class of matrices into a sum
of simple atoms which can be utilized in some numerical applications. Getting a sparse
decomposition allows for more efficiency in those applications.

At first sight, the set up in which the BvN decomposition applies seems to be
restrictive, as we need a square positive doubly-stochastic matrix. However, given any
fully indecomposable square matrix M, one can transform it efficiently into a doubly
stochastic matrix A and make use of the BvN decomposition. Indeed, one can first take
the absolute value of its entries and then find two diagonal factor matrices DR and DC

such that A ≈ DRMDC.

6

These factor matrices can be found by scaling alternatively the rows and the columns
of M, i.e. for each i ∈ {1, . . . , n}, divide the ith row by

∑n
j=1mi,j , then for each j ∈

{1 . . . , n}, divide the jth column by
∑n

i=1mi,j . Sinkhorn and Knopp [21] showed in 1967
that repeating this process for a positive fully indecomposable matrix will converge to a
doubly-stochastic matrix. Later, Knight and Ruiz [19] provided a more complex algorithm
converging faster than the one of Sinkhorn and Knoop.

Once a BvN decomposition of A is obtained, one can decompose M in a similar
fashion. By remembering the negative entries in M, one can then “reverse” the absolute
value applied at the beginning by setting to −1 the entries of the permutation matri-
ces obtained corresponding to negative entries in M. In other words, we can write any
fully-indecomposable matrix as a convex combination of scaled and signed permutation
matrices. Many matrices appearing in real life applications are fully-indecomposable, thus
this decomposition applies to a wide range of matrices. Obtaining a decomposition with
a small number of terms is of interest as it allows for a smaller representation in memory
and faster manipulations for methods making use of it.

This decomposition is notably used by Benzi and Uçar [2] to solve challenging linear
systems. The smaller the number of terms in the decomposition, the faster their algorithm
is.

We will also see in Section 5 that there are hopes that this decomposition would
preserve the symmetry of the original matrix.

2.3.2 Data center scheduling

Another application of the BvN decomposition appears in scheduling for data centers.
High-speed circuit switches are increasingly replacing traditional electronic packet switches
in those infrastructures. Circuit switches provide higher data rates at a lower energy
cost but are less flexible, meaning that they have a longer reconfiguration time. The
problem of computing switching configurations for circuit switches boils down to the BvN
decomposition. Indeed, we can model a circuit switch by a doubly-stochastic matrix, with
rows representing data senders and columns data receivers. The entries of the matrix
represent the percentage of its data each sender wants to send to a given receiver. In
this context, the permutation matrices of the BvN decomposition will each represent a
switch configuration and coefficients give the amount of time each configuration should be
used. Getting a BvN decomposition with a minimal number of terms thus optimizes the
reconfiguration time of circuit switches.

This remains a simplistic modelling and many papers present more complex and
realistic models deviating from our framework (see e.g., [24, 5, 32]). Results on the classical
BvN decomposition remain of use for those more accurate models.

2.4 Sparse coding

The main algorithm proposed in this report for the BvN decomposition takes inspiration
from the field of sparse coding. The general problem tackled in this field is the following:
we are given an input data x ∈ Rd and some atoms (di)i ∈ Rd composing a dictionary
D = (d1|d2|...|dn) ∈ Rd×n. The goal is to find a representation vector r ∈ Rn such that
x ≈ Dr and r is the sparsest, i.e., it has as few non-zero entries as possible. The dictionary
D is assumed to have more columns than rows (d < n) and to have full column rank. The
vector x can be seen as an observed signal from which we want to recover the sources
that produced it, i.e., the atoms di and their associated coefficients ri. The motivation for

7

sparsity in r is to provide the simplest possible explanation of x as a linear combination
of as few atom as possible.

This problem is NP-hard in general [28], but there are some approximation algo-
rithms [14].

2.4.1 BvN decomposition as a sparse coding problem

Dufossé et al. [11] formulate the BvN decomposition of a given doubly stochastic matrix
A as a linear system of equations, thus making the link between sparse coding and the
BvN decomposition. This link was not explored before my internship.

Let Ωn be the set of all n × n permutation matrices. The n! matrices in Ωn are,
without loss of generality, ordered and referred to as P1, . . . ,Pn!. Dufossé et al. define a
matrix M of size n2 × n! as

M = (vec(P1)| vec(P2)| · · · | vec(Pn!))

Matrix M is therefore a dictionary of permutations. Consequently, a BvN decomposition
with the smallest number of permutation matrices is the following sparse coding problem

min
x∈Rn!

+

∥x∥0 such that Mx = a , (4)

where a = vec(A), x is a vector of n! nonnegative elements, xj corresponding to the
permutation matrix Pj and ||x||0 is the number of nonzeros in x. The dictionary is
dramatically large even for tiny values of n, making this sparse coding problem very
challenging:

• in theory: from a linear algebra standing point, there are a lot of atoms which are
linearly dependant and thus there is a lot of redundancy in the dictionary. This
implies that a single signal can have a lot of different representations, and finding
the sparsest one is very hard

• in practice: the size of the dictionary prohibits storing or manipulating it.

However, we are going to see in the next sections that the structure of the dictionary
can be exploited to still use some algorithms from the sparse coding literature.

