Artificial Neural Networks : scalable optimization methods for large-scale training problems

E. Riccietti (IRIT-INP, Toulouse)

Joint work with: H. Calandra (Total) S. Gratton (IRIT-INP, Toulouse) X. Vasseur (ISAE-SUPAERO, Toulouse)

EURO 2018 - Valencia - 8-11 July 2018

◆□▶ ◆□▶ ◆注≯ ◆注≯ ─ 注

The problem

We consider optimization problems arising in the training of artificial neural networks:

$$\min_p \mathcal{L}(p,z) \qquad z \in \mathcal{T}$$

where \mathcal{L} is the loss function, p is the vector of weights and biases of the network, z is the problem's variable and \mathcal{T} is the training set.

Example: approximate y = g(z)

Given a training set $\{(z_1, y_1), \ldots, (z_t, y_t)\}$ and denoted with \hat{g} the output of the network, we define

• L_1 loss: $\mathcal{L}(p, z) = \frac{1}{t} \sum_{i=1}^{t} |y_i - \hat{g}(z_i, p)|$,

•
$$L_2$$
 loss: $\mathcal{L}(p, z) = \frac{1}{t} \sum_{i=1}^t (y_i - \hat{g}(z_i, p))^2$,

• Logistic loss: $\mathcal{L}(p, z) = \frac{1}{t} \sum_{i=1}^{t} \frac{1}{1 + e^{y_i - \hat{g}(z_i, p)}}$.

Network architecture

EURO2018 3 / 25

The optimization problem may be a large-scale problem, for example if g is an oscillatory function. Many nodes may be necessary to have a network able to accurately approximate it.

We look for an efficient scalable optimization method to solve the training problem.

 We have to solve a large-scale problem

$$\min_p \mathcal{L}(p,z) = \mathcal{F}(\hat{g}(p,z)-y), \qquad z \in \mathcal{T}.$$

Can we exploit the structure of the network to build a hierarchy of problems approximating the original one?

Hierarchy of problems

 $\{\mathcal{F}_{l}(\hat{g}_{l}(p_{l}, z) - y)\}$, $p_{l} \in \mathcal{D}_{l}$ such that $|\mathcal{D}_{l}| < |\mathcal{D}_{l+1}|$ and \mathcal{F}_{l} is cheaper to optimize compared to \mathcal{F}_{l+1} .

This is the idea on which classical multigrid methods are based

- 4 同 6 4 日 6 4 日 6

Classical multigrid methods

- Consider a linear elliptic PDE: $D(z, u(z)) = f(z) \ z \in \Omega + b.c.$
- Discretize on grid h.
- Get a large-scale linear system $A_h x_h = b_h$.

Multigrid methods

Consider the discretization of the same PDE problem on a coarser grid: $A_H x_H = b_H$, H > h.

- Relaxation methods fails to eliminate smooth components of the error efficiently.
- Smooth components projected on a coarser grid appear more oscillatory.

Coarse problem construction

Define transfer grid operators: *P* prolongation and *R* restriction to project vectors from a grid to another: $x_H = Rx_h$, $x_h = Px_H$, such that $R = \alpha P^T$.

Geometry exploitation

The geometrical structure of the problem is exploited to build R and P.

Figure 3.2: Interpolation of a vector on coarse grid Ω^{2h} to fine grid Ω^{h} .

Figure 3.4: Restriction by full weighting of a fine-grid vector to the coarse grid.

Remark

This strategy is also available in the nonlinear case (Full Approximation Scheme (FAS) algorithm).

E. Riccietti

Scalable training methods

Optimization methods

We have a nonlinear problem to solve

$$\min_{x} f(x)$$

Classical iterative optimization methods:

$$f(x_k+s) \simeq T_q(x_k,s) = f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T B_k s$$

with $T_q(x_k, s)$ Taylor model of order q = 1, 2, B_k approximation to Hessian matrix. At each iteration we compute a step s_k to update the iterate:

$$\min_{s} m_k(x_k, s) = T_q(x_k, s) + \frac{\lambda_k}{q+1} ||s||^{q+1}, \qquad \lambda_k > 0$$

EURO2018 8 / 25

(日) (周) (三) (三)

Classical choices:

- Least-squares: Levenberg-Marquardt (LM), q = 1, $B_k = J(x_k)^T J(x_k)$.
- Adaptive Cubic Regularization method (ARC), q = 2, $B_k = \nabla^2 f(x_k)$.

Extension to higher-order methods

[Birgin, Gardenghi, Martnez, Santos, and Toint, 2017] extension to order q > 2.

Unifying framework for global convergence is presented.

