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Discrete nonlinear ill-posed problems and regularizing methods

Ill-posed problems

Let us consider the following inverse problem: given F : Rn → Rm with
m ≥ n, nonlinear, continuously differentiable and y ∈ Rm, find x ∈ Rn

such that
F (x) = y .

Definition

The problem is well-posed if:

1 ∀y ∈ Rm ∃x ∈ Rn such that F (x) = y (existence),

2 F is an injective function (uniqueness),

3 F−1 is a continuous function (stability).

The problem is ill-posed if one or more of the previous properties do not
hold.
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Discrete nonlinear ill-posed problems and regularizing methods

Ill-posed problems

Let us consider problems of the form F (x) = y for x ∈ (Rn, ‖ · ‖2)
and y ∈ (Rm, ‖ · ‖2), arising from the discretization of a system
modeling an ill-posed problem, such that:

it exists a solution x†, but is not unique,
stability does not hold.

In a realistic situation the data y are affected by noise, we have at
disposal only y δ such that:

‖y − y δ‖ ≤ δ

for some positive δ .

We can handle only a noisy problem:

F (x) = y δ.

Elisa Riccietti Adaptive Trust-Region Regularization. Bertinoro, Nov. 2015 3 / 45



Discrete nonlinear ill-posed problems and regularizing methods

Need for regularization

As stability does not hold, the solutions of the original problem do not
depend continuously on the data.
=⇒ The solutions of the noisy problem may not be meaningful
approximations of the original problem solutions.

For ill-posed problems there are no finite bounds on the inverse of the
Jacobian of F around a solution of the original problem.

Classical methods used for well-posed systems are not suitable in this
contest.

⇓
Need for regularization.
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Discrete nonlinear ill-posed problems and regularizing methods

Outline

Introduction to iterative regularization methods.

Description of Levenberg-Marquardt method and of its regularizing
variant.

Description of a new regularizing trust-region approach, obtained by a
suitable choice of the trust region radius .

Regularization and convergence properties of the new approach.

Numerical tests: we compare the new trust-region approach to the
regularizing Levenberg-Marquardt and standard trust-region methods.

Open issues and future developments.

Elisa Riccietti Adaptive Trust-Region Regularization. Bertinoro, Nov. 2015 5 / 45



Discrete nonlinear ill-posed problems and regularizing methods

Iterative regularization methods

Hypothesis: it exists x† solution of F (x) = y .

Iterative regularization methods generate a sequence {xδk}. If the process
is stopped at iteration k∗(δ) the method is supposed to guarantee the
following properties:

xδk∗(δ) is an approximation of x†;

{xδk∗(δ)} tends to x† if δ tends to zero;

local convergence to x† in the noise-free case.
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Discrete nonlinear ill-posed problems and regularizing methods

Existing methods

Landweber (gradient-type method)[ Hanke, Neubauer, Scherzer,
1995,Kaltenbacher, Neubauer, Scherzer, 2008 ]

Truncated Newton - Conjugate Gradients [Hanke,1997, Rieder, 2005]

Iterative Regularizing Gauss-Newton [Bakushinsky, 1992, Blaschke,
Neubauer, Scherzer, 1997]

Levenberg-Marquardt [Hanke,1997,2010,Vogel 1990, Kaltenbacher,
Neubauer, Scherzer, 2008]

These methods are analyzed only under local assumptions, the definition
of globally convergent approaches is still an open task.
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Levenberg-Marquardt methods for ill-posed problems

Levenberg-Marquardt method

Given xδk ∈ Rn and λk > 0, we denote with J ∈ Rm×n the Jacobian
matrix of F . The step pk ∈ Rn is the minimizer of

mLM
k (p) =

1

2
‖F (xδk )− y δ + J(xδk )p‖2 +

1

2
λk‖p‖2;

pk is the solution of

(Bk + λk I )pk = −gk

with Bk = J(xδk )T J(xδk ), gk = J(xδk )T (F (xδk )− y δ);

The step is then used to compute the new iterate

xδk+1 = xδk + pk .