2.4.2 Matching pursuit

The generalized Birkhoff family is closely related to the Matching Pursuit (MP) algorithm
from the sparse coding literature [25]. MP is a greedy iterative algorithm that gradually
finds the locations of non-zeros in x one at a time. Everything presented in this subsection
is valid for any dictionary M and observation vector a. We will specialize the algorithms
in Section 3 to handle the dictionary of permutations we are interested in.

The MP algorithm finds the column (atom) in M that is the most correlated with
the current residual (initialized to a). It then removes this atom from the residual and
repeats the process. Finding the most correlated atom is done by solving the selection
problem

argmax
j≤n!

|MT
j r

(i)|

where r(i) is the residual at step i. Updating the residual to obtain r(i+1) can be done
by projecting the previous residual r(i) on the hyperplane orthogonal to the atom cho-
sen at step i, in simpler words we remove the atom from the residual with a coefficient

1
∥Mj∥22

MT
j r

(i).

8

Algorithm 2 Matching pursuit

1: Input: dictionary M and vector a
2: Output: the vector x, a sparse approximate solution to Mx = a
3: Let r(0) ← a and x← 0;
4: i← 0
5: while not converged do
6: j ← argmaxj≤n!{|MT

j r
(i)|}

7: compute coefficient αj for Mj

8: r(i+1) ← r(i) − αjMj

9: i← i+ 1
10: end while

MP is therefore similar to the Birkhoff heuristic, as it finds at each step an atom
present in a and removes it. However, the update rule for the coefficients in the MP
algorithm may not guarantee that the residuals a −Mx(i) are nonnegative. When this
happens, the matrix in the next iteration cannot be a (scaled) doubly stochastic matrix
and hence the decomposition cannot correspond to (1). We elaborate on this to develop
novel algorithms in the next section.

A similar observation on dictionary learning is used by Valls et al. [32], who connect
the Frank-Wolfe algorithm [18] to the Birkhoff’s heuristics. In this context, Frank-Wolfe
has the same selection rule as MP, but a different coefficient update method that guarantees
that the solution stays in the space of doubly stochastic matrices at all times throughout
the iterative algorithm.

2.4.3 Orthogonal Matching pursuit

A significant issue with generalized Birkhoff heuristics, MP or Frank-Wolfe is that they al-
ways estimate permutation weights sequentially, leading to suboptimality on instances (3).
A solution to this issue, also quickly explored in [32], is to improve upon the coefficients
update rules. To this end, we will use the framework of Orthogonal Matching Pursuit
(OMP). Algorithm 3 is the standard OMP algorithm from the literature [14, p. 65], but
in the next Section we will part from the usual formulation to derive a class of generalized
OMP heuristics for the BvN decomposition.

Algorithm 3 Orthogonal matching pursuit

1: Input: a given matrix M and a given vector a
2: Output: the vector x, a sparse approximate solution to Mx = a
3: Let S(0) ← ∅ and x(0) ← 0
4: i← 0
5: while not converged do
6: S(i+1) ← S(i) ∪ {j} where j = argmaxj /∈S(i){|MT

j (a−Mx(i))|} ▷ OMP1

7: x(i+1) ← argminz{∥a−Mz∥2 where supp(z) ⊆ S(i+1)} ▷ OMP2

8: i← i+ 1
9: end while

The notation supp(z) denotes the support of z, i.e., the set of indices of the nonzero
entries of z. In Step 6 of Algorithm 3, similarly to MP heuristics, we choose the index of
the largest absolute value in the vector MT (a−Mx(i)), and add it to the solution support
S. However in Step 7, we now find the best solution vector whose nonzero indices are in

9

the current set S, therefore updating all coefficients at each iteration.

It is worthwhile to note that variants of OMP have been studied rigorously in the
literature. Of particular relevance is the Nonnegative OMP heuristic [29], which imposes
nonnegativity in Step 7 for the coefficients and has similar performances and guarantees
as the standard OMP.

3 OMP based algorithm for BvN decomposition

3.1 Algorithm

Here, I explain the proposed OMP-based methods to solve (4) in order to obtain effective
heuristics for the BvN decomposition. The principal traits of the proposed approach are
as follows: (i) it is based on the solid OMP-framework to obtain sparse solutions; (ii) it
generalizes and improves the BvNG heuristic [12] in multiple aspects, including obtaining
optimum solutions that cannot be computed by any generalized Birkhoff heuristic.

Let us start by examining (4) and Steps 6 and 7 of Algorithm 3. As the matrix M
has n! columns, it cannot be stored when carrying out the Step 6. We will exploit the
special structure of M for this step. As highlighted before, one needs to guarantee that
the matrix entries are nonnegative to obtain a BvN decomposition (1). We will present
approaches to do so in the OMP framework for Step 7, to obtain a suitable heuristic for
sparse BvN decompositions.

Step 6 of Algorithm 3 finds the column of M having the largest inner product with
the residual a −Mx(i). We first realize that computing the residual translates to the
matrix operations A(i) ← A −

∑
j∈S(i) xjPj , therefore it can be computed efficiently, as

we do not need to form M explicitly. We then recognize that MT contains n nonzeros
in each row, which are all one, and that those nonzeros in a row define a permutation
matrix. Therefore MT (a −Mx(i)) translates to computing the value

∑
P ⊙A(i) for all

permutation matrices P and storing them in a vector. Obviously, the argmax in Step 6
selects the maximum of this vector.

