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Abstract In this paper we address the stable numerical solution of nonlinear ill-posed
systems by a trust-region method. We show that an appropriate choice of the trust-
region radius gives rise to a procedure that has the potential to approach a solution of the
unperturbed system. This regularizing property is shown theoretically and validated
numerically.

Keywords Ill-posed systems of nonlinear equations · Regularization ·
Nonlinear stepsize control · Trust-region methods

1 Introduction

Nonlinear systems modeling inverse problems are typically ill-posed, in the sense that
their solutions do not depend continuously on the data and their data are affected by
noise [6,16,26]. In this work we focus on the stable approximation of a solution of
these problems. Procedures in the classes of Levenberg–Marquardt and trust-region
methods are discussed, and a suitable version of trust-region algorithm is shown to have
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2 S. Bellavia et al.

regularizing properties both theoretically and numerically. The underlying motivation
for our study is twofold: most of the practical methods in the literature have been
designed for well-posed systems, see e.g., [5,23], and thus are unsuited in the context
of inverse problems; adaptation of existing procedures for handling ill-posed problems,
carried out in the seminal papers [10,12,13,15,25,27], deserves further theoretical and
numerical insights.

Let

F(x) = y, (1.1)

with F : Rn → R
n continuously differentiable, be obtained from the discretization of

a problemmodeling an inverse problem. It is realistic to have noisy data yδ at disposal,
satisfying

‖y − yδ‖2 ≤ δ, (1.2)

for some positive δ. Thus, in practice it is necessary to solve a problem of the form

F(x) = yδ, (1.3)

and, due to ill-posedeness, possible solutions may be arbitrarily far from those of the
original problem. To approximate solutions of the unperturbed problem (1.1), iterative
regularizing methods can be applied where both the construction of the iterates xδ

k and
the stopping criterion act as a regularization, see e.g., [16]. Such methods are expected
to have the following properties: if iterations are stopped at index k∗(δ), then

• xδ
k∗(δ) is an approximation to a solution of (1.1);

• xδ
k∗(δ) converges to a solution of (1.1) as δ tends to zero;

• in the noise-free case, convergence to a solution of (1.1) occurs.

These properties are supposed to hold even if there are no finite bounds on the inverse
of the Jacobian of F around a solution of (1.1).

In [12,13],Hanke supposed that an initial guess, close enough to some solution x† of
(1.1), is available. Then, he proposed a regularizing Levenberg–Marquardt procedure
which is able to compute a stable approximation xδ

k∗(δ) to x† or to some other solution

of the unperturbed problem (1.1) close to x†. This task is achieved through an implicit
stepsize control in the Levenberg–Marquardt procedure and the discrepancy principle
as the stopping criterion, so that the iterative process is stopped at the iteration k∗(δ)
satisfying

∥
∥
∥yδ − F

(

xδ
k∗(δ)

)∥
∥
∥
2

≤ τδ <
∥
∥yδ − F

(

xδ
k

)∥
∥
2 , 0 ≤ k < k∗(δ), (1.4)

with τ > 1 appropriately chosen [22]. Remarkably the procedure satisfies the regular-
izing properties listed above and local convergence properties are established under
conditions weaker than the so-called local error-bound condition used in the literature
when the Jacobian J of F is singular at the solution approached, see e.g. [1,3,17].
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On an adaptive regularization for ill-posed nonlinear systems... 3

Further regularizing iterative methods have been proposed, including first-order
methods and Newton-type methods. Analogously to the Levenberg–Marquardt pro-
cedure proposed by Hanke, instead of promoting convergence to a solution of (1.3),
they form approximations of increasing accuracy to some solution of the unperturbed
problem (1.1) until the discrepancy principle (1.4) is met. We refer to [6,16] for the
description and analysis of such methods.

The above mentioned regularizing Levenberg–Marquardt method belongs to the
unifying framework of nonlinear stepsize control algorithms for unconstrained opti-
mization developed by Toint [24] and including trust-region methods [5]. Therefore,
elaborating on original ideas by Hanke, we introduce and analyze a regularizing vari-
ant of the trust-region method based on a specific rule for selecting the trust-region
radius. The resulting method shares the same regularizing properties as the method by
Hanke and, as for standard trust-region procedures, it enforces a monotonic decrease
of the value of the function

�(x) = 1

2
‖yδ − F(x)‖22, (1.5)

at the iterates xδ
k . Convergence properties are enhanced with respect to the regularizing

Levenberg–Marquardt procedure in the following respects. With exact data, if there
exists an accumulation point of the iterates which solves (1.1), then any accumulation
point of the sequence solves (1.1). With noisy data, the method has the potential to
satisfy the discrepancy principle (1.4). As for standard trust-region methods, these
properties can be enhanced independently of the closeness of the initial guess to a
solution of (1.1).

Our contribution covers theoretical and practical aspects of the method proposed.
From a theoretical point of view, we propose the use of a trust-region radius converging
to zero as δ tends to zero. Trust-region methods with this distinguishing feature have
been proposed in several papers, see [7–9,29], but none of such works was either
devised for ill-posed problems or applied to them; thus, our study offers new insights
on the potential of this choice for the trust-region radius. Moreover, we have made an
attempt toward globally convergentmethods for ill-posed problems; to our knowledge,
this topic has been considered only in amultilevel approach proposed byKaltenbacher
[15]. Finally, local convergence analysis has been carried out without making two
common assumptions in the literature: neither the invertibility of the Jacobian J of F
and boundness of the inverse, nor the fulfillment of the local error-bound condition
(see e.g., [7–9,19,29]) have been used. In fact, such conditions may not be satisfied
in the presence of ill-posedeness. Therefore, our results may represent a progress
in the theoretical investigation of convergence. Concerning numerical aspects, we
discuss an implementation of the regularizing trust-region method, and test its ability
to approximate a solution of (1.1) in the presence of noise. Comparison with a standard
trust-region scheme highlights the impact of the proposed trust-region radius choice
on regularization.

The paper is organized as follows. In Sect. 2 we describe the main features of
the regularizing Levenberg–Marquardt method proposed by Hanke. In Sect. 3 we
introduce our regularizing version of trust-region methods and in Sect. 4 we study the
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local convergence properties. A comparative numerical analysis of all the procedures
studied is done in Sect. 5.
Notations We indicate the iterates of the procedures analyzed as xδ

k ; if the data are
exact, xk may be used as an alternative to xδ

k . By xδ
0 = x0 we denote an initial guess

which may incorporate a-priori knowledge of an exact solution. The symbol ‖ · ‖
indicates the Euclidean norm. A closed ball of radius ρ around a vector x is denoted
as Bρ(x). The Jacobian matrix of F is denoted as J .

2 Regularizing Levenberg–Marquardt method for ill-posed problems

We describe the regularizing version of the Levenberg–Marquardt method proposed
in [12] for solving (1.3), and analyze some issues for its practical implementation.

At k-th iteration of the Levenberg–Marquardt, given xδ
k ∈ R

n and λk > 0, let

mLM
k (p) = 1

2

∥
∥F(xδ

k ) − yδ + J (xδ
k )p
∥
∥
2 + 1

2
λk‖p‖2, (2.1)

be a quadratic model around xδ
k for the function � in (1.5), see [18,20]. The step pk

taken minimizes mLM
k , and xδ

k+1 = xδ
k + pk . We observe that, if p(λ) is the solution

of

(Bk + λI )p(λ) = −gk, (2.2)

with Bk = J (xδ
k )T J (xδ

k ) and gk = J (xδ
k )T (F(xδ

k ) − yδ), then

pk = p(λk) = −
(

J (xδ
k )T J (xδ

k ) + λk I
)−1 (

J (xδ
k )T (F(xδ

k ) − yδ
))

. (2.3)

If problem (1.3) is ill-posed, and the scalars λk are limited to promote convergence
of the procedure, see [20], then the solution of (1.1) may be significantly misinter-
preted [11,16,26]. The regularizing Levenberg–Marquardt method [12] attempts to
approximate solutions of (1.1) by choosing λk as the solution λ

q
k of the nonlinear

scalar equation

∥
∥F(xδ

k ) − yδ + J (xδ
k )p(λ)

∥
∥ = q

∥
∥F(xδ

k ) − yδ
∥
∥ , (2.4)

for some fixed q ∈ (0, 1). Under suitable assumptions discussed below, λq
k is uniquely

determined from (2.4).
To analyze (2.4), it is useful to establish relations between λ, ‖p(λ)‖ and ‖F(xδ

k )−
yδ + J (xδ

k )p(λ)‖.
Lemma 2.1 [2, Lemma 4.2] Suppose ‖gk‖ �= 0 and let p(λ) be the minimum norm
solution of (2.2) with λ ≥ 0. Suppose furthermore that J (xδ

k ) is of rank � and its
singular-value decomposition is given by Uk�k V T

k where �k is the diagonal matrix
with entries ζ1, . . . , ζn on the diagonal. Then, denoting r = (r1, r2, . . . , rn)T =
U T

k (F(xδ
k ) − yδ), we have that
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‖p(λ)‖2 =
�
∑

i=1

ζ 2
i r2i

(

ζ 2
i + λ

)2 , (2.5)

∥
∥F(xδ

k ) − yδ + J (xδ
k )p(λ)

∥
∥
2 =

�
∑

i=1

λ2r2i
(

ζ 2
i + λ

)2 +
n
∑

i=�+1

r2i . (2.6)

Using this result, the solution of (2.4) is characterized as follows.

