
Artificial Neural Networks : scalable optimization
methods for large-scale training problems

E. Riccietti (IRIT-INP, Toulouse)

Joint work with: H. Calandra (Total)
S. Gratton (IRIT-INP, Toulouse)

X. Vasseur (ISAE-SUPAERO, Toulouse)

EURO 2018 - Valencia - 8-11 July 2018

The problem

We consider optimization problems arising in the training of artificial
neural networks:

min
p
L(p, z) z ∈ T

where L is the loss function, p is the vector of weights and biases of the
network, z is the problem’s variable and T is the training set.

Example: approximate y = g(z)

Given a training set {(z1, y1), . . . , (zt , yt)} and denoted with ĝ the output
of the network, we define

L1 loss: L(p, z) = 1
t

∑t
i=1|yi − ĝ(zi , p)|,

L2 loss: L(p, z) = 1
t

∑t
i=1(yi − ĝ(zi , p))2,

Logistic loss: L(p, z) = 1
t

∑t
i=1

1
1+eyi−ĝ(zi ,p)

.

E. Riccietti Scalable training methods EURO2018 2 / 25

Network architecture

Iz → σ

b3

σ

b4

σ

b5

σ

b2

σ

b1

+

d

→ ĝ(p, z) =
∑r

i=1 viσ(wiz + bi) + d

p = [v ,w , b, d]T

Input
layer

Hidden
layer

Output
layer

Activation funct. σ,
sigmoid: σ(z) = ez−1

ez+1 ,

tanh: σ(z) = e2z−1
e2z+1

,

logit: σ(z) = ez

ez+1 ,
softplus: σ(z) =
log(ez + 1).

w2

w 1

w3

w
4

w
5

v2

v
1

v3

v4

v 5

E. Riccietti Scalable training methods EURO2018 3 / 25

Large-scale problems

The optimization problem may be a large-scale problem, for example if g
is an oscillatory function. Many nodes may be necessary to have a network
able to accurately approximate it.

We look for an efficient scalable optimization method to solve the training
problem.
⇓

Can we exploit the structure of the network?

E. Riccietti Scalable training methods EURO2018 4 / 25

Idea

We have to solve a large-scale problem

min
p
L(p, z) = F(ĝ(p, z)− y), z ∈ T .

Can we exploit the structure of the network to build a hierarchy of
problems approximating the original one?

Hierarchy of problems

{Fl(ĝl(pl , z)− y)}, pl ∈ Dl such that |Dl | < |Dl+1| and Fl is cheaper to
optimize compared to Fl+1.

This is the idea on which classical multigrid methods are based

E. Riccietti Scalable training methods EURO2018 5 / 25

Classical multigrid methods

Consider a linear elliptic PDE: D(z , u(z)) = f (z) z ∈ Ω + b.c.
Discretize on grid h.
Get a large-scale linear system Ahxh = bh.

Multigrid methods

Consider the discretization of the same PDE problem on a coarser grid:
AHxH = bH , H > h.

Relaxation methods fails to eliminate smooth components of the error
efficiently.

Smooth components projected on a coarser grid appear more
oscillatory.

Figure:

E. Riccietti Scalable training methods EURO2018 6 / 25

Coarse problem construction

Define transfer grid operators: P prolongation and R restriction to project
vectors from a grid to another: xH = Rxh, xh = PxH , such that R = αPT .

Geometry exploitation

The geometrical structure of the problem is exploited to build R and P.

Remark

This strategy is also available in the nonlinear case (Full Approximation
Scheme (FAS) algorithm).

E. Riccietti Scalable training methods EURO2018 7 / 25

Optimization methods

We have a nonlinear problem to solve

min
x

f (x)

Classical iterative optimization methods:

f (xk + s) ' Tq(xk , s) = f (xk) + sT∇f (xk) +
1

2
sTBks

with Tq(xk , s) Taylor model of order q = 1, 2, Bk approximation to Hessian
matrix. At each iteration we compute a step sk to update the iterate:

min
s

mk(xk , s) = Tq(xk , s) +
λk

q + 1
‖s‖q+1, λk > 0

E. Riccietti Scalable training methods EURO2018 8 / 25

Higher-order models

Classical choices:

Least-squares: Levenberg-Marquardt (LM), q = 1, Bk = J(xk)T J(xk).

Adaptive Cubic Regularization method (ARC), q = 2, Bk = ∇2f (xk).

