Multilevel optimization methods for the training of artificial neural networks

E. Riccietti (IRIT-INP, Toulouse)

Joint work with: H. Calandra (Total) S. Gratton (IRIT-INP, Toulouse) X. Vasseur (ISAE-SUPAERO, Toulouse)

> FGS 2019 Nice - 17 - 20 Septembre 2019

Context

We consider large-scale nonlinear unconstrained optimization problems:

$$\min_{x} f(x)$$

Context

We consider large-scale nonlinear unconstrained optimization problems:

$$\min_{x} f(x)$$

Classical iterative optimization methods:

$$f(x_k + s) \simeq T_2(x_k, s)$$

with $T_2(x_k, s)$ Taylor model of order 2. At each iteration we compute a step s_k to update the iterate:

$$\min_{s} m_k(x_k, s) = T_2(x_k, s) + r(\lambda_k), \qquad \lambda_k > 0$$

 $r(\lambda_k)$ regularization term.

A classical example

• Adaptive Cubic Regularization method (ARC):

$$m_k(x_k, s) = f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T \nabla^2 f(x_k) s + \frac{\lambda_k}{3} ||s||^3$$

Adaptive cubic regularisation methods for unconstrained optimization, C. Cartis, N. Gould, Ph. Toint, 2009

Extension to higher-order methods (q > 2)

Model of order q:

$$\min_{s} m_{q,k}(x_k,s) = T_q(x_k,s) + \frac{\lambda_k}{q+1} ||s||^{q+1}, \qquad \lambda_k > 0.$$

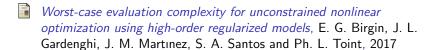
$$T_q(x_k,s) = \sum_{i=1}^q \frac{1}{i!} \nabla^i f(x_k) (\overbrace{s,\ldots,s}^{i \text{ times}})$$

Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models, E. G. Birgin, J. L. Gardenghi, J. M. Martinez, S. A. Santos and Ph. L. Toint, 2017

High order methods

Unifying framework for global convergence and worst-case complexity is presented.

- better complexity
- ② needs higher-order derivatives, model is expensive to minimize



Bottleneck: Subproblem solution

Solving

$$\min_{s} T_q(x_k, s) + \frac{\lambda_k}{q+1} ||s||^{q+1}$$

represents greatest cost per iteration, which depends on the size of the problem.

Multilevel trust region method, S. Gratton, A. Sartenaer, PH. Toint, 2008

Hierarchy of problems

- $\{f^I(x^I)\}, x^I \in \mathcal{D}_I$
- $|\mathcal{D}_I| < |\mathcal{D}_{I+1}|$
- f^{l} is cheaper to optimize compared to f^{l+1}

Our contributions

- E. G. Birgin, J. L. Gardenghi, J. M. Martinez, S. A. Santos and Ph. L. Toint, 2017
 - one level methods: non-scalable
- S. Gratton, A. Sartenaer, PH. Toint, 2008
 - method for second order models

We propose a family of scalable multilevel methods using high-order models.

Outline

- Part I: multilevel extension of iterative high-order optimization methods
 - global convergence
 - worst-case complexity
 - local convergence rate

Outline

- Part I: multilevel extension of iterative high-order optimization methods
 - global convergence
 - worst-case complexity
 - local convergence rate
- Part II: use of the multilevel methods for the training of artificial neural network
 - multilevel methods in the literature used just for problems with a geometrical structure

Part I

Multilevel extension of iterative high-order optimization methods

Multilevel setting

• At each level I, $x \in \mathbb{R}^{n_I}$. I_{max} finest level, 0 coarsest level.

- f' represents f on the coarse spaces (it is e.g. the discretization of f on a coarse space)
- The functions μ^I are modifications of the f^I to ensure inter-level coherence.
- $R^I = \alpha(P^I)^T$, for some $\alpha > 0$.

