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Abstract In this paper, we address the stable numerical solution of ill-posed nonlinear least-
squares problems with small residual. We propose an elliptical trust-region reformulation of a
Levenberg-Marquardt procedure. Thanks to an appropriate choice of the trust-region radius, the
proposed procedure guarantees an automatic choice of the free regularization parameters that,
together with a suitable stopping criterion, ensures regularizing properties to the method. Specifi-
cally, the proposed procedure generates a sequence that even in case of noisy data has the potential
to approach a solution of the unperturbed problem. The case of constrained problems is consid-
ered, too. The effectiveness of the procedure is shown on several examples of ill-posed least-squares
problems.

Keywords Ill-posed Nonlinear Least-Squares Problems · Regularization · Nonlinear Stepsize
Control · Levenberg-Marquardt Methods · Trust-Region Methods

1 Introduction

In this paper, we consider Levenberg-Marquardt methods [1,2] for the stable solution of nonlin-
ear ill-posed least-squares problems in Hilbert spaces with noisy data. These methods are also
known in this context as non-stationary iterated Tikhonov procedures [3,4]. They depend on the
choice of a free regularization parameter λk and of a regularizing operator Mk. The regularization
parameter’s choice is crucial, it is difficult to make, and a bad choice could lead to poor results.
Then, it is desirable to obtain a parameter-free method, i.e. a method in which λk is automat-
ically set. Many strategies have been proposed in the literature, cf. [3,5–8]. All these methods
anyway consider nonlinear operator equations, i.e. least-squares problems in which it is assumed
that it exists a solution x† that attains zero residual. The case in which such a solution does not
exist, and the residual at the solution is strictly positive, is considered. These problems arise in
many applications. Usually indeed, jointly to observation errors also modelling errors are present,
so that it is not realistic to assume that the data are attainable, and one must admit the case
y /∈ R(F ) [9,10], where R(F ) denotes the range of F . This is the case when a mathematical model
approximating a true distribution is fit to given data or in parameter estimation, experimental
design or imaging problems [9–16]. These problems are indeed usually formulated as least-squares
problems. A possibility is to consider the modelling errors as part of the noise in the data. The
same algorithms as for zero-residual problems can be used, with a proper a-posteriori parameter
choice, based on an estimate on the noise level that comprises both noise in the data and modelling
errors [17]. However, it is generally difficult to estimate this last contribution. Then, in this paper
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an ad-hoc method for ill-posed least-squares problems with nonzero residual is proposed, that
does not need the estimation of modelling errors in order to choose the regularization parameter.
Regularization strategies for nonzero residual ill-posed problems arising from specific applications
have been considered in [12–16] . In these papers, the focus is on the reliable and efficient solution
of the specific problem and a theoretical analysis of the regularizing properties of the methods
used is not performed. The authors are aware only of [10], where convergence rates of Tikhonov
method are considered.

Our target is then to design an implementable approach, that guarantees regularizing properties
for the solution of such problems. Specifically, in case of exact data, it is desirable that the sequence
of gradients of the objective function goes to zero and that the sequence of generated solution
approximations converges to a solution of the unperturbed problem, even in case of noninvertible
Fréchet derivative. In case of noisy data, if an initial guess close to the true solution is given, the
method should have the potential to approach a solution of the unperturbed problem.

These properties are ensured by the Levenberg-Marquardt approaches in [5,6] for zero residual
problems, thanks to two key ingredients:

1. the employment of a proper stopping criterion to avoid semiconvergence phenomenon, i.e. the
method must be stopped before convergence is reached, to be sure that the generated sequence
is not approaching a solution of the noisy problem,

2. a mechanism to control the step length, that cannot be too large.

To this aim, in this manuscript, the conditions employed in [3,5,6,8] are extended to the
nonzero residual case and provide an adaptive choice of the regularization parameter λk and of
the operator Mk in order to obtain a regularizing method for this class of problems. A regularized
Gauss-Newton model is employed, as the aim is to handle small residual or mildly nonlinear
problems. The obtained step pk turns out to be an elliptical trust-region step, cf. [18, §4.5],
whenever the Fréchet derivative is invertible. Also problems with convex constraints are considered,
and a suitable extension of the procedure is devised, in order to solve them.

The local properties of the obtained method are investigated. This paper represents also a
contribution in the analysis of iterated Tikhonov regularization methods for nonlinear least-squares
problems. To the authors’ knowledge indeed, analysis of such methods with regularizing operators
different from the identity has never been considered. The authors are aware just of [4,19] in
which an analysis of iterated Tikhonov regularization with a fairly general regularization matrix
is proposed for linear least-squares in a finite dimensional setting.

The paper is organized as follows. In Section 2, we give conditions that guarantee monotonic
decrease of the error between the solution of the unperturbed problem and the current iterate,
even when noisy data are considered. Satisfying these conditions motivates the choice of the free
parameters of the method. In Section 3, we describe the choice of the operator Mk and we present
the elliptical trust-region reformulation of the method, that implicitly provides an automatic
choice of the regularizing parameters λk. We show that these two choices ensure the desired
regularization properties. In Section 4, a convergence analysis of the proposed method is reported,
focusing on the noise-free case in Section 4.1 and on noisy case in Section 4.2. In Section 5 the
proposed approach is adapted to constrained problems. In Section 6 implementation details are
given and the results of the numerical experimentation performed on examples of discrete ill-posed
nonlinear least-squares problems ar shown. Numerical evidences of the method’s effectiveness and
of its regularizing properties are reported. It is worth mentioning that, to implement the proposed
procedure, it is necessary to compute the action of the square root of J(xk)TJ(xk) on a vector,
where xk is the current iterate and J is the discrete Jacobian. In procedure designed in this paper
is tailored for medium scale problems. Therefore, in the numerical results provided, the square
root of the matrix is directly computed by the singular value decomposition of J , that is then
used also to solve the linear systems to compute the step. In case of large scale problems this is
not feasible, and the method should rather rely on suitable iterative approaches that approximate
the action of J(xk)TJ(xk) on a vector, such as the Lanczos process [20, §13.2].
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2 Preliminaries

Let F : D(F) ⊆ X → Y be a nonlinear map between Hilbert spaces X ,Y, with inner products
〈·, ·〉 and norms ‖ · ‖. The domain of definition of F will be denoted with D(F ) and least squares
problems

min
x
f(x) =

1

2
‖F (x)− y‖2, (1)

that are ill-posed, in the sense that the solutions do not depend continuously on the data, will be
considered. It is assumed that a solution x† for (1) exists. If for all the solutions of (1) it holds
‖F (x)− y‖ > 0, then we say that the problem has nonzero residual. It is assumed throughout the
paper that D(F ) is infinite dimensional and F has compact Fréchet derivative F ′. The adjoint
operator will be denoted with F ′∗. It is assumed to have only noisy data yδ at disposal, such that,
given δ ≥ 0:

‖y − yδ‖ ≤ δ, (2)

so that the following noisy problem has to be dealt with:

min
x
fδ(x) =

1

2
‖F (x)− yδ‖2. (3)

A Levenberg-Marquardt method is considered. Throughout the paper, the iterates are denoted
by xδk, if the data are exact xk may be used in alternative to xδk. By xδ0 = x0 an initial guess is
denoted, which may incorporate a-priori knowledge of an exact solution. Le also be defined

Bk = F ′(xδk)∗F ′(xδk), f ′k = F ′(xδk)∗(F (xδk)− yδ), (4)

and let B†k be the Moore-Penrose pseudoinverse of Bk, and with R(Bk) its range. The open ball
of center x and radius ρ will be denoted as Bρ(x). At each iteration, given a positive parameter λk
and the current solution approximation xδk, the step is computed solving the following problem:

min
p

1

2
‖F (xδk)− yδ + F ′(xδk)p‖2 +

λk
2
‖p‖2.

In order to improve the quality of the computed solution approximation, a symmetric and positive
definite regularizing operator Mk : X → X can be introduced [19], so that the minimization
problem becomes:

min
p

1

2
‖F (xδk)− yδ + F ′(xδk)p‖2 +

λk
2
‖M

1
2

k p‖
2. (5)

A sequence {xδk} is generated, forming at each iteration the new iterate using the computed step
pk: xδk+1 = xδk + pk.

In order to properly choose parameter λk and operator Mk in (5), it has to be taken into
account that non-stationary iterated Tikhonov procedures for zero-residual problems [3,6] provide
regularizing properties thanks to the fact that the method achieves monotone decrease of the
norm of the error ek = x† − xδk between the true solution and the current iterate, even when
noisy problems are solved. It will be proved in Lemma 2.1 that this property is joined by the
Levenberg-Marquardt procedure (5) applied to nonzero residual problems, whenever the following
two conditions hold:

B†kpk = − 1

λk
mk(pk), (6)

‖mk(ek)‖ ≤ 1

θk
‖mk(pk)‖, θk > 1, (7)

where, using notation (4),

mk(p) =F ′(xδk)∗F ′(xδk)p+ F ′(xδk)∗(F (xδk)− yδ)
=F ′(xδk)∗F ′(xδk)p+ f ′δ(x

δ
k) = Bkp+ f ′k. (8)

Note that in case fδ is twice continuously differentiable, for its second derivative it holds:

f ′′δ (x) = F ′(x)∗F ′(x) + S(x) = F ′(x)∗F ′(x) + F ′′(x)∗(F (x)− yδ). (9)
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Then the model mk(p) corresponds to the first order Taylor expansion of f ′δ in xδk, omitting the
second order term S(xδk) in f ′′δ (xδk). It is well known that if ‖S(x†)‖ is too large, the Gauss-
Newton method may not be locally convergent, [21, §10.2]. ‖S(x†)‖ is a combined measure of the
nonlinearity and residual size of the problem. This is the reason why the method can handle only
small residual or mildly nonlinear problems. Note that mk(p) is the gradient of

1

2
‖F (xδk)− yδ + F ′(xδk)p‖2,

i.e. of the approximation of the function fδ around the current iterate xδk adopted in (5).

Lemma 2.1 Assume that x† is a solution of (1). Let ek = x† − xδk and mk(p) defined in (8).
Assume that (6) is satisfied and that there exists θk > 1 such that condition (7) holds. Let xδk+1 =

xδk + pk with pk = p(λk) solution of (5). If pk ∈ R(Bk), it holds

‖xδk+1 − x†‖2 − ‖xδk − x†‖2 ≤
2

λk

(
1

θk
− 1

)
‖mk(pk)‖2. (10)

Proof Note that,

‖xδk+1 − x†‖2 − ‖xδk − x†‖2 =2〈xδk+1 − xδk, xδk − x†〉+ ‖xδk+1 − xδk‖2

=2〈pk,−ek〉+ ‖pk‖2.