Extension to higher-order methods

[Birgin, Gardenghi, Martnez, Santos, and Toint, 2017] extension to order
q > 2.
Unifying framework for global convergence is presented.

E. Riccietti Scalable training methods EURO2018 9 / 25

Basic iterative optimization algorithm

Until convergence

Define the local model mk of f around xk , depending on λk

Compute a trial point xk + sk that decreases this model

Compute the predicted reduction mk(xk)−mk(xk + sk)

Evaluate change in the objective function f (xk)− f (xk + sk)

If achieved change ∼ predicted reduction then

Accept trial point as new iterate xk+1 = xk + sk
else

Reject the trial point xk+1 = xk
Increase λk

E. Riccietti Scalable training methods EURO2018 10 / 25

Subproblem solution

Solving

min
s

Tq(xk , s) +
λk

q + 1
‖s‖q+1

represents greatest cost per iteration, which depends on the size of the
problem.

⇓
Recursive multilevel trust region method [Gratton, Sartenaer, Toint, 2008]

Assumption

1 Assume to have at disposal a sequence of approximations {fl} to the
objective function f such that fl is cheaper to optimize than fl+1.

2 Assume to have linear full-rank operators Rl and Pl to move from a
level to another, such that Rl = PT

l (up to a scalar).

E. Riccietti Scalable training methods EURO2018 11 / 25

Multigrid setting

At each level l , x ∈ Rnl . lmax finest level, 0 coarsest level.

level lmax Rn x lmax f lmax = f µlmax = f
...

...
...

...

level l + 1 Rnl+1

x l+1 f l+1 µl+1

R l+1 ⇓ ⇑ P l+1

level l Rnl x l f l µl

...
...

...
...

level 0 Rn0 x0 f 0 µ0

f l represent f on the coarse spaces (it is e.g. the discretization of f
on a coarse space)

The functions µl are modifications of the f l ’s to ensure inter-level
coherence.

E. Riccietti Scalable training methods EURO2018 12 / 25

Coherence between levels

Lower level model:

Let x l−10 = Rx lk . Model with first order correction:

µl−1 = f l−1(x l−10 + s l−1) + (R l∇f l(x lk)−∇f l−1(x l−1k))T s l−1

This ensures that
∇µl−1(x l−10) = R l∇f l(x lk)

→ first-order behaviours of f l and µl−1 are coherent in a neighbourhood
of the current approximation. If s l = P ls l−1

∇f l(x lk)T s l = ∇f l(x lk)TP ls l−1 =
1

α
∇µl−1(x l−10)T s l−1.

E. Riccietti Scalable training methods EURO2018 13 / 25

Multilevel strategy

At level l , let x lk be the current approximation. We look for a correction s lk
to define the new approximation x lk+1 = x lk + s lk . Two choices:

1 minimize regularized Taylor model, get s lk ,

2 choose lower level model µl−1:

x lk

R lx lk := x l−10 x l−1∗

x lk+1 = x lk + s lk

R l

µl−1

s lk = P l(x l−1∗ − x l−10)

E. Riccietti Scalable training methods EURO2018 14 / 25

Our contribution

In [Gratton, Sartenaer, Toint, 2008] second-order models are considered
(q = 2).

We combine ideas from [Gratton, Sartenaer, Toint, 2008] and [Birgin,
Gardenghi, Martnez, Santos, and Toint, 2017] and we propose a
family of scalable, multilevel optimization methods of order q ≥ 1,
which are proved to be globally convergent.

We propose a suitable mechanism to construct a hierarchy of
problems for the specific case of neural network training.

We specialize the training method to least-squares problems
(recursive multilevel Levenberg-Marquardt method).

On scalable multilevel optimization strategies for large-scale problems
arising in the training of artificial neural networks

E. Riccietti Scalable training methods EURO2018 15 / 25

Recursive multi-scale q-order methods

Until convergence

Choose q ≥ 1. Choose either a Taylor or a (useful) recursive model.

Taylor model: compute a Taylor step satisfying a sufficient decrease
property
Recursive: apply the algorithm recursively

Evaluate change in the objective function

If achieved change ∼ predicted reduction then

Accept trial point as new iterate

else

Reject the trial point
Increase λ

The algorithm is proved globally convergent to first order critical points

E. Riccietti Scalable training methods EURO2018 16 / 25

Exploit multi-scale method for training of ANNs

How to build the coarse problem?

