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Multilevel optimization methods

Context

We consider large-scale nonlinear unconstrained optimization
problems:

min
x

f (x), f ∶ Rn → R

Classical iterative second-order optimization methods:

f (xk + s) ≃ T2(xk , s)

with T2(xk , s) Taylor model of order 2:

T2(xk , s) = f (xk) + ∇f (xk)T s +
1

2
sT∇2f (xk)s

At each iteration we compute a step sk to update the iterate:

min
s

mk(xk , s) = T2(xk , s) + r(λk), λk > 0

r(λk) regularization term, xk+1 = xk + sk .
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Multilevel optimization methods

Examples

Trust region method (TR):

mk(xk , s) = T2(xk , s) +
λk
2

∥s∥2

Adaptive Cubic Regularization method (ARC):

mk(xk , s) = T2(xk , s) +
λk
3

∥s∥3

Extension to higher-order models (q > 2):

mq,k(xk , s) = Tq(xk , s) +
λk
q + 1

∥s∥q+1,

Worst-case evaluation complexity for unconstrained nonlinear
optimization using high-order regularized models, E. G. Birgin,
J. L. Gardenghi, J. M. Mart́ınez, S. A. Santos and Ph. L. Toint,
2017
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Multilevel optimization methods

Bottleneck: Subproblem solution

Solving

min
s

Tq(xk , s) +
λk
q + 1

∥s∥q+1

represents greatest cost per iteration, which depends on the size of
the problem.

⇓
Multilevel methods!

We propose a family of scalable multilevel methods using
high-order models.

Hierarchy of problems

{f l(x l)}, f l ∶ Rnl → R
nl < nl+1

f l is cheaper to optimize compared to f l+1
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Multilevel optimization methods

Outline

Part I: multilevel extension of iterative high-order optimization
methods

global convergence
worst-case complexity
local convergence rate

Part II: use of the multilevel methods for the training of
artificial neural network

multilevel methods in the literature used just for problems with
a geometrical structure
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Part I

Multilevel extension of iterative

high-order optimization methods



Multilevel optimization methods

One level strategy

At level l = lmax, let x lk be the current approximation. We look for
a correction s lk to define the new approximation x lk+1 = x lk + s lk .

x lk

x lk+1 = x lk + s lk

T l
q

7 / 21



Multilevel optimization methods

One level strategy

At level l = lmax, let x lk be the current approximation. We look for
a correction s lk to define the new approximation x lk+1 = x lk + s lk .

x lk x lk+1 = x lk + s lk

T l
q

7 / 21



Multilevel optimization methods

Multilevel strategy

Two choices:

1 minimize regularized Taylor model, get s lk ,

2 choose lower level model µl−1 (built from f l−1):

x lk x lk+1 = x lk + s lk

T l
q
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Multilevel optimization methods

Multilevel strategy

Two choices:

1 minimize regularized Taylor model, get s lk ,

2 choose lower level model µl−1 (built from f l−1):

x lk

R lx lk ∶= x l−10,k

R l

x l−1
∗,k

µl−1

x lk+1 = x lk + s lk

s lk = P l(x l−1
∗,k − x l−10,k )
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Multilevel optimization methods

Multilevel strategy

Two choices:

1 minimize regularized Taylor model, get s lk ,

2 choose lower level model µl−1 (built from f l−1):

x lk

R lx lk ∶= x l−10,k

R l

x l−1
∗,k

µl−1

x lk+1 = x lk + s lk

s lk = P l(x l−1
∗,k − x l−10,k )

The lower level model is cheaper to optimize.

The procedure is recursive: more levels can be used.
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Multilevel optimization methods

Theoretical results

Multilevel q-th order method

For a multilevel method of order q, we have proved its:

Global convergence: limk→∞∇f (xk) = 0

Complexity: ∥∇f (xk)∥ ≤ ε in at most O(ε−
(q+1)

q ) iterations

Local convergence: order of convergence q, i.e., ∃c > 0 such

that limk→∞
∥xk+1−x∗∥
∥xk−x∗∥q

≤ c → NEW!
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Multilevel optimization methods

Numerical example: solution of PDEs (I)

⎧⎪⎪⎨⎪⎪⎩

−∆u(z) + eu(z) = g(z) in Ω ⊂ Rd ,

u(z) = 0 on ∂Ω,

The following nonlinear minimization problem is then solved:

min
u∈Rnd

1

2
uTAu + ∥eu/2∥2 − gTu,

which is equivalent to the system Au + eu = g .

Coarse approximations: coarser discretization of the problem
(2d times lower dimension).

