
Master en Informatique Fondamentale M2 Internship
École Normale Supérieure de Lyon Ducruet Léon

Exceptional Actris: Session-Type Based
Error Handling in Separation Logic

Abstract :
In this internship, I improved my knowledge about the higher order separation logic framework Iris, and
I learned more about the session-type based logic Actris. I implemented a simple message passing library
and extended Actris with abortion protocols in order to catch the behaviour of a dropped communication.
The results and specifications are implemented in Iris in Coq, and made compatible with the diaframe proof
automation tool.

Key words : Message Passing, Separation Logic, Session Types, Error Handling, Formal Verifi-
cation.

Supervised by :
Krebbers Robbers
robbertkrebbers.mail@robbertkrebbers.nl
Radboud University Nijmegen
Houtlaan 4
6525 XZ Nijmegen, Netherlands
https://www.ru.nl/en

June 28, 2024

mailto:robbertkrebbers.mail@robbertkrebbers.nl
https://www.ru.nl/en

Contents
1 Introduction 1

1.1 Separation Logic . 1
1.2 Session Types and Dependent Protocols . 2
1.3 Contributions . 3

2 Exceptional Actris 4
2.1 Cancellation Protocols . 4
2.2 Channel Specifications . 5

3 Implementation 8
3.1 Single Producer Single Consumer Queues . 8
3.2 Queue Specifications . 9
3.3 Channels and Protocols . 12

4 An Example: Merge Sorting 16

Ducruet Léon

1 Introduction
Concurrent and distributed algorithms are to be found in basically every modern software, and
their correctness notably relies on the communication between cores and threads. In this work,
we focus on verifying reliable message-passing channels, that is to say channels which preserve
message order and where messages do not get lost. An usual way of verifying communication
through channels is to use session types, however, it is not obvious how to handle the abortion of
a communication du to an error. There already exists ways to extend session types to catch this
behaviour[1], and the main focus during this internship was to find a way to extend the Actris
logic[2] in a similar manner.

The results presented are formalized in Coq using the Iris separation logic framework[3][4], and
can be found on Github. The code implementation is done in a basic untyped ML-like language
and could easily be transported to an existing language, like OCaml. The specifications are made
compatible with the automated verification tool Diaframe[5], and can be used automatically.

The verification done in this project consists only in showing that the written programs don’t
get stuck. The results are expressed in terms of Hoare triplets {P } prog {v. Q v}, meaning that
under the precondition P , the program prog does never get stuck. Moreover, if it terminates, it
returns a value v satisfying the postcondition Q v. If Q does not depend on the returned value, we
write {P } prog {Q} for more convenience. Notice that nothing guarantees termination; we would
thus have the perfectly valid Hoare triple {True} loop () {False} if loop only performs an infinite
loop.

Reasonning about termination in concurrent programs is hard and is not a topic treated during
this intership, although fair termination and deadlock freedom has been addressed in the litterature
[6][7].

1.1 Separation Logic
The main particularity of separation logic is that propositions are seen as a multiset of resources
that one can consume. Once these propositions are used, we do not have access to them anymore.

Concretely, we use the connectors ∗ and −∗, P −∗ Q meaning that there are enough resources
for Q in P , and P ∗Q meaning that we have both the resources of P and of Q. One can think of
∗ as ∧ and of −∗ as →, but there are major differences. Most notably, it is not true in general that
P −∗ P ∗P , which may seem a little confusing in the beginning. There even exists some propositions
such that (P ∗P) −∗ False, but where P −∗ False does not hold. This kind of proposition is especially
important because it grants exclusivity: if at some point I have this proposition in one of the threads
of my distributed programs, I can make sure that no other thread has it at the same point in time.

One key example of exclusive propositions is ownership. Everytime a pointer is allocated, we
obtain a location l and a token l 7→ v inside the logic, where v is the value to which l is pointing:

Alloc
v is a value

{True} ref v {l, l 7→ v}

This proposition can then be used to read and write from the pointer. Writing requires full
ownership of the pointer, meaning that it is only possible by providing the l 7→ v token. This
ensures that no program is able to write to a location if it is not supposed to.

This notion can be extended to ghost variables. The point is that at any moment, a ghost
variable can be allocated with a value v, which gives a proposition of the form ∃γ, γ ↪→ v. Its
ownership can be split between different threads, giving partial ownership which we write γ

q
↪→ v,

where q ∈ Q∩]0; 1], but the value it is pointing to can only be modified with the full ownership. This
is extremely useful to catch the behaviour of a program that doesn’t explicitly allocate pointers
corresponding to its logical state.

To use knoledge about what each thread is doing, we use invariants. These are duplicable (also
called persistent) propositions, that is, such that P −∗ P ∗ P , and can be initialized, opened and

1

https://github.com/leonducruet/Exceptional-Actris

Ducruet Léon

closed. When we initialize or close an invariant, we have to provide resources. When we open it,
we obtain its resources, but we will have to close it later. The invariants we use are atomic, which
intuitively means that we have to close them one computation step after having opened them.
This is necessary since each thread could access to some global variable and change the state of
the whole system in one step.

Some programs however behave as though they exectuted in only one step, because they use
their precondition for one instruction only, and then perform operations that do not affect the
other threads. When this is the case, an invariant may be opened around the whole program,
and we write its specification 〈P 〉 prog 〈v. Q v〉. Most often however, such programs require some
logical environment that is not shared with other threads in order to work correctly. We then
write 〈Ppublic|Pprivate〉 prog 〈v. Qpublic v|Qprivate v〉 in order to distinguish which part of the pre -
and postcondition come from and return to an invariant (the public part), and which part remains
exclusive to the thread (the private part).