The fact that pk ∈ R(Bk) yields:

〈B†kpk, Bkpk〉 = ‖pk‖2, 〈B†kpk, Bkek〉 = 〈pk, ek〉. (11)

From (11) it follows:

2〈pk,−ek〉 =2〈B†kpk,−Bkek〉

=− 2〈B†kpk, f
′
k +Bkek〉+ 2〈B†kpk, f

′
k +Bkpk〉 − 2〈B†kpk, Bkpk〉

=− 2〈B†kpk, f
′
k +Bkek〉+ 2〈B†kpk, f

′
k +Bkpk〉 − 2‖pk‖2.

Then, taking into account also (6) and (8) it holds:

‖ek+1‖2 − ‖ek‖2 =
2

λk
〈mk(pk),mk(ek)〉 − 2

λk
〈mk(pk),mk(pk)〉 − ‖pk‖2

≤ 2

λk
‖mk(pk)‖‖mk(ek)‖ − 2

λk
‖mk(pk)‖2 − ‖pk‖2.

From (7) it follows

‖xδk+1 − x†‖2 − ‖xδk − x†‖2 ≤
2

λk

1

θk
‖mk(pk)‖2 − 2

λk
‖mk(pk)‖2 − ‖pk‖2

≤ 2

λk

(
1

θk
− 1

)
‖mk(pk)‖2,

which yields the thesis. ut

Then, in order to obtain the desired monotone decrease of the error, it needs to be ensured
pk ∈ R(B), and (6) and (7) to hold.
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3 The Method

Motivated by the previous considerations, a non-stationary iterated Tikhonov procedure for least-
squares problems employing a step satisfying both conditions (6) and (7) is proposed here.

A step pk is solution of (5), if and only if it satisfies the following linear operator equation:

(F ′(xδk)∗F ′(xδk) + λkMk)p = −F ′(xδk)∗(F (xδk)− yδ). (12)

Relationship (6) can be obtained with a suitable choice of operator Mk. From (8) and (12)

it follows that − 1
λk
mk(pk) = Mkpk. This suggests us to choose Mk = B†k to have condition (6)

verified.
To get (7), a reformulation of problem (5) is adopted, which has the advantage of providing

us an automatic way for setting parameter λk ensuring (7) to hold. Assuming that F ′(xδk) is
invertible, given the trust-region radius ∆k > 0 and the current iterate xδk, at generic iteration k
the following elliptic trust-region subproblem is solved, [18, ch. 4], [22, §7.4]:

min
p

1

2
‖F (xδk)− yδ + F ′(xδk)p‖2,

s.t. ‖B−1/2
k p‖ ≤ ∆k,

(13)

which has a unique solution, [23, Theorems 9.2.7, 10.2.15, 10.3.4]. The choice of the scaling operator
B−1
k is driven by the considerations stated above. KKT conditions for problem (13) are given by

(F ′(xδk)∗F ′(xδk) + λB−1
k p(λ) = −F ′(xδk)∗(F (xδk)− yδ), (14a)

λ(‖B−1/2
k p(λ)‖ −∆k) = 0, (14b)

λ ≥ 0, (14c)

‖B−1/2
k p(λ)‖ ≤ ∆k. (14d)

Then, given the pair (λk, p(λk)) ∈ R+ × X solution of (14), if λk > 0 the step pk = p(λk) solves
(5) with Mk = B−1

k .
With this reformulation of the problem, instead of choosing λk in (5), the trust-region radius

∆k has to be properly selected in order to obtain a pair (λk, p(λk)) with λk > 0 and p(λk) satisfying
(7). It will be shown in Lemma 3.4 how to choose ∆k to let these two conditions hold.

Letting z = B
−1/2
k p, problem (13) reduces to

min
z

1

2
〈z,B2

kz〉+ 〈B1/2
k f ′k, z〉+ fδ(x

δ
k),

s.t. ‖z‖ ≤ ∆k.
(15)

KKT conditions for problem (15) are given by

(B2
k + λI)z(λ) = −B1/2

k f ′k, (16a)

λ(‖z(λ)‖ −∆k) = 0, (16b)

λ ≥ 0, (16c)

‖z(λ)‖ ≤ ∆k. (16d)

Let (λk, z(λk)) ∈ R+×X be the solution of (16), with z(λk) the minimum norm solution of (16a).
Let

p(λ) = B
1/2
k z(λ), (17)

and pk = p(λk). Then, the pair (λk, pk) is a KKT point for (13). The solution of (13) can be then
found by solving (15), and through relation (17).

It will be proved that, in the proposed approach, λk is ensured to be strictly positive. Then,
the numerical computation of (λk, pk) after discretization requires the solution of a sequence of
linear systems that are regularized by strictly positive λ values. Therefore, even if the discretized
counterpart of the operator Bk is squared in (16a), the conditioning of the involved linear system
is not deteriorated. Indeed, in the applications considered here, the ill-conditioning of the dis-
crete Jacobian derives from the smallest singular values close to zero and the linear systems are
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regularized by strictly positive λk. It is assumed to have at disposal the singular value decompo-
sition of the discrete Jacobian, in order to compute the square root of the matrix arising from the
discretization of operator Bk.

In case F ′(xδk) is not invertible problem (13) is not well defined. However, the pair (λk, z(λk)),
solution of the KKT (16), can still be computed and the step can be defined as

pk = p(λk) = B
1/2
k z(λk). (18)

In this case, step pk satisfies (6), as it is shown in the next Lemma, but we cannot claim that it
solves problem (13). In every case, p ∈ R(Bk).

In the following lemma, the singular value expansion of F ′(xδk) will be used, that will be
denoted as (σn;un, vn), n ∈ N, where {un}n∈N and {vn}n∈N are a complete orthonormal system
of eigenvectors for F ′(xδk)∗F ′(xδk) and F ′(xδk)F ′(xδk)∗ respectively, and σn > 0 are written down
in decreasing order with multiplicity, with 0 being the only accumulating point for the sequence
{σn}n∈N when dimR(F ′(xδk)) =∞.

Lemma 3.1 Suppose ‖f ′k‖ 6= 0. Let z(λ) be the minimum norm solution of (16a) with λ ≥ 0 and
p(λ) given in (17). Then,

B†kp(λ) = − 1

λ
mk(p(λ)). (19)

Proof From the singular value expansion of F ′(xδk) it follows

F ′(xδk)h =

∞∑
n=1

σn〈h, un〉vn, h ∈ X , (20)

F ′(xδk)∗h =

∞∑
n=1

σn〈h, vn〉un, h ∈ Y, (21)

Bkh =

∞∑
n=1

σ2
n〈h, un〉un, h ∈ X . (22)

From these relations and (16a) it follows

z(λ) = −
∞∑
n=1

σ2
n

σ4
n + λ

〈F (xδk)− yδ, vn〉un (23)

and (17) yields

p(λ) = −
∞∑
n=1

σ3
n

σ4
n + λ

〈F (xδk)− yδ, vn〉un. (24)

As F ′(xδk) is compact, for h ∈ X the Moore-Penrose pseudoinverse B†k of Bk can be defined as [24,
§2.1]

B†kh =

∞∑
n=1

σ−2
n 〈h, un〉un, h ∈ D(B†k), (25)

D(B†k) = {h ∈ X |
∞∑
n=1

σ−4
n |〈h, un〉|2 <∞}.

From (24) and (25) it follows

B†kp(λ) =

∞∑
n=1

σ−2
n 〈p(λ), un〉un = −

∞∑
n=1

σn
σ4
n + λ

〈F (xδk)− yδ, vn〉un. (26)
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Relations (21), (22) and (24) yield

mk(p(λ)) = Bkp(λ) + f ′k (27a)

=

∞∑
n=1

σ2
n〈p(λ), un〉un +

∞∑
n=1

σn〈F (xδk)− yδ, vn〉un (27b)

=−
∞∑
n=1

σ5
n

σ4
n + λ

〈F (xδk)− yδ, vn〉un +

∞∑
n=1

σn〈F (xδk)− yδ, vn〉un (27c)

=

∞∑
n=1

λσn
σ4
n + λ

〈F (xδk)− yδ, vn〉un. (27d)

Comparing (26) and (27) the thesis is obtained. ut

3.1 The q-Condition and the Choice of the Trust-Region Radius

As already discussed, it is crucial to use a step pk satisfying condition (7). It will be shown in the
next section that this can be guaranteed provided that the step pk = p(λk) satisfies the following
condition, which will be referred to as the q-condition:

‖m(p(λk))‖ ≥ q‖f ′k‖, (28)

where q ∈ (0, 1) is a given constant. In this section it will be shown how (28) can be enforced by
a suitable trust-region radius choice.

Condition (28) controls the value of the norm of the model, that has to be greater than a fixed
fraction of the norm of the gradient. It also provides a criterion to choose the free parameter λk in
(5). Condition (28) is actually a constraint on the length of the step. Its effect on the step-length
is illustrated in Figure 1, where ‖mk(p(λ))‖ (top) and ‖p(λ)‖ (bottom) are plotted, varying λ, for
a finite dimensional test case. By imposing (28), the regularization parameter λ is forced to be
greater then the value λqk satisfying

‖m(p(λqk))‖ = q‖f ′k‖, (29)

avoiding too small values that correspond to large steps, as it is shown at the bottom of Figure 1.
Lemmas 4.1 and 4.3 will show that this control on the step length allows to establish relationship

λ
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Fig. 1 Effect of q-condition on the step length.
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(7) between the model evaluated in the step and that evaluated in the error.

It will be proved that a step pk of the form (18) satisfying (28) exists and that an appropriate
trust-region radius choice provides such a step. To this end the following preliminary results is
needed.

Lemma 3.2 Suppose ‖f ′k‖ 6= 0. Let z(λ) be the minimum norm solution of (16a) with λ ≥ 0 and
p(λ) given in (17). Then, it follows

‖z(λ)‖2 =

∞∑
n=1

(
σ2
n

σ4
n + λ

)2

|〈F (xδk)− yδ, vn〉|2. (30)

Moreover, ‖mk(p(λ))‖ is a monotone increasing function for λ ≥ 0 and

lim
λ→0
‖mk(p(λ))‖ = 0,

lim
λ→∞

‖mk(p(λ))‖ = ‖F ′(xδk)∗(F (xδk)− yδ)‖.

