Multilevel Optimization Methods for the Training of Artificial Neural Networks

E. Riccietti (LIP-ENS, Lyon)

Joint work with: H. Calandra (Total) S. Gratton (IRIT-INP, Toulouse) X. Vasseur (ISAE-SUPAERO, Toulouse)

CSE 2021

1 - 5 March 2021

Context

We consider large-scale nonlinear unconstrained optimization problems:

$$\min_{x} f(x), \quad f: \mathbb{R}^n \to \mathbb{R}$$

Context

We consider large-scale nonlinear unconstrained optimization problems:

$$\min_{x} f(x), \quad f: \mathbb{R}^n \to \mathbb{R}$$

Classical iterative second-order optimization methods:

$$f(x_k+s)\simeq T_2(x_k,s)$$

with $T_2(x_k, s)$ Taylor model of order 2:

$$T_2(x_k,s) = f(x_k) + \nabla f(x_k)^T s + \frac{1}{2} s^T \nabla^2 f(x_k) s$$

Context

We consider large-scale nonlinear unconstrained optimization problems:

$$\min_{x} f(x), \quad f: \mathbb{R}^n \to \mathbb{R}$$

Classical iterative second-order optimization methods:

$$f(x_k+s)\simeq T_2(x_k,s)$$

with $T_2(x_k, s)$ Taylor model of order 2:

$$T_2(x_k,s) = f(x_k) + \nabla f(x_k)^T s + \frac{1}{2}s^T \nabla^2 f(x_k)s$$

At each iteration we compute a step s_k to update the iterate:

$$\min_{s} m_k(x_k, s) = T_2(x_k, s) + r(\lambda_k), \qquad \lambda_k > 0$$

 $r(\lambda_k)$ regularization term, $x_{k+1} = x_k + s_k$.

Examples

• Trust region method (TR):

$$m_k(x_k,s) = T_2(x_k,s) + \frac{\lambda_k}{2} \|s\|^2$$

• Adaptive Cubic Regularization method (ARC):

$$m_k(x_k,s) = T_2(x_k,s) + \frac{\lambda_k}{3} \|s\|^3$$

Examples

• Trust region method (TR):

$$m_k(x_k,s) = T_2(x_k,s) + \frac{\lambda_k}{2} \|s\|^2$$

• Adaptive Cubic Regularization method (ARC):

$$m_k(x_k,s) = T_2(x_k,s) + \frac{\lambda_k}{3} \|s\|^3$$

• Extension to higher-order models (q > 2):

$$m_{q,k}(x_k,s) = T_q(x_k,s) + \frac{\lambda_k}{q+1} ||s||^{q+1},$$

- Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models, E. G. Birgin, J. L. Gardenghi, J. M. Martínez, S. A. Santos and Ph. L. Toint, 2017

Bottleneck: Subproblem solution

Solving

$$\min_{s} T_q(x_k,s) + \frac{\lambda_k}{q+1} \|s\|^{q+1}$$

represents greatest cost per iteration, which depends on the size of the problem.

↓ Multilevel methods!

We propose a family of scalable multilevel methods using high-order models.

Hierarchy of problems

•
$$\{f'(x')\}, f': \mathbb{R}^{n_l} \to \mathbb{R}$$

- $n_{l} < n_{l+1}$
- f^{l} is cheaper to optimize compared to f^{l+1}

Outline

- Part I: multilevel extension of iterative high-order optimization methods
 - global convergence
 - worst-case complexity
 - local convergence rate

Outline

- Part I: multilevel extension of iterative high-order optimization methods
 - global convergence
 - worst-case complexity
 - local convergence rate
- Part II: use of the multilevel methods for the training of artificial neural network
 - multilevel methods in the literature used just for problems with a geometrical structure

Part I

Multilevel extension of iterative high-order optimization methods

One level strategy

 x'_{ν}

At level $l = l_{max}$, let x'_k be the current approximation. We look for a correction s'_k to define the new approximation $x'_{k+1} = x'_k + s'_k$.