Elisa Riccietti Adaptive Trust-Region Regularization. Bertinoro, Nov. 2015 8 / 45



Levenberg-Marquardt methods for ill-posed problems

Regularizing Levenberg-Marquardt method

The parameter λk > 0 is chosen as the solution of:

‖F (xδk )− y δ + J(xδk )p‖ = q‖F (xδk )− y δ‖

with q ∈ (0, 1);

With noisy data the process is stopped at iteration k∗(δ) such that
xδk∗(δ) satisfies the discrepancy principle:

‖F (xδk∗(δ))− y δ‖ ≤ τδ < ‖F (xδk )− y δ‖

for 0 ≤ k < k∗(δ) and τ > 1 suitable parameter.

[Hanke, 1997,2010]
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Levenberg-Marquardt methods for ill-posed problems

Local analysis

Hypothesis for the local analysis:
Given the starting guess x0, it exist positive ρ and c such that

the system F (x) = y is solvable in Bρ(x0);

for x , x̃ ∈ B2ρ(x0)

‖F (x)− F (x̃)− J(x)(x − x̃)‖ ≤ c‖x − x̃‖‖F (x)− F (x̃)‖.

[Hanke, 1997,2010]

Due to the ill-posedness of the problem it is not possible to assume that a
finite bound on the inverse of the Jacobian matrix exists.
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Levenberg-Marquardt methods for ill-posed problems

Regularizing properties of the Levenberg-Marquardt
method

Choosing λk as the solution of

‖F (xδk )− y δ + J(xδk )p‖ = q‖F (xδk )− y δ‖

and stopping the process when the discrepancy principle

‖F (xδk∗(δ))− y δ‖ ≤ τδ < ‖F (xδk )− y δ‖

is satisfied, Hanke proves that:

With exact data (δ = 0): local convergence to x† ,

With noisy data (δ > 0): if τ > 1
q , choosing x0 close to x† the

discrepancy principle is satisfied after a finite number of iterations
k∗(δ) and {xδk∗(δ)} converges to a solution of F (x) = y if δ tends to
zero.

This is a regularizing method
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Regularizing properties of trust-region methods

Trust-region methods

Given xδk ∈ Rn, the step pk ∈ Rn is the minimizer of

min
p

mTR
k (p) =

1

2
‖F (xδk )− y δ + J(xδk )p‖2,

s.t. ‖p‖ ≤ ∆k ,

with ∆k > 0 trust-region radius.

Set Φ(x) = 1
2‖F (x)− y δ‖2, and compute

πk(pk) =
Φ(xk)− Φ(xk + pk)

mTR
k (0)−mTR

k (pk)
.

Given η ∈ (0, 1):

If πk < η then set ∆k+1 < ∆k and xk+1 = xk .
If πk ≥ η then set ∆k+1 ≥ ∆k and xk+1 = xk + pk .
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Regularizing properties of trust-region methods

Trust-region methods

It is possible to prove that pk solves

(Bk + λk I )pk = −gk

for some λk ≥ 0 such that

λk(‖pk‖ −∆k) = 0,

where we have set Bk = J(xδk )T J(xδk ) and gk = J(xδk )T (F (xδk )− y δ).
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Regularizing properties of trust-region methods

Trust-region methods

From λk(‖pk‖ −∆k) = 0 it follows that:

If the minimum norm solution p∗ of Bkp = −gk satisfies ‖p∗‖ ≤ ∆k

then λk = 0 and pk = p(0);

otherwise λk 6= 0, ‖pk‖ = ∆k and pk = p(λk) is a
Levenberg-Marquardt step.

⇓

The standard trust-region does not ensure regularizing properties.

Trust-region should be active to have a regularizing method:

‖pk‖ = ∆k .
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Regularizing properties of trust-region methods

Regularizing trust-region

Levenberg-Marquardt and trust-region methods are strictly
connected, due to the form of the step.

As Hanke did, can we introduce a trust-region method with
regularizing properties and still globally convergent?
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Regularizing properties of trust-region methods

Goals

We modify the standard trust-region to have:

monotone decay of the function

Φ(x) =
1

2
‖F (x)− y δ‖2,

the q-condition to hold:

‖F (xδk )− y δ + J(xδk )p‖ ≥ q‖F (xδk )− y δ‖.

The q-condition is a relaxed reformulation of

‖F (xδk )− y δ + J(xδk )p‖ = q‖F (xδk )− y δ‖.
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Regularizing properties of trust-region methods

Regularizing trust-region

We now describe the new trust-region approach that thanks to a suitable
trust-region radius update ensures:

the q-condition to hold,

the same regularizing properties of Levenberg-Marquardt method.
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Regularizing properties of trust-region methods

Trust-region radius choice

Lemma

Let pk the solution of trust-region problem. If

∆k ≤
1− q

‖Bk‖
‖gk‖

then pk satisfies the q-condition.