Proof Note that (23) yields (30). Moreover, from (26) it follows

‖B†kp(λ)‖2 =

∞∑
n=1

(
σn

σ4
n + λ

)2

|〈F (xδk)− yδ, vn〉|2

and (27) yields

‖mk(p(λ))‖2 =

∞∑
n=1

(
λσn
σ4
n + λ

)2

|〈F (xδk)− yδ, vn〉|2. (31)

This implies that the function ‖mk(p(λ))‖ is monotonic increasing. Then, taking into account that

‖F ′(xδk)∗(F (xδk)− yδ)‖2 =

∞∑
n=1

σ2
n|〈F (xδk)− yδ, vn〉|2, (32)

the thesis easily follows. ut

Now it is possible to prove that condition (28) can be satisfied.

Lemma 3.3 Let z(λ) be the minimum norm solution of (16a) with λ ≥ 0 and p(λ) be given in
(17). It exists λqk > 0 such that if λk ≥ λqk then pk = p(λk) satisfies condition (28).

Proof From Lemma 3.2 if follows that ‖mk(p(λ))‖ is a monotonic increasing function for λ ≥ 0
and that there exists λqk such that (29) holds. Then, condition (28) is satisfied for any λk ≥ λqk
and λqk = 0 if and only if it holds ‖F ′(xδk)∗(yδ − F (xδk))‖ = 0. ut

We now provide a suitable choice of the trust-region radius, that guarantees that the resulting
regularization parameter λk is strictly positive and big enough to ensure the step pk = p(λk) to
satisfy condition (28).

Lemma 3.4 Let z(λ) be the minimum norm solution of (16a) with λ ≥ 0 and p(λ) be given in
(17). If

∆k ≤
1− q
‖Bk‖2

‖B1/2
k f ′k‖ (33)

the step pk = p(λk) satisfies (28) and λk > 0.



Regularizing Elliptical Trust-Region 9

Proof From (31) and (32) it follows

‖mk(p(λ))‖2 =λ2
∞∑
n=1

(
σn

σ4
n + λ

)2

|〈F (xδk)− yδ, vn〉|2

≥
λ2
∞∑
n=1

σ2
n|〈F (xδk)− yδ, vn〉|2

(‖Bk‖2 + λ)2

=
λ2

(‖Bk‖2 + λ)2
‖F ′(xδk)∗(F (xδk)− yδ)‖2.

Then, an upper bound for λqk, defined in (29), can be obtained proceeding as follows:

q‖F ′(xδk)∗(F (xδk)− yδ)‖ = ‖mk(p(λqk))‖

≥
λqk

‖Bk‖2 + λqk
‖F ′(xδk)∗(F (xδk)− yδ)‖,

so

λqk ≤
q‖Bk‖2

1− q
. (34)

By (16a) one has

‖z(λqk)‖ ≥
‖B1/2

k f ′k‖
‖B2

k + λqkI‖
, (35)

and by (34) it holds

‖B2
k + λqkI‖ ≤

‖Bk‖2

1− q
.

By construction ‖zk‖ ≤ ∆k. If (33) holds, from (35) it follows

‖zk‖ = ‖z(λk)‖ ≤ 1− q
‖Bk‖2

‖B1/2
k f ′k‖ ≤

‖B1/2
k f ′k‖

‖B2
k + λqkI‖

≤ ‖z(λqk)‖.

Since by (30) it follows that ‖z(λ)‖ is monotonically decreasing, the previous inequality yields
λk ≥ λqk > 0 and by Lemma 3.3 the thesis holds. ut

Note that with this choice of ∆k it is not necessary to check if condition (28) is satisfied.
Moreover, from (33) the trust-region radius goes to zero whenever ‖f ′k‖ converges to zero.

Remark 3.1 Lemma 3.4 shows that λk is strictly positive, then from (16b) it follows that ‖zk‖ =
∆k, i.e. the trust-region is active. Standard trust-region approaches, used to solve well-posed
problems, are designed to have inactive trust-region in the last stage of the process, in order to
recover the fast convergence of the full Newton step. On the contrary, in this context the trust-
region is required to be eventually active in order to produce a regularizing effect.

From Lemma 3.1 and Lemma 3.4 it can be concluded that a step pk of the form (18), satisfying
both (6) and (28) exists. In the next section it will be shown that if condition (28) is met, then
also condition (7) holds, so the method provides the desired monotone decrease of the norm of
the error, as stated in Lemma 2.1.

The result in Lemma 3.4 suggests the trust-region iteration described in Algorithm 3.1. Once
pk has been obtained, the classical ratio:

πk(pk) =
ared(pk)

pred(pk)
=

fδ(x
δ
k)− fδ(xδk + pk)

fδ(xδk)− 1
2‖F (xδk)− yδ + F ′(xδk)pk‖2

(36)

is computed. As in classical trust-region approaches, if there is a good agreement between the
function and the model, the step is accepted. Otherwise the step is rejected and the trust-region
is reduced.
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Algorithm 3.1: k-th iteration of the regularizing trust-region method for problem (1)

Given xδk, η ∈ (0, 1), γ ∈ (0, 1), 0 < Cmin < Cmax, q ∈ (0, 1).

Exact data: y; Noisy data: yδ.

1. Choose ∆k ∈
[
Cmin‖B

1/2
k f ′k‖, min

{
Cmax,

1− q
‖Bk‖2

}
‖B1/2

k f ′k‖
]

2. Repeat
2.1 Find the pair (zk, λk) solution of KKT conditions (16).

2.2 Set pk = B
1/2
k zk

2.3 Compute

πk(pk) =
fδ(x

δ
k)− fδ(xδk + pk)

fδ(x
δ
k)− 1

2
‖F (xδk)− yδ + F ′(xδk)pk‖2

2.4 If πk(pk) < η,set ∆k = γ∆k.
Until πk(pk) ≥ η.
3. Set xδk+1 = xδk + pk.

In case of noisy data, the process is stopped at iteration k∗(δ) satisfying the following discrep-
ancy principle:

‖f ′k∗(δ)‖ ≤ τδ < ‖f
′
k‖, 0 ≤ k < k∗(δ), (37)

where τ > 0 is appropriately chosen. Then, as the aim is to find a zero of f ′, the process is stopped
whenever the norm of the gradient goes under the noise level. In case of zero residual problems,
it is common to use the following discrepancy principle:

‖F (xδk∗(δ))− y
δ‖ ≤ τδ < ‖F (xδk)− yδ‖, 0 ≤ k < k∗(δ).

However, in case of nonzero residual problems this criterion cannot be employed, as the residual
is not expected to go to zero, and at the solution it may be greater than the noise level.

4 Convergence Theory

For the convergence analysis the following Assumption is needed.

Assumption 4.1 Given x, x̃ in a suitable neighbourhood of the solution x† to (1), the following
inequality holds:

‖f ′(x̃)− f ′(x)− F ′(x)∗F ′(x)(x̃− x)‖ ≤ (c‖x̃− x‖+ σ)‖f ′(x)− f ′(x̃)‖, (38)

for suitable constants c > 0 and σ ∈ (0, q).

Inequality (38) is motivated by the following observations. In case of zero residual problems
the tangential cone condition:

‖F (x̃)− F (x)− F ′(x)(x̃− x)‖ ≤ c‖x̃− x‖ ‖F (x̃)− F (x)‖, x, x̃ ∈ Bρ(x†),

with c > 0, is widely assumed, see for example ([1, §2.1],[5–8,25]. This condition is actually a
requirement on the Taylor reminder of F . Stationary points of (1) are the solutions of f ′(x) = 0.
Moreover it holds

f ′′(x) = F ′(x)∗F ′(x) + F ′′(x)∗(F (x)− y). (39)

Then, drawing inspiration from the tangential cone condition, (38) is a requirement on the Taylor
reminder of f ′(x). In fact, the tangential cone condition for problem f ′(x) = 0 turns out to be

‖f ′(x̃)− f ′(x)− f ′′(x)(x̃− x)‖ ≤ c‖x̃− x‖ ‖f ′(x̃)− f ′(x)‖, x, x̃ ∈ Bρ(x†).

Since in the proposed approach the term S(x) is dropped, (38) is assumed, where the constant σ
appears in the right-hand side. This constant is a combined measure of the nonlinearity and the
residual size of the problem, cf. [21, §10.2], as it represents a bound for ‖S(x)‖ = ‖F ′′(x)∗(F (x)−
y)‖. The assumption σ < q implies that the analysis is focused on small residual problems, due to
the fact that second order information are discarded. In Section 6 numerical evidence for condition
(38) will be provided, for the considered test problems.

In the analysis also the Lipschitz continuity of F ′ will be assumed.
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Assumption 4.2 F ′ is Lipschitz continuous in a neighbourhood of the level set L = {x ∈
Rn s.t. fδ(x) ≤ fδ(x0)} with Lipschitz constant L.

4.1 Noise-Free Case

In this section, noise-free problems are considered, δ = 0 is assumed and the symbol δ is dropped
from the generated sequence, the data y and the function. First, note that well-known global con-
vergence properties of trust-region and Levenberg-Marquardt methods yield the following result.

Theorem 4.1 (Theorem 10.3 [18], §8.4 [22])
Suppose that Assumption 4.2 holds and that ‖F ′(x)‖ is bounded above on L. Then, the sequence

{xk} generated by Algorithm 3.1 satisfies

lim
k→∞

‖f ′k‖ = lim
k→∞

‖F ′(xk)∗(y − F (xk))‖ = 0.

Then, any accumulation point of the sequence is a stationary point of the function f .
The analysis will now be focused on the local convergence properties of the method. Then, we

assume that there exists a specific iterate k̄ such that xk̄ is sufficiently close to a solution of (1)
and inequality (38) holds in a neighbourhood of such iterate.

Assumption 4.3 Let δ = 0 and x† be a solution of (1). Suppose that for some iteration index k̄
there exist ρ > 0, c > 0 and σ ∈ (0, q) such that inequality (38) holds for any x, x̃ ∈ B2ρ(xk̄) and

‖xk̄ − x†‖ < min

{
q − σ
c

, ρ

}
. (40)

In the following Lemma, we show that, under the previous assumptions, (7) holds for all k ≥ k̄
and therefore by Lemma 2.1 the error decreases monotonically for k ≥ k̄.