As we have seen in Section 2.1,
∑

P ⊙A(i) is the weight of the perfect matching
associated with P in the bipartite graph of A(i). Therefore, Step 6 of Algorithm 3 can
be solved by finding a maximum weight perfect matching in bipartite graph of A(i). A
minimum weight perfect matching (which we will abbreviate MWPM) can be obtained
using for instance the Hungarian algorithm [22] in time O(n2m).

Step 7 of Algorithm 3 solves a least squares (LS) problem which is efficiently solvable
by off-the-shelf methods. Since a solution to an LS problem can contain both negative and
positive components, and the BvN decomposition asks for positive only, we should solve
a nonnegative LS problem here, as in nonnnegative OMP [29]. Furthermore, one needs to
ensure that the residual is nonnegative, that is a−Mx(i) ≥ 0, at the ith iteration. This is
necessary for continuing with finding perfect matchings, and also for making sure that the
remaining matrix when multiplied with 1∑i

j=1 αj
is doubly stochastic. Therefore, Step 7 is

reformulated as

argmin
z≥0, a≥Mz

{∥a−Mz∥2 where supp(z) ⊆ S(i+1)} . (QP)

With this formulation in Step 7, we have thus a heuristic based on the OMP methodology
to find a BvN decomposition of a given doubly stochastic matrix. Note that (QP) can be

10

solved via quadratic program solvers.

While the above development follows the OMP-framework, we need to part from
this strict interpretation. This is so, as the additional conditions in Step 7 breaks the
original design of OMP. Indeed, the problems solved at Step 6 and Step 7 were motivated
by the following inequality on successive residuals [14, Lemma 3.3]:

∥a−Mx(i+1)∥22 ≤ ∥a−Mx(i)∥22 −
1

n
|(MT

j (a−Mx(i))|2 (5)

where j is the index chosen at Step 6. It gives a guaranty on the progress made by the
algorithm at each step toward approximating the target vector. Introducing the non-
negative residual constraint breaks this result, which is key to the performance of the
original OMP algorithm. We therefore propose to minimize another loss function in Step 7
for which we can get an inequality similar to (5) while verifying our additional constraints.

Let z be a feasible vector, that is z ≥ 0 and a ≥ Mz. Then, ∥z∥1 =
∑

zi, and
∥a−Mz∥1 = n(1−

∑
zi). This is so, as each row/column of A adds up to 1 and a−Mz

translates to subtracting a total of
∑

zi from each row/column using the permutation
matrices identified by the support of z. Minimizing the quantity 1−

∑
zi, or maximizing∑

i zi, in Step 7 will therefore minimize an upper bound on ∥a−Mz∥2, since ∥v∥1 ≥ ∥v∥2
for any vector v. Once we choose

∑
zi as the objective function, we should modify

Step 6 to be relevant to this objective function. Let x(i) be the current solution where
supp(x(i)) ⊆ S(i), and j be the permutation matrix selected in Step 6. Since the vector
z′ = [x(i), z′j] for 0 ≤ z′j ≤ min{vec(Pj)⊙ (a−Mx(i))} is supported by S(i) ∪ {j}, and it

holds that z′ ≥ 0, and a−Mz′ ≥ 0, choosing j which maximizes min{vec(Pj)⊙(a−Mx(i))}
guarantees an improvement of at least min{vec(Pj)⊙(a−Mx(i))} in the objective function∑

zi. We can thus use:

argmax
z≥0, a≥Mz

{∥z∥1 where supp(z) ⊆ S(i+1)} (LP)

as the objective function in Step 7, with a BPM solver for Step 6. As its name indi-
cate, (LP) is a linear program for which very efficient solvers exist. With this choice of
subroutines we get an inequality similar to (5):

∥a−Mx(i+1)∥1 ≤ ∥a−Mx(i)∥1 − n(min{vec(Pj)⊙ (a−Mx(i))}). (6)

I will use GompBvN(BPM,LP) to denote the proposed OMP-based solver, where
the first parameter designates the problem solved in Step 6, and the second one designates
the problem solved in Step 7. The strict OMP-inspired method is similarly referred to as
GompBvN(MWPM,QP). Obviously, the other combinations GompBvN(BPM,QP) and
GompBvN(MWPM,LP) are possible.

As we have made multiple modifications to the original OMP algorithm, let us give
at Algorithm 4 the pseudo-code for GompBvN(BPM,LP) as an illustration.

3.2 Properties

The standard OMP algorithm has been extensively studied in the literature and many
properties on its performance have been proven (see [14] for some of them). However, we
part from the exact formulation of the original algorithm and our dictionary is very specific
so properties like Equation (5) for example are lost. Notably, properties guarantying that
we will find the sparsest solution do not apply in our case.

11

Algorithm 4 GompBvN(BPM,LP)

1: Input: A: a doubly stochastic matrix
2: Output: α1, . . . , αk and P1, . . . ,Pk, where A =

∑k
i=1 αiPi

3: Let i← 1, S ← ∅, x← 0
4: while

∑i
j=1 xj < 1 do

5: A(i) ← A−
∑

Pj∈S x
(i)
j Pj

6: find a bottleneck perfect matching Pi ⊆ A(i)

7: S ← S ∪ {Pi}
8: Mi ← (vec(Pj))Pj∈S
9: x(i+1) ← argmaxz≥0,a≥Miz

∑
j zj (LP)

10: i← i+ 1
11: end while
12: k ← i− 1

Nevertheless, this subsection highlights some properties of the algorithm Gomp-
BvN(BPM,LP). The proof of the results stated are in Appendix A.