Consequence: ∆k ’s choice

∆k ∈
[
Cmin‖gk‖,min

{
Cmax,

1− q

‖Bk‖
‖gk‖

}]
,

with Cmin,Cmax suitable constant, Bk = J(xδk )T J(xδk ) e
gk = J(xδk )T (F (xδk )− y δ).
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Regularizing properties of trust-region methods

Algorithm : k-th iteration of regularizing trust-region

Given xδ
k , η ∈ (0, 1), γ ∈ (0, 1), 0 < Cmin < Cmax.

Exact data: y , q ∈ (0, 1).

Noisy data: yδ, q ∈ (0, 1), τ > 1/q.

1. Compute Bk = J(xδ
k )TJ(xδ

k ) and gk = J(xδ
k )T (F (xδ

k )− yδ).

2. Choose ∆k ∈
[
Cmin‖gk‖, min

{
Cmax,

1− q

‖Bk‖

}
‖gk‖

]
3. Repeat

3.1 Compute the solution pk of trust-region problem.
3.2 Compute

πk(pk) =
Φ(xδ

k )− Φ(xδ
k + pk)

mTR
k (0)−mTR

k (pk)

with Φ(x) = 1
2
‖F (x)− yδ‖2, mTR

k (p) = 1
2
‖F (xδ

k ) + J(xδ
k )p‖2.

3.3 If πk(pk) < η,set ∆k = γ∆k .
Until πk(pk) ≥ η.

4. Set xδ
k+1 = xδ

k + pk .
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Regularizing properties of trust-region methods

Local analysis

Hypothesis 1: the same as for Levenberg-Marquardt method.
We assume that for index k̄ it exist positive ρ and c such that

1 the system F (x) = y is solvable in Bρ(xδ
k̄

);

2 for x , x̃ ∈ B2ρ(xδ
k̄

)

‖F (x)− F (x̃)− J(x)(x − x̃)‖ ≤ c‖x − x̃‖‖F (x)− F (x̃)‖.

Hypothesis 2: It exists positive KJ such that

‖J(x)‖ ≤ KJ

for all x ∈ L = {x ∈ Rn s.t. Φ(x) ≤ Φ(x0)}.
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Regularizing properties of trust-region methods

Results for δ = 0

Lemma

The method generates a sequence {xk} such that for k ≥ k̄

trust-region is active, i.e. λk > 0;

xk belongs to B2ρ(xk̄) and to Bρ(x†);

‖xk+1 − x†‖ < ‖xk − x†‖;
it exists λ̄ > 0 such that λk ≤ λ̄.

Theorem

The sequence {xk} converges to a solution x∗ of F (x) = y such that
‖x∗ − x†‖ ≤ ρ .

It holds limk→∞ ‖gk‖ = 0 so the trust-region radius tends to zero.
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Regularizing properties of trust-region methods

Results for δ > 0

Lemma

Let k̄ < k∗(δ). The method generates a sequence {xδk} such that for
k̄ ≤ k < k∗(δ)

the trust-region is active, i.e. λk > 0;

xδk belongs to B2ρ(xδ
k̄

) and to Bρ(x†);

‖xδk+1 − x†‖ < ‖xδk − x†‖;
it exists λ̄ > 0 such that λk ≤ λ̄.

Theorem

The discrepancy principle is satisfied after a finite number of iterations
k∗(δ) and the sequence {xδk∗(δ)} converges to a solution of F (x) = y if δ
tends to zero.
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Regularizing properties of trust-region methods

This is a regularizing method.
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Numerical tests

Test problems

Four nonlinear ill-posed systems arising from the discretization of
nonlinear first-kind Fredholm integral equation are considered, they
model gravimetric and geophysics problems:∫ 1

0
k(t, s, x(s))ds = y(t), t ∈ [0, 1],

P1,P2, [Vogel, 1990], P3,P4 [Kaltenbacher,2007];

Their kernel is of the form

k(t, s, x(s)) = log

(
(t − s)2 + H2

(t − s)2 + (H − x(s))2

)
;

k(t, s, x(s)) =
1√

1 + (t − s)2 + x(s)2
;
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Numerical tests

Test problems: discretization

We chose n = m, interval [0, 1] was discretized using n=64
equidistant grid points ti = (i − 1)h, h = 1/(n − 1), i = 1, . . . , n;

x(s) was approximated by piecewise linear functions Φj(s) on the grid
sj = tj , j = 1, . . . , n; x(s) ∼ x̂n(s) =

∑n
j=1 Φj(s)xj
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Numerical tests

Test problems: discretization

The integrals
∫ 1

0 k(ti , s, x̂(s))ds, i = 1, . . . , n were approximated by
the composite trapezoidal rule on the points sj j = 1, . . . , n.