One level strategy

At level $l = l_{\text{max}}$, let x_k^l be the current approximation. We look for a correction s_k^l to define the new approximation $x_{k+1}^l = x_k^l + s_k^l$.

$$x_k^I$$

One level strategy

At level $l = l_{\text{max}}$, let x_k^l be the current approximation. We look for a correction s_k^l to define the new approximation $x_{k+1}^l = x_k^l + s_k^l$.

$$x_k^l \xrightarrow{T_q^l} x_{k+1}^l = x_k^l + s_k^l$$

- minimize regularized Taylor model, get s_k^l ,
- 2 choose lower level model μ^{l-1} :

$$x_k^I \xrightarrow{T_q^I} x_{k+1}^I = x_k^I + s_k^I$$

- **1** minimize regularized Taylor model, get s_k^I ,
- 2 choose lower level model μ^{l-1} :

- **1** minimize regularized Taylor model, get s_k^l ,
- 2 choose lower level model μ^{l-1} :

$$x_{\mu}^{I}$$

- **1** minimize regularized Taylor model, get s_k^I ,
- 2 choose lower level model μ^{l-1} :

$$R^{l} \downarrow \\ R^{l} \downarrow \\ R^{l} x_{k}^{l} \coloneqq x_{0,k}^{l-1}$$

- **1** minimize regularized Taylor model, get s_k^I ,
- 2 choose lower level model μ^{l-1} :

$$R^{l} \downarrow \\ R^{l} \downarrow \\ R^{l} x_{k}^{l} := x_{0,k}^{l-1} \xrightarrow{\mu^{l-1}} x_{*,k}^{l-1}$$

- minimize regularized Taylor model, get s_k^l ,
- 2 choose lower level model μ^{l-1} :

- minimize regularized Taylor model, get s_k^l ,
- 2 choose lower level model μ^{l-1} :

- The lower level model is cheaper to optimize.
- The procedure is recursive: more levels can be used.

Coherence between levels, q = 1

Lower level model:

• Let $x_{0,k}^{l-1} = Rx_k^l$. Model with first order correction:

$$\mu_{1,k}^{l-1}\big(x_{0,k}^{l-1},s^{l-1}\big) = f^{l-1}\big(x_{0,k}^{l-1}+s^{l-1}\big) + \big(R^l\nabla f^l(x_k^l) - \nabla f^{l-1}(x_k^{l-1})\big)^Ts^{l-1}$$

This ensures that

$$\nabla \mu_{1,k}^{l-1}(x_{0,k}^{l-1}) = R^l \nabla f^l(x_k^l)$$

 \rightarrow first-order behaviours of f^{l} and μ^{l-1} are coherent in a neighbourhood of the current approximation. If $s^{l} = P^{l}s^{l-1}$

$$\nabla f^{l}(x_{k}^{l})^{T}s^{l} = \nabla f^{l}(x_{k}^{l})^{T}P^{l}s^{l-1} = \nabla \mu_{1,k}^{l-1}(x_{0,k}^{l-1})^{T}s^{l-1}.$$

Coherence between levels, q = 2

Lower level model: Let $x_{0,k}^{l-1} = Rx_k^l$. We define $\mu_{2,k}^{l-1}$ as

$$\begin{split} &\mu_{2,k}^{l-1}(x_{0,k}^{l-1}+s^{l-1}) = f^{l-1}(x_{0,k}^{l-1}+s^{l-1}) + (R^l \nabla f^l(x_k^l) - \nabla f^{l-1}(x_k^{l-1}))^T s^{l-1} \\ &+ \frac{1}{2}(s^{l-1})^T ((R^l)^T \nabla f^l(x_k^l) P^l - \nabla^2 f^{l-1}(x_k^{l-1})) s^{l-1} \end{split}$$

 \rightarrow We can generalize this up to order q to have the behaviours of f^I and $\mu_{q,k}^{I-1}$ to be coherent up to order q in a neighbourhood of the current approximation.

Coherence up to order q

We define

$$\mu_{q,k}^{l-1}(x_{0,k}^{l-1}, s^{l-1}) = f^{l-1}(x_{0,k}^{l-1} + s^{l-1}) + \sum_{i=1}^{q} \frac{1}{i!} \left[\mathcal{R}(\nabla^{i} f^{l}(x_{k})) - \nabla^{i} f^{l-1}(x_{0,k}^{l-1}) \right] \underbrace{(s^{l-1}, \dots, s^{l-1})}_{i \text{ times}},$$

where $\mathcal{R}(\nabla^i f^l(x_k^l))$ is such that for all i = 1, ..., q and $s_1^{l-1}, ..., s_i^{l-1} \in \mathbb{R}^{n_{l-1}}$

$$[\mathcal{R}(\nabla^{i}f^{l}(x_{k}^{l}))](s_{1}^{l-1},\ldots,s_{i}^{l-1}) := \nabla^{i}f^{l}(x_{k}^{l},Ps_{1}^{l-1},\ldots,Ps_{i}^{l-1}),$$

where $\nabla^i f^I$ denotes the *i*-th order tensor of f^I .