First, in the original OMP algorithm at each step a new atom is chosen. This is not
enforced in Algorithm 4 and because coefficients are recomputed we might imagine that
it could happen. However, we have the following lemma.

Lemma 3.1. In Algorithm 4 at line 6 we never pick a permutation that is already in S.

Another property I showed describes the evolution of the number of zero entries in
B at line 5:

Lemma 3.2. In Algorithm 4, if S contains k permutations then B has at least k zero
entries at line 5.

This properly shows the convergence of GompBvN(BPM,LP) and allows to get the
upper-bounds on the number of components mentioned in Section 2.2.1 for this algorithm.

Another remark allows us to speed up the computation of step 9. Indeed, we can
avoid solving the linear program from scratch each time and use the result of the previous
step. The simplex algorithm [8] solves a linear program by moving from vertices to vertices
on the constraint polytope, starting from an arbitrary point contained in it (e.g., 0 here)
and following edges which augment the objective function. We can observe that x at step
i is included in the polytope of the step i+ 1 and thus we can do a warm-start by taking
the previous solution (x, 0) as a starting point for the next run of the simplex algorithm.
This hot-start trick can also be used for the GompBvN(·,QP) variants. Indeed, the active
set algorithm [27] is a method for solving quadratic programming which, similarly to
the simplex algorithm, moves from vertices to vertices while augmenting the quadratic
objective function. We can thus also do a warm-start in this case.

4 Experiments

In this section I present a selection of experimental results to compare the proposedGomp-
BvN heuristics with the state of the art.

12

4.1 Code and experimental set-up

I have implemented all algorithms in Python, interfaced throught Cython [1] with some
C and Fortran to make use of existing codes for graph matchings. I have used Gurobi
[15] solvers for the linear and quadratic programming problems. The code for the MWPM
problem is from MC64 [10] (in Fortran) and I used Bottled [31] for BPM (in C). My
code is available at https://gitlab.inria.fr/dlesens/omp_based_algo_bvn_decomp.
Previous implementations of heuristics for the sparse BvN decomposition (mainly [12])
were in Matlab. We chose Python for this project as it is free and more popular.

To test the algorithms, I followed the experimental set-up of [11] and [12]. They
use matrices from the SuiteSparse Matrix collection [9] that arise in diverse applications.
Those matrices are stored in a sparse format, meaning that only the position of their
nonzero entries (as well as their values) are stored. Sparse matrices can be handled in
Python using Scipy [34] and its scipy.sparse library. All the external codes/libraries
mentioned in the first paragraph are designed for sparse matrices.

Because the SuiteSparse collection has many matrices, a small sample was selected
in a process similar to [11, 12], keeping only matrices having the following properties:
square, between 500 and 1000 rows, fully indecomposable, and with at most 50 nonzeros
per row. This selection yields 58 matrices from 11 different groups. At most two matrices
per group are retained to remove any bias that might be arising from the group. This
resulted in 18 matrices given in Table 1. In this table, the column n lists the number of
rows, and the column τ gives the number of nonzeros for each matrix. The matrices are
preprocessed as explained in Section 2.3 by taking the absolute values of their nonzeros
and scaling them to be doubly stochastic by the method by Knight and Ruiz [19], until
the maximum deviation of the row and column sums from 1 were less than 10−6. The
different algorithms are run until the coefficients obtained add up to at least 0.999.

4.2 Experimental results

The results comparing the heuristics presented in this report can be found in Table 1. As I
mentionned in Section 2.2.2, BvNG produces a significantly smaller number of terms than
Birkhoff’s original algorithm. For the sake of completude and to illustrate this claim in
this report, I first reproduced for our set of matrices the experiments from [12] comparing
those two algorithms. For Birkhoff, I stopped the algorithm at 1000 iterations and the
sum of coefficients in the first subcolumn gives an indication of the progress made before
the interruption. BvNG always outperforms Birkhoff by a significant margin.

Table 1 does not contain any results from GompBvN(MWPM, QP) as in many
instances it obtained a larger number of permutation matrices with much more computing
time than GompBvN(BPM, LP). Therefore, we give only a few results with Gomp-
BvN(MWPM, QP) for the sake of completeness. For example on matrices 662 bus and
EX1, GompBvN(MWPM, QP) obtained 116 and 90 permutation matrices, which are
larger than other numbers given in Table 1. On some matrices, for example on bcsstk34,
the run time was large. On this matrix, GompBvN(BPM, LP) runs in less than 20 seconds
on a laptop with 2,5 GHz Intel Core i7 with 16GB memory and obtains 118 permutation
matrices, but GompBvN(MWPM, LP) does not deliver a result within 10 minutes (we
have stopped it at its 81st iteration).