Lemma 4.1 Assume that Assumption 4.3 holds. Let ek = x† − xk and pk computed at Step 2.2
of Algorithm 3.1. Then, it exists θk > 1 such that condition (7) holds for all k ≥ k̄.

Proof From the choice of ∆k at Step 2 of Algorithm 3.1 and Lemma 3.4 it follows that the step
pk satisfies condition (28). From (38) and (28)

‖mk̄(ek̄‖ ≤ (c‖ek̄‖+ σ) ‖F ′(x∗k̄(F (xk̄ − y)‖ ≤

≤
(
c‖ek̄‖+ σ

q

)
‖mk̄(pk̄‖,

so that condition (7) is satisfied for k = k̄ with θk̄ = q
c‖ek̄‖+σ

> 1 from Assumption 4.3. From

Lemma 2.1 it follows ‖ek̄+1‖ < ‖ek̄‖, so that it holds xk̄+1 ∈ B2ρ(xk̄) ∩ Bρ(x†) and Assumption
4.3 is valid also for k = k̄+ 1. Repeating the above arguments, by induction it is possible to prove
that condition (7) holds for all k ≥ k̄, with

θk =
q

c‖ek‖+ σ
> 1. (41)

ut

In next Lemma some important features of the procedure are shown.

Lemma 4.2 Suppose that Assumption 4.3 holds. Then, Algorithm 3.1 generates a sequence {xk}
such that, for k ≥ k̄,

(i) xk belongs to B2ρ(xk̄) and to Bρ(x†) and ‖xk+1 − x†‖ < ‖xk − x†‖,
(ii) it exists a constant λ̄ > 0 such that λk ≤ λ̄.
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Proof (i) From Lemma 4.1, Lemma 2.1 holds for all k ≥ k̄ and (10) implies that the sequence
{‖xk − x†‖}∞k=k̄

is monotonic decreasing. As a consequence, xk belongs to B2ρ(xk̄)∩Bρ(x†) for all

k ≥ k̄ and θk+1 > θk for all k ≥ k̄.
(ii) The proof of the last assertion of the Lemma follows the lines of Lemma 4.2 in [5] and is

reported in the Appendix. ut

In the following theorem convergence of the sequence {xk} to a point belonging to S ∩ B̄ρ(x†)
is proved, where

S = {x | f ′(x) = 0}, (42)

and B̄ρ(x†) is the closed ball of center x† and radius ρ.

Theorem 4.2 Suppose that Assumption 4.3 holds. Then, the sequence {xk} generated by Algo-
rithm 3.1 converges to x∗ ∈ S ∩ B̄ρ(x†).

Proof Let k̄ as in Assumption 4.3. Lemma 4.1 and 4.2 show that (10) holds for all k ≥ k̄ with θk
given in (41). Let ek = x† − xk, k̄ ≤ j < k and l between j and k such that

‖F ′(xl)∗(y − F (xl))‖ = min
j≤i<k

‖F ′(xi)∗(y − F (xi))‖.

It holds:

‖ej − el‖2 = 2〈el − ej , el〉+ ‖ej‖2 − ‖el‖2,
‖el − ek‖2 = 2〈el − ek, el〉+ ‖ek‖2 − ‖el‖2.

Let γ = c‖x† − xk̄‖ ≥ c‖x† − xi‖ for all i ≥ k̄. Using (38) and the definition of l it holds, for all
j ≤ i < k, that

‖Biel‖ ≤‖ − f ′i −Bi(x† − xi)‖+ ‖f ′l − f ′i −Bi(xl − xi)‖+ ‖f ′l‖
≤(c‖x† − xi‖+ σ)‖f ′i‖+ (c‖xl − xi‖+ σ)‖f ′l − f ′i‖+ ‖f ′l‖
≤(c‖x† − xi‖+ 2σ + c‖xl − xi‖)‖f ′i‖+ (c‖xl − xi‖+ σ + 1)‖f ′l‖
≤(3c‖x† − xi‖+ 2c‖x† − xl‖+ 3σ + 1)‖f ′i‖
≤(5γ + 3σ + 1)‖f ′i‖ = c̃‖f ′i‖

where c̃ = 5γ + 3σ + 1, so that
‖Biel‖ ≤ c̃‖f ′i‖, (43)

for all j ≤ i < k. Taking into account that pk belongs to the range space of B
1/2
k , from (6), (43)

and (28) it follows that for k > j ≥ k̄:

|〈el − ek, el〉| =

∣∣∣∣∣
k−1∑
i=l

〈pi, el〉

∣∣∣∣∣ =

∣∣∣∣∣
k−1∑
i=l

〈B†i pi, Biel〉

∣∣∣∣∣
=

∣∣∣∣∣
k−1∑
i=l

1

λi
〈mi(pi), Biel〉

∣∣∣∣∣ ≤
k−1∑
i=l

1

λi
‖mi(pi)‖‖Biel‖

≤
k−1∑
i=l

c̃

λi
‖mi(pi)‖‖f ′i‖ ≤

k−1∑
i=l

c̃

qλi
‖mi(pi)‖2.

Thus (10) yields

|〈el − ek, el〉| ≤
k−1∑
i=l

c̃

2q

θi
θi − 1

(‖ei‖2 − ‖ei+1‖2) ≤ βk̄(‖el‖2 − ‖ek‖2), (44)

where βk̄ =
c̃

2q

θk̄
θk̄ − 1

and the fact that θi/(θi − 1) < θk̄/(θk̄ − 1) has been used, since function

θ/(θ − 1) is monotonic decreasing and sequence θk is monotonic increasing (see proof of Lemma
4.2. Similarly, it is possible to show that

|〈el − ej , el〉| ≤ βk̄(‖ej‖2 − ‖el‖2). (45)
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Then from (44) and (45) it follows

‖ek − el‖2 = 2〈el − ek, el〉+ ‖ek‖2 − ‖el‖2 ≤ (2βk̄ + 1)(‖el‖2 − ‖ek‖2),

‖el − ej‖2 = 2〈el − ej , el〉+ ‖ej‖2 − ‖el‖2 ≤ (2βk̄ + 1)(‖ej‖2 − ‖el‖2),

‖xk − xj‖2 = ‖ek − ej‖2 ≤ ‖ek − el‖2 + ‖el − ej‖2.

Since the sequence {‖ek‖} is bounded from below and monotonic decreasing, hence convergent, it
follows that {xk} is a Cauchy sequence, i.e. {xk} converges to a limit point x∗. As xk ∈ Bρ(x†) for
k ≥ k̄, it follows ‖x∗ − x†‖ ≤ ρ. Finally, from Lemma 4.2 it is known that λk ≤ λ̄ for k ≥ k̄. Also,
θk−1
θk

> θk̄−1
θk̄

for k ≥ k̄ since the function θ−1
θ is monotonically increasing. Then, by (10) and (28)

‖xk − x†‖ − ‖xk+1 − x†‖2 ≥ 2q2 θk̄ − 1

θk̄λ̄
‖f ′k‖2.

Thus, it is possible to conclude that ‖f ′k‖ tends to zero and the limit x∗ of xk belongs to S. ut

4.2 Noisy Case

Here, the assumption δ > 0 is made, and the regularizing properties of the method in case of noisy
data are shown. It is assumed that there exists a specific iterate xδ

k̄
sufficiently close to a solution

x† of (1), and that inequality (38) holds in a neighbourhood of such iterate.

Assumption 4.4 Let δ > 0 and x† be a solution of (1). Suppose that for some iteration index
k̄ < k∗(δ), with k∗(δ) defined in (37), there exist ρ > 0, c > 0 and σ ∈ (0, q) such that inequality
(38) holds for any x, x̃ ∈ B2ρ(x

δ
k̄
). Moreover assume that it exists a positive constant K such that

‖F ′(x)‖ ≤ K

for any x belonging to the level set L = {x ∈ Rn s.t. fδ(x) ≤ fδ(x0)} and that xδ
k̄

satisfies

‖xδk̄ − x
†‖ < min

{
(q − σ)τ −K(σ + 1)

c(K + τ)
, ρ

}
, with τ >

K(σ + 1)

q − σ
. (46)

Note that in problems considered here, bound K is generally not large, typically of the order of
the unit. Moreover, in the numerical results section it will be shown that the behaviour of the
procedure does not depend strongly on the choice of q. Then, it is possible to ensure q − σ to be
positive and reasonably far from zero without affecting the method performance.

Lemma 4.3 Assume that Assumption 4.4 holds and let ek = x† − xδk and pk computed at Step
2.2 of Algorithm 3.1. Then, it exists θk > 1 such that condition (7) holds for all k̄ ≤ k < k∗(δ).

Proof From the choice of ∆k at Step 1 of Algorithm 3.1 and Lemma 3.4 it follows that the step
pk satisfies condition (28). By (38) and (2) it follows

‖mk̄(ek̄)‖ = ‖F ′(xδk̄)∗(F (xδk̄)− yδ + F ′(xδk̄)(x† − xδk̄))‖
≤ ‖F ′(xδk̄)∗(yδ − y)‖+ ‖F ′(xδk̄)∗(F (xδk̄)− y + F ′(xδk̄)(x† − xδk̄))‖
≤ Kδ + (c‖x† − xδk̄‖+ σ) ‖F ′(xδk̄)∗(y − F (xδk̄))‖
≤ (1 + c‖x† − xδk̄‖+ σ)Kδ + (c‖x† − xδk̄‖+ σ) ‖F ′(xδk̄)∗(yδ − F (xδk̄))‖.

Then, at iteration k̄, conditions (37) and (28) give

‖mk̄(ek̄)‖ ≤

(
K

1 + c‖x† − xδ
k̄
‖+ σ

τ
+ (c‖x† − xδk̄‖+ σ)

)
‖F ′(xδk̄)∗(yδ − F (xδk̄))‖

≤

(
K

1 + c‖x† − xδ
k̄
‖+ σ

qτ
+
c‖x† − xδ

k̄
‖+ σ

q

)
‖mk̄(pk̄‖,
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and (46) yields (7) at k = k̄ with θk̄ =
qτ

K + c(K + τ)‖x† − xδ
k̄
‖+ σ(K + τ)

, θk̄ > 1. So Lemma

2.1 holds for k = k̄ and ‖xk̄+1 − x†‖ < ‖xk̄ − x†‖. Then, (46) holds also for k = k̄ + 1. Repeating
the above arguments, by induction it is possible to prove that, for k̄ < k < k∗(δ), condition (7)

holds, with θk =
qτ

K + c(K + τ)‖x† − xδk‖+ σ(K + τ)
> 1, which yields the thesis. ut

Next Lemma shows key properties of Algorithm 3.1. Then, exploiting these results, it will be
shown in Theorem 4.3 that, given a sequence {δn} of noise levels, under suitable assumptions,
the sequence of computed approximations {xδnk∗(δn)} goes to a stationary point of (1) whenever δn
tends to zero. It is also proved that the discrepancy principle (37) is satisfied after a finite number
k∗(δ) of steps.

