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lll-posed problems

Let us consider the following inverse problem: given F : R” — R™ with
m > n, nonlinear, continuously differentiable and y € R™, find x € R”
such that

F(x)=y.

Definition

The problem is well-posed if:
1 Yy € R™ 3x € R" such that F(x) = y (existence),
2 F is an injective function (uniqueness),
3 F~lis a continuous function (stability).

The problem is ill-posed if one or more of the previous properties do not
hold.
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lll-posed problems

@ Let us consider problems of the form F(x) =y for x € (R", || - ||2)
and y € (R™, || - ||2), arising from the discretization of a system
modeling an ill-posed problem, such that:

@ there is not a unique solution,
o stability does not hold.

@ In a realistic situation the data y are affected by noise, we have at
disposal only y? such that:

ly —y°l <6

for some positive 9 .
@ We can handle only a noisy problem:

F(x) =y’
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Need for regularization

@ As stability does not hold, the solutions of the original problem do not
depend continuously on the data.
= The solutions of the noisy problem may not be meaningful
approximations of the original problem solutions.
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Need for regularization

@ As stability does not hold, the solutions of the original problem do not
depend continuously on the data.
= The solutions of the noisy problem may not be meaningful
approximations of the original problem solutions.

@ For ill-posed problems there are no finite bounds on the inverse of the
Jacobian of F around a solution of the original problem.
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Need for regularization

@ As stability does not hold, the solutions of the original problem do not
depend continuously on the data.
= The solutions of the noisy problem may not be meaningful
approximations of the original problem solutions.

@ For ill-posed problems there are no finite bounds on the inverse of the
Jacobian of F around a solution of the original problem.

o Classical methods used for well-posed systems are not suitable in this
contest.

4

Need for regularization.
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Discrete nonlinear ill-posed problems and regularizing methods
Outline

@ Introduction to iterative regularization methods.

@ Description of Levenberg-Marquardt method and of its regularizing
variant.

@ Description of a new regularizing trust-region approach, obtained by a
suitable choice of the trust region radius .

@ Regularization and convergence properties of the new approach.

@ Numerical tests: we compare the new trust-region approach to the
regularizing Levenberg-Marquardt and standard trust-region methods.

@ Open issues and future developments.
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lterative regularization methods

Hypothesis: it exists xT solution of F(x) = y.

Iterative regularization methods generate a sequence {x?}. If the process
is stopped at iteration k*(0) the method is supposed to guarantee the
following properties:

o x,f*((s) is an approximation of xT;
° {xf*((s)} tends to x' if 6 tends to zero;

@ local convergence to x! in the noise-free case.
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Existing methods

o Landweber (gradient-type method)[ Hanke, Neubauer, Scherzer,
1995,Kaltenbacher, Neubauer, Scherzer, 2008 |

@ Truncated Newton - Conjugate Gradients [Hanke, 1997, Rieder, 2005]

@ lterative Regularizing Gauss-Newton [Bakushinsky, 1992, Blaschke,
Neubauer, Scherzer, 1997]

@ Levenberg-Marquardt [Hanke,1997,2010,Vogel 1990, Kaltenbacher,
Neubauer, Scherzer, 2008]

These methods are analyzed only under local assumptions, the definition
of globally convergent approaches is still an open task.
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Levenberg-Marquardt method

@ Given x,f € R" and A, > 0, we denote with J € R™*" the Jacobian
matrix of F. The step px € R” is the minimizer of

1 1
mM(p) = §||F(Xf) =y + IRl + Ll
@ py is the solution of
(B + Akl)pk = —g«

with B = J(x)T J(xD), g = J)T(F(x2) — y°);

@ The step is then used to compute the new iterate

5 5
Xk+1 = Xk + Pk-
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Regularizing Levenberg-Marquardt method

@ The parameter Ay > 0 is chosen as the solution of:
IFCR) = y° + JR)pll = allF (@) = »°|

with g € (0,1);
@ With noisy data the process is stopped at iteration k*(9) such that
le*(a) satisfies the discrepancy principle:

IF O sy) = ¥° Il < 78 < IF () =¥l

for 0 < k < k*(0) and 7 > 1 suitable parameter.
[Hanke, 1997,2010]
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Levenberg-Marquardt methods for ill-posed problems

