Exploiting multiple resolutions to accelerate inverse problems in imaging

Elisa Riccietti

LIP-ENS Lyon

Mathematics and Image Analysis (MIA'25)

Collaboration

Guillaume LAUGA Nelly PUSTELNIK Paulo GONCALVES

The context: image restoration problems

$$\widehat{x} \in \operatorname*{arg\,min}_{x} \frac{1}{2} \|Ax - z\|_{2}^{2} + \lambda \|Lx\|_{\star}$$

 \overline{X}

The context: image restoration problems

$$\widehat{x} \in \operatorname*{arg\,min}_{x} \frac{1}{2} \|Ax - z\|_{2}^{2} + \lambda \|Lx\|_{\star}$$

More generally

 $\min_{x} f(x) + g(x)$

- f differentiable with Lipschitz gradient
- g possibly non-smooth and often non-proximable

Focus on large-scale problems

Prohibitive cost for large-scale problems: how to reduce this cost?

Existing acceleration strategies

- FISTA [Beck & Teboulle, 2009] [Chambolle & Dossal, 2015],
- Preconditioning [Donatelli, 2019][Repetti et al., 2014],
- Blocks methods [Liu, 1996] [Chouzenoux et al., 2016] [Salzo, Villa 2022],

Alternative: Exploit the problem structure with a multiresolution strategy

The multilevel paradigm

The multilevel literature

CONTEXT	MULTILEVEL STRATEGY	CONVERGENCE GUARANTEES	PRACTICAL PERFORMANCE	REFERENCES
Linear PDEs	 Image: A second s	 Image: A second s	 Image: A second s	[Hackbush 1985], [McCormick 1987], [Briggs 2000]
Smooth non- linear PDEs	 Image: A second s	\checkmark	 Image: A second s	[Nash 2000], [Gratton 2008], [Calandra 2020]
Smooth imaging optimization	 Image: A second s	\checkmark	×	[Javaherian 2017], [Plier 2021], [Fung 2020]
Non-smooth optimization	 Image: A second s	X No convergence	×	[Parpas 2016], [Parpas 2017], [Ang 2023]
Non-smooth & non-proximable	×	of the iterates	×	

Our contribution

IML FISTA: inexact multilevel FISTA

- A general multilevel algorithm with state-of-the-art convergence guarantees for image restoration that handles state-of-the-art non-proximable a-priori (TV, NLTV)
- Adaptation of IML FISTA to multiple image restoration contexts with state-of-the art practical performance
- Adaptation of IML FISTA to radio-interferometric imaging with state-of-the art practical performance

Our context

Contribution: update y_k through a multilevel step

Outline

The multilevel step

The ingredients of the multilevel scheme

The transfer operators The coarse model

Numerical experiments

Hyperspectral images Radio-interferometric imaging

Outline

The multilevel step

The ingredients of the multilevel scheme

The transfer operators The coarse model

Numerical experiments

Hyperspectral images Radio-interferometric imaging

The multilevel step

Classical proximal methods:

The multilevel paradigm:

Idea of the multilevel (ML) step

Exploit different resolutions of the problem and alternate iterations between fine and coarse levels.

Example: two-levels case - (h) fine level (H) coarse level

The multilevel step - two level case

The multilevel step - two level case

 I_h^H, I_H^h, F_H ?

Outline

The multilevel step

The ingredients of the multilevel scheme

The transfer operators The coarse model

Numerical experiments

Hyperspectral images Radio-interferometric imaging

A hierarchy of images: I_h^H , I_H^h

Coarse model definition F_H

$$F_{h}(x) = F(x) = \frac{1}{2} ||Ax - z||_{2}^{2} + \varphi(Lx)$$
$$F_{H}(x) = \frac{1}{2} ||A_{H}x_{H} - z||_{2}^{2} + \varphi(L_{H}x_{H})$$

Coarse model definition F_H

$$F_{h}(x) = F(x) = \frac{1}{2} ||Ax - z||_{2}^{2} + \varphi(Lx)$$
$$F_{H}(x) = \frac{1}{2} ||A_{H}x_{H} - z||_{2}^{2} + \varphi(L_{H}x_{H})$$

Is this model useful in minimizing F?

Design of F_H in smooth context: First order coherence

Design of F_H in smooth context: First order coherence

Coarse model definition

Assume $\varphi \circ L$ smooth. We define:

$$F(x) = \frac{1}{2} ||Ax - z||_{2}^{2} + \varphi(Lx)$$

$$F_{H}(x_{H}) = \underbrace{\frac{1}{2} ||A_{H}x_{H} - z||_{2}^{2} + \varphi(L_{H}x_{H})}_{\tilde{F}_{H}} + \langle v_{H}, x_{H} \rangle$$

where, given x_h iterate at fine level, we define:

$$\mathbf{v}_{H} = I_{h}^{H} \nabla F(x_{h}) - \nabla \tilde{F}_{H}(I_{h}^{H} x_{h})$$

This implies the first-order coherence:

$$I_h^H \nabla F(x_h) = \nabla F_H(I_h^H x_h)$$

Coarse model definition

Assume $\varphi \circ L$ smooth. We define:

$$F(x) = \frac{1}{2} ||Ax - z||_{2}^{2} + \varphi(Lx)$$

$$F_{H}(x_{H}) = \underbrace{\frac{1}{2} ||A_{H}x_{H} - z||_{2}^{2} + \varphi(L_{H}x_{H})}_{\tilde{F}_{H}} + \langle v_{H}, x_{H} \rangle$$

where, given x_h iterate at fine level, we define:

$$\mathbf{v}_{H} = I_{h}^{H} \nabla F(x_{h}) - \nabla \tilde{F}_{H}(I_{h}^{H} x_{h})$$

This implies the first-order coherence:

$$I_h^H \nabla F(x_h) = \nabla F_H(I_h^H x_h)$$

What to do in the non-smooth case?