Lemma 2.2 Suppose ‖gk‖ �= 0. Let p(λ) be the minimum norm solution of (2.2) with
λ ≥ 0, R(J (xδ

k ))⊥ be the orthogonal complement of the range R(J (xδ
k )) of J (xδ

k ),
and Pδ

k be the orthogonal projector onto R(J (xδ
k ))⊥. Then

(i) Equation (2.4) is not solvable if ‖Pδ
k (F(xδ

k ) − yδ)‖ > q‖F(xδ
k ) − yδ‖.

(ii) If
∥
∥
∥F(xδ

k ) − yδ + J (xδ
k )
(

x† − xδ
k

)∥
∥
∥ ≤ q

θk

∥
∥F(xδ

k ) − yδ
∥
∥ , (2.7)

for some θk > 1, and x† is a solution of (1.1), then Eq. (2.4) has a unique solution
λ

q
k such that

λ
q
k ∈
(

0,
q

1 − q
‖Bk‖

]

. (2.8)

Proof (i) Equation (2.6) implies

lim
λ→0

∥
∥F(xδ

k ) − yδ + J (xδ
k )p(λ)

∥
∥ = ∥∥Pδ

k

(

F(xδ
k ) − yδ

)∥
∥ ,

lim
λ→∞

∥
∥F(xδ

k ) − yδ + J (xδ
k )p(λ)

∥
∥ = ‖F(xδ

k ) − yδ‖.

Thus, since ‖F(xδ
k )− yδ + J (xδ

k )p(λ)‖ is monotonically increasing as a function of λ,
we conclude that (2.4) does not admit solution if ‖Pδ

k (F(xδ
k )− yδ)‖ > q‖F(xδ

k )− yδ‖.
(ii) Trivially ‖Pδ

k (F(xδ
k )− yδ)‖ ≤ ‖F(xδ

k )− yδ + J (xδ
k )(x −xδ

k )‖, for any x . Hence,
for themonotonicity of ‖F(xδ

k )−yδ+ J (xδ
k )p(λ)‖, if (2.7) holds, then Eq. (2.4) admits

a solution which is positive and unique. Finally, observing that for a positive λ it holds
(J (xδ

k )T J (xδ
k ) + λI )−1 J (xδ

k )T = J (xδ
k )T (J (xδ

k )J (xδ
k )T + λI )−1, Eq. (2.3) can be

written as

pk = p(λk) = −J (xδ
k )T (J (xδ

k )J (xδ
k )T + λk I )−1(F(xδ

k ) − yδ), (2.9)

and consequently

F(xδ
k ) − yδ + J (xδ

k )p(λk)

=
(

I − J (xδ
k )J (xδ

k )T
(

J (xδ
k )J (xδ

k )T + λk I
)−1
)
(

F(xδ
k ) − yδ

)

= λk

(

J (xδ
k )J (xδ

k )T + λk I
)−1 (

F(xδ
k ) − yδ

)

. (2.10)
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6 S. Bellavia et al.

Then (2.4) gives

q
∥
∥F(xδ

k ) − yδ
∥
∥ = λ

q
k

∥
∥
∥
∥

(

J (xδ
k )J (xδ

k )T + λ
q
k I
)−1 (

F(xδ
k ) − yδ

)
∥
∥
∥
∥

≥ λ
q
k

‖Bk‖ + λ
q
k

∥
∥F(xδ

k ) − yδ
∥
∥ ,

which yields (2.8). ��
In [12], the analysis of the regularizing properties of the Levenberg–Marquardt

method was made under the subsequent assumptions on the solvability of problem
(1.1), the Taylor remainder of F , and the vicinity of the initial guess x0 to some
solution x† of (1.1).

Assumption 2.1 Given an initial guess x0, there exist positiveρ and c such that system
(1.1) is solvable in Bρ(x0), and

‖F(x) − F(x̃) − J (x)(x − x̃)‖ ≤ c‖x − x̃‖ ‖F(x) − F(x̃)‖, x, x̃ ∈ B2ρ(x0).

(2.11)

Assumption 2.2 Let x0, c and ρ as in Assumption 2.1, x† be a solution of (1.1) and
x0 satisfy

‖x0 − x†‖ < min
{q

c
, ρ
}

, if δ = 0, (2.12)

‖x0 − x†‖ < min

{
qτ − 1

c(1 + τ)
, ρ

}

, if δ > 0, (2.13)

where τ > 1/q.

Note that, whenever xδ
k belongs to B2ρ(x0) and ‖xδ

k −x†‖ < ‖x0−x†‖, Assumption
2.1 implies that inequality (2.7) is satisfied for some θk > 1, and consequently there
exists a solution to (2.4).

Under Assumptions 2.1 and 2.2, the Levenberg–Marquardt method generates an
approximation xδ

k∗(δ) satisfying (1.4) and the sequence {xδ
k∗(δ)} converges to a solution

of (1.1) as δ tends to zero.

Theorem 2.3 Let Assumptions 2.1 and 2.2 hold and xδ
k be the Levenberg–Marquardt

iterates determined by using (2.4). For noisy data, suppose k < k∗(δ) where k∗(δ) is
defined in (1.4). Then, any iterate xδ

k belongs to B2ρ(x0). With exact data, the sequence
{xk} converges to a solution of (1.1). With noisy data, the stopping criterion (1.4) is
satisfied after a finite number k∗(δ) of iterations and {xδ

k∗(δ)} converges to a solution
of (1.1) as δ tends to zero.

Proof See [12], Theorems 2.2 and 2.3. ��
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On an adaptive regularization for ill-posed nonlinear systems... 7

Let us focus on a specific issue concerning the implementation of the method
which, to our knowledge, has not been addressed either in [12] or in related papers.
The numerical solution of (2.4) requires the application of a root-finder method and
Newton’s method is the most efficient procedure, though in general it requires the
knowledge of an accurate approximation to the solution. On the other hand, nonlinear
equations which are monotone and convex (or concave) on some interval containing
the root are particularly suited to an application of Newton’s method, see e.g. [14,
Theorem 4.8]. Equation (2.4) does not have such properties but it can be replaced
by an equivalent equation with strictly decreasing and concave function in [λq

k ,∞);
thus, Newton’s method applied to the reformulated equation converges globally to λ

q
k

whenever the initial guess overestimates such a root.

Lemma 2.4 Suppose ‖F(xδ
k ) − yδ‖ �= 0, and that (2.4) has positive solution λ

q
k . Let

ψ(λ) = λ
∥
∥F(xδ

k ) − yδ + J (xδ
k )p(λ)

∥
∥

− λ

q
∥
∥F(xδ

k ) − yδ
∥
∥

= 0. (2.14)

Then, Newton’s method applied to (2.14) converges monotonically and globally to the
root λ

q
k of (2.4) for any initial guess in the interval [λq

k ,∞).

Proof Trivially, solving (2.4) is equivalent to finding the positive root of Eq. (2.14).
We now show that ψ(λ) is strictly decreasing in [λq

k ,∞) and concave on (0,∞). By
(2.6),

λ
∥
∥F(xδ

k ) − yδ+ J (xδ
k )p(λ)

∥
∥

=
⎛

⎝

√
√
√
√

l
∑

i=1

(

ri

ζ 2
i +λ

)2

+
n
∑

i=l+1

(ri

λ

)2

⎞

⎠

−1

, (2.15)

and this function is concave on (0,∞), cfr. [4, Lemma 2.1]. Thus, ψ is concave on
(0,∞) and trivially ψ ′(λ) is strictly decreasing.

Now we show that ψ ′(λq
k ) is negative; thus, using the monotonicity of ψ ′(λ), we

get that ψ(λ) is strictly decreasing in [λq
k ,∞). Differentiation of ψ(λ) and (2.4) give

ψ ′(λq
k ) =

(

λ
q
k

)3

∥
∥F(xδ

k ) − yδ + J (xδ
k )p
(

λ
q
k

)∥
∥
3

×
(

l
∑

i=1

r2i
(

ζ 2
i + λ

q
k

)3 +
n
∑

i=l+1

r2i
(

λ
q
k

)3

)

− 1

q
∥
∥F(xδ

k ) − yδ
∥
∥

=
(

λ
q
k

)2

∥
∥F(xδ

k ) − yδ + J (xδ
k )p
(

λ
q
k

)∥
∥
3

×
⎛

⎝

l
∑

i=1

r2i λ
q
k

(

ζ 2
i + λ

q
k

)3 +
n
∑

i=l+1

(

ri

λ
q
k

)2

−
∥
∥F(xδ

k ) − yδ+ J (xδ
k )p
(

λ
q
k

)∥
∥
2

(

λ
q
k

)2

⎞

⎠.
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8 S. Bellavia et al.