One level strategy

At level $l = l_{max}$, let x'_k be the current approximation. We look for a correction s'_k to define the new approximation $x'_{k+1} = x'_k + s'_k$.

$$x'_{k} \xrightarrow{T'_{q}} x'_{k+1} = x'_{k} + s'_{k}$$

- minimize regularized Taylor model, get s_k^l ,
- 2 choose lower level model μ^{l-1} (built from f^{l-1}):

$$x'_{k} \xrightarrow{T'_{q}} x'_{k+1} = x'_{k} + s'_{k}$$

- minimize regularized Taylor model, get s_k^l ,
- **2** choose lower level model μ^{l-1} (built from f^{l-1}):

- minimize regularized Taylor model, get s_k^l ,
- **2** choose lower level model μ^{l-1} (built from f^{l-1}):

$$x_k^l$$

- minimize regularized Taylor model, get s_k^l ,
- **2** choose lower level model μ^{l-1} (built from f^{l-1}):

$$\begin{array}{c}
x_{k}^{\prime} \\
R^{\prime} \\
\downarrow \\
R^{\prime} x_{k}^{\prime} \coloneqq x_{0,k}^{I-2} \\
\end{array}$$

- minimize regularized Taylor model, get s_k^l ,
- **2** choose lower level model μ^{l-1} (built from f^{l-1}):

- minimize regularized Taylor model, get s_k^l ,
- **2** choose lower level model μ^{l-1} (built from f^{l-1}):

$$\begin{array}{cccc}
x'_{k} & x'_{k+1} = x'_{k} + s'_{k} \\
R' \downarrow & & \uparrow s'_{k} = P'(x'_{*,k} - x'_{0,k}) \\
R' x'_{k} := x'_{0,k} & & & & \\
\end{array}$$

- minimize regularized Taylor model, get s_k^l ,
- 2 choose lower level model μ^{l-1} (built from f^{l-1}):

- The lower level model is cheaper to optimize.
- The procedure is recursive: more levels can be used.

Theoretical results

Multilevel q-th order method

For a multilevel method of order q, we have proved its:

- Global convergence: $\lim_{k\to\infty} \nabla f(x_k) = 0$
- Complexity: $\|\nabla f(x_k)\| \le \epsilon$ in at most $O(\epsilon^{-\frac{(q+1)}{q}})$ iterations
- Local convergence: order of convergence q, i.e., $\exists c > 0$ such that $\lim_{k \to \infty} \frac{\|x_{k+1} x_*\|}{\|x_k x_*\|^q} \le c \to \mathsf{NEW}!$

Numerical example: solution of PDEs (I)

$$\begin{cases} -\Delta u(z) + e^{u(z)} = g(z) & \text{in } \Omega \subset \mathbb{R}^d, \\ u(z) = 0 & \text{on } \partial\Omega, \end{cases}$$

The following nonlinear minimization problem is then solved:

$$\min_{u \in \mathbb{R}^{n^d}} \frac{1}{2} u^T A u + \| e^{u/2} \|^2 - g^T u,$$

which is equivalent to the system $Au + e^u = g$.

• Coarse approximations: coarser discretization of the problem (2^d times lower dimension).

4 levels methods of order q = 2, 3

			<i>n</i> = 1024		<i>n</i> = 4096
	<i>d</i> = 2, <i>q</i> = 2	AR2	MAR2	AR2	MAR2
\overline{u}_1	it _T /it _f	11/11	7/2	23/23	15/4
	save		2.2		4.1
\bar{u}_2	it _T /it _f	27/27	13/4	56/56	22/6
	save		3.9		6.1

4 levels methods of order q = 2, 3

			<i>n</i> = 1024		<i>n</i> = 4096
	<i>d</i> = 2, <i>q</i> = 2	AR2	MAR2	AR2	MAR2
\overline{u}_1	it _T /it _f	11/11	7/2	23/23	15/4
	save		2.2		4.1
\bar{u}_2	it _T /it _f	27/27	13/4	56/56	22/6
	save		3.9		6.1

			<i>n</i> = 256			
	d = 1, q = 3	AR3	MAR3	AR3	MAR3	
\overline{u}_1	it _T /it _f	7/7	9/2	18/18	15/2	
	save		2.5		4.3	
ū ₂	save it _T /it _f	23/23	2.5 14/1	34/34	4.3 20/5	

Part II

Use of the multilevel methods for the training of artificial neural networks

How to exploit multilevel method for training of ANNs?