Lemma 4.4 Suppose that Assumptions 4.2 and 4.4 hold. Then, Algorithm 3.1 generates a se-
quence {xδk} such that, for k̄ ≤ k < k∗(δ),

(i) xδk belongs to B2ρ(x
δ
k̄
) ∩ Bρ(x†) and ‖xδk+1 − x†‖ < ‖xδk − x†‖;

(ii) there exists a constant λ̄ > 0 such that λk ≤ λ̄.

Proof (i) From Lemmas 3.4 and 4.3, (10) is satisfied for all k̄ ≤ k < k∗(δ), and this implies that
‖xδk+1 − x†‖ < ‖xδk − x†‖, xδk belongs to B2ρ(x

δ
k) ∩ Bρ(x†), and θk+1 > θk for all k̄ ≤ k < k∗(δ).

(ii) The proof of the last assertion of the Lemma follows the lines of Lemma 4.2 in [5] and is
reported in the Appendix. ut

Theorem 4.3 Suppose that Assumptions 4.2 and 4.4 hold. Then, the iterates generated by Algo-
rithm 3.1 satisfy the stopping criterion (37) after a finite number k∗(δ) of iterations.

Moreover, suppose that the sequence {xk} generated with the exact data y satisfies πk(xk+1 −
xk) 6= η, for all k, with πk(pk) defined in (36). Then the sequence {xδk∗(δ)} converges to a x∗ ∈
S ∩ B̄ρ(x†), with S and B̄ρ(x†) defined in (42), whenever δ tends to zero.

The proof of this result follows the lines of Theorem 4.5 in [5] and is reported in the Appendix.
In Theorem 4.3 it is assumed that for all k ≥ 0 it holds πk(xk+1−xk) 6= η. Under this assumption
the trust-region radius ∆k selected in Algorithm 3.1, and the scalar λk, implicitly defined by
the trust-region problem, depend continuously on δ > 0. This feature is crucial for proving the
convergence of sequence {xδk∗(δ)} to a stationary point of (1) as δ tends to zero. In fact, in case

there exists an index k for which it holds πk(xk+1− xk) = η, the sign of πk(xδnk+1− x
δn
k )− η is not

predictable even for small δn, and therefore ∆k does not depend continuously on δ.

5 Constrained Case

In many practical applications, problems with constraints on the variables are to be dealt with.
Non-stationary iterated Tikhonov methods for linear least-squares problems with convex con-
straints have been considered in [4]. Let Ω ⊂ X be a closed and convex set and consider the
following problem:

min
x∈Ω

f(x) =
1

2
‖F (x)− yδ‖2. (47)

Let PΩ : X → Ω be the metric projection of X on Ω:

PΩ(x) = arg min
y∈Ω

1

2
‖x− y‖2,

for all x in X . It is assumed that a solution x† ∈ Ω exists and the computation of the projection
PΩ is not computationally expensive.

The procedure described in Section 3 can be modified as outlined in Algorithm 5.1 in order to
handle the constraints and preserve its local properties. In what follows the noisy case is considered.
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Algorithm 5.1: k-th iteration of the regularizing trust-region method for problem (47)

Given xδk, η ∈ (0, 1), 0 < Cmin < Cmax, q ∈ (0, 1), yδ.

1. Choose ∆k ∈
[
Cmin‖B

1/2
k f ′k‖, min

{
Cmax,

1− q
‖Bk‖2

}
‖B1/2

k f ′k‖
]

2. Find the pair (zk, λk) solution of KKT conditions (16), and set pk = B
1/2
k zk.

3. Set xδk+1 = PΩ(xδk + pk).

In Algorithm 5.1, the decrease of the objective function is not imposed, as the aim here is
just to sketch a local procedure for the constrained problem. A global convergent procedure for
the noise-free case would require more sophisticated strategies to handle the constraints and at
the same time provide regularization properties. Then the role of the trust-region is just that of
providing a step satisfying (28). This step is used to compute the updated point xδk + pk that
is then projected on the feasible set, so that the new solution approximation is computed as
xδk+1 = PΩ(xδk + pk). In this way the generated sequence xδk belongs to Ω. All the local properties
of the procedure are maintained, in particular the monotone decrease of the error, thanks to the
following remark:

Remark 5.1 Since x† ∈ Ω, then ‖PΩ(xδk + pk)− x†‖ ≤ ‖xδk + pk − x†‖.

Lemma 5.1 Assume that x† is a solution of (47). Assume that there exists θk > 1 such that
condition (7) holds. Let xδk+1 = PΩ(xδk + pk) with pk computed at Step 2 of Algorithm 5.1. Then
(10) holds.

Proof

‖xδk+1 − x†‖2 − ‖xk − x†‖2 = ‖PΩ(xδk + pk)− x†‖2 − ‖xk − x†‖2

≤ ‖xδk + pk − x†‖2 − ‖xk − x†‖2,

and the thesis can be obtained repeating the proof of Lemma 2.1 since the step computed in Step
2 of Algorithm 5.1 satisfies (6). ut

Thanks to this key result, proofs of Lemmas 4.3-4.4 and Theorem 4.3 can be repeated. In this
regard it is worth underlying that the proof of point (ii) of Lemma 4.4 simplifies, as the upper
bound on λk is given by inequality (56) as ∆k is chosen at Step 1 of Algorithm 5.1 and it is not
further reduced.

6 Numerical Results

In this section the numerical behaviour of the procedure is studied, that will be addressed as
regularizing trust-region, in case of noisy data.

Four nonlinear ill-posed least-squares problems have been selected. Problem 6.1 and Prob-
lem 6.2 arise from the discretization of two parameter identification problems, while Problem 6.3
and Problem 6.4 are originally formulated as discrete problems. In the following, the Euclidean
norm will be denoted with ‖ · ‖.

– Problem 6.1: A 1D parameter identification problem. Reconstruct c in the 1D-elliptic
problem

−auxx + cu = ϕ in (0, 1) (48a)

u′(0) = 0, u′(1) = 0, (48b)

given u, ϕ ∈ L2(0, 1), [26]. Identifying c reduces to solve, for a given approximation ū of a
solution of (48), the following nonlinear least-squares problem:

min
c
‖F (x)− ū‖2L2 ,



16 Stefania Bellavia and Elisa Riccietti

for F the operator mapping c to the corresponding solution of (48). It is chosen a = 4, and ϕ
given by (48a) with

c(x) =
√

2cos(2πx) + 2, (49)

u(x) = cos(2πx) + 2. (50)

The realistic situation in which both the solution u given in (50) of the partial differential
equation and the function ϕ are known just in n points, {t1, . . . , tn} ⊂ [0, 1], is considered.
Then ϕ̃ and ũ are defined as the piecewise linear functions built interpolating {(ti, ϕ(ti))}
and {(ti, u(ti))} respectively, for i = 1, . . . , n. Then, ϕ in (48) is replaced with ϕ̃. In the
experiments u and ϕ are assumed to be known in n = 39 equispaced points in [0, 1]. Note
that when ũ is built in this way, it cannot be attainable. In fact, if we define H2(0, 1) =
{f ∈ L2(0, 1) |Dαf ∈ L2(0, 1) ∀α : |α| ≤ 2}, the solution of (48) belongs to H2(0, 1) for
all c ∈ L2(0, 1), while ũ does not. Then, this test problem results to be a nonzero residual
problem. Problem (48) is discretized using finite differences and N = 113 equispaced grids
points. The matrix arising from the discretization of the differential operator −auxx on the
grid xi = (i− 1)h, h = 1/(N − 1), i = 1, . . . , N will be denoted by L. Let ϕ̄, ū ∈ RN be such
that ϕ̄i = ϕ̃(xi), ūi = ũ(xi), i = 1, . . . , N and define for c ∈ RN F (c) = (L + diag(c))−1ϕ̄,
with diag(c) ∈ Rn×n. Then, identifying c reduces to solving

min
c∈RN

1

2
‖F (c)− ū‖2. (51)

If c∗ is the solution approximation found with exact data (i.e. δ = 0), it holds ‖F (c∗)− ū‖ ∼
1.e− 3. For this test problem the exact form of the the Jacobian matrix of F is given by:

J(c) = −(L+ diag(c))−1(diag(F (c))). (52)

– Problem 6.2: A 2D parameter identification problem. The 2D version of Problem 6.1
with a = 1 is considered. Namely, the problem consists of reconstructing c in the 2D-elliptic
problem

−∆u+ cu = ϕ in Ω (53a)

u = ζ on ∂Ω (53b)

from the knowledge of u in Ω = (0, 1) × (0, 1), ϕ ∈ L2(Ω) and ζ the trace of a function in
H2(Ω). This problem has been widely studied, see for example [27,28].
The discretized version of the arising nonlinear least-squares problem is considered, obtained as
described in [27]. Namely problem (53a)-(53b) was discretized using finite differences choosing
as grid points xi = yi = i−1

n−1 , for i = 1, . . . , n and n = 50, and using lexicographical ordering,

denoted by l : {1, . . . , n2} → {1, . . . , n2}. Let A be the matrix arising from the discretization
of the Laplacian operator, with ϕ̄ = [ϕ̄1, . . . , ϕ̄n2 ]T , where ϕ̄l(i,j) = ϕ(xi, yj). Moreover for

c ∈ Rn2

let F (c) = (A + diag(c))−1ϕ̄. Then, F : Rn2 → Rn2

, and the resulting discrete
problem is a nonlinear least-squares problem of size n2 = 2500:

min
c∈Rn2

1

2
‖F (c)− ū‖2,

for a given ū ∈ Rn2

. For further details see [27]. The tests were conducted choosing c(x, y) =
1.5 sin(4πx) sin(6πy)+3((x−0.5)2 +(y−0.5)2)+2 as a parameter to be identified. The solution
u(x, y) of (53) corresponding to this choice of c(x, y) is u(x, y) = 16x(1−x)y(y−1)+1. Function
ϕ in (53) has been defined from (53a). When the solution u is analytically known, this is a zero
residual problem. In order to obtain a nonzero residual problem the data ū are artificially set as
a perturbation of [u1, . . . , un2 ] with ul(i,j) = u(xi, yj), to let c† = [c†1, . . . , c

†
n2 ]T , where c†l(i,j) =

c(xi, yj), be a stationary point with strictly positive residual. Specifically ‖J(c†)T (F (c†)−ū)‖ =
0 and ‖F (c†)− ū‖ ' 0.1, for J the Jacobian matrix of F .
For this test problem the exact form of the the Jacobian matrix of F is given by:

J(c) = −(A+ diag(c))−1(diag(F (c))). (54)
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– Problem 6.3: A test problem arising in geophysics [11]. Starting from electromag-
netic data collected by a ground conductivity meter, the aim is to reconstruct the electrical
conductivity x of the soil with respect to depth z. In [11] a nonlinear model for the apparent
conductivity mC(x, h) at height h above the ground is used, which depends on the value x of
the conductivity. The soil is assumed to be divided in n layers, so that xi is the conductivity in
each layer and x = (x1, . . . , xn)T . Multiple measurements are needed to recover the distribu-
tion of conductivity with respect to depth. It is assumed to record the apparent conductivity at
heights hi, i = 1, . . . ,m, that generates values b = (b1, . . . , bm). The problem of data inversion
consists of computing the conductivity x minimizing the error in the model prediction:

min
x

1

2
‖b−mC(x)‖2.