1.2 Session Types and Dependent Protocols
Basic session types can be thought of as types for communications and are defined by the following
grammar:

S := !τ.S | ?τ.S | end

With the idea that an endpoint with type !τ.S (respectively ?τ.S) will need to send (respectively
receive) a message of type τ and then perform the actions imposed by S. We also define the dual
S of S by !τ.S :=?τ.S, ?τ.S :=!τ.S and end := end. Note that as one could expect, the dual
operation is involutive: prot = prot. Let us look at an example (Fig. 1) to understand the use and
the limitations of session types defined like this. The code relies on some basic message passing
functions new_chan, send and recv. new_chan creates two endpoints that can safely communicate
over threads, send asynchronously sends a message from one endpoint to the other and recv blocks
until the other party has sent a message and returns it.

let (c, c’) = new_chan () in

send c 41;
let result = recv c in
print_int result ||

let x = recv c’ in
let y = x + 1
send c’ y

Figure 1: Illustrating Communication through Channels

In this example, the thread on the left, which can be seen as a client, sends some data to the
thread on the right, the server. The processed data is then sent back to the client who may work
with it. A session type for this communication could be !N.?N.end on the client side and its dual
on the server side. This brings multiple befefits. The system will not reach a state where both
sides are waiting for each other to send a message, generating a deadlock. Furthermore, receiving
a message comes with a guarantee on its type. This allows for example the client to perform
operations on integers only upon receiving the processed data.

However, when doing program verification, one may want more information. For instance, it
could be useful for the client to know that the value of the result is going to be 42, or more generally
the value of whatever has been sent incremented by one. The sent information could even be more
complicated to obtain, such as ownership of a pointer (Fig. 2). These issues are addressed by the
Actris logic[2] by introducing dependent separation protocols, a generalization of session types to
the Iris logic.

Dependent separation protocols can be defined by :

prot := ! ~x : ~τ 〈v〉 {P}.prot | ? ~x : ~τ 〈v〉 {P}.prot | µ rec.prot | end

2

Ducruet Léon

let (c, c’) = new_chan () in

send c 42;
let result = recv c in
print_int (! result) ||

let x = recv c’ in
let l = ref x in
send c’ l

Figure 2: Sending a Pointer

! ~x : ~τ 〈v〉 {P}.prot is a protocol that requires the endpoint to provide some values ~x of types ~τ
and a proposition P , after which the message v must be sent and the communication continues with
the protocol prot. The protocols are said to be dependent, which means that v, P and especially
prot may depend on the provided variables. The protocol may thus completely change depending
on the sent value. We omit the propositions when it is True, and write ! ~x : ~τ 〈v〉 .prot instead. The
recursor µ rec.prot allows recursion inside protocols and can be rewritten as prot[µ rec.prot/rec],
which is essential for algorithms that loop doing the same actions, like servers.

One protocol for the client side of the program 1 could for example be ! 〈41〉 . ? 〈42〉 .end, or
more generally !n : N 〈n〉 . ? 〈n+ 1〉 .end. This means that the client gets to choose the number
that is sent, and already knows at that moment what will be sent back.

The example 2 is more interesting, since it is dealing with shared references. The point is
that in order to access the value of the returned pointer l, the client needs a l 7→ v predicate
for some value v. This can be obtained with the protocol !n : N 〈n〉 . ? l : loc 〈l〉 {l 7→ n}.end.
Upon receiving, the client does not know what location they will receive, however they do have
the information that it will be pointing to the sent value.

1.3 Contributions
The focus of this internship was to extend the Actris logic with dependent session protocols able
to catch the interruption of a communication. We provided the following features:

• We extended the Actris protocols by adding a possibility of cancelling the communication –
on purpose or non deterministically.

• We implemented and verified a small library for message passing with shared memory, with
the possibility to drop one endpoint during the communication.

• We provided examples using the library and verified their soundness using the extended
version of the protocols.

3

Ducruet Léon

2 Exceptional Actris
We built an extention of dependent protocols on top of Actris that would allow one side to give
up the communication while the other side is still able to perform actions.

2.1 Cancellation Protocols
Let us have a look at this extension before going into further detail:

prot := ! ~x : ~τ 〈v〉 {P}.prot | ? ~x : ~τ 〈v〉 {P}.prot | end | Actris protocols
µ rec.prot | Recursion
!Q ~x : ~τ 〈v〉 {P}.prot | ?Q ~x : ~τ 〈v〉 {P}.prot | Nondeterministic cancelling

Q | Q Deterministic cancelling

The idea of Q is the same than end for the side that is going to interrupt the communication,
in so far as it is not possible to come back to a protocol allowing to send or receive information after
reaching Q. The main difference however is its dual

Q, which still allows to behave normally
even if the other side has interrupted the connection. The nondeterministic version of the protocols
allow to abort the communication instead of sending a message, which leads to a nondeterministic
disjunction at the moment of receiving. The proposition Q is information sent at the moment of
cancelling, which can possibly be used to rule out one branch in the disjunction. For example,
?False ~x : ~τ 〈v〉 {P}.prot is basically the same than ? ~x : ~τ 〈v〉 {P}.prot, because one would need
to produce False before being able to use the resources allowing to cancel. To have a better
understanding of these protocols, let us have a look at the notion of protocol subtyping. The
relation prot1 v prot2 (Fig. 3) comes with the intuitition that following prot2 instead of prot1
should not make a difference for the other side. In Actris, this relation essentially allows to send
a message before receiving one, which should not be a problem whatsoever since sending does not
require any information.