Theoretical results: Assumptions

Assumption 1

Let us assume that for all I the q-th derivative tensors of f^I are Lipschitz continuous.

Assumption 2

There exist strictly positive scalars κ_{EB} , $\rho > 0$ such that

$$\operatorname{dist}(x, \mathcal{X}) \leq \kappa_{EB} \|\nabla_x f(x)\|, \quad \forall x \in \mathcal{N}(\mathcal{X}, \rho),$$

where \mathcal{X} is the set of second-order critical points of f, $\operatorname{dist}(x, \mathcal{X})$ denotes the distance of x to \mathcal{X} and $\mathcal{N}(\mathcal{X}, \rho) = \{x \mid \operatorname{dist}(x, \mathcal{X}) \leq \rho\}$.

On the Quadratic Convergence of the Cubic Regularization Method under a Local Error Bound Condition, Yue, M.C. and Zhou, Z. and So, A.M.C., 2018: generalized to higher-order methods

Theoretical results: 1) global convergence

Theorem

Let Assumption 1 hold. Then, the sequence of iterates generated by the algorithm converges globally to a first-order stationary point.

Theoretical results: 1) global convergence

Theorem

Let Assumption 1 hold. Then, the sequence of iterates generated by the algorithm converges globally to a first-order stationary point.

- E. G. Birgin, J. L. Gardenghi, J. M. Martinez, S. A. Santos and Ph. L. Toint, 2017: generalized to multilevel framework
- Gratton, Sartenaer, Toint, 2008: extended to higher-order models and simplified

Theoretical results: 2) complexity

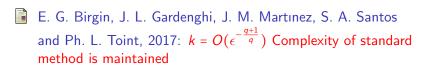
Theorem

Let Assumption 1 hold. Let f_{low} be a lower bound on f. Then, the method requires at most

$$K_3 \frac{(f(x_{k_1}) - f_{low})}{\epsilon^{\frac{q+1}{q}}} \left(1 + \frac{|\log \gamma_1|}{\log \gamma_3}\right) + \frac{1}{\log \gamma_3} \log \left(\frac{\lambda_{\max}}{\lambda_0}\right)$$

iterations to achieve an iterate x_k such that $\|\nabla f(x_k)\| \le \epsilon$, where

$$K_3 := \frac{q+1}{\eta_1 \lambda_{\min}} \max\{K_1^{1/q}, K_2^{1/q}\}.$$



Theoretical result: 3) local convergence

$\mathsf{Theorem}$

Let Assumptions 1 and 2 hold. Assume that $\mathcal{L}(f(x_k))$ is bounded for some $k \geq 0$ and that it exists an accumulation point x^* such that $x^* \in \mathcal{X}$. Then, the whole sequence $\{x_k\}$ converges to x^* and it exist strictly positive constants $c \in \mathbb{R}$ and $\bar{k} \in \mathbb{N}$ such that:

$$\frac{\|x_{k+1}-x^*\|}{\|x_k-x^*\|^q} \le c, \quad \forall k \ge \bar{k}.$$

Theoretical result: 3) local convergence

$\mathsf{Theorem}$

Let Assumptions 1 and 2 hold. Assume that $\mathcal{L}(f(x_k))$ is bounded for some $k \geq 0$ and that it exists an accumulation point x^* such that $x^* \in \mathcal{X}$. Then, the whole sequence $\{x_k\}$ converges to x^* and it exist strictly positive constants $c \in \mathbb{R}$ and $\bar{k} \in \mathbb{N}$ such that:

$$\frac{\|x_{k+1}-x^*\|}{\|x_k-x^*\|^q} \le c, \quad \forall k \ge \bar{k}.$$

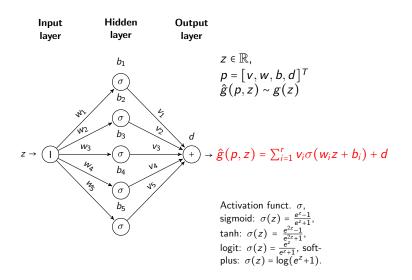
- E. G. Birgin, J. L. Gardenghi, J. M. Martinez, S. A. Santos and Ph. L. Toint, 2017: local convergence not proved
- Gratton, Sartenaer, Toint, 2008: local convergence not proved

