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Multilevel optimization methods

Context

We consider large-scale nonlinear unconstrained optimization
problems:
minf(x), f:R">R
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Multilevel optimization methods

Context

We consider large-scale nonlinear unconstrained optimization
problems:

mXin f(x), f:R">R
Classical iterative second-order optimization methods:
f(xx+5s) =~ Ta(xk,s)
with To(xk,s) Taylor model of order 2:
To(xi,s) = FOx) + TF () s + %sTv%(Xk)s
At each iteration we compute a step s, to update the iterate:
msin my(xk,s) = Ta(xk,s) + r(Xk), Ak >0

r(Ax) regularization term, Xy, 1 = Xk + Sk-

2/21



Multilevel optimization methods

EIES

@ Trust region method (TR):
A
M (%, 5) = To (i) + 5 I
e Adaptive Cubic Regularization method (ARC):

A
mk(Xk,S) = T2(Xk,5) + %“5”3
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Multilevel optimization methods

EIES

@ Trust region method (TR):
M (%, 5) = To (i) + 5 I
e Adaptive Cubic Regularization method (ARC):

A
mk(Xk,S) = T2(Xk,5) + %“5”3

e Extension to higher-order models (g > 2):

Ak
mq,k(kas) = Tq(Xkas) + q+ 1||S|

|q+1
s

@ Worst-case evaluation complexity for unconstrained nonlinear
optimization using high-order regularized models, E. G. Birgin,
J. L. Gardenghi, J. M. Martinez, S. A. Santos and Ph. L. Toint,

2017
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Multilevel optimization methods

Bottleneck: Subproblem solution

Solving

. Ak 1
min _’_q(Xk,S)JFmHSHq+

represents greatest cost per iteration, which depends on the size of
the problem.
U
Multilevel methods!
We propose a family of scalable multilevel methods using
high-order models.

Hierarchy of problems

o {fI(x"}, FI:R™ =R
@ ny <N

o f! is cheaper to optimize compared to f/*1
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Multilevel optimization methods

Outline

@ Part I: multilevel extension of iterative high-order optimization
methods
o global convergence
e worst-case complexity
e local convergence rate
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Multilevel optimization methods

Outline

@ Part I: multilevel extension of iterative high-order optimization
methods
o global convergence
e worst-case complexity
e local convergence rate

@ Part Il: use of the multilevel methods for the training of
artificial neural network

e multilevel methods in the literature used just for problems with
a geometrical structure
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Part |

Multilevel extension of iterative

high-order optimization methods




Multilevel optimization methods

One level strategy

At level | = [hax, let XL be the current approximation. We look for

a correction s,/( to define the new approximation x,’<+1 = x,’< + s,’<.

/
X



Multilevel optimization methods

One level strategy

At level | = [hax, let XL be the current approximation. We look for

a correction s,/( to define the new approximation x,’<+1 = x,’< + s,’<.

I
XI Tq XI _XI +5I
k kel = X+ Sk
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Multilevel optimization methods

Multilevel strategy

Two choices:
@ minimize regularized Taylor model, get s;,
@ choose lower level model p/~! (built from £/71):
/
Tq

/ Il
Xk > X1 T Xt Sk
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Multilevel optimization methods

Multilevel strategy

Two choices:
© minimize regularized Taylor model, get s,’<,

@ choose lower level model p/~! (built from £/71):

Il
Xiy1 = Xp T Sk

X

Sk_ ’D/(X*k _Xo 1)

-1 H I-

_ 1
=Xok %k
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Multilevel optimization methods

Multilevel strategy

Two choices:
@ minimize regularized Taylor model, get s,l(,
@ choose lower level model p/~* (built from £/~1):

/ / / /

Xk Xir1 = X TS
I _plfol-1 -1
R s, =P (X*.,k _Xo,k)
-1
-1 H -1

I .
Rixj=xg )0 ——————— Xk

@ The lower level model is cheaper to optimize.

@ The procedure is recursive: more levels can be used.
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Multilevel optimization methods

Theoretical results

Multilevel g-th order method

For a multilevel method of order g, we have proved its:

@ Global convergence: limg_o VFf(xx) =0

_(g+) .
o Complexity: |Vf(xk)|| <€ in at most O(e ¢ ) iterations

@ Local convergence: order of convergence q, i.e., 3¢ > 0 such

that limy e P12l < ¢ > NEW!
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Multilevel optimization methods

Numerical example: solution of PDEs (1)

~Au(z)+e"@ =g(z) inQcRY,
u(z)=0 on 012,

The following nonlinear minimization problem is then solved:

uf2 ”2 _ gT

1
min —u’ Au + e u,
d 2

ueR"

which is equivalent to the system Au+e" =g.

o Coarse approximations: coarser discretization of the problem
(29 times lower dimension).
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Multilevel optimization methods