It is assumed that the conductivity distribution is a function of the depth, x = φ(z). In the
experiments the piecewise linear function

φ(z) =

{
8z+1

5 , if z ≤ 0.5,
−2z+6

5 , if z > 0.5,

was used, expressed in Siemens/meter, with respect to the depth z, measured in meters. This
implies the presence of a strongly conductive material at a given depth. The measurements
are assumed to be taken at different heights hi = (i− 1)h̄ above the ground, i = 1, . . . ,m, for
a chosen height step h̄. The soil is divided into n = 60 layers, up to the depth of 2.5 meters,
each of thickness d̄ = 2.5/(n−1), selecting different depths under the ground level, [z1, . . . , zn],
where zj = (j − 1)/d̄, j = 1, . . . , n. The proposed method is applied to synthetic data sets.
Synthetic measurements are generated at m = 40 equispaced heights up to 1.9 meters to let
x† = (φ(z1), . . . , φ(zn)) be a stationary point such that ‖mC(x†) − b‖ ' 0.48. Note that the
true electrical conductivity is approximated with a mathematical model, so it is reasonable
to expect it to fit the data with a nonzero residual, even in the case of exact data. On this
test problem also bound constraints are present, as the solution must be positive. Then, the
projection strategy described in Section 5 is employed.

– Problem 6.4: A fitting of a sum of two exponentials. Given the model

y(t) = x1e
−x2t + x3e

−x4t, (55)

recover the set of parameters x† solving the following discrete least-squares problem:

min
x=[x1,x2,x3,x4]T

1

2
‖F (x)− y‖2, y =

 y1

...
ym

 , F (x) =

 x1e
−x2t1 + x3e

−x4t1

...
x1e
−x2tm + x3e

−x4tm

 ,
where the observations (ti, yi) i = 1, . . . ,m, are given as follows.
The points ti are equispaced in [0, 10] and the data yi have been chosen to let x† = [0.2,−5, 0.4,−100]T

be a minimum of the problem with nonlinear residual ‖F (x†)− y‖ of the order of 0.54, when
the data are fitted with model (55). The experiments were conducted choosing m = 1000.

In the following, for uniformity of notation, for all the tests it is assumed that the minimization
problem to be solved is

min
x

1

2
‖F (x)− y‖2

and the solution approached when the minimization problem is solved with exact data will be
denoted with x∗.

First of all, the method relies on Assumption 4.1 for the proof of the regularizing properties. In
Figure 2, numerical evidence for the assumption is reported, on all the test problems. Specifically,
‖g(x̃) − g(xk) − J(xk)TJ(xk)(x̃ − xk)‖ (dashed line) and (c‖x̃ − xk‖ + σ)‖g(x̃) − g(xk)‖ (solid
line) are plotted, where xk is the current iterate, x̃ ∈ Bρ(xk), J is the Jacobian of F and g is
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the discrete gradient g(x) = J(x)T (F (x) − y). It was chosen c = 0.1, ρ = 0.3 and σ equal to the
residual ‖F (x∗)− y‖. Note that condition

‖g(x̃)− g(xk)− J(xk)TJ(xk)(x̃− xk)‖ ≤ (c‖x̃− xk‖+ σ)‖g(x̃)− g(xk)‖,

is satisfied for xk approaching x∗. These tests were repeated varying x̃ ∈ Bρ(xk) and qualitatively
the same results were obtained. In [29] the authors have proved that Assumption 4.1 holds for
Problem 6.1 in case of finite dimensional Hilbert spaces. That analysis could be extended also
to problem Problem 6.2.
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Fig. 2 Numerical evidence for Assumption 4.1: plot of ‖g(x̃) − g(xk) − J(xk)T J(xk)(x̃ − xk)‖ (dashed line) and
(0.1‖x̃− xk‖+ σ)‖g(x̃)− g(xk)‖ (solid line) for x̃ randomly chosen in Bρ(xk), ρ = 0.3, for Problem 6.1 (top left,
σ = 4 · 10−3), Problem 6.2 (top right, σ = 0.1), Problem 6.3 (bottom left, σ = 0.48), Problem 6.4 (bottom
right, σ = 0.54).

The practical implementation of the method will be now described. All procedures were im-
plemented in Matlab and run using Matlab 2015a on an Intel Core(TM) i5-2467M 1.6 GHz, 4
GB RAM; the machine precision is εm ∼ 2 · 10−16. The trust-region procedure was implemented
according to Algorithm 3.1.

The major implementation issues are as follows. Regarding the Jacobian matrix of F , the
analytical expression was used for all test problems. Specifically for Problem 6.1 and Problem
6.2 the exact Jacobian matrices are given in (54) and (52), for Problem 6.3 the exact analytical
formulae is developed in [11] and for Problem 6.4 it is easily computable.

To compute the square root of matrix Bk the singular value decomposition of the Jacobian,
provided by Matlab function svd, is used.

In case of noisy problems, given the error level δ, the exact data y was perturbed by normally
distributed values with mean 0 and variance δ2 using the Matlab function randn.

To compute the KKT point (zk, λk) at Step 2 (16) has to be solved. Since the trust-region
is ensured to be active, this can be accomplished solving the following nonlinear scalar equation:
ψ(λ) = 1

‖z(λ)‖ −
1
∆k
, [22, §7.3]. Starting from an initial guess greater than the sought solution λk

the sequence generated converges monotonically to λk. Typically high accuracy in the solution of
the above scalar equations is not needed, hence the Newton process is terminated as soon as the
absolute value of function ψ is below 10−2. Each Newton iteration applied to ψ(λ) = 0 requires
the solution of a linear system with shifted matrix of the form B2

k + λI. Taking into account
that λk is always bounded away from zero, as the trust-region is always active, a sequence of
regularized linear systems has to be solved, and this allows to overcome the ill-conditioning of B2

k,
since in these problems the ill-conditioning of the Jacobian is due to the presence of small singular
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values. The linear systems are solved employing the singular value decomposition of the Jacobian,
computed to obtain the square root of matrix Bk.

Algorithms 3.1 and 5.1 were run setting η = 10−1. In Step 1 the trust-region radius was
updated as follows

∆0 = µ0‖B1/2
0 g0‖ µ0 = 10−1

∆k+1 = µk+1‖B1/2
k+1gk+1‖, µk+1 =


1

6
µk, if qk < q or ρk < η2,

2µk, if qk > νq and ρk > η2,

µk, otherwise,

with qk = ‖Bkpk+gk‖
‖gk‖ , ν = 1.1 and η2 = 0.25. The maximum and minimum values for ∆k were set

to ∆max = 104 and ∆min = 10−12 and the maximum value for µk was set to 105. This updating
strategy is based on the following considerations. The choice of ∆k suggested by (33) guarantees
that the q-condition (28) is satisfied, but gives rise to small values of the trust-region radius and
as a consequence to a slow procedure. On the other hand, ∆k given by the procedure described

above preserves the property of converging to zero in case of exact data, as ‖B1/2
k gk‖ tends to

zero. Further, ∆k is adjusted taking into account the q-condition by monitoring the value qk, as it
is satisfied whenever qk ≥ q. Therefore, if the q-condition was not satisfied at the last computed
iterate xδk, it is reasonable to take a smaller radius than in the case where it was fulfilled. This
updating strategy turned out to be efficient in practice. As an example in Figure 3 (a) the obtained
values of qk for Problem 6.1 for δ = 10−2 are reported. For almost all the iterations the values qk
are greater than the chosen value q = 0.8, marked by the horizontal solid line, so the q-condition
is fulfilled.

The free parameter q was set equal to 0.8, but this choice is not critical. Actually, the behaviour
of the procedure does not seem to be deeply affected by the value of q. As an example in Figure 3

(b) it is shown for Problem 6.4 the value of the relative error
‖x∗−xδk∗(δ)‖
‖x∗‖ between the solution x∗

approached with exact data and that computed with δ = 10−2, for different values of parameter
q. Note that the error does not vary significantly with q.
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Fig. 3 (a): Problem 6.1, δ = 10−2. Obtained values of qk. (b): Problem 6.4, δ = 10−2. Dependence of the
relative error between computed solution xδ

k∗(δ)
and x∗ on the parameter q.

The scalar τ in the discrepancy principle (37) was chosen adaptively as
τk = τ̄‖J(xδk)‖, with τ̄ = 0.1. The value of τ̄ is not in agreement with Assumption 4.4, but in
practice σ is not known and the numerical tests provide an evidence of the effectiveness of this
stopping rule. As τk depends on k, the stopping rule changes at each iteration. However, τk varies
only slightly along the iterations as ‖J(xδk)‖ is almost constant. Values of τk used in the tests, for
δ = 10−2, are as follows:

– Problem 6.1: ‖J(xδk)‖ ' 0.04 and τk ' 4 · 10−3,
– Problem 6.2: ‖J(xδk)‖ ' 10−2 and τk ' 10−3,
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– Problem 6.3: ‖J(xδk)‖ ' 10−1 and τk ' 10−2,
– Problem 6.4: ‖J(xδk)‖ ' 5 and τk ' 0.5.