Moreover, using (2.15), it holds

ψ ′ (λq
k

) =
(

λ
q
k

)2

∥
∥F(xδ

k ) − yδ + J (xδ
k )p
(

λ
q
k

)∥
∥
3

⎛

⎝

l
∑

i=1

r2i λ
q
k

(

ζ 2
i + λ

q
k

)3 −
l
∑

i=1

(

ri

ζ 2
i + λ

q
k

)2
⎞

⎠

= −
(

λ
q
k

)2

∥
∥F(xδ

k ) − yδ + J (xδ
k )p(λ

q
k )
∥
∥
3

l
∑

i=1

r2i ζ 2
i

(

ζ 2
i + λ

q
k

)3 ,

i.e. ψ ′(λq
k ) is negative.

The claimed convergence of Newton’s method follows from results on univariate
concave functions given in [14, Theorem 4.8]. ��

For the practical evaluation of ψ(λ) and ψ ′(λ) we refer to [5,21].
In [12, Remark p. 6] Hanke observed that (2.4) may be replaced with

∥
∥F
(

xδ
k

)− yδ + J
(

xδ
k

)

pk
∥
∥ ≥ q

∥
∥F
(

xδ
k

)− yδ
∥
∥ , (2.16)

later denoted as the q-condition, but this criterion was not analyzed or employed in
numerical computation. Since (2.4) may not have a solution and our aim is to tune λk

in view of global convergence, while preserving regularizing properties, in the next
section we allow more flexibility in its selection and design a trust-region method
based on condition (2.16).

3 A regularizing trust-region method

Trust-region methods are globally convergent approaches where the stepsize between
two successive iterates is determined via a nonlinear stepsize control mechanism [5].
At a generic iteration k of a trust-region method, the step pk solves

min
p

mTR
k (p) = 1

2

∥
∥F(xδ

k ) − yδ + J (xδ
k )p
∥
∥
2
,

s.t. ‖p‖ ≤ �k,
(3.1)

where �k is a given positive trust-region radius. If ‖gk‖ �= 0 then pk solves (3.1) if
and only if it satisfies (2.2) for some nonnegative λk such that

λk(‖pk‖ − �k) = 0. (3.2)

Therefore, whenever the minimum norm solution p+ of

Bk p = −gk,

satisfies ‖p+‖ ≤ �k , the scalar λk is null and pk = p(0) solves (3.1). Otherwise,
the step pk takes the form (2.3), and therefore it is a Levenberg–Marquardt step. If
‖pk‖ = �k , then the trust-region is said to be active.
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On an adaptive regularization for ill-posed nonlinear systems... 9

Starting from an arbitrary initial guess, trust-regionmethods generate a sequence of
iterates such that the value of� in (1.5) is monotonically decreasing and this feature is
enforced by an adaptive choice of the radius�k . Specifically, let pk be the trust-region
step and

πk(pk) = ared(pk)

pred(pk)
, (3.3)

be the ratio between the achieved ared(pk) and predicted pred(pk) reductions given
by

ared(pk) = �
(

xδ
k

)− �
(

xδ
k + pk

)

, (3.4)

pred(pk) = �
(

xδ
k

)− mTR
k (pk). (3.5)

Then, the trust region radius is reduced if πk(pk) is below some small positive thresh-
old; otherwise it is left unchanged or enlarged [5].

Since trust-region steps and Levenberg–Marquardt steps have the same form (2.2),
trust-region and Levenberg–Marquardt methods fall into a single unifying framework
which can be used for their description and theoretical analysis [4,21,24]. Due to such
a strict connection, we elaborate on the regularizing Levenberg–Marquardt described
in the previous section, and introduce a regularizing variant of trust-region methods
for solving ill-posed problems.

The standard trust-region strategy is modified so that the nonlinear stepsize control
enforces both the monotonic reduction of � and the q-condition (2.16). To this end,
we first characterize the parameters λ such that p(λ) satisfies (2.16).

Lemma 3.1 Assume ‖gk‖ �= 0. Let p(λ) be the minimum norm solution of (2.2)
with λ ≥ 0 and Pδ

k be the orthogonal projector onto R(J (xδ
k ))⊥. Then, Eq. (2.16) is

satisfied for any λ ≥ 0 whenever

∥
∥Pδ

k

(

F(xδ
k ) − yδ

)∥
∥ ≥ q

∥
∥F(xδ

k ) − yδ
∥
∥ . (3.6)

Otherwise, it is satisfied for any λ ≥ λ
q
k where λ

q
k satisfies (2.8).

Proof The claims easily follow from Lemma 2.2. ��
Now we are ready to characterize the size of the trust-region radius guaranteeing

(2.16).

Lemma 3.2 Let pk solve the trust-region problem (3.1). If

�k ≤ 1 − q

‖Bk‖ ‖gk‖, (3.7)

then pk satisfies the q-condition (2.16).
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10 S. Bellavia et al.

Proof By Lemma 3.1 we know that the q-condition is satisfied either for λ ≥ 0, or for
any λ ≥ λ

q
k . In the former case, the claim trivially holds. In the latter case, by (2.2) it

follows

∥
∥p
(

λ
q
k

)∥
∥ ≥ ‖gk‖
∥
∥Bk + λ

q
k I
∥
∥
,

and by (2.8) it holds

‖Bk + λ
q
k I‖ ≤ ‖Bk‖

1 − q
.

By construction ‖pk‖ ≤ �k , and if (3.7) holds then we obtain

‖pk‖ = ‖p(λk)‖ ≤ 1 − q

‖Bk‖ ‖gk‖ ≤ ‖gk‖
∥
∥Bk + λ

q
k I
∥
∥

≤ ∥∥p
(

λ
q
k

)∥
∥ .

Since ‖p(λ)‖ is monotonically decreasing, it follows λk ≥ λ
q
k and condition (2.16) is

satisfied. ��
We stress that the bound (3.7) provides a practical rule for choosing the trust-region

radius and enforcing theq-condition (2.16). Conversely, in papers [27,29],where trust-
region methods for ill-posed problems are studied, such a condition is respectively
assumed to be satisfied, and explicitly enforced rejecting the step whenever it does not
hold.

The result in Lemma 3.2 suggests the trust-region iteration described in
Algorithm 3.1. We distinguish between the parameters needed in the case of exact
data and the parameters required with noisy data.

Algorithm 3.1: k-th iteration of the regularizing Trust-Region method for problem (1.3)

Given xδ
k , η ∈ (0, 1), γ ∈ (0, 1), 0 < Cmin < Cmax.

Exact data: given y, q ∈ (0, 1).
Noisy data: given yδ , q ∈ (0, 1), τ > 1/q.

1. Compute Bk = J (xδ
k )T J (xδ

k ) and gk = J (xδ
k )T (F(xδ

k ) − yδ).

2. Choose �k ∈
[

Cmin‖gk‖, min

{

Cmax,
1 − q

‖Bk‖
}

‖gk‖
]

.

3. Repeat
3.1 Compute the solution pk of the trust-region problem (3.1).
3.2 Compute πk (pk ) given in (3.3)–(3.5).
3.3 If πk (pk ) < η, then set �k = γ�k .

Until πk (pk ) ≥ η.
4. Set xδ

k+1 = xδ
k + pk .

Algorithm 3.1 is well-defined, provided that the following assumption is met.
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On an adaptive regularization for ill-posed nonlinear systems... 11

Assumption 3.1 There exists a positive constant κJ such that

‖J (x)‖ ≤ κJ ,

for any x belonging to the level set L = {x ∈ R
n s.t. �(x) ≤ �(x0)}.

First, Step 2 is well defined for suitable choices of Cmin; in fact, as long as Cmin <
1 − q

κ2
J

, it holds Cmin <
1 − q

‖Bk‖ for all k. Second, due to well-known properties of

trust-region methods, Assumption 3.1 guarantees that the step pk is found within a
finite number of attempts, whenever ‖gk‖ �= 0 [5].

Global convergence of the trust-region method is stated in the following theorem;
we refer to [23, Theorem 11.9] for the proof.

