
Optimization and Approximation

Final exam

15/01/2021

Part I

Exercise 1 - Newton’s method (*)

1. Assume Newton’s method is applied to the following problem:

min
x
f(x)

with

f(x) =

{
(x− 4)3 if x ≥ 2

x2 − 12 if x < 2

The values in Table 1 are obtained by running the method (without line-
search) starting from x0 = 10. How can you explain the behaviour of the
method in the last iterations?

2. Is it possible to use Newton’s method to solve a least-squares problem?
If yes, when would it be advantageous over Gauss-Newton or Levenberg-
Marquartd methods?

3. Assume the Newton’s method without linesearch is applied to the function
f(x) = x4−x3−2x2 +3x−2 starting from x0 = 5 and that the generated
sequence converges to x∗ = −1. Can we deduce from this that the method
is globally convergent?

Exercise 2 - Convex constrained problems (**) Consider the following
constrained optimization problem:

min
x
f(x) (1a)

subject to (1b)

gi(x) ≤ 0 for i = 1, . . . ,m, (1c)

hi(x) = 0 for i = 1, . . . , p. (1d)

1



k xk f(xk) f ′(xk)
0 10 216 108
1 9.667 181.963 96.333
2 9.314 150.037 84.707
3 8.937 120.359 73.1
4 8.532 93.099 61.624
5 8.091 68.467 50.208
6 7.602 46.738 38.925
7 7.047 28.285 27.850
8 6.390 13.660 17.143
9 5.554 3.751 7.243
10 4.267 0.019 0.213
11 -3.234 -1.541 -6.468
12 -2.925 -3.446 -5.850
13 -2.583 -5.329 -5.166
14 -2.196 -7.179 -4.391
15 -1.740 -8.972 -3.480
16 -1.166 -10.641 -2.3
17 -0.308 -11.905 -0.615
18 2.942 -1.183 3.356
19 4.833 0.578 2.082
20 2.432 -3.851 7.371
21 3.708 -0.025 0.255
22 10.567 283.269 129.396
23 10.263 245.663 117.674
24 9.944 209.969 105.980
25 9.607 176.288 94.320

Table 1: Newton method applied to f starting from x0 = 10.

Assume f and gi for i = 1, . . . ,m are continuously differentiable convex functions
and hi for i = 1, . . . , p are affine functions (hi(x) = aTi x + bi for some ai ∈ Rn

and bi ∈ R). Show that the KKT conditions are sufficient for optimality for this
problem, i.e. prove that if x∗ is a KKT point, then it is a global minimum.

Hint: consider the following problem:

min
x
L(x,λ,µ)

with L the Lagrangian function.

Exercise 3 - Gradient method (**) A function f : Rn → R is said to be

1. L–smooth if ∇f is Lipschitz continuous with Lipschitz constant L:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖

for all x,y ∈ Rn.
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2. µ–strongly convex if

f(y) ≥ f(x)−∇f(x)T (x− y) +
µ

2
‖x− y‖2 (2)

x,y ∈ Rn.

Consider the following results.

Lemma 1. Let f : Rn → R a twice differentiable function. If f is L-smooth,
then the two following relations hold for all x,y ∈ Rn:

f(x) ≤ f(y) +∇f(y)T (x− y) +
L

2
‖x− y‖2, (3)

f(x∗)− f(x) ≤ − 1

2L
‖∇f(x)‖2. (4)

Theorem 1. Let f : Rn → R a twice differentiable function, L-smooth and
µ-strongly convex. Let x∗ be the global minimum of f . Given x0 ∈ Rn and
1
L ≥ α > 0, the iterates

xk+1 = xk − α∇f(xk) (5)

converge according to

‖xk+1 − x∗‖2 ≤ (1− αµ)k+1‖x0 − x∗‖2.

Prove convergence of the gradient method for strongly convex smooth func-
tions:

1. Prove (3) in the lemma. Hint: use the Taylor expansion of f in integral
form.

2. Prove (4) in the lemma. Hint: use (3).

3. Use the lemma to prove the theorem.

Part II

Exercise 4 - Linear problems (*) State whether each of the following
statements is true or false. Motivate your answer.

