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The context

The problem: numerical approximation of PDE’s solutions.

▶ Classical approaches: discretization and multigrid methods
(MG)

▶ New advances in machine learning : Physics Informed Neural
Networks (PINNs)

Our objective:
Transfer the advantages of the first approach to the second.
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The numerical solution of PDEs

▶ Classically PDEs are
discretized on a grid using
finite differences or finite
elements

▶ The resulting linear system
Au = f is solved using a
fixed point iterative
method (Gauss-Seidel or
Jacobi)

▶ The size of the grids
impacts the size of the
system and the accuracy of
the solution approximation
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Multigrid methods for PDEs

State-of-the-art methods for PDEs: exploit representation of the
problem at different scales

▶ Fine scales: eliminate
high frequency
components of the
error

▶ Coarse scales:
eliminate low
frequency
components of the
error
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The intuition behind multigrid methods

▶ A question of wavelength

▶ Example: consider ∆u = 0, and take an initial guess
consisting of the k-th Fourier mode vk(j) = sin(kjπn )
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The intuition behind multigrid methods

▶ The smoothing property : hard for fixed point iterative
methods to reduce the low frequency components of the error



9/36

The intuition behind multigrid methods

▶ How does a smooth component look like on a coarser grid?
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Two-level multigrid methods

Consider a (possibly nonlinear)
PDE:

A(u) = f .

Consider two discretizations of
the same system:

▶ Fine grid: Ah(uh) = fh
▶ Coarse grid: AH(uH) = fH

Idea: write the solution u as the
sum of a fine and a coarse term:

u ∼ vh︸︷︷︸
∈Rh

+P( eH︸︷︷︸
∈RH

), H < h.
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Two-level multigrid methods
Build operators to transfer the information between the two levels
R:

P:
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Two-level multigrid methods

Update the two components alternatively:

u ∼ vh︸︷︷︸
∈Rh

+P( eH︸︷︷︸
∈RH

), H < h.

▶ Fine level : get vh by iterating on

Ah(u) = fh

▶ Coarse level : compute correction by the residual equation:

AH(Rvh + eH) = AH(Rvh) + R(fh − Ah(vh))

▶ Correct: vh ← vh + P(eH)
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General multigrid methods

Optimal complexity for problems with diagonally dominant Fourier
decomposition!
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Physics Informed Neural Networks

General principle

How does a PINN work?
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On the spectral bias of neural networks

=⇒ a standard single NN does not smooth the signal !



17/36

On the spectral bias of neural networks (1)
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On the spectral bias of neural networks (2)
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Mscale networks (1)
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Mscale networks (2)

Idea: simultaneous training of frequency-selective subnetworks
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Multilevel PINNs: formulation

Problem definition

D(z , u(z)) = f (z), z ∈ Ω,

usol = uH + uh

Lh(θh) = RMSEresh(θh) + RMSEdatah(θh)

RMSEresh(θh) =
λr

N r
h

||D(ûh + uH)− f ||2

RMSEdatah(θh) =
λm

Nm
h

||ûh + uH − u||2

With zh the fine sampling

LH(θH) = RMSEresH(θH) + RMSEdataH(θH)

RMSEresH(θH) =
λr

N r
H

||D(ûH + uh)− f ||2

RMSEdatah(θH) =
λm

Nm
H

||ûH + uh − u||2

With zH the coarse sampling
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Multilevel PINNs (0)

Also exploit frequency-selective subnetworks

but. . .
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Multilevel PINNs (1)
Algorithm 2-level training of PINNs

1: Freeze coarse-network parameters, unfreeze fine-network parameters
2: for i=1,2,. . . do
3: Perform ν1 epochs for the minimization of the fine problem
4: Freeze fine-network parameters, unfreeze coarse-network parame-

ters
5: Perform ν2 epochs for the minimization of the coarse problem
6: end for
7: Return : uH + uh
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Multilevel PINNs (2)
Algorithm 2-level training of PINNs

1: Freeze coarse-network parameters, unfreeze fine-network parameters
2: for i=1,2,. . . do
3: Perform ν1 epochs for the minimization of the fine problem
4: Freeze fine-network parameters, unfreeze coarse-network parame-

ters
5: Perform ν2 epochs for the minimization of the coarse problem
6: end for
7: Return : uH + uh
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V-cycling between two levels
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A simple Poisson problem

▶ Ω = [0, 1]× [0, 1]

▶ ∆u = f ∀x ∈ Ω

▶ u = 0 ∀x ∈ ∂Ω

▶ u(x , y) = (sin(πx) + sin(βπx)) ∗ (sin(πy) + sin(βπy))
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Experimental settings

In what follows:

▶ The PINNs have two hidden layers of 300 neurons each.

▶ The Mscale have four subnetworks of two hidden layers of 150
neurons each, the input scaling used are 1,2,4 and 8.

▶ The two-level MPINN is composed of two networks of two
hidden layers of 210 neurons each and trained in a V-cycle
with 1 and 8 input scalings (ν1 = ν2 = 1000).

▶ The three-level MPINN is composed of three networks of two
hidden layers of 150 neurons each and trained in a V-cycle
with 1,4 and 8 input scalings (ν1 = ν2 = ν3 = 1000).

▶ The input of all networks is a regular grid sample of 80× 80
points

▶ In all cases, we plot the median for ten random runs.
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Experimental results
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Varying β (the frequency content)
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Convergence of error on boundary conditions
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Convergence of MSE (extrapolation)
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Computational cost for two levels. . .

. . . as a function of coarse grid size (nH)
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Conclusions

▶ We have presented a new multigrid-inspired training
framework using recent advances in NN to efficiently solve
PINN-type problems.

▶ We have proposed an algorithm which works without prior
knowledge of frequency content and which is promising.

▶ We have demonstrated that exploiting spectral
complementarity using our framework may bring significant
computational benefits (faster convergence).
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Perspectives

▶ Perform further extensive testing, including more complex
problems.

▶ Pursue the sensitivity analysis for
▶ the relative sizes of the grids,
▶ the strategies for grid change.

▶ Investigate theoretical aspects:
▶ convergence of the iterates from an optimization point of view,
▶ convergence to the solution in functional space.

▶ Exploit the framework’s versatility: extensions to other
network types (e.g. deep-O-Net), as well as to other ways of
targeting signal frequencies (Fourier feature mappings) or
modelling complementarity.
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