Theorem 3.3 Suppose that Assumption 3.1 holds and J is Lipschitz continuous on
R

n. Then, the sequence {xδ
k } generated by Algorithm 3.1 satisfies

lim
k→∞ ∇�

(

xδ
k

) = lim
k→∞

∥
∥
∥J (xδ

k )T (F(xδ
k ) − yδ

)
∥
∥
∥ = 0. (3.8)

We observe that assumption on Lipschitz continuity of J is made in [15], too.
By construction, the sequence {‖F(xδ

k ) − yδ‖} is monotonically decreasing and
bounded below by zero; hence it is convergent. Equation (3.8) implies that any accu-
mulation point of the sequence {xδ

k } is a stationary point of �. As for exact data, we
conclude that if there exists an accumulation point of {xk} solving (1.1), then any
accumulation point of the sequence solves (1.1). In the case of noisy data, if the value
of � at some accumulation point of {xδ

k } is below the scalar τδ, then there exists an
iterate xδ

k∗(δ) such that the discrepancy principle is met.
It remains to show the behaviour of the iterates generated by Algorithm 3.1 when,

for some k, xδ
k is sufficiently close to a solution x† of (1.1). For instance, this occurswith

exact data when the accumulation points of {xk} solve (1.1) and k is sufficiently large.
In the next section we show that the trust-region method described in Algorithm 3.1
shares the same local regularizing properties as the regularizing Levenberg–Marquardt
method.

4 Local behaviour of the trust-region method

We analyze the local properties of the trust-regionmethod under the same assumptions
made for the Levenberg–Marquardt method. Hence, we suppose that there exists an
iteration index k̄ such that the iterate xδ

k̄
satisfies the following assumptions that are

the counterpart of Assumptions 2.1 and 2.2 for the Levenberg–Marquardt method.

Assumption 4.1 Suppose that for some iteration index k̄ there exist positive ρ and c
such that system (1.1) is solvable in Bρ(xδ

k̄
), and

‖F(x) − F(x̃) − J (x)(x − x̃)‖ ≤ c‖x − x̃‖ ‖F(x) − F(x̃)‖, x, x̃ ∈ B2ρ

(

xδ

k̄

)

,

(4.1)
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12 S. Bellavia et al.

with k̄ < k∗(δ) if the data are noisy, where k∗(δ) is defined in (1.4). Moreover, letting
x† be a solution of (1.1), suppose that xδ

k̄
satisfies

‖xk̄ − x†‖ < min
{q

c
, ρ
}

, if δ = 0, (4.2)

‖xδ

k̄
− x†‖ < min

{
qτ − 1

c(1 + τ)
, ρ

}

, if δ > 0. (4.3)

where τ > 1/q.

Typically in the literature assumptions stronger than (4.1) have been made. To
our knowledge, except for papers [7–9,27–29], local convergence properties of trust-
region strategies have been analyzed under assumptions which involve the inverse
of J and its upper bound in a neighbourhood of a solution. In papers [7–9,29] the
convergence analysis is carried out assuming a local error-bound condition and a
Lipschitz condition on the Jacobian in a neighbourhood of x†.

The following theorems show the local behaviour of the regularizing trust-region
method. We prove that locally the trust-region is active, the iterates xδ

k with k > k̄
remain into the ball Bρ(x†) and the resulting algorithm is regularizing.We remark that
in standard trust-region methods, the trust-region becomes eventually inactive. On the
other hand, regularization requires strictly positive scalars λk , and consequently an
active trust-region in all iterations. First, we give a technical result that will be useful
in the subsequent analysis. Then, we focus on the noise-free case and we show that
the error ‖xk − x†‖ decreases in a monotonic way for k ≥ k̄, and the sequence {xk}
converges to a solution of (1.1).

Lemma 4.1 Assume that Eq. (2.7) is fulfilled for some θk > 1 and x† being a solution
of (1.1). Let xk+1 = xk + pk with pk = p(λk) satisfying (2.2) and (2.16). Then it
holds

∥
∥
∥xδ

k − x†
∥
∥
∥

2 −
∥
∥
∥xδ

k+1 − x†
∥
∥
∥

2
>

2(θk − 1)

θkλk

∥
∥F
(

xδ
k

)− yδ + J
(

xδ
k

)

pk
∥
∥
2
. (4.4)

Proof The proof parallels that of [16, Proposition 4.1], in which it is shown that

∥
∥
∥xδ

k+1 − x†
∥
∥
∥

2 −
∥
∥
∥xδ

k − x†
∥
∥
∥

2

<
2

λk

∥
∥F
(

xδ
k

)− yδ + J
(

xδ
k

)

pk
∥
∥

(∥
∥
∥F
(

xδ
k

)− yδ + J
(

xδ
k

) (

x† − xδ
k

)∥
∥
∥

−
∥
∥
∥F
(

xδ
k

)− yδ + J
(

xδ
k

)

pk

∥
∥
∥

)

.

From (2.7) and (2.16) it follows that

∥
∥
∥F
(

xδ
k

)− yδ + J
(

xδ
k

) (

x† − xδ
k

)∥
∥
∥ ≤ 1

θk

∥
∥F
(

xδ
k

)− yδ + J
(

xδ
k

)

pk
∥
∥ ,

which yields the thesis. ��
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On an adaptive regularization for ill-posed nonlinear systems... 13

Lemma 4.2 Suppose that Assumptions 3.1 and 4.1 hold and δ = 0. Then, Algorithm
3.1 generates a sequence {xk} such that, for k ≥ k̄,

(i) the trust-region is active, i.e. λk > 0, and xk belongs to B2ρ(xk̄) and to Bρ(x†);
(ii) ‖xk+1 − x†‖ < ‖xk − x†‖;
(iii) there exists a constant λ̄ > 0 such that λk ≤ λ̄.

Proof (i)–(ii) From the choice of �k at Step 2 of Algorithm 3.1 and Lemma 3.2
it follows that the step pk computed at Step 3 satisfies condition (2.16). Moreover,
from Assumption 4.1, it follows that condition (2.7) is satisfied at k = k̄ with θk̄ =

q

c‖xk̄ − x†‖ > 1. Consequently, Lemma 2.2 gives that λ
q
k̄
is strictly positive, while

Lemma 3.1 yields that the trust-region is active as λk̄ ≥ λ
q
k̄
. Since Lemma 4.1 holds

for k = k̄, (4.4) implies ‖xk̄+1−x†‖ < ‖xk̄ −x†‖ and, as a consequence, xk̄+1 belongs
to B2ρ(xk̄) and to Bρ(x†). Repeating the above arguments, by induction we can prove
that condition (2.7) holds for k > k̄, with

θk = q

c‖x† − xk‖ > 1, (4.5)

and this implies that λk is strictly positive. Thus, Lemma 4.1 holds for all k ≥ k̄ and
by induction, the sequence {‖xk − x†‖}∞

k=k̄
is monotonic decreasing and the sequence

{θk}∞k=k̄
is monotonic increasing.

(iii) Since the trust-region is active, by (2.2)

�k = ‖pk‖ = ‖(Bk + λk I )−1gk‖ ≤ ‖gk‖
λk

. (4.6)

Thus our claim follows if �k/‖gk‖ is larger than a suitable threshold, independent
from k. Let us provide such a bound by estimating the value of �k which guarantees
condition πk(pk) ≥ η. If this condition is fulfilled for the value of �k fixed in Step 2
of Algorithm 3.1, then�k/‖gk‖ ≥ Cmin; otherwise, the trust-region radius is progres-
sively reduced, and we provide a bound for the value of �k at termination of Step 3 of
Algorithm 3.1 in the case where �(xk + pk) > mTR

k (pk). This occurrence represents
the most adverse case; in fact if �(xk + pk) ≤ mTR

k (pk) then πk(pk) ≥ 1 > η and
the repeat loop terminates for a trust-region radius greater than or equal to the one
estimated below. Trivially,

1 − πk(pk) = �(xk + pk) − mTR
k (pk)

�(xk) − mTR
k (pk)

, (4.7)

and

�(xk + pk) − mTR
k (pk) ≤ 1

2
‖F(xk + pk) − F(xk) − J (xk)pk‖2

+‖F(xk + pk) − F(xk) − J (xk)pk‖
‖F(xk) − y + J (xk)pk‖ (4.8)
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14 S. Bellavia et al.

By (4.1) and the mean value Theorem [23, Theorem 11.1], it holds

‖F(xk + pk) − F(xk) − J (xk)pk‖ ≤ c‖pk‖ ‖F(xk + pk) − F(xk)‖
≤ cκJ ‖pk‖2. (4.9)

Consequently, as �k ≤ Cmax‖gk‖,

�(xk + pk) − mTR
k (pk) ≤ 1

2
cκJ �2

k‖F(x0) − y‖
(

cκ3
J C2

max‖F(x0) − y‖ + 2
)

.

Theorem 6.3.1 in [5] shows that

�(xk) − mTR
k (pk) ≥ 1

2
‖gk‖min

{

�k,
‖gk‖
‖Bk‖

}

.

Then,

�(xk) − mTR
k (pk) ≥ 1

2
�k‖gk‖, (4.10)

whenever �k ≤ ‖gk‖
κ2

J

and this implies

1 − πk(pk) ≤ cκJ �k‖F(x0) − y‖ (cκ3
J C2

max‖F(x0) − y‖ + 2
)

‖gk‖ .