Basic iterative optimization algorithm

Until convergence

- Define the local model m_k of f around x_k , depending on λ_k
- Compute a trial point $x_k + s_k$ that decreases this model
- Compute the predicted reduction $m_k(x_k) m_k(x_k + s_k)$
- Evaluate change in the objective function $f(x_k) f(x_k + s_k)$
- $\bullet\,$ If achieved change $\sim\,$ predicted reduction then
 - Accept trial point as new iterate $x_{k+1} = x_k + s_k$

else

- Reject the trial point $x_{k+1} = x_k$
- Increase λ_k

(日) (周) (三) (三)

Subproblem solution

Solving

$$\min_{s} T_q(x_k, s) + \frac{\lambda_k}{q+1} \|s\|^{q+1}$$

represents greatest cost per iteration, which depends on the size of the problem.

Recursive multilevel trust region method [Gratton, Sartenaer, Toint, 2008]

Assumption

- Assume to have at disposal a sequence of approximations {f_l} to the objective function f such that f_l is cheaper to optimize than f_{l+1}.
- Solution Assume to have linear full-rank operators R_I and P_I to move from a level to another, such that $R_I = P_I^T$ (up to a scalar).

Multigrid setting

• At each level *I*, $x \in \mathbb{R}^{n_l}$. I_{max} finest level, 0 coarsest level.

level I_{max} \mathbb{R}^n $x^{I_{max}}$ $f^{I_{max}} = f$ $\mu^{I_{max}} = f$ \vdots $\mathbb{R}^{n^{l+1}}$ $\mathbb{R}^{n^{l+1}}$ $x^{l_{max}}$ $f^{I_{max}} = f$ \vdots level I \mathbb{R}^{n^l} \mathbb{R}^{n^l} x^{l+1} f^{l+1} μ^{l+1} \vdots \mathbb{R}^{n^0} \mathbb{R}^{n^0} x^0 f^0 μ^0

- *f*¹ represent *f* on the coarse spaces (it is e.g. the discretization of *f* on a coarse space)
- The functions μ^{l} are modifications of the f^{l} 's to ensure inter-level coherence.

Coherence between levels

Lower level model:

• Let $x_0^{l-1} = Rx_k^l$. Model with first order correction:

$$\mu^{l-1} = f^{l-1}(x_0^{l-1} + s^{l-1}) + (R^l \nabla f^l(x_k^l) - \nabla f^{l-1}(x_k^{l-1}))^T s^{l-1}$$

This ensures that

$$\nabla \mu^{l-1}(x_0^{l-1}) = R^l \nabla f^l(x_k^l)$$

 \rightarrow first-order behaviours of f' and μ^{l-1} are coherent in a neighbourhood of the current approximation. If $s' = P^l s^{l-1}$

$$\nabla f'(x_k^{\prime})^T s' = \nabla f'(x_k^{\prime})^T P' s'^{-1} = \frac{1}{\alpha} \nabla \mu'^{-1} (x_0^{\prime-1})^T s'^{-1}.$$

イロト イポト イヨト イヨト 二日

Multilevel strategy

At level *I*, let x_k^l be the current approximation. We look for a correction s_k^l to define the new approximation $x_{k+1}^l = x_k^l + s_k^l$. Two choices:

• minimize regularized Taylor model, get s_k^l ,

2 choose lower level model μ^{l-1} :

Our contribution

In [Gratton, Sartenaer, Toint, 2008] second-order models are considered (q = 2).

- We combine ideas from [Gratton, Sartenaer, Toint, 2008] and [Birgin, Gardenghi, Martnez, Santos, and Toint, 2017] and we propose a family of scalable, multilevel optimization methods of order $q \ge 1$, which are proved to be globally convergent.
- We propose a suitable mechanism to construct a hierarchy of problems for the specific case of neural network training.
- We specialize the training method to least-squares problems (recursive multilevel Levenberg-Marquardt method).
- On scalable multilevel optimization strategies for large-scale problems arising in the training of artificial neural networks

イロト 不得下 イヨト イヨト 二日

Recursive multi-scale q-order methods

Until convergence

- Choose $q \ge 1$. Choose either a Taylor or a (useful) recursive model.
 - Taylor model: compute a Taylor step satisfying a sufficient decrease property
 - Recursive: apply the algorithm recursively
- Evaluate change in the objective function
- $\bullet\,$ If achieved change $\sim\,$ predicted reduction then
 - Accept trial point as new iterate

else

- Reject the trial point
- Increase λ

The algorithm is proved globally convergent to first order critical points

Exploit multi-scale method for training of ANNs

How to build the coarse problem?

Remark

The variables to be optimized are the network's weights:

$$\min_p \mathcal{L}(p,z) \qquad z \in \mathcal{T}$$

NO evident geometrical structure to exploit!