The resulting nonlinear system is

n∑
i=1

wjk(ti , sj , x̂(sj)) = y(ti ) j = 1, . . . , n.

with w1 = wn = 1
2 , wi = 1 for all i 6= 1, n.
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Numerical tests

Choice of parameters λk

Parameters λk were computed to have an active trust-region:

‖p(λ)‖ = ∆k .

We used Newton method to solve this reformulation of the condition:

ψ(λ) =
1

‖p(λ)‖
− 1

∆k
= 0.

that is more suitable to the application of Newton method.

Each Newton iteration requires Cholesky factorization of Bk + λk I .
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Numerical tests

Regularizing trust-region implementation

Trust-region radius update:

∆k = µk‖F (xδk )− y δ‖, µk =


1

6
µk−1 if qk−1 < q

2µk−1 if qk−1 > νq

µk−1 otherwise

with qk =
‖F (xδk )−yδ+J(xδk )pk‖

||F (xδk )−yδ|| , and ν = 1.1.

∆k is less expensive to compute if compared to 1−q
‖Bk‖‖gk‖ but

preserves convergence to zero if δ = 0.

In the update the fulfillment of q-condition is considered.
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Numerical tests

Regularizing properties
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||F (xδk )−yδ|| , solid line: q = 1.1/τ .

The q-condition is satisfied in most of the iterations even if not esplicitly
imposed.
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Numerical tests

Regularizing properties of the method.

δ
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Logarithmic plot of the error ||xδk∗(δ) − x†|| as a function of the noise level
δ.

Elisa Riccietti Adaptive Trust-Region Regularization. Bertinoro, Nov. 2015 30 / 45



Numerical tests

Comparison between regularizing TR-LM, δ = 10−2.

Problem Regularizing TR Regularizing LM
x0 it nf cf it nf cf

P1 0 e 20 21 6 17 18 4
−0.5 e 29 30 6 22 23 4
−1 e 35 36 5 24 25 4
−2 e 40 41 5 25 26 4

P2 0 e 30 31 5 * * *
0.5 e 25 26 5 * * *

1 e 29 30 5 22 23 5
2 e 37 39 5 25 26 5

P3 x0(1.25) 15 16 4 12 13 4
x0(1.5) 17 18 4 14 15 4

x0(1.75) 19 20 4 15 16 4
x0(2) 22 23 4 16 17 4

P4 x0(1, 1) 17 18 5 10 11 4
x0(0.5, 0) 20 21 4 * * *
x0(1.5, 1) 22 23 4 15 16 4
x0(1.5, 0) 26 27 4 * * *

it=iterations,
nf=function
evaluations,

cf=mean number

of Cholesky

factorizations.

∗=failure, reached

maximum number

of iterations or

convergence to a

solution of the

noisy problem

e = (1, . . . , 1)T , P3: (x0(α))j = (−4α+ 4)s2
j + (4α− 4)sj + 1, P4: x0(β, χ) = β − χsj , sj grid

points, j = 1, . . . , n.
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Numerical tests

Comparison between regularizing TR and LM
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Left: regularizing TR, Right: regularizing LM , Solid line: solution of the original problem.
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Numerical tests

Comparison between regularizing TR e LM
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Left: regularizing TR , Right: regularizing LM , Solid line: solution of the original problem.
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Numerical tests

The q-condition

The condition imposed by Hanke is strongly dependent on the choice of
the value of free parameter q. Values of q = 0.67, 0.70, 0.73, 0.87.
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Numerical tests

Comparison between regularizing and standard trust-region
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Left: regularizing TR, Right: standard TR , Solid line: solution of the original problem.
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Numerical tests

Future developments

We are now working on designing a new trust-region approach to
solve nonlinear ill-posed least squares problems.

THANK YOU FOR YOUR ATTENTION!
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