Local analysis

Hypothesis for the local analysis:
Given the starting guess Xxp, it exist positive p and ¢ such that

@ the system F(x) =y is solvable in B,(xo);
o for x,X € Boy(x0)
IF(x) = F(%) = JC)(x = X)[| < ellx = X[[[|F(x) = FK)]|
[Hanke, 1997,2010]

Due to the ill-posedness of the problem it is not possible to assume that a
finite bound on the inverse of the Jacobian matrix exists.
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Levenberg-Marquardt methods for ill-posed problems

Regularizing properties of the Levenberg-Marquardt
method

Choosing Ak as the solution of
5 § § § 5
1F(xe) — y° + J(xi)pll = all F(xe) — y°ll
and stopping the process when the discrepancy principle
IF (e s)) =¥l < 76 < |F () = |
is satisfied, Hanke proves that:

@ With exact data (6 = 0): local convergence to x ,
@ With noisy data (6 > 0): if 7 > %, choosing xo near to x' the
discrepancy principle is satisfied after a finite number of iterations

k*(6) and {x,f*(é)} converges to a solution of F(x) =y if 0 tends to
zero.

This is a regularizing method

Elisa Riccietti () Adaptive Trust-Region Regularization. Bertinoro, Nov. 2015 11 / 46



Trust-region methods

o Given x,f € R", the step px € R” is the minimizer of
: 1
min mg"(p) = §IIF(X2) ="+ J0)pl%,
st lpll < A,

with Ag > 0 trust-region radius.
o Set ®(x) = 1||F(x) — y°||, and compute

(xx) — P(xx + px)
m[R(0) — m[R(pyx)

mk(pk) =

@ Given n € (0,1):

o If m < m then set Agyg < Ak and xx11 = X
o If mx > m then set Agyq1 > Ay and Xk41 = Xk + P
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Trust-region methods

It is possible to prove that py solves

(Bk + Al)pk = —8k
for some Ax > 0 such that

Ak(llpkll = Ak) =0,

where we have set By = J(x{)TJ(x)) and gk = J(x{)T (F(x{) — y?).
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Trust-region methods

From Ax(||pk|| — Ak) = 0 it follows that:

@ If the minimum norm solution p* of Byxp = —g satisfies ||p*|| < Ay
then Ay = 0 and px = p(0);

@ otherwise A\ # 0, ||pk|| = Ak and px = p(Ak) is a
Levenberg-Marquardt step.

4

@ The standard trust-region does not ensure regularizing properties.

@ Trust-region should be active to have a regularizing method:

1Pkl = A
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Regularizing properties of trust-region methods

Regularizing trust-region

@ Levenberg-Marquardt and trust-region methods are strictly
connected, due to the form of the step.

@ As Hanke did, can we introduce a trust-region method with
regularizing properties and still globally convergent?
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Regularizing properties of trust-region methods

We modify the standard trust-region to have:
@ monotone decay of the function
1 5
O(x) = 5IF() IR,
@ the g-condition to hold:

IFO) =y +J0q)pll = gl F(x) — ¥l

The g-condition is a relaxed reformulation of

IFOR) = v+ J06)pl = al F(<) = ¥°ll-
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Regularizing trust-region

We now describe the new trust-region approach that thanks to a suitable
trust-region radius update ensures:

@ the g-condition to hold,

@ the same regularizing properties of Levenberg-Marquardt method.
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Trust-region radius choice

Lemma
Let pi the solution of trust-region problem. If

1-gq

Ag < 18]
1Bl

then py satisfies the g-condition.

Consequence: Ag's choice

. 1—gq
Ay e [cminngku, min {cmax, mugkn}] ,

with Gnin, Cmax Suitable constant, By = J(x?)TJ(x{) e
g = ()T (F(x0) —y°).

Elisa Riccietti () Adaptive Trust-Region Regularization. Bertinoro, Nov. 2015 18 / 46



Regularizing properties of trust-region methods

2.

3.

Algorithm : k-th iteration of regularizing trust-region
Given x{, 7 € (0,1), v € (0,1), 0 < Guin < Crax-

Exact data: y, g € (0,1).