Subprot-Swap
? 〈v〉 . ! 〈v′〉 .prot v ! 〈v′〉 . ? 〈v〉 .prot

Subprot-Send
prot1 v prot2

! 〈v〉 .prot1 v ! 〈v〉 .prot2

Subprot-Dual
prot1 v prot2
prot2 v prot1

Subprot-Payload-Send
prot1 v prot2 ∗ P

! 〈v〉 {P}.prot1 v ! 〈v〉 .prot2
Subprot-Refl
prot v prot

Subprot-Trans
prot1 v prot2 ∗ prot2 v prot3

prot1 v prot3

Figure 3: Protocol Subtyping Rules in Actris

Let us have a look at some subtyping rules for the introduced protocols (Fig. 4). When the
communication is interrupted from the other side, it remains possible to send messages in the
void, although they will never be received. This is illustrated by the subtyping rule Subprot-
Zap. The two other rules allow to either send a message or abort the communication, without
having to make a choice in advance. This is necessary in most cases, because the knowledge of
when an error happened indide a program is almost never available at the initialization. On the
other side, this means that something could be received or not with no information beforehand.
?Q ~x : ~τ 〈v〉 {P}.prot is defined as !Q ~x : ~τ 〈v〉 {P}.prot, which comes with the rules induced by
Subprot-Dual.

The purpose of Q and

Q is not to be explicitely mentionned in the protocol of a communica-
tion, although this is possible. Rather, they are supposed to be reached from the nondeterministic
send and receive protocols using subtyping rules.

4

Ducruet Léon

Subprot-Zap

Q v ! ~x : ~τ 〈v〉 {P}. Q
Subprot-CancelSend-Cancel
!Q ~x : ~τ 〈v〉 {P}.prot v Q

Subprot-CancelSend-Send
!Q ~x : ~τ 〈v〉 {P}.prot v ! ~x : ~τ 〈v〉 {P}.prot

Figure 4: Extended Protocol Subtyping Rules

2.2 Channel Specifications
We provide a set of functions that allow message passing, and where a communication can be
cancelled. Its behaviour is inspired by Rust’s channel library, where drop can be called on an
endpoint, closing the communication and dropping all messages unreceived messages in the buffer.
From that moment, an attempt to receive a message will no longer be blocking the thread, and
will immediately return an error. We emulate the fact that messages have a defined drop function
by passing a closure with the sent message. This closure will be called if drop would have been
called on the sent object.

type endpoint

new_chan : ()→endpoint * endpoint
send : endpoint→val→(()→())→()
recv : endpoint→option val
cancel : endpoint→()

We define the specification for a drop function drop as drop_spec drop, which can be obtained
by providing a Hoare triple {True} drop {True}. Let us have a look at the specifications for the
library (Fig. 5).

New-Chan-Spec
{True}

new_chan ()

{(c, c′), c� prot ∗ c′ � prot}

Send-Spec
{c� ! ~x : ~τ 〈v〉 {P}.prot ∗ (P [~y/~x] ∧ (drop_spec drop))}

send c v[~y/~x] drop

{c� prot[~y/~x]}

Cancel-Spec
{c� Q ∗Q}

cancel c

{True}

Cancel-Spec-End
{c� end}

cancel c

{True}

Recv-Spec
{c� ? ~x : ~τ 〈v〉 {P}.prot}

recv c

{w, ∃~y : ~τ , w = Some v[~y/~x] ∗ c� prot[~y/~x] ∗ P [~y/~x]}

Recv-Spec-Fail
{c�

Q}
recv c

{None, (c�

Q ∧Q)}

CancelRecv-Spec
{c� ?Q ~x : ~τ 〈v〉 {P}.prot}

recv c

{w, (∃~y : ~τ , w = Some v[~y/~x] ∗ c� prot[~y/~x] ∗ P [~y/~x])
∨(w = None ∗ (c�

Q ∧Q)) }
Figure 5: Channel Library Specifications

At the moment of creating a new channel, one has to choose a protocol that the communication
will follow. The endpoints will have to behave dually to each other for the communication to be
correct. Upon using Send-Spec, one has to provide resources that need to be sent for the case
where everything goes well and the other party receives the information (P), but it is also necessary
to provide resources that will be consumed by drop. However, only one of the two will be used;

5

Ducruet Léon

the other side either does or does not receive the message. Therefore, we do not use a separating
conjonction ∗ to combine P and drop_spec drop in the precondition for Send-Spec, instead we
combine them with a logical and. This way, both resources are accessible, but only one of them
can actually be used. This allows the user of the library to use P to provide drop_spec drop, which
most often is necessary. The specification for Q is quite intuitive; do note that no information is
returned in the post condition. Calling Q removes access to any kind of resource, which prevents
any use of send or recv in the future. recv returns an option that can only be None if the other side
has called cancel. CancelRecv-Spec contains a disjunction that cannot be predicted beforehand,
corresponding to the fact that the nondeterministic send protocol allows to send or cancel without
providing information about the choice made. However, if cancel has been called, we know that all
future calls to recv will return None.

We also have the very useful rule Subprot-Pointsto, which allows to actually make use of
the protocol subtyping relation defined before.

Subprot-Pointsto
c� prot1 ∗ prot1 v prot2

c� prot2

Using this rule, we are able to deduce rules that seem to be missing, such as for exam-
ple CancelSend-Spec-Send or CancelSend-Spec-Cancel, which allow to actually make use
of the nondeterministic send protocol, using respectively the Subprot-CancelSend-Send and
Subprot-CancelSend-Cancel rules (Fig. 6).