Multilevel optimization methods
Artificial neural networks

Part II

 Use of the multilevel methods for the training of artificial neural networks

Artificial neural networks



Training problem:

$$\min_{p} \mathcal{L}(p, z) = \mathcal{F}(\hat{g}(p, z) - g(z)), \qquad z \in \mathcal{T}$$

$$\hat{g}(p, z) = \sum_{i=1}^{r} v_{i} \sigma(w_{i} z + b_{i}) + d$$

where \mathcal{L} is the loss function, \mathcal{T} training set.

Training problem:

$$\min_{p} \mathcal{L}(p, z) = \mathcal{F}(\hat{g}(p, z) - g(z)), \qquad z \in \mathcal{T}$$

$$\hat{g}(p, z) = \sum_{i=1}^{r} v_{i} \sigma(w_{i} z + b_{i}) + d$$

where $\mathcal L$ is the loss function, $\mathcal T$ training set.

Large-scale problem: can we exploit multilevel methods for the training?

Training problem:

$$\min_{p} \mathcal{L}(p, z) = \mathcal{F}(\hat{g}(p, z) - g(z)), \qquad z \in \mathcal{T}$$

$$\hat{g}(p, z) = \sum_{i=1}^{r} v_{i} \sigma(w_{i} z + b_{i}) + d$$

where \mathcal{L} is the loss function, \mathcal{T} training set.

Large-scale problem: can we exploit multilevel methods for the training?

 How to build the coarse problem? The variables to be optimized are the network's weights:

NO evident geometrical structure to exploit!

Training problem:

$$\min_{p} \mathcal{L}(p, z) = \mathcal{F}(\hat{g}(p, z) - g(z)), \qquad z \in \mathcal{T}$$

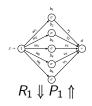
$$\hat{g}(p, z) = \sum_{i=1}^{r} v_{i} \sigma(w_{i} z + b_{i}) + d$$

where $\mathcal L$ is the loss function, $\mathcal T$ training set.

Large-scale problem: can we exploit multilevel methods for the training?

- How to build the coarse problem? The variables to be optimized are the network's weights:
 NO evident geometrical structure to exploit!
- The network possesses a purely algebraic structure: can we exploit it?

Exploit multilevel method for training of ANNs



$$\mathcal{F}_1: \mathbb{R}^{3r_1} \to \mathbb{R}$$

$$\hat{g}(p,z) = \sum_{i \in I_1} v_i \sigma(w_i z + b_i) + d$$

$$|I_1| = r_1$$

$$\mathcal{F}_2: \mathbb{R}^{3r_2} \to \mathbb{R}$$

$$\hat{g}(p,z) = \sum_{i \in I_2} v_i \sigma(w_i z + b_i) + d$$

$$I_2 \subset I_1, |I_2| = r_2 < r_1$$

$$\mathcal{F}_3: \mathbb{R}^{3r_3} \to \mathbb{R}$$

$$\hat{g}(p,z) = \sum_{i \in I_3} v_i \sigma(w_i z + b_i) + d$$

$$I_3 \subset I_2, |I_3| = r_3 < r_2$$

How do we select the hierarchy of variables?

Algebraic multigrid: C/F splitting

Ruge and Stueben C/F splitting for Ax = b

- Two variables i, j are said to be *coupled* if $a_{i,j} \neq 0$.
- We say that a variable i is strongly coupled to another variable j, if $-a_{i,j} \ge \epsilon \max_{a_{i,k} < 0} |a_{i,k}|$ for a fixed $0 < \epsilon < 1$, usually $\epsilon = 0.25$.

Prolongation-Restriction operators

$$P = [I; \Delta], R = P^T$$
.