Noisy data: y?,

1.

qge(0,1), 7>1/q.
Compute By = J(XE)TJ(XLS) and g = J( ,‘f) (F(Xk) 5).
q

1-—
} el
Repeat

| Bx|
3.1 Compute the solution px of trust-region problem.
3.2 Compute

Choose Ay € {Cm;ankH, min {Cmax,

d(x o(x?
o) = Sl

with ®(x) = LIFG) — y* 2, mI®(p) = YIF (<) + S0l
3.3 If mi(px) < m.set Ay = yAx.

Until 7« (pk) > 1.
4.

Set X,fH =x) + pr.
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Local analysis

Hypothesis 1: the same as for Levenberg-Marquardt method.
We assume that for index k it exist positive p and c¢ such that

1 the system F(x) =y is solvable in Bp(xg);
2 for x,X € sz(xg)

IF(x) = F(X) = J(x)(x = X)|| < cllx = X[[[IF(x) = F(X)I]-
Hypothesis 2: It exists positive K such that
M) < Ky

forall x e L={x e R" s.t. d(x) < d(xp)}.

Elisa Riccietti () Adaptive Trust-Region Regularization. Bertinoro, Nov. 2015 20 / 46



Results for 6 =0

Lemma
The method generates a sequence {xi} such that for k > k
® trust-region is active, i.e. Ay > 0;
o x, belongs to By,(xz) and to B,(x');

o it exists A > 0 such that A\, < .

o [Ixkr1 — xT|| < [k — xT

Theorem
The sequence {xx} converges to a solution x* of F(x) =y such that
Ix* =Xl < p.

It holds limk_,~ ||gk|| = O so the trust-region radius tends to zero.
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Results for 6 > 0

Lemma
Let k < k*(6). The method generates a sequence {x{} such that for
k < k < k*(0)
@ the trust-region is active, i.e. Ax > 0;
x{ belongs to sz(xg) and to B,(xT);

7

it exists X\ > 0 such that M\ < \.

Ixgs — XTIl < [lxg — xT

Theorem

The discrepancy principle is satisfied after a finite number of iterations
k*(8) and the sequence {Xi*(é)} converges to a solution of F(x) =y if§
tends to zero.
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Regularizing properties of trust-region methods

This is a regularizing method.

Elisa Riccietti () Adaptive Trust-Region Regularization. Bertinoro, Nov. 2015 23 / 46



Test problems

@ Four nonlinear ill-posed systems arising from the discretization of
nonlinear first-kind Fredholm integral equation are considered, they
model gravimetric and geophysics problems:

/Ok(t,s,x(s))ds:y(t), telo1],

P1,P2, [Vogel, 1990], P3,P4 [Kaltenbacher,2007];

@ Their kernel is of the form

e (t—s)z—i—H2
Kt.sx(s)) = ’g<<t—s>2 (A ())2>
1 .

V14 (t—5)?+x(s)?

k(t,s,x(s)) =
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Test problems: discretization

@ We chose n = m, interval [0, 1] was discretized using n=64
equidistant grid points t; = (i —1)h, h=1/(n—1), i=1,...,n;

@ x(s) was approximated by piecewise linear functions on the grid
si=tj, J=1,...,m x(s) ~ Xa(s) = D) ®i(s)x
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Test problems: discretization

@ The integrals fol k(ti,s,X(s))ds, i=1,...,n were approximated by
the composite trapezoidal rule on the points s; j =1,...,n.

@ The resulting nonlinear system is
n
ZVV_jk(t;,Sj,)?(s_j)):y(t;) J=1...,n
i=1

with wy = w, =3, w; = 1forall i # 1,n.
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Choice of parameters A\

@ Parameters Ay were computed to have an active trust-region:

PV = A

@ We used Newton method to solve this reformulation of the condition:

1 1
PN A

that is more suitable to the application of Newton method.

b(A) = 0.

@ Each Newton iteration requires Cholesky factorization of By + Al.
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Regularizing trust-region implementation

Trust-region radius update:

1 .
g Hk-1 if q_1<gq

2u—1 if g1 >vq
hk—1 otherwise

Ay = il F(x) = y°l, Lok

IFO) =y +J00)pecll _
ﬁF(XE)_y5|k| ,and v =1.1.

with g, =
@ Ay is less expensive to compute if compared to ||1,;—k‘|7|||gk|| but

preserves convergence to zero if § = 0.

