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The context: image restoration problems

x̂ ∈ arg min
x

1

2
‖Ax − z‖2

2 + λ‖Lx‖?

x z x̂

More generally
min
x

f (x) + g(x)

I f differentiable with Lipschitz gradient

I g possibly non-smooth and often non-proximable
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Focus on large-scale problems
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Existing acceleration strategies

I FISTA [Beck & Teboulle, 2009] [Chambolle & Dossal, 2015],

I Preconditioning [Donatelli, 2019][Repetti et al., 2014],

I Blocks methods [Liu, 1996] [Chouzenoux et al., 2016]
[Salzo, Villa 2022],

Alternative: Exploit the problem structure with a multiresolution
strategy
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The multilevel paradigm
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The multilevel literature
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Our contribution

IML FISTA: inexact multilevel FISTA

I A general multilevel algorithm with state-of-the-art
convergence guarantees for image restoration that handles
state-of-the-art non-proximable a-priori (TV, NLTV)

I Adaptation of IML FISTA to multiple image restoration
contexts with state-of-the art practical performance

I Adaptation of IML FISTA to radio-interferometric imaging
with state-of-the art practical performance
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Our context

The problem:
min
x

F (x) := f (x) + ϕ(Lx)

The method: inexact FISTA [Aujol, Dossal, 2015]

xk+1 ≈εk proxτϕ◦L(yk − τ∇f (yk))

yk+1 = xk+1 + αk(xk+1 − xk)

where αk = tk−1
tk+1

and tk =
(
k−1+a

a

)d
.

Contribution: update yk through a multilevel step
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Outline

The multilevel step

The ingredients of the multilevel scheme
The transfer operators
The coarse model

Numerical experiments
Hyperspectral images
Radio-interferometric imaging
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The multilevel step

I Classical proximal methods:

xk+1 = proxτϕ◦L(xk − τ∇f (xk))

I The multilevel paradigm:
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Idea of the multilevel (ML) step

Exploit different resolutions of the problem and alternate iterations
between fine and coarse levels.
Example: two-levels case - (h) fine level (H) coarse level
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The multilevel step - two level case

IHh , I
h
H ,FH?
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A hierarchy of images: IHh , I hH
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Example: the wavelet transform



18/38

Example: the wavelet transform



19/38

Example: the wavelet transform
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Example: the wavelet transform
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Coarse model definition FH

Fh(x) = F (x) =
1

2
‖Ax − z‖2

2 + ϕ(Lx)

FH(x) =
1

2
‖AHxH − z‖2

2 + ϕ(LHxH)

Is this model useful in minimizing F?
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Design of FH in smooth context: First order coherence
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Design of FH in smooth context: First order coherence
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Coarse model definition

Assume ϕ ◦ L smooth. We define:

F (x) =
1

2
‖Ax − z‖2

2 + ϕ(Lx)

FH(xH) =
1

2
‖AHxH − z‖2

2 + ϕ(LHxH)︸ ︷︷ ︸
F̃H

+ < vH , xH >

where, given xh iterate at fine level, we define:

vH = IHh ∇F (xh)−∇F̃H(IHh xh)

This implies the first-order coherence:

IHh ∇F (xh) = ∇FH(IHh xh)

What to do in the non-smooth case?
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Smoothing

Nonsmooth case → smoothing!

The Moreau envelope:

γg = inf
y∈H

g(y) +
1

2γ
‖ · −y‖2

Illustration: Moreau envelope of l1-norm for γ = 0.1 and γ = 1
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Coarse model for the non-smooth case

Coarse model FH for non-smooth functions

FH = fH + (γHϕH ◦ LH) + 〈vH , ·〉

where

vH =IHh ∇γhF (xh)−∇FH(IHh xh)

= IHh (∇fh(xh) +∇(γhϕh ◦ Lh)(xh))

− (∇fH(IHh xh) +∇(γHϕH ◦ LH)(IHh xh))

Theoretical results
If xH,m − xH,0 is a descent direction for FH , then

Fh(xh + τ̄ I hH(xm,0 − xH,0)) ≤ Fh(xh) + O(γh)
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IML FISTA
I The steps:

xk+1 ≈εh,k proxτϕ◦L (ȳk − τ∇f (ȳk))

yk+1 = xk+1 + αk(xk+1 − xk)

I FISTA: ȳk = yk
I IML FISTA: ȳk = ML(yk) (i.e., minFH)

I IML FISTA recovers state-of-the-art convergence guarantees:

xk+1 ≈εh,k proxτϕ◦L (ȳk − τ∇f (ȳk) + eh,k)

Multilevel steps= bounded errors on the gradient

If
∑∞

k=1 k
2dεh,k <∞, then

I The sequence k2d(Fh(xh,k − F (x∗)))k∈N belongs to `∞(N)

I The sequence (xh,k)k∈N converges to a minimizer of Fh
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Hyperspectral images
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How to build the coarse approximations?

Spatial resolution

Dimension reduction  :  spatial reduction
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Objective function evolution



31/38

Reconstruction
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Radio-interferometric imaging

Collaboration with Audrey Repetti and Yves Wiaux
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Radio-interferometric imaging
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Radio-interferometric imaging
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Radio-interferometric imaging
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Radio-interferometric imaging



37/38

Conclusions and perspectives

Conclusions:

I We have proposed a general multilevel framework for image
restoration with state-of-the-art convergence guarantees

I We have specialised the method in various contexts with really
good practical performance

Perspectives:

I Extend the multilevel framework to scientific machine learning:
multilevel Plug-and-Play methods, unrolled multilevel methods

I Extend the multilevel framework to second-oder methods:
proximal Gauss-Newton methods
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Thank you for your attention!
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