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The problem

We consider optimization problems arising in the training of artificial
neural networks:

min
p
L(p, z) z ∈ T

where L is the loss function, p is the vector of weights and biases of the
network, z is the problem’s variable and T is the training set.

Example: predict y = g(z)

Given a training set {(z1, y1), . . . , (zt , yt)} and denoted with ĝ the output
of the network, we define

L1 loss: L(p, z) = 1
t

∑t
i=1|yi − ĝ(zi , p)|,

L2 loss: L(p, z) = 1
t

∑t
i=1(yi − ĝ(zi , p))2,

Logistic loss: L(p, z) = 1
t

∑t
i=1

1
1+eyi−ĝ(zi ,p)

.
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Network architecture
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Large-scale problems

The optimization problem may be a large-scale problem, for example if g
is an oscillatory function. Many nodes may be necessary to have a network
able to accurately approximate it.

We look for an efficient scalable optimization method to solve the training
problem.
⇓

Can we exploit the structure of the network?
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Idea

We have to solve a large-scale problem

min
p
L(p, z) = F(ĝ(p, z)− y), z ∈ T .

Can we exploit the structure of the network to build a hierarchy of
problems approximating the original one?

Hierarchy of problems

{Fl(ĝl(pl , z)− y)}, pl ∈ Dl such that |Dl | < |Dl+1| and Fl is cheaper to
optimize compared to Fl+1.

This is the idea on which classical multigrid methods are based
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Classical multigrid methods

Consider a linear elliptic PDE: D(z , u(z)) = f (z) z ∈ Ω + b.c.
Discretize on grid h.
Get a large-scale linear system Ahxh = bh.

Multigrid methods

Consider the discretization of the same PDE problem on a coarser grid:
AHxH = bH , H > h.

Relaxation methods fails to eliminate smooth components of the error
efficiently.

Smooth components projected on a coarser grid appear more
oscillatory.

Figure:
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Coarse problem construction

Define transfer grid operators: P prolongation and R restriction to project
vectors from a grid to another: xH = Rxh, xh = PxH , such that R = αPT .

Geometry exploitation

The geometrical structure of the problem is exploited to build R and P.
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Optimization methods

We have a nonlinear problem to solve

min
x

f (x)

Classical iterative optimization methods:

f (xk + s) ' Tq(xk , s) = f (xk) + sT∇f (xk) +
1

2
sTBks + . . .

with Tq(xk , s) Taylor model of order q ≥ 1, Bk approximation to Hessian
matrix. At each iteration we compute a step sk to update the iterate:

min
s

mk(xk , s) = Tq(xk , s) +
λk

q + 1
‖s‖q+1, λk > 0

Least-squares: Levenberg-Marquardt (LM), q = 1, Bk = J(xk)T J(xk).

Adaptive Cubic Regularization method (ARC), q = 2, Bk = ∇2f (xk).
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Basic iterative optimization algorithm

Until convergence

Define the local model mk of f around xk , depending on λk

Compute a trial point xk + sk that decreases this model

Compute the predicted reduction mk(xk)−mk(xk + sk)

Evaluate change in the objective function f (xk)− f (xk + sk)

If achieved change ∼ predicted reduction then

Accept trial point as new iterate xk+1 = xk + sk
else

Reject the trial point xk+1 = xk
Increase λk
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Subproblem solution

Solving

min
s

Tq(xk , s) +
λk

q + 1
‖s‖q+1

represents greatest cost per iteration, which depends on the size of the
problem.

⇓
Recursive multilevel trust region method [Gratton, Sartenaer, Toint, 2008]

Assumption

1 Assume to have at disposal a sequence of approximations {fl} to the
objective function f such that fl is cheaper to optimize than fl+1.

2 Assume to have linear full-rank operators Rl and Pl to move from a
level to another, such that Rl = PT

l (up to a scalar).
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Multigrid setting

At each level l , x ∈ Rnl . lmax finest level, 0 coarsest level.

level lmax Rn x lmax f lmax = f µlmax = f
...

...
...

...

level l + 1 Rnl+1

x l+1 f l+1 µl+1

R l+1 ⇓ ⇑ P l+1

level l Rnl x l f l µl

...
...