CancelSend-Spec-Send
{c� !Q ~x : ~τ 〈v〉 {P}.prot ∗ (P [~y/~x] ∧ (drop_spec drop))}

send c v[~y/~x] drop

{c� prot[~y/~x]}

CancelSend-Spec-Cancel
{c� !Q ~x : ~τ 〈v〉 {P}.prot ∗Q}

cancel c

{True}

Figure 6: Some Rules Deducible from Subprot-Pointsto

In order to have a better intuition of these specifications, let us look back at example 2, in a
slightly more fancy way (Fig. 7). Suppose the side producing the pointer is first sending various
sorts of other messages (in our case a boolean), which could lead to an issue forcing to abort the
communication. We use the notation let Some x = y in e for pattern matching that produces an
error if the None clause is reached.

let (c, c’) = new_chan () in

send c 42 (fun () => ());
let Some b = recv c in
if b then

let Some result = recv c in
print_int (! result)

else
cancel c

||
let Some x = recv c’ in
send c (f x) (fun () => ());
let l = ref x in
send c’ l (fun () => free l)

Figure 7: Sending a Pointer

Without any information about the boolean function f, one cannot predict whether the left
hand side thread will behave normally or abruptly cancel the communication. Thus, we will not
know if the program will print 42 or not, but we still want to prove it does not crash. To do so,
we can use the protocol !n : N 〈n〉 . ? b : B 〈b〉 .(if b then ? l : loc 〈l〉 {l 7→ n}.end else True). Let us
go through the right thread of the program step by step:

6

Ducruet Léon

{c′ � ?n : N 〈n〉 . ! b : B 〈b〉 .(if b then ! l : loc 〈l〉 {l 7→ n}.end else

True)}
let Some x = recv c′ in

{c′ � ! b : B 〈b〉 .(if b then ! l : loc 〈l〉 {l 7→ n}.end else

True)}
send c′ (f n) (fun ()⇒ ());

{c′ � if f n then ! l : loc 〈l〉 {l 7→ n}.end else

True}
let l = ref n in

{c′ � if f n then ! l : loc 〈l〉 {l 7→ n}.end else

True ∗ l 7→ n}

The last instruction remaining is the most tricky, for two reasons:

• With no further knowledge about f , we need to do a case disjunction on f n. One of the
two branches corresponds to the send that is actually performed, the other corresponds to
sending the location l through the channel that has been or will be cancelled. Basically, that
means calling free on it.

• The current logical state of the program does not contain drop_spec (fun ()⇒ free l). This
would correspond to {True} free l {True}, which we cannot prove without any further infor-
mation (the specification for free is {l 7→ x} free l {True}). However, we do have l 7→ n −∗
{True} free l {True}, which easily gives l 7→ n −∗ (l 7→ n ∧ drop_spec (fun ()⇒ free l)).

The simplest way to deal with the branching in the protocol is probably to note that

True v ! l :
loc 〈l〉 {l 7→ n}. True, which gives the nice following result:

(if f n then ! l : loc 〈l〉 {l 7→ n}.end else

True) v ! l : loc 〈l〉 {l 7→ n}.(if f n then end else

True)

Verifying the last instruction is now much easier:

{c′ � ! l : loc 〈l〉 {l 7→ n}.(if f n then end else

True) ∗ (l 7→ n ∧ drop_spec (fun ()⇒ free l))}
send c′ l (fun ()⇒ free l);

{c′ � if f n then end else

True}

7

Ducruet Léon

3 Implementation
In order to better understand what kind of program we are dealing with, let us have a look at
a possibility to implement the library described. The implementation is designed to be efficient
(even though it is not highly optimised), and is entirely mechanised in Coq.

The major part of the work on implementing channels was to implement queues, with the
following signatures:

type sender, receiver

new_queue : ()→(sender * receiver)
enqueue : sender→val→(()→())→()
dequeue : receiver→option val
cancel_sender : sender→()
cancel_receiver : receiver→()

We then define the channels using two queues:
let endpoint = sender * receiver

let new_chan () =
let (s, r) = new_queue () in
let (s’, r’) = new_queue () in
((s, r’), (s’, r))

let send (s, r) v drop =
enqueue s v drop

let recv (s, r) =
dequeue r

let cancel (s, r) =
cancel_sender s;
cancel_receiver r

The interesting part of the implementation is of course hidden in the queue library.

3.1 Single Producer Single Consumer Queues

CONS v1 drop1 . CONS v2 drop2 . NIL undef undef undef

d e

Figure 8: A Single Producer Single Consumer Queue

We implement a queue by generating a pair of pointers (e, d); d pointing to the front of the
queue, e pointing to the back (Fig. 8). Whenever a new element is to be enqueued, a new chunk
of memory would be allocated, and tagged by NIL, meaning that it is the new end of the queue.
Then, the current end will be filled with the provided information, after which the tag can safely
be changed to CONS, meaning that the last element of the chunk is pointing to the rest of the
queue (Fig. 9).
The dequeue operation will never read information from chunks that are not tagged CONS. Calling
cancel_sender, will only change the tag of the back from NIL to CANCEL. Semantically, the
difference is that when trying to dequeue an element, dequeue will return None if the back flag is
set to CANCEL, whereas it will loop waiting for the sender if it is set to NIL. cancel_receiver is a bit
more complicated, as it will go through the entire queue, call each drop, and switch the last tag to
CANCEL once it arrives at the end. Changing a flag has to be done very carefully, since both sides

8

Ducruet Léon

CONS v1 drop1 . NIL undef undef undef

d e

(a) Initial State

CONS v1 drop1 . NIL undef undef . NIL undef undef undef

d e

(b) Allocate New Chunk

CONS v1 drop1 . CONS v2 drop2 . NIL undef undef undef

d e

(c) Store Data and Change Tag

Figure 9: send Operation

of the queue could potentially try to access it at the same time, which may lead to misbehaviours.
In order to prevent this from happening, we use the function CmpXchg (Compare and Exchange),
which allows to atomically change the value of a location, based on a test on its previous value
(Fig. 10).