In agreement with the theory, the error is monotonically decreasing as long as the discrepancy
principle is not satisfied, as it is shown for example in Figure 4 (a), in which the decrease of the

relative error
‖x∗−xδk‖
‖x∗‖ between the solution approached with exact data and the current iterate xδk

is reported, varying k, for Problem 6.2 with δ = 10−2. Iterating further is not useful and it can
also lead to a new increase in the norm of the error, as it is shown at the bottom of Figure 4. The
procedure was not stopped when the discrepancy principle was satisfied and the error started to
increase (b), as the sequence approaches a solution of the noisy problem (c).
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Fig. 4 Problem 6.2, δ = 10−2. Upper part: The procedure is stopped when the discrepancy principle is satisfied,
the norm of the error decreases monotonically (a). Lower part: The procedure is not stopped when the discrepancy
principle is satisfied, the norm of the relative error increases (b) and a solution of the noisy problem is approached
(c).

The stopping criterion alone is not sufficient to obtain a regularizing method. To show this, a
standard trust-region procedure was implemented, according to technicalities well-known in the
literature, [18, §4], [22, §6.1]. Particularly, it was set ∆0 = 1 and

∆k+1 =


‖pk‖

4
, if πk(pk) <

1

4
,

∆k, if
1

4
≤ πk(pk) ≤ 3

4
,

min{2∆k, ∆max}, otherwise,

This procedure was used also to solve the test problems in case of noisy data. For Problem
6.1, Problem 6.2 and Problem 6.3 in Figures 5, 6 and 8 it is shown that, while the regularizing
trust-region manages to handle the noise in the data, the sequence generated by the standard
trust-region converges to a solution of the noisy problem. For Problem 6.4 the solution found
by the standard trust-region is as accurate as the solution found by the regularizing trust-region.
This good result is due to the fact that the trust-region happens to be active in all iterations and
therefore a regularizing behaviour is implicitly provided.
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In Figure 5, Problem 6.1 is considered. The solution approximations computed with δ = 0
(x∗, dashed line), δ = 10−3 (dotted line) and δ = 10−2 (dash-dotted line), are compared to
x† = [c(x1), . . . , c(xN )]T , with c in (49) (solid line). The solution approximation improves with
decreasing noise for the regularizing trust-region (a) and not for the standard trust-region (b),
and that x∗, which is computed with exact data, is a good approximation to x†.
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Fig. 5 Problem 6.1. Comparison of solution approximations computed with noise levels δ = 10−3, 10−2 and
solutions x∗ and x† = [c(x1), . . . , c(xN )]T with c in (49), (a): regularizing trust-region, (b): standard trust-region.

In Figure 6, Problem 6.2 is considered. The solution x∗ approached with exact data (a) is
compared to the solution approximations computed by the regularizing trust-region (b) and the
standard trust-region (c) with δ = 10−2.
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Fig. 6 Problem 6.2. Upper part: solution approximation x∗ obtained with exact data (a). Lower part: solution
approximations obtained with regularizing trust-region (b) and standard trust-region (c) for δ = 10−2.

In Figure 7, we analyse the behaviour of the regularizing trust-region method depending on the
noise level. We report the contour plots of the computed solution approximations for Problem
6.2 with δ = 0, 10−2, 10−4. As the noise level decreases, according to the theory, the computed
solution approaches a minimum of the problem. In fact, as δ decreases, the contour plots become
more and more similar to that obtained for δ = 0.
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Fig. 7 Contour plots of solution approximations of Problem 6.2 for different noise levels, δ = 0, 10−2, 10−4.
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Fig. 8 Problem 6.3 with δ = 10−2: plot of the true solution x† and of the computed solution xδ
k∗(δ)

for regularizing

trust-region (a), standard trust-region (b).

In Figure 8, Problem 6.3 with δ = 10−2 is considered. We report the plots of the true solution
x† and of the computed solution xδk∗(δ) for δ = 10−2, for the regularizing trust-region (a) and

for the standard trust-region (b). Also in this case, the solution x† has been well-approximated
by the regularizing trust-region, while the standard trust-region is not able to provide a good
approximation.

Finally, in Figure 9 numerical evidence of properties theoretically proved is reported. In (a),

for Problem 6.4, the reduction of the relative error
‖x∗−xδk∗(δ)‖
‖x∗‖ with the noise level δ is shown.

In (b) the regularization parameters λk for Problem 6.3, δ = 10−2 are plotted. In accordance
with the theory, the regularization parameters are strictly positive and bounded above.

7 Conclusions

A non-stationary iterated Tikhonov procedure to solve nonlinear ill-posed least-squares problems
with small residual has been proposed. A trust-region reformulation of the method has been
proposed, that allows us to set the regularization parameters λk in an automatic way. Along with
a suitable choice of matrix Mk, this ensures regularizing properties of the method and gives rise
to a procedure able to find a stable approximation of a solution of the unperturbed problem,



Regularizing Elliptical Trust-Region 23

δ

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-3

10
-2

10
-1

10
0

10
1

‖x∗
−x

δ

k∗ (δ)
‖

‖x∗‖

(a)

0 2 4 6 8 10 12 14 16 18
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

λ
k

k

(b)

Fig. 9 (a): Problem 6.4. Reduction of the relative error
‖x∗−xδk∗(δ)‖
‖x∗‖ with the noise level δ. (b): Problem 6.3,

δ = 10−2. Plot of the regularization parameters λk.

even in case of noisy data. A theoretical analysis and a reliable implementation of the proposed
method, that has been validated on different tests, are provided. The obtained numerical results
highlight the effectiveness of the procedure and its regularizing properties. However, the current
implementation is not suitable for large scale problems, as the square root of the matrix Bk is
computed by the svd decomposition of the current Jacobian. In order to develop a reliable method
for large scale problems both the action of the square root of Bk on a vector and the solution of
the linear systems should be approximated with a rough accuracy by using an iterative method,
such as the Lanczos method. The Krylov subspace generated by the Lanzcos method could be
used both to compute the right-hand side of the linear systems, and to solve them, projecting the
problem on the generated subspace. However, this introduces a source of inexactness, that is not
taken into account in the presented theory and will be subject of further study.

Appendix

Proof of item (ii) of Lemma 4.2 and item (ii) of Lemma 4.4

Proof The proof is the same for the noise free and the noisy case, for generality the notation of the noisy case is
employed.

Since λk > 0 from Lemma 3.4, the trust-region is active, and from (30) it follows that

∆k = ‖z(λk)‖ ≤
‖B1/2

k f ′k‖
λk

.

Then, if ∆k chosen at Step 1 of Algorithm 3.1 guarantees condition πk(pk) ≥ η, the thesis follows as

λk ≤
‖B1/2

k f ′k‖
∆k

≤
1

Cmin
= λ̄. (56)

Otherwise, the trust-region radius is progressively reduced, and a bound for the value of ∆k at termination of Step
2 of Algorithm 3.1 can be provided. First, consider the case

fδ(x
δ
k + pk) >

1

2
‖F (xδk)− yδ + F ′(xδk)pk‖2.

Trivially,

1− πk(pk) =
fδ(x

δ
k + pk)− 1

2
‖F (xδk)− yδ + F ′(xδk)pk‖2

fδ(x
δ
k)− 1

2
‖F (xδk)− yδ + F ′(xδk)pk‖2

,
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and

fδ(x
δ
k + pk)−

1

2
‖F (xδk)− yδ + F ′(xδk)pk‖2 =

1

2
‖F (xδk + pk)± F (xδk)± F ′(xδk)pk − yδ‖2

−
1

2
‖F (xδk)− yδ + F ′(xδk)pk‖2

=
1

2
‖F (xδk + pk)− F (xδk)− F ′(xδk)pk‖2

+ ‖F (xδk + pk)− F (xδk)− F ′(xδk)pk‖

·‖F (xδk)− yδ + F ′(xδk)pk‖.

By the Lipschitz continuity of F ′ it holds

‖F (xδk + pk)− F (xδk)− F ′(xδk)pk‖ ≤
L

2
‖pk‖2.

Moreover, using (24)
‖F (xδk)− yδ + F ′(xδk)p(λ)‖ < ‖F (xδk)− yδ‖

for any λ ≥ 0. Consequently, as ‖pk‖ ≤ ‖B
1/2
k ‖∆k and ∆k ≤ Cmax‖B1/2

k f ′k‖,

fδ(x
δ
k + pk)−

1

2
‖F (xδk)− yδ + F ′(xδk)pk‖2 ≤

L

2
K2∆2

k‖F (x0)− y‖
(
L

4
K6C2

max‖F (x0)− y‖+ 1

)
.

From [22, Theorem 6.3.1 and §8.3] it holds

fδ(x
δ
k)−

(
1

2
〈zk, B2

kzk〉+ 〈B1/2
k f ′k, zk〉+ fδ(x

δ
k)

)
≥

1

2
‖B1/2

k f ′k‖min

{
∆k,
‖B1/2

k f ′k‖
‖B2

k‖

}
.

Then, (18) yields

fδ(x
δ
k)−

1

2
‖F (xδk)− yδ + F ′(xδk)pk‖2 ≥

1

2
∆k‖B

1/2
k f ′k‖,

whenever ∆k ≤
‖B1/2

k f ′k‖
K4

, and this implies

1− πk(pk) ≤
LK2∆k‖F (x0)− y‖( 1

4
LK6C2

max‖F (x0)− y‖+ 1)

‖B1/2
k f ′k‖

.

Namely, termination of the repeat loop occurs with

∆k ≤ ω‖B
1/2
k f ′k‖,

and

ω = min

{
1

K4
,

1− η
LK2‖F (x0)− y‖( 1

4
LK6C2

max‖F (x0)− y‖+ 1)

}
.

Taking into account Step 1 and the updating rule at Step 2.4, it can be concluded that, at termination of Step 2,
the trust-region radius ∆k satisfies

∆k ≥ min {Cmin, γω} ‖B
1/2
k f ′k‖.

In fact, in case of a smaller value of ∆k, it happens fδ(x
δ
k+pk) ≤ 1

2
‖F (xδk)−yδ+F ′(xδk)pk‖2, then πk(pk) ≥ 1 > η

and the loop at Step 2 terminates. Then, it terminates for a trust-region radius greater than or equal to the one
estimated above.