12 / 21



Multilevel optimization methods

4 levels methods of order q = 2,3

n = 1024 n = 4096
d = 2, q = 2 AR2 MAR2 AR2 MAR2

ū1 itT /itf 11/11 7/2 23/23 15/4
save 2.2 4.1

ū2 itT /itf 27/27 13/4 56/56 22/6
save 3.9 6.1

n = 256 n = 512
d = 1, q = 3 AR3 MAR3 AR3 MAR3

ū1 itT /itf 7/7 9/2 18/18 15/2
save 2.5 4.3

ū2 itT /itf 23/23 14/1 34/34 20/5
save 4.1 4.4
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Part II

Use of the multilevel methods for the

training of artificial neural networks



Multilevel optimization methods

How to exploit multilevel method for training of ANNs?

Iz → σ

b3

σ

b4

σ

b5

σ

b2

σ

b1

+
dw2

w 1

w3

w
4

w
5

v2

v
1

v3

v4

v 5

R1 ⇓ P1 ⇑

Iz → σ

b3

σ

b4

σ

b1

+
d

w 1

w3

w
4

v
1

v3

v4

R2 ⇓ P2 ⇑

Iz → σ

b3

σ

b1

+
d

w3

w 1

v3

v
1

Large-scale problem

How to build the hierarchy of
problems? The variables to be
optimized are the network’s
weights:
NO evident geometrical structure
to exploit!
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Multilevel optimization methods

Algebraic multigrid (AMG)

Ruge and Stueben C/F splitting for Ax = b

Two variables i , j are said to be coupled if ai ,j ≠ 0.

We say that a variable i is strongly coupled to another
variable j , if −ai ,j ≥ εmaxai,k<0∣ai ,k ∣ for a fixed 0 < ε < 1,
usually ε = 0.25.

Prolongation-Restriction operators

P = [I ; ∆], R = PT , automatically built.

Which matrix to use?

Second order method:

T2(xk , s) = f (xk) + sT∇f (xk) +
1

2
sT∇2f (xk)s
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Multilevel optimization methods

Numerical example: solution of PDEs (II)

1D case: D(z ,u(z)) = g(z), z ∈ (a,b) u(a) = A, u(b) = B

Iz → σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

+ → û(w , z) ∼ u(z)

w vector of
weights and bi-
ases

Input
layer

Hidden
layer

Hidden
layer

Output
layer

Training problem: find the network weights w by minimizing

min
w

1

2T

T

∑
t=1

(D(z , û(w , zt)) − g(zt)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Equation residual

)2 + λp( (û(w , a) −A)2 + (û(w ,b) −B)2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Boundary conditions

)

Least-squares problem → multilevel Levenberg-Marquardt method
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Multilevel optimization methods

Solution of PDEs: Numerical example

Poisson’s equation
(2D, n = 4096)

Method ADAM 1 level 2 levels

Iterations 10000 200 200

0 500 1000 1500 2000
Temps (s)

10 3

10 2

10 1

100

101

Er
re

ur

ADAM
LM
Multilevel LM
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Multilevel optimization methods

Numerical results on difficult domains (n = 4096)

Left: −∆u + ν2u = g1, u(x , y) = sin(ν(x + y)) ν = 3
Right: −∆u + νu2 = g1, u(x , y) = (x2 + y2) + sin(ν(x2 + y2)), ν = 1

2

iter RMSE savings iter RMSE savings
min avg max min avg max

1 level 395 10−4 1408 10−3

2 levels 110 10−4 1.3 5.6 10.0 1301 10−3 1.2 1.9 2.4
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Multilevel optimization methods

Conclusions and perspectives

Theoretical contribution: We have presented a class of
multilevel high-order methods for optimization and proved
their global and local convergence and complexity.

Practical contribution: We have got further insight on the
methods proposing a AMG strategy to build coarse
representations of the problem to use some methods in the
family for the training of artificial neural networks.

Perspective: Hessian-free method. Make it a competitive
training method: the method needs to compute and store the
Hessian matrix (for step computation and to build transfer
operators): still too expensive for very large-scale problems.
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Multilevel optimization methods

Thank you for your attention!

On a multilevel Levenberg-Marquardt method for the training of
artificial neural networks and its application to the solution of partial
differential equations, H. Calandra, S. Gratton, E. Riccietti X.
Vasseur, SIOPT, 2021.

On high-order multilevel optimization strategies, H. Calandra, S.
Gratton, E. Riccietti X. Vasseur, OMS, 2020.

On iterative solution of the extended normal equations, H. Calandra,
S. Gratton, E. Riccietti X. Vasseur, SIMAX, 2020.
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