...
...

level 0 Rn0 x0 f 0 µ0

f l represent f on the coarse spaces (it is e.g. the discretization of f
on a coarse space)

The functions µl are modifications of the f l ’s to ensure inter-level
coherence.
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Coherence between levels

Lower level model:

Model with first order correction:

µl−1 = f l−1(x l−10 + s l−1) + (R l∇f l(x lk)−∇f l−1(x l−1k ))T s l−1

This ensures that
∇µl−1(x l−10 ) = R l∇f l(x lk)

→ first-order behaviours of f l and µl−1 are coherent in a neighbourhood
of the current approximation. If s l = P ls l−1

∇f l(x lk)T s l = ∇f l(x lk)TP ls l−1 =
1

α
∇µl−1(x l−10 )T s l−1.
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Multilevel strategy

At level l , let x lk be the current approximation. We look for a correction s lk
to define the new approximation x lk+1 = x lk + s lk . Two choices:

1 minimize regularized Taylor model, get s lk ,

2 choose lower level model µl−1:

x lk

R lx lk := x l−10 x l−1∗

x lk+1 = x lk + s lk

R l

µl−1

s lk = P l(x l−1∗ − x l−10 )
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Recursive multi-scale algorithm

Until convergence

Choose either a Taylor or a (useful) recursive model

Taylor model: compute a Taylor step satisfying a sufficient decrease
property
Recursive: apply the algorithm recursively

Evaluate change in the objective function

If achieved change ∼ predicted reduction then

Accept trial point as new iterate

else

Reject the trial point
Increase λ

The algorithm is proved globally convergent to first order critical points
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Our contribution

In [Gratton, Sartenaer, Toint, 2008] second-order models are
considered (q = 2). We extend the convergence theory to q-order
models, with q > 2.

We specialize recursive algorithm for least-squares problems
(Levenberg-Marquardt method).

We propose a suitable mechanism to construct a hierarchy of
problems for neural network training.
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How to build the coarse problem?

Remark

The variables to be optimized are the network’s weights:

min
p
L(p, z) z ∈ T

NO evident geometrical structure to exploit!

Algebraic multigrid

We can take inspiration from algebraic multigrid techniques.
When solving linear systems Ax = b, the structure is discovered through
the matrix A. R and P are built just looking at the entries of the matrix.
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Which matrix should we use?

Assume to use a second-order model. At each iteration we have to solve a
linear system of the form:

(Bk + λ̃k I )s = −∇f (xk)

for λ̃k > 0. As in AMG for linear systems, we use information contained in
matrix Bk .

Remark

Variables are coupled! L(p, z) = F(ĝ(p, z)− y) and
ĝ(p, z) =

∑r
i=1 viσ(wiz + bi ) → p = {(vi ,wi , bi )}.

We do not use the full matrix Bk and we define A as:

Bk =

Av ,v .. ..
.. Aw ,w ..
.. .. Ab,b

→ A =
Av ,v

‖Av ,v‖∞
+

Aw ,w

‖Aw ,w‖∞
+

Ab,b

‖Ab,b‖∞

We define the coarse/fine splitting based on the auxiliary matrix A.
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Application: solution of PDEs

Approximate the solution u of a PDE:

D(z , u(z)) = g(z), z ∈ (a, b);

u(a) = A, u(b) = B.

We approximate u ∼ û(p, z) for p ∈ Rn and we define

L(p, z) =
1

2t
(‖D(z , u(z))− g(z)‖2 +λp(‖u(a)−A‖2 + ‖u(b)−B‖2))

for z ∈ T training set.
We build g to have true solution uT (z , ν) depending on ν
T : equispaced points in (0, 1) with h = 1

3ν (Shannon’s criterion).

Remark

As ν increases the function becomes more oscillatory and it is harder
to approximate.

The size of the problem increases with the number of nodes.
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Poisson’s equation, uT (z , ν) = cos(νz), 5 runs

Problem ν = 20 r = 29 ν = 25 r = 210

Solver iter RMSE save iter RMSE save

LM 282 1.e-3 632 1.e-2-1.e-3
RLM 193 1.e-3 1.2-1.75 347 1.e-2-1.e-3 1.2-3.15

save=ratio between total number of flops required for matrix-vector
products
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Helmholtz’s equation, 5 runs

Equation: ∆u(z) + ν2u(z) = 0 , uT (z , ν) = sin(νz) + cos(νz)

Problem ν = 5 r = 210

Solver iter RMSE save

LM 1243 1.e-2-1.e-3
RLM 1229 1.e-2-1.e-3 1.2-3.1

save=ratio between total number of flops required for matrix-vector
products
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Thank you for your attention!
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Ruge and Stueben AMG

To build the coarse problem, the variables are divided into two sets, set C
of coarse variables and set F of fine variables.

Ruge and Stueben C/F splitting

Two variables i , j are said to be coupled if ai ,j 6= 0.

We say that a variable i is strongly coupled to another variable j , if

−ai ,j ≥ ε max
ai,k<0

|ai ,k |

for a fixed 0 < ε < 1, usually ε = 0.25.

Each F variable is required to have a minimum number of its strong
couplings be represented in C . The C/F splitting is usually made
choosing some first variable i to become a coarse variable. Then, all
variables strongly coupled to it become F variables. The process is
repeated until all variables have been split.
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