 $R_1 \Downarrow P_1 \Uparrow$

 $R_2 \Downarrow P_2 \Uparrow$

Large-scale problem

How to build the hierarchy of problems? The variables to be optimized are the network's weights: NO evident geometrical structure

to exploit!

Algebraic multigrid (AMG)

Ruge and Stueben C/F splitting for Ax = b

- Two variables i, j are said to be *coupled* if $a_{i,j} \neq 0$.
- We say that a variable *i* is strongly coupled to another variable *j*, if −a_{i,j} ≥ ε max<sub>a_{i,k}<0|a_{i,k}| for a fixed 0 < ε < 1, usually ε = 0.25.
 </sub>

Prolongation-Restriction operators

$$P = [I; \Delta], R = P^T$$
, automatically built.

Algebraic multigrid (AMG)

Ruge and Stueben C/F splitting for Ax = b

- Two variables i, j are said to be *coupled* if $a_{i,j} \neq 0$.
- We say that a variable *i* is strongly coupled to another variable *j*, if −a_{i,j} ≥ ε max<sub>a_{i,k}<0|a_{i,k}| for a fixed 0 < ε < 1, usually ε = 0.25.
 </sub>

Prolongation-Restriction operators

$$P = [I; \Delta], R = P^T$$
, automatically built.

Which matrix to use?

Second order method:

$$T_2(x_k,s) = f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T \nabla^2 f(x_k) s$$

Numerical example: solution of PDEs (II)

1D case: $D(z, u(z)) = g(z), z \in (a, b)$ u(a) = A, u(b) = B

Numerical example: solution of PDEs (II)

1D case: $D(z, u(z)) = g(z), z \in (a, b)$ u(a) = A, u(b) = B

Training problem: find the network weights *w* by minimizing $\min_{w} \frac{1}{2T} \sum_{t=1}^{T} \left(\underbrace{D(z, \widehat{u}(w, z_t)) - g(z_t)}_{\text{Equation residual}} \right)^2 + \lambda_p \left(\underbrace{(\widehat{u}(w, a) - A)^2 + (\widehat{u}(w, b) - B)^2}_{\text{Boundary conditions}} \right)$

Least-squares problem \rightarrow multilevel Levenberg-Marquardt method

Solution of PDEs: Numerical example

Numerical results on difficult domains (n = 4096)

Left:
$$-\Delta u + \nu^2 u = g_1$$
, $u(x, y) = \sin(\nu(x + y)) \nu = 3$
Right: $-\Delta u + \nu u^2 = g_1$, $u(x, y) = (x^2 + y^2) + \sin(\nu(x^2 + y^2))$, $\nu = \frac{1}{2}$

	iter	RMSE	savings		iter	RMSE	savings		5	
			min	avg	max			min	avg	max
1 level	395	10^{-4}				1408	10^{-3}			
2 levels	110	10^{-4}	1.3	5.6	10.0	1301	10^{-3}	1.2	1.9	2.4

Conclusions and perspectives

- Theoretical contribution: We have presented a class of multilevel high-order methods for optimization and proved their global and local convergence and complexity.
- Practical contribution: We have got further insight on the methods proposing a AMG strategy to build coarse representations of the problem to use some methods in the family for the training of artificial neural networks.
- Perspective: Hessian-free method. Make it a competitive training method: the method needs to compute and store the Hessian matrix (for step computation and to build transfer operators): still too expensive for very large-scale problems.

Thank you for your attention!

- On a multilevel Levenberg-Marquardt method for the training of artificial neural networks and its application to the solution of partial differential equations, H. Calandra, S. Gratton, E. Riccietti X. Vasseur, SIOPT, 2021.
- On high-order multilevel optimization strategies, H. Calandra, S. Gratton, E. Riccietti X. Vasseur, OMS, 2020.
- *On iterative solution of the extended normal equations,* H. Calandra, S. Gratton, E. Riccietti X. Vasseur, SIMAX, 2020.