Namely, termination of the repeat loop occurs with

�k ≤ ‖gk‖ω,

and

ω = min

{

1

κ2
J

,
1 − η

cκJ ‖F(x0) − y‖ (cκ3
J C2

max‖F(x0) − y‖ + 2
)

}

. (4.11)

Taking into account Step 2 and the updating rule at Step 3.3, we can conclude that, at
termination of Step 3, the trust-region radius �k satisfies

�k ≥ min {Cmin, γω} ‖gk‖.

Finally, by (4.6) λk ≤ λ̄ as

λk ≤ ‖gk‖
�k

≤ max

{
1

γω
,

1

Cmin

}

. (4.12)

��
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On an adaptive regularization for ill-posed nonlinear systems... 15

Theorem 4.3 Suppose that Assumptions 3.1 and 4.1 hold and δ = 0. Then, the
sequence {xk} generated by Algorithm 3.1 converges to a solution x∗ of (1.1) such
that ‖x∗ − x†‖ ≤ ρ.

Proof Let k̄ as in Assumption 4.1 and k ≥ k̄. In Lemma 4.2 we showed that (4.4)
holds with θk given in (4.5) and monotonically increasing. Then, an adaptation of the
proof of Theorem 4.2 in [16] gives that {xk} is convergent; the proof is repeated for
sake of clarity. Set σ = c‖xk̄ −x†‖. Clearly, from Lemma 4.2 we have σ ≥ c‖xi −x†‖
for all i ≥ k̄. Moreover, using (4.1) we obtain

‖J (xi )(xk − x†)‖ ≤ (1 + 5σ)‖F(xi ) − y‖, (4.13)

for all k ≥ i ≥ k̄. Letting ek = xk − x†, from (2.9), (2.10) and (4.13) we obtain that
for k > j ≥ k̄:

|〈e j − ek, ek〉| =
∣
∣
∣
∣
∣
∣

k−1
∑

i= j

〈

(J (xi )J (xi )
T + λi I )−1)(y − F(xi )), J (xi )ek

〉

∣
∣
∣
∣
∣
∣

≤
k−1
∑

i= j

‖(J (xi )J (xi )
T + λi I )−1(y − F(xi ))‖‖J (xi )ek‖

≤ (1 + 5σ)

k−1
∑

i= j

1

λi
‖F(xi ) − y + J (xi )(xi+1 − xi )‖‖F(xi ) − y‖.

Thus, (2.16) and (4.4) yield

| < e j − ek, ek > | ≤ (1 + 5σ)

k−1
∑

i= j

1

λi q
‖F(xi ) − y + J (xi )(xi+1 − xi )‖2

≤ αk̄(‖e j‖2 − ‖ek‖2), (4.14)

where αk̄ = (1 + 5σ)θk̄

2q(θk̄ − 1)
and we have used θk/(θk − 1) < θk̄/(θk̄ − 1) since the

function θ/(θ − 1) is monotonic decreasing. Then

‖xk − x j‖2 = 2 < ek − e j , ek > +‖e j‖2 − ‖ek‖2 ≤ (2αk̄ + 1)(‖e j‖2 − ‖ek‖2).

Since the sequence {‖ek‖} is bounded from below andmonotonic decreasing, hence
convergent, it follows that {xk} is a Cauchy sequence, i.e. {xk} converges to a limit
point x∗. By xk ∈ Bρ(x†) for k ≥ k̄, it follows ‖x∗ − x†‖ ≤ ρ.

Finally, from Lemma 4.2 we know that λk ≤ λ̄ and (θk − 1)/θk ≥ (θk̄ − 1)/θk̄ , for
k ≥ k̄ since the function (θ −1)/θ is monotonic increasing. Then, by (4.4) and (2.16)

‖xk − x†‖2 − ‖xk+1 − x†‖2 ≥ 2(θk̄ − 1)q2

θk̄ λ̄
‖F(xk) − y‖2.
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16 S. Bellavia et al.

Thus we conclude that ‖F(xk) − y‖ tends to zero and the limit x∗ of xk

solves (1.1). ��
A similar result can be given for the noisy case. In the following lemma we prove

that for k̄ ≤ k < k∗(δ), where k∗(δ) is defined in (1.4), the trust region is active and the
scalars λk > 0 are bounded above. Successively, we prove that the stopping criterion
(1.4) is satisfied after a finite number of iterations and the method is regularizing as
the error decreases monotonically and the sequence {xδ

k∗(δ)} converges to a solution of
(1.1) as δ tends to zero.

Lemma 4.4 Suppose that δ > 0 and Assumptions 3.1 and 4.1 hold. Then, Algorithm
3.1 generates a sequence xδ

k such that, for k̄ ≤ k < k∗(δ),

(i) the trust-region is active, i.e. λk > 0 and xδ
k belongs to B2ρ(xδ

k̄
) and to Bρ(x†);

(ii) ‖xδ
k+1 − x†‖ < ‖xδ

k − x†‖;
(iii) there exists a constant λ̄ > 0 such that λk ≤ λ̄.

Proof (i)–(ii) By (4.1) and (1.2) we get

∥
∥
∥yδ − F

(

xδ

k̄

)

− J
(

xδ

k̄

) (

x† − xδ

k̄

)∥
∥
∥ ≤ δ +

∥
∥
∥y − F

(

xδ

k̄

)

− J
(

xδ

k̄

) (

x† − xδ

k̄

)∥
∥
∥

≤ δ + c
∥
∥
∥x† − xδ

k̄

∥
∥
∥

∥
∥
∥y − F(xδ

k̄
)

∥
∥
∥

≤
(

1 + c
∥
∥
∥x† − xδ

k̄

∥
∥
∥

)

δ

+ c
∥
∥
∥x† − xδ

k̄

∥
∥
∥

∥
∥
∥yδ − F

(

xδ

k̄

)∥
∥
∥ .

Then, at iteration k̄, condition (1.4) gives

∥
∥
∥yδ − F

(

xδ

k̄

)

− J
(

xδ

k̄

) (

x† − xδ

k̄

)∥
∥
∥

≤
⎛

⎝

1 + c
∥
∥
∥x† − xδ

k̄

∥
∥
∥

τ
+ c
∥
∥
∥x† − xδ

k̄

∥
∥
∥

⎞

⎠

∥
∥
∥yδ − F

(

xδ

k̄

)∥
∥
∥ ,

and (4.3) yields (2.7) at k = k̄ with θk̄ = qτ

1 + c(1 + τ)‖x† − xδ

k̄
‖ > 1. Then, Lemma

2.2 and Lemma 3.2 yield λk̄ ≥ λ
q
k̄
with λ

q
k̄

> 0 strictly positive. Further, by Lemma 4.1

condition (4.4) is satisfiedwith θk = θk̄ , and this implies ‖xδ

k̄+1
−x†‖ < ‖xδ

k̄
−x†‖ and

consequently xδ

k̄+1
belongs to B2ρ(xδ

k̄
) and to Bρ(x†). Repeating the above arguments,

by induction we can prove that, for k̄ < k < k∗(δ), condition (2.7) holds, λk > 0, and

(4.4) is satisfied with θk = qτ

1 + c(1 + τ)‖x† − xδ
k‖ . Thus ‖xδ

k+1 − x†‖ < ‖xδ
k − x†‖

and θk+1 > θk for k̄ ≤ k < k∗(δ).
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(iii) Proceeding as in the proof of point (iii) of Theorem 4.2, just replacing xk with
xδ

k , we get that for k̄ ≤ k < k∗(δ), λk < λ̄ with

λ̄ ≤ max

{
1

γω
,

1

Cmin

}

.

where ω is obtained replacing y with yδ in (4.11). ��
Theorem 4.5 Suppose that Assumptions 3.1 and 4.1 hold for δ ≥ 0. Then, for δ > 0,
the iterates generated by Algorithm 3.1 satisfy the stopping criterion (1.4) after a finite
number k∗(δ) of iterations.

Moreover, suppose that the sequence {xk} generated with the exact data y satisfies
πk(xk+1 − xk) �= η, for all k. Then the sequence {xδ

k∗(δ)} converges to a solution of
(1.1) whenever δ tends to zero.

Proof Summing up from k̄ to k∗(δ) − 1, by (2.16) and (4.4) it follows

(k∗(δ) − k̄)τ 2δ2 ≤
k∗(δ)−1
∑

k=k̄

∥
∥F(xδ

k ) − yδ
∥
∥
2 ≤ θk̄ λ̄

2(θk̄ − 1)q2

∥
∥
∥xδ

k̄
− x†
∥
∥
∥

2
.