@ In the update the fulfillment of g-condition is considered.
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Regularizing properties
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The g-condition is satisfied in most of the iterations even if not esplicitly
imposed.
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Numerical tests

Regularizing properties of the method.
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Logarithmic plot of the error HX/(E*((;) — x'|| as a function of the noise level
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Comparison between regularizing TR-LM, § = 1072,

Problem Regularizing TR | Regularizing LM
X0 it nf cf | it nf cf it=iterations,
P1 Oe | 20 21 6 17 18 4 nf=function
—05e | 29 30 6 22 23 4 evaluations,
—le | 35 36 > 2425 4 cf=mean number
—2e 40 41 5 25 26 4
P2 Oe| 30 31 5 |* * % of Cholesky
05e 25 26 5 * * * factorizations.
le 29 30 5 22 23 5
2e 37 39 5 25 2 5 x=failure, reached
P3 X0(125) 15 16 4 12 13 4 maximum number
x0(1.5) 17 18 4 14 15 4 . .
x(l75) | 19 20 4 |15 16 4 of iterations or
x0(2) 22 23 4 |16 17 4 convergence to a
P4 xo0(1,1) 17 18 5 10 11 4 solution of the
x0(0.5,0) | 20 21 4 * * *
xo(1.5,1) | 22 23 4 |15 16 4 noisy problem
x0(1.5,0) 26 27 4 * * *

e=(1,....,1)7, P3: (x(a)); = (—4a + 4)sj2 + (4a — 4)s; + 1, P4: xo(B,x) = B — xsj, s; grid
points, j =1,...,n.
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Numerical tests

Comparison between regularizing TR and LM

-regularizing trust-region
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Left: regularizing TR, Right: regularizing LM , Solid line: solution of the original problem.

Elisa Riccietti ()

Adaptive Trust-Region Regularization.

Bertinoro, Nov. 2015

32 / 46



Comparison between regularizing TR e LM
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Left: regularizing TR, Right: regularizing LM , Solid line: solution of the original problem.

Elisa Riccietti () Adaptive Trust-Region Regularization. Bertinoro, Nov. 2015 33 /46



The g-condition

The condition imposed by Hanke is strongly dependent on the choice of

the value of free parameter q. Values of g = 0.67, 0.70, 0.73, 0.87.

ot plot of the true and the computed solution, =0.67 " plot of the true and the computed solution, 4=0.70

plot of the true and the computed solution, =0.87
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Comparison between regularizing and standard trust-region

015 - - -regularizing trust-region 015 standard trust-region

.
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Left: regularizing TR, Right: standard TR , Solid line: solution of the-original problem.
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Open issues: Convergence to the infinite dimensional
solution.

Let X', ) be Hilbert spaces, Fo : X — YV, yso € Y. The nonlinear system
is the discretization of a infinite dimensional problem: find x,, € X such
that Foo(Xs0) = Yoo We are interested in the convergence of the discrete
solution X,(s) = > 7_; ®;(s)x; to a solution of the infinite dimensional
problem as n — oc.

Theorem
The sequence {X,} has a weakly convergent subsequence {xy}.

Theorem

The sequence {||Foo(Xk) — Yool|} converges to zero as k tends to infinite,
i.e. the weak limit x* of sequence {Xy} is a solution of the original
problem, Foo(X*) = Yoo-
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Open issues: peaks

@ Problem: when solving the nonlinear system obtained computing the
integral by the trapezoidal rule, the approximated solution shows
peaks at the end points of the interval. Peaks are higher and higher
as the starting guess moves away from the solution and the noise
increases.