CmpXchg-Succ
〈l 7→ v1〉

CmpXchg l v1 v2

〈(v1, true), l 7→ v2〉

CmpXchg-Fail
v1 6= v′1

〈l 7→ v′1〉
CmpXchg l v1 v2

〈(v′1, false), l 7→ v′1〉

Figure 10: Rules for CmpXchg

The moment when this function is called in the code (Fig. 11) is usually the most critical
in the function, and the only moment when a bug due to concurrency could occur. Note that
if multiple threads where allowed to concurrently share one side of the queue, a lot of problems
would immediately happen. For example, enqueue relies on the fact that the part of the queue it is
pointing to is the last part, that is to say, never tagged by CONS. On the other side, dequeue could
generate a lot of errors if called concurrently on the same pointer, since one call would free memory
that could be accessed by the other threads. It is therefore necessary that the specifications reflect
the fact that an endpoint cannot be used by two threads at the same time.

3.2 Queue Specifications
Let us have a look at the specifications provided for the queue library (Fig. 12). Some technical
details have been omitted because they do not bring useful insights and make the rules unnecessarily

9

Ducruet Léon

let sender = ref int
let receiver = ref int
let CANCEL = 0
let NIL = 1
let CONS = 2

let alloc_nil () =
(* A chunk of size 4 initialized with () *)

let l = array_alloc 4 () in
l←NIL;
l

let new_queue () =
let l = alloc_nil () in
(ref l, ref l)

let enqueue e v drop =
let l = alloc_nil () in
let current = !e in
(current + 1)←v;
(current + 2)←drop;
(current + 3)←l;
let (_, b) = CmpXchg current NIL CONS in
if b then e←l else
drop ();
array_free 4 l;

let rec dequeue d =
let last = !d in
let tag = !last in
if tag = NIL then dequeue d else
if tag = CANCEL then None else
let next = !(last + 3) in
d←next;
let v = !(last + 1) in
array_free 4 last;
Some v

let cancel_sender e =
let current = !e in
free e;
let (_, b) = CmpXchg current NIL CANCEL in
if b then () else
array_free 4 current

let rec cancel_receiver d =
let last = !d in
let (tag, _) = CmpXchg last NIL CANCEL in
if tag = CONS then

let drop = !(last + 2) in
let next = !(last + 3) in
d←next;
drop ();
array_free 4 last;
cancel_receiver d

else
free d;
if tag = NIL then () else
array_free 4 last

Figure 11: Single Producer Single Consumer Queue Library

harder to understand, although they are essential to prove soundness of the global results. We
introduce the following notations :

• E e is a proposition standing for enqueue ownership of the queue. A thread owning this
predicate is able to use specifications related to enqueue with the endpoint e.

• Similarily, a thread owning D d is allowed to call dequeue d safely.

• Qbd
be
e d q is the resource corresponding to the current logical state of the queue. be (respec-

tively bd) is a boolean reflecting whether or not the back (respectively the front) of the queue
has been cancelled. q is a list containing pairs (v, drop), where v is a message sent with cancel
function drop. This list morally reflects the messages that are in the current buffer, waiting
to be received by dequeue d. If cancel_receiver d has already been called, that is to say if
bd = false, q loses its meaning and can be any list, which makes the specifications a bit easier
to read.

Those propositions are related to another in the sense that can deduce from E e and Qbd
be
e d q

that be = true. Similarily, owning D d gives that bd = true. This is because ownership of an

10

Ducruet Léon

endpoint has to be given up in order to cancel the channel, which would cause a contradiction if
the corresponding boolean was false. We also define the logically cancelled tokens EC e and DC d,
which have the meaning that even though no function has been called yet, the endpoint has already
given up all of the resources allowing to interract with the queue, and the only possibility for it
is to be cancelled. The existence of these tokens allows to perform logical actions ahead of time,
which is needed to prove an atomic behaviour of cancel, even though it calls two functions which
each require the same public resource Qbd

be
e d q. The rule allowing to give up E e in order to get

back EC e looks as follows:

Logically-Cancel-Sender
E e ∗ Qbd

be
e d q

EC e ∗ Qbd
false e d q

The rule allowing to get DC d is much more complicated because all of the drop_spec drop for drop
in q need to be provided, which may require to open an invariant thus needs more generalization.
The idea behind it remains the same.

New-Queue-Spec
{True}

new_queue ()

{(e, d), E e ∗ D d ∗ Qtrue
true e d []}

Enqueue-Spec
〈Qbd

be
e d q ∗ if bd then True else drop_spec drop|E e〉

enqueue e v drop

〈Qbd
true e d q ++[(v, drop)]|E e〉

Dequeue-Spec
〈Qbd

be
e d q|D d〉

dequeue d

〈w, (∃v drop q′, q = (v, drop) :: q′ ∗ w = Some v ∗ Qtrue
be e d q′)

∨ (q = [] ∗ w = None ∗ be = false ∗ Qtrue
false e d [])

∣∣∣D d〉
Cancel-Sender-Spec
{EC e}

cancel_sender e

{True}

Cancel-Receiver-Spec
{DC d}

cancel_receiver d

{True}

Figure 12: Specifications for the Queue Library

One may be wondering about the fact that in Dequeue-Spec when dequeue returns None, is
possible to know that be = false, which corresponds to the back of the queue being tagged with
CANCEL. This comes from the fact that we are not providing any result in case of non-termination,
which would be what happens if the queue is empty but not cancelled. This equality is much needed
in practice since it gives the possibility to rule out the case where the function returns None when
one knows that the sending part has not been cancelled yet.