We observe from Table 1 that in cases where BvNG is effective so is Gomp-
BvN(BPM, ·). This is of course not a surprise, as at a given iteration the solution space
in Step 7 of GompBvN(BPM, ·) includes the coefficients found by BvNG, should they

13

https://gitlab.inria.fr/dlesens/omp_based_algo_bvn_decomp

Table 1: Performance of heuristics on a set of matrices from the SuiteSparse matrix collection. We
give the number of component found by each algorithm, which are run until the sum of coefficients
is greater than 0.999. In the case of Birkhoff, we stop the iteration at k = 1000 and give the sum
of coefficients as an indication of the progress made.

Matrix Birkhoff GompBvN
Name n τ sum coeff k BvNG (BPM,LP) (BPM,QP)

EX1 560 8736 0.467 1000 56 56 64

EX2 560 8736 0.396 1000 67 68 70

cdde1 961 4681 0.999 209 22 19 19

cdde2 961 4681 0.999 239 23 16 18

bcsstk34 588 21418 0.388 1000 120 118 119

bcsstm34 588 24270 0.198 1000 174 174 170

ex21 656 18964 0.171 1000 166 165 168

Trefethen 500 500 8478 0.988 1000 69 69 69

ex22 839 22460 0.102 1000 173 171 177

L 956 3640 0.734 1000 59 58 58

ch5-5-b3 600 2400 1.000 4 4 4 4

dynamicSoaringProblem 1 647 5367 0.093 1000 305 316 312

685 bus 685 3249 0.782 1000 41 40 40

662 bus 662 2474 0.999 973 35 34 34

spaceShuttleEntry 1 560 6891 0.022 1000 274 280 259

Trefethen 700 700 12654 0.989 1000 73 73 73

netz4504 dual 615 2342 0.925 1000 30 28 28

Si2 769 17801 0.580 1000 87 86 87

both contain the same set of permutation matrices. The near identical solution quality
between BvNG and GompBvN(BPM, ·) thus not only confirms that GompBvN(BPM, ·)
is effective but also sheds light on the good performance of BvNG.

However, all four variants of GompBvN solve the special (n+5)× (n+5) case (3)
optimally with 10 permutation matrices. This outcome clearly separates the GompBvN
solvers from the generalized Birkhoff heuristics, in particular from BvNG which finds 12
permutation matrices. As BvNG and GompBvN(BPM, ·) apply the same algorithm for
selecting the permutation matrices, their first selection is the same. Step 7 then helps
GompBvN(BPM, ·) to revise the coefficients and to deliver optimal results.

Moreover, one can construct a new family of matrices to give further insights into
the performance of GompBvN. This set of matrices has two parameters n and k. First,
an n × n permutation matrix P is created. Then, another k permutation matrices are
created, each of which has distinct n/k common elements with P, while having random
permutations for the remaining n − n/k elements. P is multiplied by 2k, and other
permutation matrices with 2p, for p = {0, . . . , k − 2} in arbitrary order, and all k + 1
scaled permutation matrices are added to produce a doubly stochastic matrix after a
straightforward normalization. By construction, a matrix from the (n, k)-family can be
decomposed with k + 1 permutation matrices. BvNG will find P in the first step and
will use the minimum weight 2k + 1 (before normalization) and thus cannot find the said
decomposition. The same is true of a variant of BvNG which uses MWPM for selecting
permutations. We compare BvNG and the four variants of GompBvN in Table 2 for
three (n, k) pairs. As seen from this table, GompBvN variants find decompositions with
k+1 permutation matrices, but BvNG obtains nearly twice larger number of permutation
matrices.

In this family of matrices, we take coefficients to be powers of 2 so that algorithms

14

Table 2: Performance of heuristics on a set of constructed matrices

GompBvN GompBvN
(n,k) BvNG (BPM,LP) (BPM,QP) (MWPM,LP) (MWPM,QP)

(100,10) 19 11 11 11 11

(200,15) 29 16 16 16 16

(500,20) 39 21 21 21 21

will pick permutations in decreasing order of coefficients. Both Birkhoff like algorithms and
GompBvN will pick the same permutations but GompBvN will recompute at some point
the coefficients, thus correcting the error of taking 2k+1 as first coefficient. Powers of 2 are
interesting because if we note uj = 2j then for all j,

∑j−1
i=0 ui < uj . This implies that even

if there are a lot of collisions between permutations, at step i the permutation with biggest
bottleneck value will always be the one with coefficient 2n−i+1, thus leading the algorithm
to pick permutations in decreasing order of coefficient. All permutations colliding is very
unlikely, so actually taking for coefficients any sequence uj verifying uj−2 + uj−1 < uj is
enough to observe the behavior of Table 2. This last remark further extends the class of
matrices on which GompBvN performs better than BvNG.

Remark: All the results presented before this remark led to the publication of
an article untitled ”Orthogonal matching pursuit-based algorithms for the Birkhoff-von
Neumann decomposition” [23] accepted at EUSIPCO 2024. EUSIPCO is an international
conference on signal processing taking place in Lyon this year. I gave in this report more
details on my work than in the published paper.

5 Generalised Birkhoff Von Neumann decomposition

In this section I will present my work on a generalisation of the BvN decomposition. As
stated in Section 2.1.3, a way to present Birkhoff’s theorem is to say that the convex
hull of perfect matchings of an unweighted bipartite graph G = (R ∪ C,E) is exactly the
set of doubly-stochastic weightings on G. A generalisation would be to consider not only
bipartite graphs but also general graphs, as shown in Figure 2. Vazirani [33] proved that
in this more general case similarly to Birkhoff’s algorithm, there is a polynomial time
algorithm which, given a point on the convex hull of perfect matchings, returns a valid
decomposition.

