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Discrete nonlinear ill-posed problems and regularizing methods

lll-posed problems

Let us consider the following inverse problem: given F : R" — R™ with
m > n, nonlinear, continuously differentiable and y € R™, find x € R”
such that

F(x)=y.

Definition

The problem is well-posed if:
1 Yy € R™ 3x € R” such that F(x) = y (existence),
2 F is an injective function (uniqueness),
3 F~1is a continuous function (stability).

The problem is ill-posed if one or more of the previous properties do not
hold.
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Discrete nonlinear ill-posed problems and regularizing methods

lll-posed problems

@ Let us consider problems of the form F(x) =y for x € (R”, || - |2)
and y € (R™, || - ||2), arising from the discretization of a system
modeling an ill-posed problem, such that:

e it exists a solution x, but is not unique,
o stability does not hold.

@ In a realistic situation the data y are affected by noise, we have at
disposal only y? such that:

ly =y’ <6

for some positive 9 .
@ We can handle only a noisy problem:

F(x) =y’
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Discrete nonlinear ill-posed problems and regularizing methods

Need for regularization

@ As stability does not hold, the solutions of the original problem do not
depend continuously on the data.
= The solutions of the noisy problem may not be meaningful
approximations of the original problem solutions.
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Discrete nonlinear ill-posed problems and regularizing methods

Need for regularization

@ As stability does not hold, the solutions of the original problem do not
depend continuously on the data.
= The solutions of the noisy problem may not be meaningful
approximations of the original problem solutions.

@ For ill-posed problems there are no finite bounds on the inverse of the
Jacobian of F around a solution of the original problem.
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Need for regularization

@ As stability does not hold, the solutions of the original problem do not
depend continuously on the data.
= The solutions of the noisy problem may not be meaningful
approximations of the original problem solutions.

@ For ill-posed problems there are no finite bounds on the inverse of the
Jacobian of F around a solution of the original problem.

@ Classical methods used for well-posed systems are not suitable in this
contest.

4

Need for regularization.
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Discrete nonlinear ill-posed problems and regularizing methods
Outline

@ Introduction to iterative regularization methods.

@ Description of Levenberg-Marquardt method and of its regularizing
variant.

@ Description of a new regularizing trust-region approach, obtained by a
suitable choice of the trust region radius .

@ Regularization and convergence properties of the new approach.

@ Numerical tests: we compare the new trust-region approach to the
regularizing Levenberg-Marquardt and standard trust-region methods.

@ Open issues and future developments.
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Discrete nonlinear ill-posed problems and regularizing methods

lterative regularization methods

Hypothesis: it exists xT solution of F(x) = y.

Iterative regularization methods generate a sequence {x,f}. If the process
is stopped at iteration k*(0) the method is supposed to guarantee the
following properties:

° le*((i) is an approximation of x;
° {X/f*(d)} tends to xT if § tends to zero:

e local convergence to x! in the noise-free case.
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Discrete nonlinear ill-posed problems and regularizing methods
Existing methods

Landweber (gradient-type method)[ Hanke, Neubauer, Scherzer,
1995,Kaltenbacher, Neubauer, Scherzer, 2008 ]

Truncated Newton - Conjugate Gradients [Hanke, 1997, Rieder, 2005]

Iterative Regularizing Gauss-Newton [Bakushinsky, 1992, Blaschke,
Neubauer, Scherzer, 1997]
Levenberg-Marquardt [Hanke,1997,2010,Vogel 1990, Kaltenbacher,
Neubauer, Scherzer, 2008]

These methods are analyzed only under local assumptions, the definition
of globally convergent approaches is still an open task.
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Levenberg-Marquardt method

o Given x{ € R" and )4 > 0, we denote with J € R™*" the Jacobian
matrix of F. The step px € R" is the minimizer of