Thus, k∗(δ) is finite for δ > 0.
Convergence of xδ

k∗(δ) to a solution of (1.1) as δ tends to zero is obtained by adapting
the proof of [12, Theorem 2.3]. Specifically, let x∗ be the limit of the sequence {xk}
corresponding to the exact data y and let {δn} be a sequence of values of δ converging
to zero as n → ∞. Denote by yδn a corresponding sequence of perturbed data, and
by kn = k∗(δn) the stopping index determined from the discrepancy principle (1.4)
applied with δ = δn . Assume first that k̃ is a finite accumulation point of {kn}. Without
loss of generality, for the monotonicity of (1.5), we can assume that kn = k̃ for all
n ∈ N. Thus, from the definition of kn it follows that

∥
∥
∥yδn − F

(

xδn

k̃

)∥
∥
∥ ≤ τδn . (4.15)

By assumption, πk(xk+1 − xk) �= η, for all k, it follows that for the fixed index k̃, the
iterate xδ

k̃
depends continuously on δ. Then

xδn

k̃
→ xk̃, F

(

xδn

k̃

)

→ F(xk̃) as δn → 0. (4.16)

Therefore, by (4.15), it follows that the k̃-th iterate with exact data y is a solution
of F(x) = y, i.e. x∗ = xk̃ , and we can conclude that xδn

kn
→ x∗ as δn → 0.

It remains to consider the case where kn → ∞ as n → ∞. As {xk} converges to a
solution x∗ of (1.1) by Theorem 4.3, there exists k̃ > 0 such that

‖xk − x∗‖ ≤ 1

2
ρ̄ for all k ≥ k̃,
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18 S. Bellavia et al.

where ρ̄ < min

{
qτ − 1

c(1 + τ)
, ρ

}

. Then, as xδ
k depends continuously on δ, δn tends to

zero and k∗(δn) → ∞, there exists δn sufficiently small such that k̃ ≤ k∗(δn) and

‖xδn

k̃
− xk̃‖ ≤ 1

2
ρ̄.

Then, for δn sufficiently small

∥
∥
∥xδn

k̃
− x∗
∥
∥
∥ ≤
∥
∥
∥xδn

k̃
− xk̃

∥
∥
∥+ ∥∥xk̃ − x∗∥∥ ≤ ρ̄. (4.17)

Now, from item (i) of Lemma 4.4, it holds xδn

k̃
∈ B2ρ(xδn

k̄
), while from (4.3) and

Theorem 4.3 it holds x∗ ∈ B2ρ(xδn

k̄
) as

∥
∥
∥xδn

k̄
− x∗
∥
∥
∥ ≤
∥
∥
∥xδn

k̄
− x†
∥
∥
∥+
∥
∥
∥x† − x∗

∥
∥
∥ ≤ 2ρ.

Repeating arguments in Lemma 4.4, we use (4.1), (1.2) and (1.4) and get

∥
∥
∥yδn − F

(

xδn

k̃

)

− J
(

xδn

k̃

) (

x∗ − xδn

k̃

)∥
∥
∥

≤ δn +
∥
∥
∥y − F

(

xδn

k̃

)

− J
(

xδn

k̃

) (

x∗ − xδn

k̃

)∥
∥
∥

≤ δn + c‖x∗ − xδn

k̃
‖
∥
∥
∥y − F

(

xδn

k̃

)∥
∥
∥

≤
(

1 + c
∥
∥
∥x∗ − xδn

k̃

∥
∥
∥

)

δ + c
∥
∥
∥x∗ − xδn

k̃

∥
∥
∥

∥
∥
∥yδn − F

(

xδn

k̃

)∥
∥
∥

≤
⎛

⎝

1 + c
∥
∥
∥x∗ − xδn

k̃

∥
∥
∥

τ
+ c
∥
∥
∥x∗ − xδn

k̃

∥
∥
∥

⎞

⎠

∥
∥
∥yδn − F

(

xδn

k̃

)∥
∥
∥ .

Thus, by (4.17) and ρ̄ < min

{
qτ − 1

c(1 + τ)
, ρ

}

, it follows that the following counterpart

of (2.7)

∥
∥F(xδ

k ) − yδ + J (xδ
k )
(

x∗ − xδ
k

)∥
∥ ≤ q

θk

∥
∥F(xδ

k ) − yδ
∥
∥

is satisfied at k = k̃ with θk̃ = qτ

1 + c(1 + τ)ρ̄
> 1. Replacing x† with x∗, (4.4) gives

‖xδn

k̃+1
−x∗‖ < ‖xδn

k̃
−x∗‖ and repeating the above arguments, by induction we obtain

monotonicity of the error ‖xδn
k − x∗‖ for k̃ ≤ k ≤ kn . Then

∥
∥
∥xδn

kn
− x∗
∥
∥
∥ <

∥
∥
∥xδn

k̃
− x∗
∥
∥
∥ ≤ ρ̄. (4.18)
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Finally, since the previous arguments can be repeated for any positive ε ≤ ρ̄, provided
that δn is small enough, we obtain that

xδn
kn

→ x∗ as δn → 0.

��
We underline that the trust-region radius �k selected in Algorithm 3.1 depends

continuously on δ in a right interval of the origin whenever πk(xk+1 − xk) �= η,
for all k ≥ 0. Under this assumption, the scalar λk , implicitly defined by the trust-
region problem, depends continuously on δ and this feature is crucial for proving that
the sequence {xδ

k∗(δ)} tends to a solution of (1.1) as δ tends to zero. In the following
corollary, we show that, whenever the initial guess x0 is sufficiently close to a solution
of (1.1), it holds πk(xk+1 − xk) > η and therefore the regularizing properties of our
trust-region method are valid under Assumptions 2.1 and 2.2. Then, the proposed
trust-region approach shows the same local regularizing properties of the regularizing
Levenberg–Marquardt method.

Corollary 4.6 Suppose that Assumptions 2.1 and 2.2 hold and δ ≥ 0. For δ > 0, let
k∗(δ) be defined in (1.4).

If x0 is sufficiently close to a solution of (1.1), then the sequence {xδ
k∗(δ)} converges

to a solution of (1.1) whenever δ tends to zero.

Proof Theorem 4.3 implies that {xk} converges to a solution of (1.1). Using (4.7)–
(4.10) and ‖pk‖ ≤ �k , it follows

1 − πk(pk)≤
1

2
cκJ �2

k

(

cκJ �2
k +‖F(xk) − y‖

)

1

2
�k‖gk‖

= cκJ �k
(

cκJ �2
k + ‖F(xk) − y‖)
‖gk‖ ,

while �k ≤ Cmax‖gk‖ implies

1 − πk(pk) ≤ cκJ Cmax

(

cκJ �2
k + ‖F(xk) − y‖

)

.

By the convergence of {xk} to a solution of (1.1), the right-hand side of the above
inequality tends to zero. Hence, if x0 is close enough to a solution of (1.1) to ensure
1 − πk(pk) > η, for k ≥ 0, Theorem 4.5 gives the thesis. ��

5 Numerical results

In this section we report on the performance of the regularizing trust-region method
and make comparisons with the regularizing Levenberg–Marquardt method and a
standard version of the trust-region method. The test problems are ill-posed and with
noisy data, and arise from the discretization of nonlinear Fredholm integral equations
of the first kind
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∫ 1

0
k(t, s, x(s))ds = y(t), t ∈ [0, 1]. (5.1)

The integral equations considered model inverse problems from groundwater
hydrology and geophysics. Their kernel is of the form

k(t, s, x(s)) = log

(
(t − s)2 + H2

(t − s)2 + (H − x(s))2

)

, (5.2)

see [25, Sect. 3], or

k(t, s, x(s)) = 1
√

1 + (t − s)2 + x(s)2
, (5.3)

see [15, Sect. 6]. The interval [0, 1] was discretized with n = 64 equidistant grid
points ti = (i − 1)h, h = 1/(n − 1), i = 1, . . . , n. Function x(s) was approximated
from the n-dimensional subspace of H1

0 (0, 1) spanned by standard piecewise linear
functions. Specifically, we let s j = ( j −1)h, h = 1/(n −1), j = 1, . . . , n, and looked
for an approximation x̂(s) =∑n

j=1 x̂ jφ j (s) where

φ1(s) =
{ s2 − s

h
if s1 ≤ s ≤ s2

0 otherwise
, φn(s) =

{ s − sn−1

h
if sn−1 ≤ s ≤ sn

0 otherwise
,

and

φ j (s) =

⎧

⎪⎪⎨

⎪⎪⎩

s − s j−1

h
if s j−1 ≤ s ≤ s j ,

s j+1 − s

h
if s j ≤ s ≤ s j+1,

0 otherwise

j = 2, . . . n − 1.

Finally, the integrals
∫ 1
0 k(ti , s, x̂(s))ds, 1 ≤ i ≤ n, were approximated by the com-

posite trapezoidal rule on the points s j , 1 ≤ j ≤ n. The resulting discrete problems
are square nonlinear systems (1.1) with unknown x = (x̂1, . . . , x̂n)T . We observe that
x̂(s j ) = x̂ j ; thus, the j-th component of x approximates a solution of (5.1) at s j .