First, I will briefly present the problem and the additional difficulties it poses com-
pared to the bipartite case. Due to lack of space I will then only give the complexity
improvement achieved by my algorithm on this problem.

5.1 Overview of the difficulties

We are given an undirected graph G = (V,E), with |V | = n vertices, |E| = m edges, and
n is even. For a vertex v, we use δ(v) to denote the set of edges incident on v, which is
extended to a set of vertices S as δ(S) = {e : e ∈ E, e = (s, v) with s ∈ S, and v /∈ S}
and called the cut of S.

In the following, we will consider weightings on G = (V,E). For a weighting x, xe
is the weight of the edge e ∈ E. Edmonds [13] shows that the convex hull of all perfect
matchings in G, is defined by the following constraints:

15

(a) Bipartite graph (Bikhoff theorem)

(b) General graph

Figure 2: Example of decomposition of a fractional perfect matching into a convex combination
of perfect matchings. Edge weights do not sum to 1 on a neighborhood, but this can be done by
a straightforward scaling.

∑
e∈δ(v)

xe = 1 for all v ∈ V (7a)

∑
e∈δ(S)

xe ≥ 1 for all odd set S (7b)

xe ≥ 0 for all e ∈ E (7c)

A point x of this polytope is a fractional perfect matching in G.

An α-fractional perfect matching for 1 ≥ α ≥ 0 is a point of the polytope obtained
by replacing 1’s with α’s in the right hand side of the polytope specified in (7). That is,

∑
e∈δ(v)

xe = α for all v ∈ V (8a)

∑
e∈δ(S)

xe ≥ α for all odd set S (8b)

xe ≥ 0 for all e ∈ E (8c)

If x is a α-fractional perfect matching, then 1
αx is a fractional perfect matching.

Given a matching M and a set of vertices S, we say that M crosses the cut S if
M ∩ δ(S) ̸= ∅. In other words, a matching M crosses a cut S, if M matches at least one
vertex of S to a vertex in V \S. If M is a perfect matching, then M must cross every odd
set S (else a vertex remains unmatched in the set). This is captured by the inequality (7b).

16

We will note Gx = (V,Ex) the graph G with edge weights x where Ex contains only
edges e for which xe > 0. A minimum odd cut in Gx is an odd set S with |S| ≥ 3, where∑

e∈δ(S) xe is minimum among all odd sets.

Odd sets S for which constraint (8b) is tight are called tight odd α-cuts.

Remark. Looking at the polytope (7), a first question one might ask is whether it is in
P to test if a point x belongs to the polytope. Indeed, constraints (7a) are easy to test,
but there are exponentially many constraints (7b). However, Padberg and Rao show [30]
that it is in P to find a minimum odd cut in a weighted graph. Using this algorithm, one
can test if x is in Edmond’s polytope by checking whether the minimum odd cut has value
greater or less than 1.

Similarly to the bipartite Birkhoff algorithm, we are going to start with a 1-fractional
perfect matching x, subtract a scalar b > 0 times a perfect matching M such that x−b ·M
is a (1− b)-fractional perfect matching, and repeat until we have reduced all edge weights
to zero (0-fractional perfect matching).

Like in the bipartite case, any perfect matching will preserve the conditions (8a).
However, in the general case we have odd set constraints which prevent us from choosing
any perfect matching.

Lemma 5.1 (Vazirani [33], Lemma 3). Let x be an α-fractional perfect matching and let
b ·M be a term in some decomposition of x, where M is a perfect matching in Gx. Then,
M must cross every tight odd α-cut exactly once.

Proof. This proof is from Vazirani [33, Lemma 3]. M must cross every tight odd α-cut at
least once because they are odd sets. Let x′ = x− b ·M . Since b ·M is a term in a valid
decomposition of x, x′ must be a (α− b)-fractional perfect matching. If M crosses a tight
odd α-cut S a number r > 1 times, then x′ would not be an (α− b)-fractional matching,
which is a contradiction: it holds that

∑
e∈δ(S) x

′
e = α− rb, which violates the constraint

in (8b).

This adds potentially exponentially many constraints to satisfy for a perfect match-
ing M to be in a valid decomposition. In order to verify all those conditions in polynomial
time, one needs to maintain a specific data structure on tight odd α-cuts that I will not
detail here. This additional cost is what I greatly reduced in my algorithm compared to
Vazirani’s version, as we will see in the next section.

Finally, there is an additional difficulty regarding the choice of the coefficient which
cannot always be b = mine∈M (xe), but I will not get into those details.

5.2 Complexity improvement

Vazirani proposes in [33] a polynomial time algorithm to solve this problem. He states
that his algorithm has complexity O(knF +n3m2F) where k is the number of components
produced (k ≤ m) and F is the cost of a max-flow min-cut computation in a weighted
graph, O(m1+o(1)) in theory but only implemented in O(n2√m). The term O(knF) is due
to the fact that computing a component induces a fixed cost of O(nF) and the second
term O(n3m2F) comes from additional computations necessary to overcome the difficulties
explained in the last section.