Smoothing

Nonsmooth case \rightarrow smoothing!

The Moreau envelope:

$${}^{\gamma} g = \inf_{y \in \mathcal{H}} g(y) + rac{1}{2\gamma} \| \cdot - y \|^2$$

Illustration: Moreau envelope of l_1 -norm for $\gamma = 0.1$ and $\gamma = 1$

Coarse model for the non-smooth case

Coarse model F_H for non-smooth functions $F_H = f_H + ({}^{\gamma_H}\varphi_H \circ L_H) + \langle v_H, \cdot \rangle$ where $v_H = l_h^H \nabla^{\gamma_h} F(x_h) - \nabla F_H (l_h^H x_h)$ $= l_h^H (\nabla f_h(x_h) + \nabla ({}^{\gamma_h}\varphi_h \circ L_h)(x_h))$ $- (\nabla f_H (l_h^H x_h) + \nabla ({}^{\gamma_H}\varphi_H \circ L_H)(l_h^H x_h))$

Theoretical results

If $x_{H,m} - x_{H,0}$ is a descent direction for F_H , then

$$F_h(x_h + \bar{\tau}I_H^h(x_{m,0} - x_{H,0})) \leq F_h(x_h) + O(\gamma_h)$$

IML FISTA

The steps:

$$\begin{aligned} x_{k+1} \approx_{\epsilon_{h,k}} \operatorname{prox}_{\tau\varphi\circ\mathrm{L}}\left(\overline{y}_{k} - \tau\nabla f(\overline{y}_{k})\right) \\ y_{k+1} = x_{k+1} + \alpha_{k}(x_{k+1} - x_{k}) \end{aligned}$$

► FISTA:
$$\bar{y}_k = y_k$$
 ► IML FISTA: $\bar{y}_k = ML(y_k)$ (i.e., min F_H)

IML FISTA recovers state-of-the-art convergence guarantees:

$$x_{k+1} \approx_{\epsilon_{h,k}} \operatorname{prox}_{\tau \varphi \circ L} \left(\bar{y}_k - \tau \nabla f(\bar{y}_k) + e_{h,k} \right)$$

Multilevel steps= bounded errors on the gradientIf $\sum_{k=1}^{\infty} k^{2d} \epsilon_{h,k} < \infty$, thenThe sequence $k^{2d} (F_h(x_{h,k} - F(x^*)))_{k \in \mathbb{N}}$ belongs to $\ell_{\infty}(\mathbb{N})$ The sequence $(x_{h,k})_{k \in \mathbb{N}}$ converges to a minimizer of F_h

Outline

The multilevel step

The ingredients of the multilevel scheme The transfer operators The coarse model

Numerical experiments

Hyperspectral images Radio-interferometric imaging

Hyperspectral images

How to build the coarse approximations?

How to build the coarse approximations?

Objective function evolution

Reconstruction

31/38

Dimension bottleneck: number of observations Collaboration with Audrey Repetti and Yves Wiaux

Coarse measurements

Coarser measurements

Reconstruction in log-scale of a region of the M31 galaxy

Conclusions and perspectives

Conclusions:

- We have proposed a general multilevel framework for image restoration with state-of-the-art convergence guarantees
- We have specialised the method in various contexts with really good practical performance

Perspectives:

- Extend the multilevel framework to scientific machine learning: multilevel Plug-and-Play methods, unrolled multilevel methods
- Extend the multilevel framework to second-oder methods: proximal Gauss-Newton methods

Thank you for your attention! A few references

- S. Gratton, A. Sartenaer, Ph. L. Toint. Recursive trust-region methods for multiscale nonlinear optimization, SIAM J. Opt., 19:414–444, 2008
- S. G. Nash. A multigrid approach to discretized optimization problems. Optimization Methods and Software, 14:99–116, 2000
- G. Lauga, E. Riccietti, N. Pustelnik, P. Gonçalves, IML FISTA: A Multilevel Framework for Inexact and Inertial Forward-Backward. Application to Image Restoration, SIAM Journal on Imaging Sciences 2024.
- A. Javaherian and S. Holman, A Multi-Grid Iterative Method for Photoacoustic Tomography, IEEE Transactions on Medical Imaging, 2017
- S. W. Fung and Z. Wendy, Multigrid Optimization for Large-Scale Ptychographic Phase Retrieval, SIAM Journal on Imaging Sciences, 13, 2020
- J. Plier, F. Savarino, M. Kočvara, and S. Petra, First-Order Geometric Multilevel Optimization for Discrete Tomography, in Scale Space and Variational Methods in Computer Vision, 2021
- V. Hovhannisyan, P. Parpas, and S. Zafeiriou, MAGMA: Multilevel Accelerated Gradient Mirror Descent Algorithm for Large-Scale Convex Composite Minimization, SIAM J. Imaging Sciences 2016
- P. Parpas, A Multilevel Proximal Gradient Algorithm for a Class of Composite Optimization Problems, SIAM J. Scient. Comp., 39 2017
- G. Lauga, E. Riccietti, N. Pustelnik, and P. Goncalves Multilevel FISTA for Image Restoration, IEEE ICASSP, 2023.