Defining the provided predicates requires quite some effort, but there are three key components:

• The private tokens E e and D d contain the information that should never be used by the
other side, such as e 7→ current for some location current, or ownership of the undefined
part of current which looks like ∃v1, (current+1) 7→ v1. Most notably, these do not contain
any information about the tag of current, which is stored in the first part of the chunk.

• An invariant for the whole queue which contains ownership of the critical part of the queue,
that is, the tag of the back cell. This invariant also contains ghost variables that can be
synchronized with the private and public tokens in order to establish facts about the state of

11

Ducruet Léon

this cell. Another key role it plays is to store all of the information inside the queue, which
is provided when enqueue is called and claimed by dequeue.

• The public token Qbd
be
e d q only contains ghost information about its arguments, and is

needed to obtain data from the invariant.

3.3 Channels and Protocols
Once the bases are set, defining channels using two queues is straightforward. We provide inter-
mediate specifications before adding protocols, in order to obtain simpler definitions and proofs
(Fig. 13). The tokens used in the specifications are defined as one could expect:

C c := ∃e d, c = (e, d) ∗ E e ∗ D d

Chanbc′bc
c c′ q q′ := ∃e d e′ d′, c = (e, d) ∗ c′ = (e′, d′) ∗ Qbc′

bc
e d′ q ∗ Qbc

bc′
e′ d q′

new-Chan-Spec’
{True}

new_chan ()

{(c, c′), C c ∗ C c′ ∗ Chantrue
true c c

′ [] []}

Send-Spec’
〈Chanbc′bc

c c′ q q′ ∗ if bc′ then True else drop_spec drop|C c〉
send c v drop

〈Chanbc′true c c
′ q ++[(v, drop)] q′|C c〉

Recv-Spec’
〈Chanbc′bc

c c′ q q′|C c〉
recv c

〈w, (∃v drop q′1, q
′ = (v, drop) :: q′1 ∗ w = Some v ∗ Chanbc′true c c

′ q q′1)

∨ (q′ = [] ∗ w = None ∗ bc′ = false ∗ Chanfalse
true c c

′ q [])

∣∣∣C c〉
Cancel-Spec’

〈Chanbcc
′

bc
c c′ q q′ ∗ ∗

(,drop)∈q′
drop_spec drop

∣∣∣C c〉
cancel c

〈Chanbc′false c c
′ q []〉

Figure 13: Atomic Channel Specifications

Cancel-Spec’ is the only specification that looks new in so far as it requires all of the resources
to every drop in the current buffer. These resources however could not be enough in the case where
send is called after the cancel has started, but before it has effectively changed the queue’s tag to
CANCEL. In this case, send will need to provide the resources itself, allowing cancel to access them
later on (Fig. 14). In order to make this work in practice, both sides put the cancelling resources
inside an the queue invariant, so that cancel_receiver has access to it when needed.

In order to move to the next layer, we define the cancelling protocols by lifting the messages
to options and adding information that will be hidden to the user but is needed for verification
purposes. A None message will be sent upon calling cancel, all other messages are of the form Some

12

Ducruet Léon

CONS v1 drop1 . NIL undef undef undef

d {drop_spec drop1} e

(a) cancel_receiver Called

CONS v1 drop1 . CONS v2 drop2 . NIL undef undef undef

d {drop_spec drop1} e {drop_spec drop2}

(b) In-Between enqueue

CONS v2 drop2 . NIL undef undef undef

d e {drop_spec drop2}

(c) Cancelling Goes On

Figure 14: send Operation

(v, drop). In the definitions, use the notation

〈ṽ〉{P}.prot := ∃drop γ, 〈Some (v, drop, γ)〉{(P ∧ drop_spec drop) ∨ γ
1/2
↪→ false}.prot

and the tilde will later be omitted when there is no ambiguity. γ is a ghost variable tracking
whether the side receiving the message has been cancelled. Therefore, the disjunction in the sent
information makes it easier for the sender to send a message, although the receiving side will always
be able to rule out the right side of the disjunction. Furthermore, in our setup, once γ has been

set to false, it is not allowed to come back to true, which makes γ
1/2
↪→ false persistent.

 Q := ! 〈None〉 {Q}.µ rec. ? v : val 〈ṽ〉 .rec
!Qm := ! b : B (if b then m else 〈None〉{Q}.µ rec. ? v : val 〈ṽ〉 .rec)

Q := Q

?Qm := !Qm

By using these definitions, the rules about subtyping (Fig. 4) can be shown quite easily.
Subprot-Zap is a consequence of the swapping rule Subprot-Swap which allows to send a mes-
sage before receiving None. Subprot-CancelSend-Send and Subprot-CancelSend-Cancel
can respectively be obtained by providing the booleans true and false. We define the connective
c � prot using the Actris predicates for protocol ownership γp ↪→• prot and (γp, γ

′
p) ↪→◦ (q, q′),

which enable a link between protocols and the logical queue states (Fig. 15). The notation Inv
corresponds to an invariant Inv of the program.