@ When solving the nonlinear system obtained computing the integral
by the rectangular rule, the approximated solution does not show
peaks at the end points of the interval.
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Open issues and future developments

Computed solution
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Computed solution, xp = le, § = 1.e — 2. Left: trapezoidal rule, Right: rectangular rule, Solid

line: solution of the original problem.
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Open issues and future developments

plot of the error

plot of the error

plot of the error

plot of the error

e/= error computed on the points inside the interval, eg=border error. Upper part: trapezoidal
rule, left: 6 = 0, right: § = 1.e — 2. Lower part: rectangular rule, left: 6 = 0, right:

6=1e—2.
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Comparison of the nonlinear systems

@ Trapezoidal rule: the resulting nonlinear system is
1 1
Ek(tiy s1,x1) + 1k(ti, 52, x2) + - - -+ 1k(ti, Sp—1, Xn—1) + Ek(ti’ Sny Xn) = y(ti),

i=1,...,n.
@ Rectangular rule: the resulting nonlinear system is

1k(ti7 slaxl) + 1k(t17 527X2) + -+ 1k(tla Sn—laxn—l) + ]-k(tla Sn;Xn) - y(tl)v

i=1,...,n.
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Linear system: trapezoidal rule

We solve (JTJ 4+ M)p(A) = —JT(F — y%). Let n = 5.

%81k(t1751,X1) 182k(t1752yx2)

JO1k(ts,s1,x1)  102k(ts, 52, x2)

104 k(t1, s4,xa)

104k(ts, 54, x4)

We denote ki j = k(tj,sj,xj) i,j=1,...,n

s
S
1 5
P&
4 i

Elisa Riccietti ()

O1ki 101 ki1
Oaki 201 ki1

a4k1 581kl 1
Ouki 501ki 1

JTy=

% S Ouki10okio
1370 Ookiadakin

1323 | Oaki 500k
1307 | OskisOaki

% % | O1ki10akia
13°% , Oaki20akia

1523 | Oaki50ukia
3371 OskisOakia

Adaptive Trust-Region Regularization.

$05k(t1, 55, x5)

305k(ts, 55, x5)

% 3 Biki 106k 5
33271 Ooki2Oskis
1YL 34k, 505k 5
237 ki s0skis
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Linear system: rectangular rule

We solve (JTJ 4+ M)p(\) = —JT(F — y?). Let n =5.

181k(t1,51,x1) 182k(t1,$2,X2) . 184k(t1,54,X4) 185k(t1,$5,X5)

181k(t5751,X1) 182/((1’5,52,X2) . 184k(t5,54,><4) 185k(t5,55,X5)

We denote ki j = k(t;,s;,x;) i,j=1,...,n.

JTJ=
122:1 O1ki 101k 1 122:1 O1ki 102k . 122:1 O1ki 104kKi 4 122:1 0O1ki 105ki 5
1307 1 O0kin0ikin 1357, OokinOokin . 1337 0okio0skia 13.7_; Oaki20skis
1 22:1 O4kisO1kip 1 22:1 O4kisOrkin . 1 22:1 OukisOnkia 1 22:1 O4ki 505 ki 5
1371 OakisOrkin 1371 OskisOokin . 1307 OskisOakia 137 ; Os5kisOskis
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SVD decomposition: trapezoidal rule

Let consider matrix J7J SVD decomposition.

o JTU=UxUT
e cond(JTJ)=10% \=157, cond(JTJ+ \I) =1.2 10°
3.8 10° —7.61072
8.5 1072 —1.71071t
o o =diag(X)=] 231073 [, p=] —-1810!
7.1107° —1.71071t
1.610°° —7.61072
—0.24 —0.44 0.58 0.56 0.32
—0.54 —0.56 0.04 —0.44  —0.46
e U=| —056 35108 —056 —7.310"% 0.61
—0.54 0.56 0.04 0.44 —0.46
—0.24  0.44 0.58 —0.56 0.32
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SVD decomposition: rectangular rule

Let consider matrix J7J SVD decomposition.

o JTU=UxUT
o cond(JTJ)=10° X\ =174, cond(JTJ+ \I) = 1.3 10°
5.1 10° —-1.81071
1.81071 —2.0107!
o 0 =diag(X)=| 581073 |, p=| —21107!
1.3107* —2.0107!
1.810°° -1.8107!
—0.41  —0.60 0.55 -0.38  —0.17
—0.46  —0.38 —0.19 0.60 0.5
e U=]| —048 —4110% —057 —1410% —0.66
—0.46 0.38 -0.19 —0.60 0.50
—0.41 0.60 0.55 0.38 —0.17
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Future developments

We are interested in:

@ Design a new approach to solve least squares nonlinear ill-posed
problems.

@ Large-scale problems.
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Open issues and future developments

THANK YOU FOR YOUR ATTENTION!
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