His algorithm is very costly and not really implementable as it makes use of very
small epsilon for computations which would necessitate a multiprecision framework for
manipulating edge weights. Furthermore, the algorithm turns out to be incorrect, and a

17

Table 3: Performance of heuristics on a set of constructed matrices

n k “Any” perf. matching Bottleneck

50 10 55.4 23.0

100 30 167.8 65.6

200 40 223.4 80.4

correct version would run in O(knF + n2m3F) instead.

I proposed an algorithm which is at the same time correct, easier to implement
and faster. My algorithm has complexity O(knF + (n3 log(n) +n2m)F) thus maintaining
the fixed cost per component but greatly reducing the additional cost. Furthermore, in
the best case scenario, my algorithm has only complexity O(knF) whereas Vazirani’s
algorithm has always at least cost O(knF +m3F).

5.3 Experiments

A python implementation of my algorithm available at https://gitlab.inria.fr/dlesens/
bvng_algo supports the claim that it is easy to implement. Furthermore, I implemented
an equivalent of BvNG for this generalisation, i.e. a version in which at each step amongst
matching crossing all tight odd α-cuts, we pick one with a minimal edge that is maximal.

I compared this bottleneck version with the original one on some artificial instances,
built the following way: given n even and k the number of components, pick uniformly at
random k perfect matchings in J1, nK as well as k coefficients in J1, 10K and add them up
to form a weighted graph. Such graph is an α-fractional perfect matching, with α equal
to the sum of coefficients. I had to restrict myself to such artificial instances as my code is
only at a proof of concept phase and can only handle integer edge values. Future versions
will be able to handle floating points values like in the bipartite case.

Results are presented in Table 3. For each set of (n, k) I give the average number
of components for 5 runs of the algorithm. Similarly to the bipartite case, picking a
bottleneck matching greatly reduces the number of components produced, by a factor
more than 2.

5.4 Applications

We can represent a graph by its adjacency matrix, defined by Ai,j = w(i, j). Because we
deal with undirected graphs, this matrix is symmetric. If it is doubly stochastic, with n
even and zeros on the diagonal (no self-loop allowed) then the above algorithm decomposes
it in a sum of symmetric permutation matrices. We could get a decomposition similar to
the one explained in Section 2.3 but which takes as input a symmetric matrix and outputs
symmetric components. This could apply to a wide range of matrix as Knight, Ruiz and
Uçar [20] present a scaling algorithm preserving symmetry. Work remains to be done in
order to handle odd n and nonzeros on the diagonal.

6 Conclusion

In this report, I presented a new family of heuristics for the sparse BvN decomposition of
doubly-stochastic matrices. The proposed heuristics are based on the well-known greedy
orthogonal matching pursuit (OMP) algorithm, and advances the state of the art in the
BvN decomposition problem. Experimental results show that the proposed heuristics

18

https://gitlab.inria.fr/dlesens/bvng_algo
https://gitlab.inria.fr/dlesens/bvng_algo

overcome the innate limitation of the state of the art approaches in the literature and
are competitive with them on general instances. Interesting future directions would be to
find limitations for these heuristics and to explore other options/combinations for the two
steps of the algorithm.

I also presented an amelioration of the only known algorithm for the generalisation
of the BvN decomposition to non-bipartite graphs. I asymptotically improved the worst
case run time complexity and produced the first implementation for this problem. Some
work remains to be done on this algorithm to decompose real world symmetric matrices.

References

[1] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. Seljebotn, and K. Smith. Cython:
The best of both worlds. Computing in Science Engineering, 13(2):31 –39, 2011.

[2] M. Benzi and B. Uçar. Preconditioning Techniques Based on the Birkhoff–von Neu-
mann Decomposition. Computational Methods in Applied Mathematics, Dec. 2016.

[3] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences.
SIAM, Philadelphia, PA, USA, 1994.

[4] G. Birkhoff. Tres observaciones sobre el algebra lineal. Univ. Nac. Tucumán Rev.
Ser. A, (5):147–150, 1946.

[5] S. Bojja Venkatakrishnan, M. Alizadeh, and P. Viswanath. Costly circuits, submod-
ular schedules and approximate carathéodory theorems. Performance Evaluation
Review, 44(1):75–88, June 2016. Publisher Copyright: © 2016 ACM.

[6] R. A. Brualdi. Notes on the Birkhoff algorithm for doubly stochastic matrices. Can.
Math. Bulletin, 25(2):191–199, 1982.

[7] R. A. Brualdi and P. M. Gibson. Convex polyhedra of doubly stochastic matrices: I.
Applications of the permanent function. Journal of Combinatorial Theory, Series A,
22(2):194–230, 1977.

[8] G. B. Dantzig. Linear programming and extensions. In Linear programming and
extensions. Princeton university press, 2016.

[9] T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM
Trans. Math. Softw., 38(1):1:1–1:25, 2011.

[10] I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal
of a sparse matrix. SIAM Journal on Matrix Analysis and Applications, 22:973–996,
2001.

[11] F. Dufossé, K. Kaya, I. Panagiotas, and B. Uçar. Further notes on Birkhoff–von
Neumann decomposition of doubly stochastic matrices. Linear Algebra and its Ap-
plications, 554:68–78, 2018.

[12] F. Dufossé and B. Uçar. Notes on Birkhoff–von Neumann decomposition of doubly
stochastic matrices. Linear Algebra and its Applications, 497:108–115, 2016.