1 1
mM(p) = §||F(X;f) —y*+ )Pl + 5/\kllpll2:
@ py is the solution of
(Bk + Al ) Pk = —g«

with By = J(xQ) TJ(x0), gk = J() T (F(x2) — y°):;
@ The step is then used to compute the new iterate

s s
X1 = X T Pk
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Regularizing Levenberg-Marquardt method

@ The parameter Ax > 0 is chosen as the solution of:
IF() = v° + J0R)pll = gl FOR) = ¥l

with g € (0,1);
e With noisy data the process is stopped at iteration k*(§) such that
x,‘f*(é) satisfies the discrepancy principle:

IF () — ¥l < 76 < [IFOE) — ¥

for 0 < k < k*(6) and 7 > 1 suitable parameter.
[Hanke, 1997,2010]
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Levenberg-Marquardt methods for ill-posed problems

Local analysis

Hypothesis for the local analysis:
Given the starting guess xp, it exist positive p and ¢ such that
e the system F(x) =y is solvable in B,(xo);
e for x,X € By,(xp)
IF(x) = F(X) = J(x)(x = M) < clix = K[[[[F(x) = FR)]-
[Hanke, 1997,2010]

Due to the ill-posedness of the problem it is not possible to assume that a
finite bound on the inverse of the Jacobian matrix exists.
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Levenberg-Marquardt methods for ill-posed problems

Regularizing properties of the Levenberg-Marquardt
method

Choosing A\ as the solution of
IF(R) = y* + JCR)pll = al FO) = »°|
and stopping the process when the discrepancy principle
IF(x-(5)) = Il < 76 < IF() = ¥
is satisfied, Hanke proves that:

o With exact data (6 = 0): local convergence to x' ,
e With noisy data (6 > 0): if 7 > %, choosing xg close to x' the
discrepancy principle is satisfied after a finite number of iterations

k*(9) and {x,f*((s)} converges to a solution of F(x) =y if 4 tends to
zero.

This is a regularizing method
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Regularizing properties of trust-region methods

Trust-region methods

e Given x,f € R", the step px € R” is the minimizer of

) 1
min m{(p) = 1 F(xf) = ¥ + Il
st. [lpll < A,

with A, > 0 trust-region radius.
e Set ®(x) = 1[|F(x) — y°||?, and compute

B D(xx) — P(xk + pk)
TP = TR (0) — mIR(pe)

e Given n € (0,1):

o If mx < n then set Ayy1 < Ak and xx4+1 = X.
o If mx > m then set Agy1 > Ak and X1 = Xk + pk-
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Regularizing properties of trust-region methods

Trust-region methods

It is possible to prove that py solves

(B + Al )pi = —g«
for some Ay > 0 such that

Ak(l[pell = Ak) =0,

where we have set By = J(x0)TJ(x?) and gk = J(x{) T (F(x{) — y?).
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Regularizing properties of trust-region methods

Trust-region methods

From Ax(||pk|| — Ak) = 0 it follows that:

@ If the minimum norm solution p* of Bxp = —gj satisfies ||p*|| < Ag
then Ay = 0 and px = p(0);

@ otherwise Ay # 0, ||pk|| = Ak and pyx = p(Ak) is a
Levenberg-Marquardt step.

4

@ The standard trust-region does not ensure regularizing properties.

@ Trust-region should be active to have a regularizing method:

1Pkl = A
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Regularizing properties of trust-region methods

Regularizing trust-region

@ Levenberg-Marquardt and trust-region methods are strictly
connected, due to the form of the step.

@ As Hanke did, can we introduce a trust-region method with
regularizing properties and still globally convergent?
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Regularizing properties of trust-region methods

Goals

We modify the standard trust-region to have:

@ monotone decay of the function

1
®(x) = S1F() = "I,
@ the g-condition to hold:

IF(x)) — o + )Pl > allF(x)) — v°|l.