Algebraic multigrid

We can take inspiration from algebraic multigrid techniques. When solving linear systems Ax = b, the structure is discovered through the matrix A. R and P are built just looking at the entries of the matrix.

Ruge and Stueben AMG

To build the coarse problem, the variables are divided into two sets, set C of coarse variables and set F of fine variables.

Ruge and Stueben C/F splitting

- Two variables i, j are said to be *coupled* if $a_{i,j} \neq 0$.
- We say that a variable *i* is strongly coupled to another variable *j*, if

$$-a_{i,j} \ge \epsilon \max_{a_{i,k} < 0} |a_{i,k}|$$

for a fixed $0 < \epsilon < 1$, usually $\epsilon = 0.25$.

• Each *F* variable is required to have a minimum number of its strong couplings be represented in *C*. The *C*/*F* splitting is usually made choosing some first variable *i* to become a coarse variable. Then, all variables strongly coupled to it become *F* variables. The process is repeated until all variables have been split.

Which matrix should we use?

Assume to use a second-order model. At each iteration we have to solve a linear system of the form:

$$(B_k + \tilde{\lambda}_k I)s = -\nabla f(x_k)$$

for $\tilde{\lambda}_k > 0$. As in AMG for linear systems, we use information contained in matrix B_k .

Remark

Variables are coupled!
$$\mathcal{L}(p, z) = \mathcal{F}(\hat{g}(p, z) - y)$$
 and $\hat{g}(p, z) = \sum_{i=1}^{r} v_i \sigma(w_i z + b_i) \rightarrow p = \{(v_i, w_i, b_i)\}.$

We do not use the full matrix B_k and we define A as:

$$B_{k} = \begin{bmatrix} A_{v,v} & .. & .. \\ .. & A_{w,w} & .. \\ .. & .. & A_{b,b} \end{bmatrix} \to A = \frac{A_{v,v}}{\|A_{v,v}\|}_{\infty} + \frac{A_{w,w}}{\|A_{w,w}\|}_{\infty} + \frac{A_{b,b}}{\|A_{b,b}\|}_{\infty}$$

We define the coarse/fine splitting based on the auxiliary matrix A.

E. Riccietti

Preliminary results: solution of PDEs

Approximate the solution u of a PDE:

$$D(z, u(z)) = g(z), z \in (a, b);$$

 $u(a) = A, u(b) = B.$

We approximate $u \sim \hat{u}(p, z)$ for $p \in \mathbb{R}^n$ and we define

$$\mathcal{L}(p,z) = \frac{1}{2t}(\|D(z,u(z)) - g(z)\|^2 + \lambda_p(\|u(a) - A\|^2 + \|u(b) - B\|^2))$$

for $z \in \mathcal{T}$ training set.

Least-squares problem \rightarrow multi-scale Levenberg-Marquardt method

- 4 同 6 4 日 6 4 日 6

Choice of the true solution

$$D(z,u(z))=g(z), z \in (a,b);$$

• We choose g to have true solution $u_T(z, \nu)$ depending on ν

Remark

- As ν increases the function becomes more oscillatory and it is harder to approximate.
- The size of the problem increases with the number of nodes.
- \mathcal{T} : equispaced points in (0, 1) with $h = \frac{1}{3\nu}$ (Shannon's criterion).

Poisson's equation, $u_T(z, \nu) = cos(\nu z)$, 5 runs

Problem		$\nu = 20$	$r = 2^{9}$		u = 25	$r = 2^{10}$
Solver	iter	RMSE	save	iter	RMSE	save
LM	282	1.e-3		632	1.e-2-1.e-3	
RLM	193	1.e-3	1.2-1.75	347	1.e-2-1.e-3	1.2-3.15

save=ratio between total number of flops required for matrix-vector products

Helmholtz's equation, 5 runs

Equation: $\Delta u(z)$	$+ \nu^2 u(z)$	= 0 , <i>u</i>	$_{T}(z,\nu)=sin$	$(\nu z) + cos$	(νz)
	Problem		$\nu = 5$	$r = 2^{10}$	
	Solver	iter	RMSE	save	
	LM	1243	1.e-2-1.e-3		
	RLM	1229	1.e-2-1.e-3	1.2-3.1	

save=ratio between total number of flops required for matrix-vector products

E. Riccietti

Scalable training methods

EURO2018 23 / 25

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Conclusions and future work

- We have presented a class of high-order methods for optimization and proved their global convergence.
- We have proposed a AMG strategy to build coarse representations of the problem to use these methods for the training of artificial neural networks.
- Preliminary tests show encouraging results. In future work we will consider further applications.

Thank you for your attention!