Two problemswith kernel (5.2) and two problemswith kernel (5.3)were considered
and built so that solutions (later denoted as true solutions) are known. Concerning
kernel (5.2), the first problem is given in [25, p. 46]; it admits as true continuous
solutions the functions xtrue(s) = c1ed1(s+p1)2 +c2ed2(s−p2)2 +c3+c4 and xtrue(s) =
2H − c1ed1(s+p1)2 − c2ed2(s−p2)2 − c3 − c4 where H = 0.2, c1 = −0.1, c2 =
−0.075, d1 = −40, d2 = −60, p1 = 0.4, p2 = 0.67, c3 and c4 are chosen such that
xtrue(0) = xtrue(1) = 0. The second problem was given in [27, p. 835] and it has true
continuous solutions xtrue(s) = 1.3s(1 − s) + 0.2 and xtrue(s) = 1.3s(s − 1).

The third and fourth problems have kernel (5.3); the former has solutions xtrue(s) =
1 and xtrue(s) = −1, s ∈ [0, 1], see [15, p. 660], while the latter has the discontinuous
functions
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xtrue(s) =

⎧

⎪⎨

⎪⎩

1 if 0 ≤ s ≤ 1

2
0 if

1

2
< s ≤ 1

, xtrue(s) =

⎧

⎪⎨

⎪⎩

−1 if 0 ≤ s ≤ 1

2
0 if

1

2
< s ≤ 1

(5.4)

as the true solutions, [15, p. 662].
The nonlinear systems arising from the discretization of the four problems are

denoted as P1, P2, P3 and P4 respectively, while x† ∈ R
n denotes a solution of

the discretized problems. Given the error level δ, the exact data y was perturbed by
normally distributed values with mean 0 and variance δ using the Matlab function
randn.

All procedures were implemented in Matlab and run using Matlab 2014b on
an Intel Core(TM) i7-4510U 2.6 GHz, 8 GB RAM; the machine precision is εm ≈
2×10−16. The Jacobianof the nonlinear function F was computedbyfinite differences.
The parameter q used in (2.4) and in (2.16) was set equal to 1.1/τ and the discrepancy
principle (1.4) with τ = 1.5 was used as the stopping criterion. A maximum number
of 300 iterations was allowed and a failure was declared when this limit was exceeded.

In the implementation of the regularizing trust-region method, Step 3 in Algorithm

3.1 was performed setting η = 1

4
, γ = 1

6
. Then, in Step 2 the trust-region radius was

updated as follows

�0 = μ0
∥
∥F(x0) − yδ

∥
∥ , μ0 = 10−1, (5.5)

�k+1 = μk+1
∥
∥F
(

xδ
k+1

)− yδ
∥
∥ , μk+1 =

⎧

⎪⎪⎨

⎪⎪⎩

1

6
μk if qk < q

2μk if qk > νq

μk otherwise

(5.6)

with qk = ‖F(xδ
k ) − yδ + J (xδ

k )pk‖
‖F(xδ

k ) − yδ‖ , and ν = 1.1. The maximum and minimum val-

ues for �k were set to �max = 104 and �min = 10−12. This updating strategy turned
out to be efficient in practice and was based on the following considerations. Clearly,
�k is cheaper to compute than the upper bound in (3.7) and preserves convergence to
zero as δ tends to zero and a solution of problem (1.3) is approached. Further, �k is
adjusted taking into account the q-condition and bymonitoring the value qk ; therefore,
if the q-condition was not satisfied at the last computed iterate xδ

k , it is reasonable to
take a smaller radius than in the case where the q-condition was fulfilled.

The computation of the parameter λk was performed applying Newton’s method to
the equation

ψ(λ) = 1

‖p(λ)‖ − 1

�k
= 0, (5.7)

and each Newton’s iteration requires the Cholesky factorization of a shifted matrix
of the form Bk + λI [5]. Typically high accuracy in the solution of the above scalar
equations is not needed [2,5] and this fact was experimentally verified also for our
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test problems. Hence, after extensive numerical experience, we decided to terminate
the Newton’s process as soon as |�k − ‖p(λ)‖| ≤ 10−2�k .

In our implementation of the standard trust-region method, we chose the trust-
region radius accordingly to technicalities well-known in the literature, see e.g. [5,
Sect. 6.1] and [23, Sect. 11.2]. In particular, we set �0 = 1,

�k+1 =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

‖pk‖
4

, if πk(pk) <
1

4
,

�k, if
1

4
≤ πk(pk) ≤ 3

4
,

min{2�k,�max}, otherwise,

with �max = 104 and chose �min = 10−12 as the minimum values for �k .
Finally the Levenberg–Marquardt approach was implemented imposing condition

(2.4) and solving (2.14) by Newton’s method. In order to find an accurate solution for
(2.4) it was necessary to use a tighter tolerance, equal to 10−5, than that used in the
trust-region algorithm.

Our experiments were made varying the noise level δ on the data yδ . Tables 1
and 2 display the results obtained by the regularizing trust-region algorithm with
noise δ = 10−4 and δ = 10−2 respectively. Runs for four different initial guesses
x0 are reported in the tables. For problems P1 and P2 the initial guesses are
x0 = 0e,−0.5e,−e,−2e and x0 = 0e, 0.5e, e, 2e respectively, where e denotes

Table 1 Results obtained by the regularizing trust-region method and the regularizing Levenberg–
Marquardt method with noise δ = 10−4 and varying initial guesses

Problem x0 RTR RLM

it ‖F − y‖ nf cf eI eT eI eT

P1 0 e 43 1.3e−4 44 5 5.5e−3 5.5e−3 4.5e−3 4.5e−3

−0.5 e 63 1.2e−4 71 5 3.2e−2 7.9e−2 3.0e−2 7.1e−2

−1 e 82 1.4e−4 94 4 3.4e−2 8.4e−2 4.0e−2 7.2e−2

−2 e 115 1.5e−4 138 4 3.4e−2 8.6e−2 2.9e−2 6.1e−2

P2 0 e 54 1.2e−4 55 5 7.4e−3 7.4e−3 * *

0.5 e 56 1.4e−4 59 5 1.1e−2 1.3e−2 * *

1 e 73 1.4e−4 84 4 1.0e−2 1.3e−2 7.3e−3 8.3e−3

2 e 118 1.4e−4 138 4 9.3e−3 1.1e−2 4.8e−3 4.8e−3

P3 x0(1.25) 35 1.4e−4 36 3 1.2e−2 1.2e−2 3.1e−3 3.1e−3

x0(1.5) 43 1.4e−4 44 3 5.1e−2 5.1e−2 6.2e−2 6.2e−2

x0(1.75) 45 1.3e−4 46 3 3.2e−1 3.2e−1 3.1e−1 3.1e−1

x0(2) 65 1.4e−4 71 3 4.6e−1 4.6e−1 3.8e−1 3.8e−1

P4 x0(1, 1) 68 1.5e−4 82 3 4.8e−1 4.8e−1 * *

x0(0.5, 0) 64 1.5e−4 75 3 4.9e−1 4.9e−1 4.7e−1 4.7e−1

x0(1.5, 1) 69 1.5e−4 78 3 5.1e−1 5.1e−1 4.8e−1 4.8e−1

x0(1.5, 0) 68 1.5e−4 78 4 5.2e−1 7.1e−1 5.1e−1 6.3e−1
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Table 2 Results obtained by the regularizing trust-region method and the regularizing Levenberg–
Marquardt method with noise δ = 10−2 and varying initial guesses

Problem x0 RTR RLM

it ‖F − y‖ nf cf eI eT eI eT

P1 0 e 20 1.5e−2 21 6 1.9e−2 1.9e−2 1.8e−2 1.8e−2

−0.5 e 29 1.0e−2 30 6 2.2e−2 3.1e−1 2.1e−2 3.1e−1

−1 e 35 1.4e−2 36 5 3.6e−2 6.1e−1 3.3e−2 6.1e−1

−2 e 40 1.3e−2 41 5 4.9e−2 1.2e+0 4.5e−2 1.2e+0

P2 0 e 30 1.4e−2 31 5 6.9e−3 1.3e−2 * *

0.5 e 25 1.4e−2 26 5 1.7e−2 2.1e−1 * *

1 e 29 1.4e−2 30 5 3.8e−2 5.4e−1 1.3e−1 5.2e−1

2 e 37 1.4e−2 39 5 5.5e−2 1.2e+0 2.2e−1 1.1e+0

P3 x0(1.25) 15 1.2e−2 16 4 1.5e−1 1.5e−1 1.5e−1 1.5e−1

x0(1.5) 17 1.4e−2 18 4 3.2e−1 3.2e−1 3.2e−1 3.2e−1

x0(1.75) 19 1.4e−2 20 4 5.0e−1 5.0e−1 5.1e−1 5.1e−1

x0(2) 22 1.5e−2 23 4 6.9e−1 6.9e−1 7.0e−1 7.0e−1

P4 x0(1, 1) 17 1.4e−2 18 5 5.7e−1 5.7e−1 5.4e−1 5.4e−1

x0(0.5, 0) 20 1.3e−2 21 4 5.5e−1 5.5e−1 * *

x0(1.5, 1) 22 1.4e−2 23 4 5.1e−1 5.1e−1 5.0e−1 5.0e−1

x0(1.5, 0) 26 1.5e−2 27 4 5.2e−1 8.8e−1 * *

the vector e = (1, . . . , 1)T . For problem P3 the initial guess was chosen as the vector
x0(α) with j-th component given by (x0(α)) j = gα(s j ) for j = 1, . . . , n, where
gα(s) = (−4α + 4)s2 + (4α − 4)s + 1, and s j being the grid points in [0, 1]. We
have used the following values of α, α = 1.25, 1.5, 1.75, 2. For problem P4 the ini-
tial guess x0(β, χ) has components (x0(β, χ)) j = gβ,χ (s j ) for j = 1, . . . , n with
gβ,χ = β − χs and (β, χ) = (1, 1), (0.5, 0), (1.5, 1), (1.5, 0). In the tables we
report: the initial guesses (for increasing distance from the true solutions); the num-
ber of iterations it performed; the final nonlinear residual; the number of function
evaluations nf performed; the rounded average number cf of Cholesky factoriza-
tions per iteration. To assess the quality of the results obtained, we measured the
distance between the final iterate xδ