1. Consider a linear program:

max cTx

subject to Ax ≤ b

x ≥ 0.

If matrix A and vectors b, and c, have only integer-valued entries, then
there exists an optimal solution x∗ with only integer-valued entries.
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2. It possible to remain on the same vertex in two consecutive steps of the
simplex method.

3. The solution of the relaxation of an integer problem is always feasible for
the original integer problem.

4. If a linear program has an unbounded feasible region then it has no optimal
solution.

5. Any feasible LP in real numbers with a bounded feasible region has either
one or an infinite number of optimal solutions.

6. If x∗,y∗ and z∗ are respectively optimal solutions of the primal, dual and
the optimal value of the LP in point 1, then z∗ = (y∗)TAx∗.

Exercise 5 - Halfspaces (****)

1. Consider the following LP:

minbTy

subject to

ATy = 0,

y ≥ 0,

with A ∈ Rm×d for m > d, b,y ∈ Rm. Show that if it is unbounded then
we can find a feasible point y′ such that

(a) bTy′ < 0

(b) y′ has at least m− (d+ 1) zero components.

Hint: use the simplex method.

2. Prove that if m halfspaces in Rd, with m > d, do not have a point in
common, then there exist some d+ 1 of them that do not have a point in
common, either.

Hint: modelm halfspaces in Rd, withm > d and with no points in common
with a linear problem (P). Is it feasible/infeasible? Bounded/unbounded?
What is the dual problem? Use this to select a linear subproblem of (P)
to model d+ 1 halfspaces without a point in common.

Exercise 6 - Load Balancing problem (***) Consider a collection of n
jobs that must be executed and m machines, M1, . . . ,Mm. Executing job j on
any of the machines takes time tj , where tj > 0. The aim is to assign the jobs
to the machines in such a way that the so-called makespan, i.e. the time until
all jobs are finished, is as small as possible. Let’s denote the collection of jobs
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assigned to machine Mi by A(i). Then the load Ti of machine Mi, the total
time for which Mi is busy, is given by

Ti =
∑

j∈A(i)

tj ,

and the makespan of the assignment is T := max1≤i≤m Ti. Assume that each
job is assigned to a single machine. Load Balancing is NP-hard. Consider the
following greedy approximation algorithm: we consider the jobs one by one and
assign each job to the machine whose current load is smallest.

Greedy algorithm for Load Balancing (t1, . . . , tn,m)

1. Initialize Ti = 0 and A(i) = ∅ for 1 ≤ i ≤ m

2. For j = 1, . . . , n

(a) Find a k such that Tk = min1≤i≤m Ti

(b) Assign job j to the machine Mk of minimum load

(c) A(k) = A(k) ∪ {j} and Tk = Tk + tj

1. Optional: What data structure can you choose to implement the algo-
rithm in order to have it run in polynomial time? Why?

2. Explain why the optimal value of the problem OPT is such that OPT ≥
LB := max( 1

m

∑
1≤j≤n tj ,max1≤j≤n tj).

3. Prove that the algorithm is a 2-approximation algorithm, i.e. prove that
it produces an assignment of jobs to machines such that the makespan T
satisfies T ≤ 2OPT . Hint: use the lower bound.

Optional, extra points: How to improve this algorithm? A weak point of
this algorithm is the following. Suppose to first have a large number of small
jobs and then finally a single very large job. The algorithm will first spread the
small jobs evenly over all machines and then add the large job to one of these
machines. It would have been better, however, to give the large job its own
machine and spread the small jobs over the remaining machines. Note that our
algorithm would have produced this assignment if the large job would have been
handled first. This observation suggest the following adaptation of the greedy
algorithm: we first sort the jobs according to decreasing processing times, and
then run the previous procedure.

4. Consider a set of n jobs with processing times t1, . . . , tn that have to be
scheduled on m machines, where t1 ≥ t2 > · · · ≥ tn. Prove that if n > m,
then OPT ≥ tm + tm+1.

5. Prove that the new algorithm is a (3/2)-approximation algorithm.
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