[13] J. Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of
Research of the National Bureau of Standards B, 69:125–130, 1965.

[14] S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing.
Birkhäuser Basel, 2013.

[15] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.

19

[16] P. Hall. On representatives of subsets. Journal of the London Mathematical Society,
s1-10(37):26–30, 1935.

[17] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

[18] M. Jaggi. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. In
30th ICML, pages 427–435. PMLR, Feb. 2013.

[19] P. A. Knight and D. Ruiz. A fast algorithm for matrix balancing. IMA Journal of
Numerical Analysis, 33(3):1029–1047, 2013.

[20] P. A. Knight, D. Ruiz, and B. Uçar. A symmetry preserving algorithm for matrix
scaling. SIAM Journal on Matrix Analysis and Applications, 35(3):931–955, 2014.

[21] P. Knopp and R. Sinkhorn. Concerning nonnegative matrices and doubly stochastic
matrices. Pacific Journal of Mathematics, 21(2):343 – 348, 1967.

[22] H. W. Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

[23] D. Lesens, J. E. Cohen, and B. Uçar. Orthogonal matching pursuit-based algorithms
for the Birkhoff–von Neumann decomposition. In Proceedings of EUSIPCO 2024 (to
appear), Lyon, France, 2024. IEEE.

[24] H. Liu, M. K. Mukerjee, C. Li, N. Feltman, G. Papen, S. Savage, S. Seshan, G. M.
Voelker, D. G. Andersen, M. Kaminsky, G. Porter, and A. C. Snoeren. Scheduling
techniques for hybrid circuit/packet networks. In Proceedings of the 11th ACM Con-
ference on Emerging Networking Experiments and Technologies, CoNEXT ’15, New
York, NY, USA, 2015. Association for Computing Machinery.

[25] S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE
Transactions on Signal Processing, 41(12):3397–3415, 1993.

[26] M. Marcus and R. Ree. Diagonals of doubly stochastic matrices. The Quarterly
Journal of Mathematics, 10(1):296–302, 1959.

[27] K. G. Murty and F.-T. Yu. Linear complementarity, linear and nonlinear program-
ming, volume 3. Citeseer, 1988.

[28] B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on
Computing, 24(2):227–234, 1995.

[29] T. T. Nguyen, C. Soussen, J. Idier, and E.-H. Djermoune. Exact recovery analysis of
non-negative orthogonal matching pursuit. In SPARS, 2019.

[30] M. W. Padberg and M. R. Rao. Odd minimum cut-sets and b-matchings. Mathematics
of Operations Research, 7(1):67–80, 1982.

[31] I. Panagiotas, G. Pichon, S. Singh, and B. Uçar. Engineering fast algorithms for the
bottleneck matching problem. In The 31st Annual European Symposium on Algo-
rithms, Amsterdam, Netherlands, 2023.

[32] V. Valls, G. Iosifidis, and L. Tassiulas. Birkhoff’s decomposition revisited: Sparse
scheduling for high-speed circuit switches. IEEE/ACM Transactions on Networking,
29(6):2399–2412, 2021.

[33] V. V. Vazirani. An extension of the Birkhoff-von Neumann theorem to non-bipartite
graphs, 2020.

[34] P. Virtanen et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17:261–272, 2020.

20

A Proofs of properties on GompBvN(BPM,LP)

Lemma A.1 (Lemma 3.1). In Algorithm 4 at line 6 we never pick a permutation that is
already in S.

Proof. We will show that when we pick a matching, there is a zero included in the range
of each P already in S. This implies that we cannot pick a permutation matrix already
in S; it would contain at least one zero.

Suppose by contradiction that there is a permutation Pk ∈ S such that there is no
zero in the range of Pk in B = A−

∑
Pj∈S xjPj . Coefficients x were obtained by solving

at the previous step by solving a problem of the form

argmax
z≥0, a≥Miz

∥z∥

where ∥ · ∥ is any norm. Let α = min{B ⊙ Pk}, then x′ = x + αek is still a valid set of
coefficients and x < x′ so ∥x∥ < ∥x′∥ and this contradicts the optimality of x.

Regarding the number of zero entries in B:

Lemma A.2 (Lemma 3.2). In the algorithm GompBvN(BPM,LP), if S contains k per-
mutations then B has at least k zero entries at line 5.

Proof. This can be seen by looking at how the simplex algorithm solves the linear pro-
gramming in order to recompute coefficients. I will assume in this proof that the reader
knows about the terminology of the simplex algorithm. I’m going to show that a variable
of the objective will enter the dictionary and then never go out of it. If there are k variables
in the objective, i.e. k permutations in S, there will thus be k slack variables in the basis,
i.e. k zero entries in B. When adding a new permutation to S, we add a new variable to
the objective. This variable can immediately be pivoted as P ⊆ B. Then it can never be
pivoted back without strictly diminishing the objective (which is

∑i
j=1 xj).

21

	Introduction
	Background
	Notation
	Previous works
	Applications
	Sparse coding

	OMP based algorithm for BvN decomposition
	Algorithm
	Properties

	Experiments
	Code and experimental set-up
	Experimental results

	Generalised Birkhoff Von Neumann decomposition
	Overview of the difficulties
	Complexity improvement
	Experiments
	Applications

	Conclusion
	Proofs of properties on GompBvN(BPM,LP)