Then, λk ≤ λ̄ as

λk ≤
‖B1/2

k f ′k‖
∆k

≤ max

{
1

γω
,

1

Cmin

}
,

and the thesis follows. ut

Proof of Theorem 4.3 Proof Summing up from k̄ to k∗(δ)− 1, by (37), (28), (10) and Lemma 4.4, it follows

(k∗(δ)− k̄)τ2δ2 ≤
k∗(δ)−1∑
k=k̄

‖F ′(xδk)∗(F (xδk)− yδ)‖2 ≤
θk̄λ̄

2(θk̄ − 1)q2
‖xδ
k̄
− x†‖2.

Thus, k∗(δ) is finite for δ > 0.
Convergence of xδ

k∗(δ)
to a stationary point of (1) as δ tends to zero is obtained by adapting the proof of [5,

Theorem 4.5]. Specifically, let x∗ be the limit of the sequence {xk} corresponding to the exact data y and let {δn} be
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a sequence of values of δ converging to zero as n→∞. Denote by yδn a corresponding sequence of perturbed data,
and by kn = k∗(δn) the stopping index determined from the discrepancy principle (37) applied with δ = δn. Assume
first that k̃ is a finite accumulation point of {kn}. Without loss of generality, possibly considering a subsequence,
it can be assumed that kn = k̃ for all n ∈ N. Thus, from the definition of kn, it follows that

‖F ′(xδn
k̃

)∗(yδn − F (xδn
k̃

))‖ ≤ τδn. (57)

As, by assumption, πk(xk+1 − xk) 6= η, for all k, it follows that for the fixed index k̃, the iterate xδ
k̃

depends

continuously on δ. Then

xδn
k̃
→ xk̃, F ′(xδn

k̃
)→ F ′(xk̃), F (xδn

k̃
)→ F (xk̃) as δn → 0.

Therefore, by (57), it follows that F ′(xk̃)∗(y−F (xk̃)) = 0, and the k̃-th iterate with exact data y is a stationary

point of (1), i.e. x∗ = xk̃, and it is possible to conclude that xδnkn → x∗ as δn → 0.

It remains to consider the case where kn → ∞ as n → ∞. As {xk} converges to a stationary point x∗ of (1)
by Theorem 4.2, there exists k̃ > 0 such that

‖xk − x∗‖ ≤
1

2
ρ̄ for all k ≥ k̃,

where ρ̄ < min

{
(q − σ)τ −K(σ + 1)

c(K + τ)
, ρ

}
. Then, as xδk depends continuously on δ, δn tends to zero and k∗(δn)→

∞, there exists δn sufficiently small such that k̃ ≤ k∗(δn), and

‖xδn
k̃
− xk̃‖ ≤

1

2
ρ̄.

Then, for δn sufficiently small
‖xδn
k̃
− x∗‖ ≤ ‖xδn

k̃
− xk̃‖+ ‖xk̃ − x

∗‖ ≤ ρ̄. (58)

Now, from item (i) of Lemma 4.4, it follows xδn
k̃
∈ B2ρ(xδn

k̄
), while from (46) and Theorem 4.2 it holds

x∗ ∈ B2ρ(xδn
k̄

) as

‖xδn
k̄
− x∗‖ ≤ ‖xδn

k̄
− x†‖+ ‖x† − x∗‖ ≤ 2ρ.

Letting e∗k = x∗ − xδnk . Repeating arguments from Lemma 4.3, and using (38), (2) it follows

‖mk̃(e∗
k̃
)‖ ≤ Kδn + ‖F ′(xδn

k̃
)∗(y − F (xδn

k̃
) + F ′(xδn

k̃
)(x∗ − xδn

k̃
))‖

≤ Kδn + (c‖x∗ − xδn
k̃
‖+ σ) ‖F ′(xδn

k̃
)∗(y − F (xδn

k̃
))‖

≤ (1 + c‖x∗ − xδn
k̃
‖+ σ)Kδn + (c‖x∗ − xδn

k̃
‖+ σ) ‖F ′(xδn

k̃
)∗(yδn − F (xδn

k̃
))‖.

Then, at iteration k̃, conditions (37) and (28) give

‖mk̃(e∗
k̃
)‖ ≤

K 1 + c‖x∗ − xδn
k̃
‖+ σ

τ
+ (c‖x∗ − xδn

k̃
‖+ σ)

 ‖F ′(xδn
k̃

)∗(yδn − F (xδn
k̃

))‖

≤

K 1 + c‖x∗ − xδn
k̃
‖+ σ

qτ
+
c‖x∗ − xδn

k̃
‖+ σ

q

 ‖mk̃(pk̃)‖.

Thus, by (58) and ρ̄ < min

{
(q − σ)τ −K(σ + 1)

c(K + τ)
, ρ

}
, it follows that

‖mk̃(e∗
k̃
)‖ ≤

1

θk̃
‖mk̃(pk̃)‖

is satisfied with θk̃ =
qτ

1 + c(1 + τ)ρ̄+ σ(1 + τ)
> 1. Replacing x† with x∗, (10) gives ‖xδn

k̃+1
− x∗‖ < ‖xδn

k̃
− x∗‖

and repeating the above arguments, by induction monotonicity of the error ‖xδnk − x
∗‖ for k̃ ≤ k ≤ kn is obtained.

Then
‖xδnkn − x

∗‖ < ‖xδn
k̃
− x∗‖ ≤ ρ̄. (59)

Finally, repeating the previous arguments, it can be shown that, for every 0 ≤ ε ≤ ρ̄, it exists δ̄ε such that
‖xδnkn − x

∗‖ ≤ ε for all δn ≤ δ̄ε, i.e.

xδnkn → x∗ as δn → 0,

and the thesis is proved. ut
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2. Moré, J., Sorensen, D.: Computing a trust region step. SIAM Journal on Scientific and Statistical Computing
4(3), 553–572 (1983)

3. Donatelli, M., Hanke, M.: Fast nonstationary preconditioned iterative methods for ill-posed problems, with
application to image deblurring. Inverse Problems 29(9), 095008 (2013)

4. Buccini, A.: Regularizing preconditioners by non-stationary iterated Tikhonov with general penalty term.
Applied Numerical Mathematics 116, 64 – 81 (2017)

5. Bellavia, S., Morini, B., Riccietti, E.: On an adaptive regularization for ill-posed nonlinear systems and its
trust-region implementation. Computational Optimization and Applications 64(1), 1–30 (2016)

6. Hanke, M.: A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration
problems. Inverse problems 13(1), 79 (1997)

7. Wang, Y., Yuan, Y.: On the regularity of trust region-cg algorithm for nonlinear ill-posed inverse problems
with application to image deconvolution problem. Science in China Ser.A 46, 312–325 (2003)

8. Wang, Y., Yuan, Y.: Convergence and regularity of trust region methods for nonlinear ill-posed problems.
Inverse Problems 21, 821–838 (2005)

9. Banks, H., Murphy, K.: Estimation of coefficients and boundary parameters in hyperbolic systems. SIAM
journal on control and optimization 24(5), 926–950 (1986)

10. Binder, A., Engl, H., Neubauer, A., Scherzer, O., Groetsch, C.: Weakly closed nonlinear operators and parameter
identification in parabolic equations by Tikhonov regularization. Applicable Analysis 55(3-4), 215–234 (1994)

11. Deidda, G., Fenu, C., Rodriguez, G.: Regularized solution of a nonlinear problem in electromagnetic sounding.
Inverse Problems 30(12), 125014 (2014)

12. Henn, S.: A Levenberg–Marquardt scheme for nonlinear image registration. BIT Numerical Mathematics 43(4),
743–759 (2003)

13. Tang, L.: A regularization homotopy iterative method for ill-posed nonlinear least squares problem and its
application. In: Advances in Civil Engineering, ICCET 2011, Applied Mechanics and Materials, vol. 90, pp.
3268–3273. Trans Tech Publications (2011)

14. Lopez, D., Barz, T., Körkel, S., Wozny, G.: Nonlinear ill-posed problem analysis in model-based parameter
estimation and experimental design. Computers & Chemical Engineering 77(Supplement C), 24 – 42 (2015)

15. Landi, G., Piccolomini, E.L., Nagy, J.G.: A limited memory BFGS method for a nonlinear inverse problem in
digital breast tomosynthesis. Inverse Problems 33(9), 095005 (2017)

16. Cornelio, A.: Regularized nonlinear least squares methods for hit position reconstruction in small gamma
cameras. Applied Mathematics and Computation 217(12), 5589 – 5595 (2011)

17. Neubauer, A.: An a posteriori parameter choice for Tikhonov regularization in the presence of modeling error.
Applied Numerical Mathematics 4(6), 507 – 519 (1988)

18. Nocedal, J., Wright, S.: Numerical optimization. Springer Science & Business Media (2006)
19. Buccini, A., Donatelli, M., Reichel, L.: Iterated Tikhonov regularization with a general penalty term. Numerical

Linear Algebra with Applications 24(4), e2089 (2017)
20. Higham, N.J.: Functions of matrices: theory and computation, vol. 104. Siam (2008)
21. Dennis, J., Schnabel, R.: Numerical methods for unconstrained optimization and nonlinear equations. Siam

(1996)
22. Conn, A., Gould, N., Toint, P.: Trust region methods, vol. 1. Siam (2000)
23. Allaire, G.: Numerical analysis and optimization: an introduction to mathematical modelling and numerical

simulation. Oxford University Press (2007)
24. Engl, H., Hanke, M., Neubauer, A.: Regularization of inverse problems. Kluwer Academic Publishers Group

(1996)
25. Hanke, M.: Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems. Nu-

merical Functional Analysis and Optimization 18(9-10), 971–993 (1997)
26. Kunisch, K., White, L.: Parameter estimation, regularity and the penalty method for a class of two point

boundary value problems. SIAM Journal on Control and Optimization 25(1), 100–120 (1987)
27. Rieder, A.: On the regularization of nonlinear ill-posed problems via inexact Newton iterations. Inverse Prob-

lems 15(1), 309 (1999)
28. Scherzer, O., Engl, H.W., Kunisch, K.: Optimal a posteriori parameter choice for Tikhonov regularization for

solving nonlinear ill-posed problems. SIAM Journal on Numerical Analysis 30(6), 1796–1838 (1993)
29. Riccietti, E.: Levenberg-Marquardt methods for the solution of noisy nonlinear least squares problems, PhD

Thesis, University of Florence. http://web.math.unifi.it/users/riccietti/publications.html (2018)