The g-condition is a relaxed reformulation of

IFOR) = yv° + J()pll = allF() = ¥l
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Regularizing properties of trust-region methods

Regularizing trust-region

We now describe the new trust-region approach that thanks to a suitable
trust-region radius update ensures:

@ the g-condition to hold,

@ the same regularizing properties of Levenberg-Marquardt method.
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Regularizing properties of trust-region methods

Trust-region radius choice

Lemma
Let py the solution of trust-region problem. If

1-
Ay < il
[EA]

then py satisfies the g-condition.

Consequence: Ag's choice

. 1—gq
Are [cmmugku, min {cmax, ”Bknugkn}] ,

with Chin, Cmax suitable constant, By, = (xk)TJ( ) e
g = JOQ) T(F(x) — ¥°).
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Regularizing properties of trust-region methods

Algorithm : k-th iteration of regularizing trust-region
Given x2, 7 € (0,1), v € (0,1), 0 < Cmin < Crnax.-
Exact data: y, g € (0,1).
Noisy data: y°, g € (0,1), 7 > 1/q.
1. Compute By = J(x2)TJ(x?) and g = J(x0)T (F(x) — y%).

. 1-—
2. Choose Ay € [CmiankH, min {Cmax, HBkﬁ} Hng}
3. Repeat
3.1 Compute the solution pj of trust-region problem.
3.2 Compute

o(xh) — 00 + pi)
TP = k(O) (o)
with ®(x) = 3[|F(x) — y°[I>, m{"(p) = 3IIF(x) + J(x¢)p*.
3.3 If 7rk(pk) < 7n,set Ak ’yAk.
Until ﬂ'k(pk) Z n.

4. Set x[fH =x7 + px.
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Local analysis

Hypothesis 1: the same as for Levenberg-Marquardt method.
We assume that for index k it exist positive p and ¢ such that

1 the system F(x) =y is solvable in Bp(xg);
2 for x,X € ng(xl‘—z)

I1F(x) = F(X) = J(x)(x = X)|| < cllx = X[ F(x) = F(%)]-
Hypothesis 2: It exists positive K such that
I < K,

forall x e L={x € R" s.t. ®(x) < d(x0)}.
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Results for 6 =0

Lemma

The method generates a sequence {xi} such that for k > k
® trust-region is active, i.e. A\ > 0;
o xy belongs to By,(xz) and to B,(xT);

o [xir1 — xT|| < [k —xT

’

@ it exists A > 0 such that A < A

Theorem
The sequence {xx} converges to a solution x* of F(x) = y such that
Ix* = xT| < p.

It holds limk_, ||gk|| = O so the trust-region radius tends to zero.
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Results for § > 0

Lemma
Let k < k*(5). The method generates a sequence {x{} such that for
k < k < k*(0)

@ the trust-region is active, i.e. A > 0;

o x) belongs to ng(xl‘—j) and to B,(xT);

o [xpyy — X < [Ixg = xTl;
@ it exists A > 0 such that \, < .
Theorem

The discrepancy principle is satisfied after a finite number of iterations
k*(8) and the sequence {x;f*(é)} converges to a solution of F(x) =y if§
tends to zero.
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Regularizing properties of trust-region methods

This is a regularizing method.
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Numerical tests

Test problems

@ Four nonlinear ill-posed systems arising from the discretization of
nonlinear first-kind Fredholm integral equation are considered, they
model gravimetric and geophysics problems:

1
/0 k(t,s,x(s))ds = y(t), t e [0,1],

P1,P2, [Vogel, 1990], P3,P4 [Kaltenbacher,2007];

@ Their kernel is of the form

_ (t—s)?+ H? _
o) = s (g o)
1

k(t,s,x(s)) =

VIt (=2t x()
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Numerical tests

Test problems: discretization

@ We chose n = m, interval [0, 1] was discretized using n=64
equidistant grid points t; = (i —1)h, h=1/(n—1), i=1,...,n;

@ x(s) was approximated by piecewise linear functions ®;(s) on the grid
si=t, j=1,...,n x(s) ~ Rn(s) = Zj:l i (s)x
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Numerical tests

Test problems: discretization

@ The integrals fol k(ti,s,X(s))ds, i =1,...,n were approximated by
the composite trapezoidal rule on the points s; j = 1,...,n.