Remark

The variables to be optimized are the network’s weights:

min
p
L(p, z) z ∈ T

NO evident geometrical structure to exploit!

Algebraic multigrid

We can take inspiration from algebraic multigrid techniques.
When solving linear systems Ax = b, the structure is discovered through
the matrix A. R and P are built just looking at the entries of the matrix.

E. Riccietti Scalable training methods EURO2018 17 / 25

Ruge and Stueben AMG

To build the coarse problem, the variables are divided into two sets, set C
of coarse variables and set F of fine variables.

Ruge and Stueben C/F splitting

Two variables i , j are said to be coupled if ai ,j 6= 0.

We say that a variable i is strongly coupled to another variable j , if

−ai ,j ≥ ε max
ai,k<0

|ai ,k |

for a fixed 0 < ε < 1, usually ε = 0.25.

Each F variable is required to have a minimum number of its strong
couplings be represented in C . The C/F splitting is usually made
choosing some first variable i to become a coarse variable. Then, all
variables strongly coupled to it become F variables. The process is
repeated until all variables have been split.

E. Riccietti Scalable training methods EURO2018 18 / 25

Which matrix should we use?

Assume to use a second-order model. At each iteration we have to solve a
linear system of the form:

(Bk + λ̃k I)s = −∇f (xk)

for λ̃k > 0. As in AMG for linear systems, we use information contained in
matrix Bk .

Remark

Variables are coupled! L(p, z) = F(ĝ(p, z)− y) and
ĝ(p, z) =

∑r
i=1 viσ(wiz + bi) → p = {(vi ,wi , bi)}.

We do not use the full matrix Bk and we define A as:

Bk =

Av ,v
.. Aw ,w ..
.. .. Ab,b

→ A =
Av ,v

‖Av ,v‖∞
+

Aw ,w

‖Aw ,w‖∞
+

Ab,b

‖Ab,b‖∞

We define the coarse/fine splitting based on the auxiliary matrix A.
E. Riccietti Scalable training methods EURO2018 19 / 25

Preliminary results: solution of PDEs

Approximate the solution u of a PDE:

D(z , u(z)) = g(z), z ∈ (a, b);

u(a) = A, u(b) = B.

We approximate u ∼ û(p, z) for p ∈ Rn and we define

L(p, z) =
1

2t
(‖D(z , u(z))− g(z)‖2 + λp(‖u(a)− A‖2 + ‖u(b)− B‖2))

for z ∈ T training set.

Least-squares problem → multi-scale Levenberg-Marquardt method

E. Riccietti Scalable training methods EURO2018 20 / 25

Choice of the true solution

D(z , u(z)) = g(z), z ∈ (a, b);

We choose g to have true solution uT (z , ν) depending on ν

Remark

As ν increases the function becomes more oscillatory and it is harder
to approximate.

The size of the problem increases with the number of nodes.

T : equispaced points in (0, 1) with h = 1
3ν (Shannon’s criterion).

E. Riccietti Scalable training methods EURO2018 21 / 25

Poisson’s equation, uT (z , ν) = cos(νz), 5 runs

Problem ν = 20 r = 29 ν = 25 r = 210

Solver iter RMSE save iter RMSE save

LM 282 1.e-3 632 1.e-2-1.e-3
RLM 193 1.e-3 1.2-1.75 347 1.e-2-1.e-3 1.2-3.15

save=ratio between total number of flops required for matrix-vector
products

E. Riccietti Scalable training methods EURO2018 22 / 25

Helmholtz’s equation, 5 runs

Equation: ∆u(z) + ν2u(z) = 0 , uT (z , ν) = sin(νz) + cos(νz)

Problem ν = 5 r = 210

Solver iter RMSE save

LM 1243 1.e-2-1.e-3
RLM 1229 1.e-2-1.e-3 1.2-3.1

save=ratio between total number of flops required for matrix-vector
products

E. Riccietti Scalable training methods EURO2018 23 / 25

Conclusions and future work

We have presented a class of high-order methods for optimization and
proved their global convergence.

We have proposed a AMG strategy to build coarse representations of
the problem to use these methods for the training of artificial neural
networks.

Preliminary tests show encouraging results. In future work we will
consider further applications.

E. Riccietti Scalable training methods EURO2018 24 / 25

Thank you for your attention!

E. Riccietti Scalable training methods EURO2018 25 / 25