Which matrix should we use?

Assume to use a second-order model:

$$m(x_k, s) = f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T \nabla^2 f(x_k) s + \frac{\lambda_k}{3} ||s||^3$$

$$m(x_k, s) = f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T B_k s + \frac{\lambda_k}{2} ||s||^2$$

At each iteration we have to solve a linear system of the form:

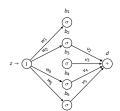
$$(B_k + \tilde{\lambda}_k I)s = -\nabla f(x_k), \quad \tilde{\lambda}_k > 0.$$

As in AMG for linear systems, we use information contained in matrix B_k .

Which matrix should we use?

Remark

Variables are coupled! $\{w_i, b_i, v_i\}$



We do not use the full matrix B_k and we define A as:

$$B_{k} = \begin{bmatrix} f_{v,v} & \dots & \dots \\ \dots & f_{w,w} & \dots \\ \dots & \dots & f_{b,b} \end{bmatrix} \to A = \frac{f_{v,v}}{\|f_{v,v}\|_{\infty}} + \frac{f_{w,w}}{\|f_{w,w}\|_{\infty}} + \frac{f_{b,b}}{\|f_{b,b}\|_{\infty}}$$

We define the coarse/fine splitting based on the auxiliary matrix A.

Application: solution of PDEs

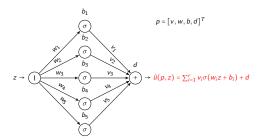
Approximate the solution u(z) of a PDE:

$$D(z, u(z)) = g(z), z \in (a, b);$$

 $u(a) = A, u(b) = B.$

We approximate the solution of the PDE with a neural network:

$$u(z) \sim \hat{u}(p,z), \quad p \in \mathbb{R}^n$$



Application: solution of PDEs

Advantages

- No need of discretization: we get an analytical expression of the solution, with good generalization properties (also for points outside the interval)
- Natural approach for solving nonlinear equations
- Alleviate the curse of dimensionality

Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations (2018).

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations (2019)

Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow Visualization Data (2018)

Application: solution of PDEs

We select a training set \mathcal{T} s.t. $|\mathcal{T}| = t$:

$$z = [z_1, \ldots, z_t]^T$$
, $a \le z_1 < \cdots < z_t \le b$

We define

$$\mathcal{L}(p,z) = \frac{1}{2t} (\|D(z,\hat{u}(z)) - g(z)\|^2 + \lambda_p (\|\hat{u}(a) - A\|^2 + \|\hat{u}(b) - B\|^2))$$

for $\hat{u}(z) \in \mathbb{R}^t$.

Least-squares problem → multi-level Levenberg-Marquardt method

Choice of the true solution

$$D(z, u(z)) = g(z), z \in (a, b);$$

• We choose g to have true solution $u_T(z, \nu)$ depending on ν

Remark

- As ν increases the function becomes more oscillatory and it is harder to approximate.
- The size of the problem increases with the number of nodes.
- \mathcal{T} : equispaced points in (0,1) with $h = \frac{1}{3\nu}$ (Shannon's criterion).

Preliminary results: Poisson's equation 10 runs

1D		ν = 20	$r = 2^9$		ν = 25	$r = 2^{10}$
Solver	iter	RMSE	save	iter	RMSE	save
LM	869	1.e-4		1439	1.e-3	
MLM	507	1.e-4	1.1-2.6-4.3	1325	1.e-3	1.2-1.7-2.8

Table: 1D Poisson's equation, $u_T(z, \nu) = cos(\nu z)$, 10 runs

2D		ν = 5	$r = 2^{10}$			$r = 2^{11}$
						save
LM	633	1.e-3	1.1-1.5-2.1	1213	1.e-3	
MLM	643	1.e-3	1.1-1.5-2.1	1016	1.e-3	1.2-1.9-2.4

Table: 2D Poisson's equation, $u_T(z, \nu) = cos(\nu z)$, 10 runs

save(min,average,max)=ratio between total number of flops required for matrix-vector products

Helmholtz's and nonlinear equations, 10 runs

		ν = 5	$r = 2^{10}$
Solver	iter	RMSE	save
LM	1159	1.e-3	
MLM	1250	1.e-3	1.2-1.9-3.1