13

Ducruet Léon

lift γ q b := [Some (v, drop, γ)|(v, drop) ∈ q] ++if b then [] else [None]

Inv γ γ′ c c′ γp γ
′
p := ∃q q′ bc bc′ , γ

1/2
↪→ bc ∗ γ′

1/2
↪→ bc′∗

Chanbc′bc
c c′ q q′ ∗ (γp, γ′p) ↪→◦ (lift γ q bc, lift γ′ q′ bc′)

c� prot := ∃γ γ′ c′ γp γ′p, γ
1/2
↪→ true ∗ C c ∗ γp ↪→• prot ∗ Inv γ γ′ c c′ γp γ′p

Prot-Own-Alloc
∃γp γ′p, γp ↪→• prot ∗ γ′p ↪→• prot ∗ (γp, γ′p) ↪→◦ ([], [])

Prot-Own-Subprot
prot1 v prot2 ∗ γp ↪→• prot1

γp ↪→• prot2

Prot-Own-Sym
(γp, γ

′
p) ↪→◦ (q, q′)

(γ′p, γp) ↪→◦ (q′, q)

Prot-Own-Send
γp ↪→• ! ~x : ~τ 〈v〉 {P}.prot ∗ (γp, γ′p) ↪→◦ (q, q′) ∗ P [~y/~x]

γp ↪→• prot[~y/~x] ∗ (γp, γ′p) ↪→◦ (q ++[v[~y/~x]], q′)

Prot-Own-Recv
γp ↪→• ? ~x : ~τ 〈v〉 {P}.prot ∗ (γp, γ′p) ↪→◦ (q, w :: q′)

∃~y : ~τ , w = v[~y/~x] ∗ P [~y/~x] ∗ γp ↪→• prot[~y/~x] ∗ (γp, γ′p) ↪→◦ (q, q′)

Figure 15: Protocol Ownership Rules in Actris

In order to have a better understanding of how this works, let us have a look at a proof for
Send-Spec. We consider a version without parameters, which makes the notations lighter and does
not remove the expressivity of the statement. We start with the precondition c� ! 〈v〉 {P}.prot∗
(P ∧ drop_spec drop), which can be unfolded as follows :

γ
1/2
↪→ true ∗ C c ∗ γp ↪→• ! drop γ1 〈(v, drop, γ1)〉 {(P ∧ drop_spec drop) ∨ γ1

1/2
↪→ false}.prot∗

Inv γ γ′ c c′ γp γ
′
p ∗ (P ∧ drop_spec drop)

Since our goal is to prove that send c v drop executes correctly, we can consume C c and
apply Send-Spec’ using the invariant, which gives two requirements: the public precondition
Chanbc′bc

c c′ q q′ ∗ if bc′ then True else drop_spec drop should be satisfied once the invariant opened,
and the invariant should be closed again using the resources provided in the public postcondition
Chanbc′true c c

′ q++[(v, drop)] q′. Once the invariant opened, we have access to the following resources:

γ
1/2
↪→ true ∗ γp ↪→• ! drop γ1 〈(v, drop, γ1)〉 {(P ∧ drop_spec drop) ∨ γ1

1/2
↪→ false}.prot∗

(P ∧ drop_spec drop) ∗ γ
1/2
↪→ bc ∗ γ′

1/2
↪→ bc′∗

Chanbc′bc
c c′ q q′ ∗ (γp, γ′p) ↪→◦ (lift γ q bc, lift γ′ q′ bc′) ∗ Inv γ γ′ c c′ γp γ′p

First of all, γ can only point to one variable at the time, which gives bc = true. It is also
necessary to choose how to split the resources into the two different goals, which actually requires
to know the value of bc′ . This can be solved by case disjunction. Of course, both cases work, but
let us consider the case where the other side has been cancelled and where the message will never
be read (bc′ = false). Since P will never be received, the conjonction (P ∧ drop_spec drop) can be
simplified as drop_spec drop. After all the simplifications have been done, the resources available
look as follows:

γ
1/2
↪→ true ∗ γp ↪→• ! drop γ1 〈(v, drop, γ1)〉 {(P ∧ drop_spec drop) ∨ γ1

1/2
↪→ false}.prot∗

drop_spec drop ∗ γ
1/2
↪→ true ∗ γ′

1/2
↪→ false ∗ Chanfalse

true c c
′ q q′∗

(γp, γ
′
p) ↪→◦ (lift γ q true, lift γ′ q′ false) ∗ Inv γ γ′ c c′ γp γ′p

14

Ducruet Léon

Since γ′
1/2
↪→ false is owned, Prot-Own-Send can be called, changing the ghost information

about the protocols. γ′
1/2
↪→ false being persistent, it can be used without giving it up. After using

drop_spec drop and Chanfalse
true c c′ q q′ for the public precondition and receiving Chanfalse

true c c′ q +
+[(v, drop)] q′ from the public postcondition, the invariant needs to be closed using the following
resources:

γ
1/2
↪→ true ∗ γp ↪→• prot ∗ ∗γ

1/2
↪→ true ∗ γ′

1/2
↪→ false ∗ Chanfalse

true c c
′ q ++[(v, drop)] q′∗

(γp, γ
′
p) ↪→◦ ((lift γ q true) ++[(v, drop)], lift γ′ q′ false) ∗ Inv γ γ′ c c′ γp γ′p

By noticing that (lift γ q true) ++[(v, drop)] = lift γ (q ++[(v, drop)]) true, the invariant can be
closed and the private postcondition C c obtained back. Now, the postcondition of Send-Spec
needs to be satisfied, which corresponds to the goal

γ
1/2
↪→ true ∗ γp ↪→• prot ∗ C c ∗ Inv γ γ′ c c′ γp γ′p

c� prot

That can be proved by definition of c� prot.