@ The resulting nonlinear system is
n
> wik(ti s, %(s)) =y(t)  j=1,....n.
i=1

with wg = w, = 3, w; = 1 forall i # 1,n.
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Numerical tests

Choice of parameters \j

@ Parameters A, were computed to have an active trust-region:
1PN = A

@ We used Newton method to solve this reformulation of the condition:

1 1
R ] BV

that is more suitable to the application of Newton method.

@ Each Newton iteration requires Cholesky factorization of By + Aj/.
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Numerical tests

Regularizing trust-region implementation

Trust-region radius update:

1 .
—pk—1 ifg1<gq
é é 6
Ay = MkHF(Xk) -y H> Hk = 2Ubp—1 if gx_1 > vgqg

Mhk—1 otherwise

||F(XE)_y5+J(XE)Pk||, and v = 1.1.

with ik = =857

o Ay is less expensive to compute if compared to ﬁ”gkﬂ but

preserves convergence to zero if § = 0.

@ In the update the fulfillment of g-condition is considered.

Adaptive Trust-Region Regularization. Bertinoro, Nov. 2015 28 / 45



Regularizing properties

o o o ° . °
L]
° ° o o0
0.9 ® . ° ® ®
e .
. ° . L
° ° L
0.8 «® . o .o
L] (]
b o o 'y
L > - .
o 0.7
[} L]
L]
06 °
057
0.4 .
0 10 20 30 40 50 60

IF($) =y +J0x0 )l
[1F(x2)—y0l|

* = Values of g, = , solid line: ¢ =1.1/7.

The g-condition is satisfied in most of the iterations even if not esplicitly
imposed.
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Numerical tests

Regularizing properties of the method.

107
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5

Logarithmic plot of the error ||x,f*(5) — x'|| as a function of the noise level
J.

Adaptive Trust-Region Regularization. Bertinoro, Nov. 2015 30 / 45



Comparison between regularizing TR-LM, § = 1072,

Problem Regularizing TR | Regularizing LM
X0 it nf cf | it nf cf it=iterations,
P1 Oe | 20 21 6 17 18 4 nf=function
—0.5e | 29 30 6 22 23 4 evaluations,
—le ) 35 36 5 2425 4 cf=mean number
—2e 40 41 5 25 26 4
P2 Oe | 30 31 5 [* * = of Cholesky
05e | 25 26 5 | * * * factorizations.
le 29 30 5 22 23 5
2e 37 39 5 25 26 5 x=failure, reached
P3 x0(1.25) 15 16 4 12 13 4 maximum number
x0(1.5) 17 18 4 14 15 4 . .
xo(1.75) 19 20 4 15 16 4 of iterations or
x(2) | 22 23 4 |16 17 4 convergence to a
P4 x0(1,1) 17 18 5 10 11 4 solution of the
x0(0.5,0) | 20 21 4 * * *
x(15,1) | 22 23 4 |15 16 4 noisy problem
x0(1.5,0) 26 27 4 * * *

e=(1,....,1)7, P3: (x(a)); = (—4a + 4)51.2 + (4a — 4)s; + 1, P4: xo(B,x) = B — xsj, 5 grid

points, j=1,...,n.
Elisa Riccietti
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Numerical tests

Comparison between regularizing TR and LM
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merical tests

Comparison between regularizing TR e LM
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The g-condition

The condition imposed by Hanke is strongly dependent on the choice of
the value of free parameter g. Values of g = 0.67, 0.70, 0.73, 0.87.

10t plot of the true and the computed solution plot of the true and the computed solution
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Numerical tests

Comparison between regularizing and standard trust-region
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Left: regularizing TR, Right: standard TR, Solid line: solution of the-original problem.
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Numerical tests

Future developments

@ We are now working on designing a new trust-region approach to
solve nonlinear ill-posed least squares problems.

THANK YOU FOR YOUR ATTENTION!
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