4 levels methods of order g = 2,3

n=1024 n = 4096
d-2,q-2| AR2 MAR2 | AR2 MAR2
o | itr/ite | 11/11  7/2 | 23/23  15/4

save 2.2 4.1
i itt /it 27/27 13/4 56/56 22/6
save 3.9 6.1
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Multilevel optimization methods

4 levels methods of order g = 2,3

n=1024 n = 4096
d=2,g=2| AR2 MAR?2 AR2 MAR?2
o | itr/itr | 11/11  7/2 | 23/23  15/4
save 2.2 4.1
> itt /it 27/27 13/4 56/56 22/6
save 3.9 6.1
n=256 n=512
d=1,g=3| AR3 MAR3 AR3 MAR3
i itr /it 7/7 9/2 18/18 15/2
save 2.5 4.3
o | itr/itr | 23/23  14/1 || 34/34  20/5
save 4.1 4.4
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Part Il

Use of the multilevel methods for the

training of artificial neural networks




Multilevel optimization methods

How to exploit multilevel method for training of ANNs?

Large-scale problem

How to build the hierarchy of
problems? The variables to be
optimized are the network's
weights:

NO evident geometrical structure
to exploit!

- 4
by d
.- &@_. 15/21



Multilevel optimization methods

Algebraic multigrid (AMG)

Ruge and Stueben C/F splitting for Ax = b

@ Two variables i, are said to be coupled if a;; + 0.

@ We say that a variable i is strongly coupled to another
variable j, if —a;; > emaxg, , <olaj k| for a fixed 0 <e <1,
usually € = 0.25.

v

Prolongation-Restriction operators

P=[I;A], R=PT, automatically built.

v
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Algebraic multigrid (AMG)

Ruge and Stueben C/F splitting for Ax = b
@ Two variables i, are said to be coupled if a;; + 0.

@ We say that a variable i is strongly coupled to another
variable j, if —a;; > emaxg, , <olaj k| for a fixed 0 <e <1,
usually € = 0.25.

Prolongation-Restriction operators
P=[I;A], R=PT, automatically built.

Which matrix to use?

Second order method:

1
To(xk,s) = F(x) +s' VF(x) + 5sTv2f(xk)s
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Multilevel optimization methods

Numerical example: solution of PDEs (I1)

1D case: D(z,u(z)) =g(z), z€(a,b) wu(a)=A, u(b)=8B

Input Hidden Hidden Output
layer layer layer layer

w vector of

weights and bi-
\\ // ases
> ®\
\( ,
LS
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Numerical example: solution of PDEs (I1)

1D case: D(z,u(z)) =g(z), z€(a,b) wu(a)=A, u(b)=8B

Input Hidden Hidden Output
layer layer layer layer

w vector of

weights and bi-
\\ // ases
X% ®\ —
\( ,
LS

Training problem: find the network weights w by minimizing
T

z—

mMi/n 1 > ( D(z,u(w,z)) - g(z) )2 + )\p( (T(w,a) — A)? + (T(w, b) -

2T =

B)?)

Equation residual Boundary conditions

Least-squares problem — multilevel Levenberg-Marquardt method
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Multilevel optimization methods

Solution of PDEs: Numerical example

Poisson’s equation Method ‘ ADAM 1 level 2 levels
(2D, n =4096) Iterations ‘ 10000 200 200
104 —— ADAM

— M
—— Multilevel LM
10° 4
5
g 10-1
w
1072
1073 4
6 560 10’00 15’00 20’00
Temps (s)
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Multilevel optimization methods

Numerical results on difficult domains (n = 4096)

Left: —Au+12u=g1, u(x,y) =sin(v(x+y)) v=3
Right: —Au+vu? =gy, u(x,y) = (x*> +y?) +sin(v(x? + y?)), v = %

0rs
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iter RMSE savings iter  RMSE savings
min avg max min avg max
1level [ 395 107* 1408 1073
2 levels | 110 1074 1.3 56 1001301 1073 12 19 24
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Multilevel optimization methods

Conclusions and perspectives

@ Theoretical contribution: We have presented a class of
multilevel high-order methods for optimization and proved
their global and local convergence and complexity.

@ Practical contribution: We have got further insight on the
methods proposing a AMG strategy to build coarse
representations of the problem to use some methods in the
family for the training of artificial neural networks.

@ Perspective: Hessian-free method. Make it a competitive
training method: the method needs to compute and store the
Hessian matrix (for step computation and to build transfer
operators): still too expensive for very large-scale problems.
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Multilevel optimization methods

Thank you for your attention!

@ On a multilevel Levenberg-Marquardt method for the training of
artificial neural networks and its application to the solution of partial
differential equations, H. Calandra, S. Gratton, E. Riccietti X.
Vasseur, SIOPT, 2021.

@ on high-order multilevel optimization strategies, H. Calandra, S.
Gratton, E. Riccietti X. Vasseur, OMS, 2020.

8 On iterative solution of the extended normal equations, H. Calandra,
S. Gratton, E. Riccietti X. Vasseur, SIMAX, 2020.
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