k∗(δ) and the true solution approached; in particu-

lar eI = max2≤ j≤n−1 |xtrue(s j ) − (xδ
k∗(δ)) j | is the maximum absolute value of the

difference between the components associated to internal points s j ∈ (0, 1), while
eT = max1≤ j≤n |xtrue(s j ) − (xδ

k∗(δ)) j | is the maximum absolute value of the differ-
ence between the components associated to points s j including the end-points of the
interval [0, 1]. The symbol “∗” indicates that either the procedure failed to satisfy the
discrepancy principle within the prescribed maximum number of iteration, or the final
xδ

k∗(δ) was not an approximation of one of the true solutions described above.
Tables 1 and 2 show that the regularizing trust-regionmethod solves all the tests. By

Step 3 of our Algorithm 3.1, the difference between the number of function evaluations
and the number of trust-region iterations, if greater than one, indicates the number of
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Fig. 1 Regularizing trust-region applied to P2, x0 = 0e, δ = 10−4: values qk = ‖F(xδ
k )−yδ+J (xδ
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k )−yδ‖
(marked by an asterisk) and value of q = 1.1/τ (solid line) versus the iterations (on the left); semilog plot
of the error ‖xδ

k − x†‖ versus the iterations (on the right)
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Fig. 3 Regularizing trust-region (left) and regularizing Levenberg–Marquardt (right), true solution (solid
line) and approximate solutions (dotted line). Upper part P1, δ = 10−2, x0 = 0e; lower part P3, δ = 10−2,
x0 = x0(α) = x0(1.25)

trial iterates that were rejected because a sufficient reduction on � was not achieved.
We observe that in 20 out of 32 runs, all the iterates generated were accepted; this
occurrence seems to indicate that the trust-region updating rule works well in practice.

Further insight on the trust-region updating rule (5.5) and (5.6) can be gained
analyzing the regularizing properties of the implemented trust-region strategy. First,
we verified numerically that, though not explicitly enforced, the q-condition is satisfied
in most of the iterations. As an illustrative example, we consider problem P2 with
δ = 10−4 and x0 = 0e and, in the left plot in Fig. 1, we display the values qk =
‖F(xδ

k ) − yδ + J (xδ
k )pk‖

‖F(xδ
k ) − yδ‖ at the trust-region iterations, marked by an asterisk, and

the value q = 1.1/τ ≈ 0.733 fixed in our experiments, depicted by a solid line. We
observe that, even if we have not imposed the q-condition, it is satisfied at most of
the iterations. The plot on the right of Fig. 1 shows a monotone decay of the error
between xδ

k and x† through the iterations, which results to be in accordance with the
theoretical results in Theorem 4.4. The regularizing properties of the implemented
trust-region scheme are also shown in Fig. 2 where, for each test problem we plot the
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Fig. 4 True solution (solid line) and approximate solutions (dotted line) computed by the regularizing
trust-region method (on the left) and the regularizing Levenberg–Marquardt method (on the right). Upper
part problem P2, δ = 10−2, x0 = 0e; lower part problem P4, δ = 10−2, x0 = x0(β, χ) = x0(0.5, 0)

error ‖xδ
k∗(δ) − x†‖ for decreasing noise levels; it is evident that, in accordance with

the theory, the error decays as the noise level decreases.
Let now compare the regularizing trust-region and Levenberg–Marquardt proce-

dures. On successful runs for both methods, the two methods provide solutions of
similar accuracy and such an accuracy increases with the vicinity of the initial guess
to the true solution; as an example Fig. 3 shows the solutions computed by the two
methods for problems P1 and P3 for δ = 10−2. On the other hand, for large noise
δ and initial guesses farther from the true solution, for both methods the accuracy
at the endpoints of the interval [0, 1] may deteriorate; for this occurrence we refer
to Table 2 and runs on problems P1 and P2. Concerning failures, in 7 runs out of
32 the Levenberg–Marquardt algorithm does not act as a regularizing method as the
generated sequence approaches a solution of the noisy problem. In Fig. 4 we illustrate
two unsuccessful runs of the Levenberg–Marquardt method; approximated solution
computed by the regularizing trust-region and Levenberg–Marquardt procedures are
shown for runs on problems P2 and P4.

The overall experience on the Levenberg–Marquardt algorithm seems to indicate
that the use of the q-condition is more flexible than condition (2.4) and provides
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Fig. 5 Problem P4, δ = 10−2, x0 = x0(β, χ) = x0(1.5, 0): true solution (solid line) and approx-
imate solution (dotted line) computed by the regularizing Levenberg–Marquardt method for values of
q = 0.67, 0.70, 0.73, 0.87

stronger regularizing properties. In order to support this claim, in Fig. 5 we report
four solution approximations computed by the Levenberg–Marquardt algorithm for
varying values of q, i.e. q = 0.67, 0.70, 0.73, 0.87. It is evident that the method
is highly sensitive to the choice of the parameter q and the quality of the solution
approximation does not steadily improves as q increases.

We conclude this section considering the standard trust-region strategy. It is well-
known that the standard updating rule promotes the use of inactive trust-regions, at
least in the late stage of the procedure. Clearly, this can adversely affect the solution of
our test problems and our experiments confirmed this fact. In particular, for δ = 10−2

and problems P1 and P2, the sequences computed by the standard trust-region method
approach solutions of the noisy problem.The samebehaviour occurs inmost of the runs
with P1 and P2 and noise level δ = 10−4. Conversely, the approximations provided by
the regularizing trust-region procedure are accurate approximations of true solutions
in all the tests. The approximations computed by the standard trust-region applied to
problems P3 and P4 are less accurate than those computed by the regularizing trust-
region although they do not show the strong oscillatory behaviour arising in problems
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Fig. 6 True solution (solid line) and approximate solutions (dotted line) computed by the regularizing
trust-region method (on the left) and the standard trust-region method (on the right). a, b problem P1,
δ = 10−2, x0 = 0e; c, d problem P2, δ = 10−2, x0 = 0e; e, f problem P3, δ = 10−2, x0 = x0(1.25); g,
h problem P4, δ = 10−2, x0 = x0(0.5, 0)
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P1 and P2. In problem P4, this behaviour is evident when the second, third and fourth
starting guesses are used, while the approximation computed starting from the first
initial guess is as accurate as the one computed by the regularizing trust-region. This
good result of the standard trust-region on problem P4 with x0 = x0(1, 1) is due
to the fact that the trust-region is active in all iterations and therefore a regularizing
behaviour is implicitly provided. As an example in Fig. 6 we compare some solution
approximations computed by the regularizing trust-region (left) and by the standard
trust-region (right) with δ = 10−2 applied to problem P1 (figures (a), (b)), P2 (figures
(c), (d)), P3 (figures (e), (f)) and P4 (figures (g), (h)).

6 Conclusions

We have presented a trust-region method for nonlinear ill-posed systems, possibly
with noisy data, where the regularizing behaviour is guaranteed by a suitable choice
of the trust-region radius. The proposed approach shares the same local convergence
properties as the regularizing Levenberg–Marquardt method proposed by Hanke in
[12] but it ismore likely to satisfy the discrepancyprinciple irrespective of the closeness
of the initial guess to a solution of (1.1). The numerical experience presented confirms
the effectiveness of the trust-region radius adopted and the regularizing properties of
the resulting trust-regionmethod. It also enlights that the new approach is less sensitive
than the regularizing Levenberg–Marquardt method to the choice of the parameter q
involved in the regularizations (2.4) and (2.16). Finally, numerical experience confirms
that the solution of the noisy problems may be misinterpreted by the standard trust-
region method.

Acknowledgments Work partially supported by INdAM-GNCS, under the 2015 Project “Metodi di
regolarizzazione per problemi di ottimizzazione e applicazioni”.
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