15

Ducruet Léon

4 An Example: Merge Sorting
Let us now look at a possible way to use this library in practice. Suppose to be given an imple-
mentation of lists that can be modified in place, as well as some basic functions used to implement
merge sort.
merge : (’a→’a→option bool)→list ’a→list ’a→bool
split : list ’a→list ’a
length : list ’a→int

merge takes a comparison function as an argument as well as two sorted lists, and tries to merge
the two lists into one sorted list. The sorted list is stored in the first argument. However, the
comparison function may fail at comparing two elements, and return None. In this case, merge
returns false and gives no guarantee on the lists being sorted. Otherwise, it returns true. split splits
its argument in two, and returns one of the halves. The other half is still owned by the argument.

We give some specifications for those functions by linking the physical objects with logical
lists (Fig. 16). These depend on some predicates, on particular (cmp_specR cmp), which has
the meaning that cmp reproduces the behaviour of the partial order R. If cmp is called on two
elements that are not in R, it will return None and provide the logical token cmp_fail.

Merge-Spec
(cmp_specR cmp) ∗ sortedR l ∗ sortedR l′

{is_list vs l ∗ is_list vs′ l′}
merge cmp vs vs′

{b, if b then
∃lmerged, is_list vs lmerged∗
sortedR lmerged ∗ Permutation (l ++l′) lmerged

else cmp_fail}
Split-Spec
{is_list vs l}

split vs

{vs′, ∃l1 l2, is_list vs l1 ∗ is_list vs′ l2 ∗ l = l1 ++l2}

Length-Spec
{is_list vs l}

length vs

{(length l), is_list vs l}

Figure 16: Basic Utility Functions

Let us now look at a library concurrently sorting lists in place depending on an arbitrary
comparison function (Fig. 17). Each recursive call of the sorting function sort_service forks two
new threads, each of them sorting a different part of the list, then merges them together. If, at
some point, the sorting of a list fails because of the compare function, the error will be propagated
by cancelling channels, allowing the other part to stop blocking and to receive the information. If
everything went well, unit is sent so that the other side stops blocking and is able to return.

One possible protocol for the sort_service could be:

sort_protR cmp := ? (vs : loc)(l : list ’a) 〈vs〉 {is_list vs l}.
!cmp_fail (l

′ : list ’a) 〈()〉 {is_list vs l′ ∗ sortedR l′}.end

Which easily allows to prove some specification like:

Client-Spec
PartialOrder R ∗ cmp_specR cmp

{is_list vs l}
client vs

{b, if b then ∃l′, Permutation l l′ ∗ sortedR l′ ∗ is_list vs l′ else cmp_fail}

16

Ducruet Léon

let rec sort_service cmp c =
match recv c with
|None => cancel c;
|Some l =>
if length l < 2 then

(* List successfully sorted *)
send c () unit_drop

else
let l’ = split l in
let (c1, c1’) = new_chan () in
let (c2, c2’) = new_chan () in
fork (sort_service cmp c1’);
fork (sort_service cmp c2’);
send c1 l (list_drop l);
send c2 l’ (list_drop l’);
match recv c1, recv c2 with
| (), () => if merge l l’ then

send c () unit_drop
else

cancel c
| _ => cancel c

let server c =
match recv c with
|None => cancel c
|Some cmp => sort_service cmp c

let client cmp l =
let (c, c’) = new_chan () in
fork (server c’);
send c cmp unit_drop;
send c l (list_drop l);
match recv c with
(* Some elements in l can’t be compared *)
|None => false
(* l is sorted in place *)
|Some () => true

Figure 17: A Concurrent Sorting Library

17

Ducruet Léon

Acknowledgments
This internship was made in compagny of Robbert Krebbers and the SwS team at the Radboud
University Nijmegen. I would like to thank the team for their friendliness and their help when I
needed it. I especially thank Robbert Krebbers and Ike Mulder for their help working with Iris,
which is not always trivial.

References
[1] Simon Fowler, Sam Lindley, J Garrett Morris, and Sára Decova. Exceptional asynchronous

session types: session types without tiers. Proceedings of the ACM on Programming Languages,
3(POPL):1–29, 2019.

[2] Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. Actris: Session-type
based reasoning in separation logic. Proceedings of the ACM on Programming Languages,
4(POPL):1–30, 2019.

[3] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek
Dreyer. Iris from the ground up: A modular foundation for higher-order concurrent separation
logic. J. Funct. Program., 28:e20, 2018.

[4] Robbert Krebbers, Amin Timany, and Lars Birkedal. Interactive proofs in higher-order con-
current separation logic. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, pages 205–217, 2017.

[5] Ike Mulder, Robbert Krebbers, and Herman Geuvers. Diaframe: automated verification of fine-
grained concurrent programs in iris. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, pages 809–824, 2022.

[6] Amin Timany, Simon Oddershede Gregersen, Léo Stefanesco, Jonas Kastberg Hinrichsen, Léon
Gondelman, Abel Nieto, and Lars Birkedal. Trillium: Higher-order concurrent and distributed
separation logic for intensional refinement. Proceedings of the ACM on Programming Languages,
8(POPL):241–272, 2024.

[7] Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers. Deadlock-free separation
logic: Linearity yields progress for dependent higher-order message passing. Proceedings of the
ACM on Programming Languages, 8(POPL):1385–1417, 2024.

18

	Introduction
	Separation Logic
	Session Types and Dependent Protocols
	Contributions

	Exceptional Actris
	Cancellation Protocols
	Channel Specifications

	Implementation
	Single Producer Single Consumer Queues
	Queue Specifications
	Channels and Protocols

	An Example: Merge Sorting