Table: Helmholtz's equations. $\Delta u(z) + \nu^2 u(z) = 0$, $u_T(z, \nu) = \sin(\nu z) + \cos(\nu z)$

Table: Left:
$$\Delta u + \sin u = g_1$$
 (1D) $u_T(z, \nu) = 0.1 \cos(\nu z)$. Right: $\Delta u + e^u = g_1$ (2D), $u_T(z, \nu) = \log\left(\frac{\nu}{z_1 + z_2 + 10}\right)$

Conclusions

- Theoretical contribution: We have presented a class of multilevel high-order methods for optimization and proved their global and local convergence and complexity.
- Practical contribution: We have got further insight on the methods proposing a AMG strategy to build coarse representations of the problem to use some methods in the family for the training of artificial neural networks.

Perspectives

- Hessian-free method. Make it a competitive training method: the method needs to compute and store the Hessian matrix (for step computation and to build transfer operators): too expensive for large-scale problems.
- Extend the method to multilayer networks.

Thank you for your attention!

- On the approximation of the solution of partial differential equations by artificial neural networks trained by a multilevel Levenberg-Marquardt method, H. Calandra, S. Gratton, E. Riccietti X. Vasseur, submitted.
- On high-order multilevel optimization strategies, H. Calandra, S. Gratton, E. Riccietti X. Vasseur, submitted.
- On the solution of systems of the form $A^TAx = A^Tb + c$, H. Calandra, S. Gratton, E. Riccietti X. Vasseur, to be submitted.

If q = 1, the regularized model is defined as

$$f(x_k) + \nabla f(x_k) + \frac{\lambda_k}{2} \|s\|^2, \tag{1}$$

where in case of a least-squares problem $\nabla f(x_k) = J(x_k)^T F(x_k)$. For a positive definite matrix $M \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^n$, we can define the following norm:

$$||x||_{M} = x^{T} M x.$$

If we define $M = \frac{B_k}{\lambda_k} + I$, then we have $\frac{\lambda_k}{2} \|s\|_M^2 = \frac{1}{2} s^T B_k s + \frac{\lambda_k}{2} \|s\|^2$, so that the model

$$m_k(x_k,s) = f(x_k) + \nabla f(x_k) + \frac{\lambda_k}{2} ||s||_M^2,$$

corresponds to q = 1, just with a different norm for the regularization term.

Tensor of order 3

Definition

Let $T \in \mathbb{R}^{n^3}$, and $u, v, w \in \mathbb{R}^n$. Then $T(u, v, w) \in \mathbb{R}$, $T(v, w) \in \mathbb{R}^n$

$$T(u,v,w) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} T(i,j,k) u(i) v(j) w(k),$$

$$T(v,w)(i) = \sum_{i=1}^{n} \sum_{k=1}^{n} T(i,j,k)v(j)w(k), \quad i=1,\ldots,n.$$

Tensor of order i

Definition

Let
$$i \in \mathbb{N}$$
 and $T \in \mathbb{R}^{n^i}$, and $u \in \mathbb{R}^n$. Then $T(\underbrace{u, \dots, u}) \in \mathbb{R}$,

$$T(\underbrace{u,\ldots,u})\in\mathbb{R}^n$$
 and

$$T(\underbrace{u,\ldots,u}) = \sum_{j_1=1}^n \cdots \sum_{j_i=1}^n T(j_1,\ldots,j_i)u(j_1)\ldots u(j_i),$$

$$T(\underbrace{u,\ldots,u})(j_1) = \sum_{i_2=1}^n \cdots \sum_{i_i=1}^n T(j_1,\ldots,j_i)u(j_2),\ldots u(j_i), \quad j_1=1,\ldots,n.$$

$$i-1$$
 times

When to use the lower level model?

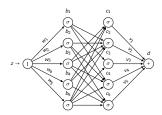
The lower level model is not always useful, we can use it if

• if
$$\|\nabla \mu_{q,k}^{l-1}(x_{0,k}^{l-1})\| = \|R^l \nabla f^l(x_k^l)\| \ge \kappa \|\nabla f^l(x_k^l)\|$$
, $\kappa > 0$,

• if
$$||R\nabla f^I(x_k^I)|| > \epsilon^I$$

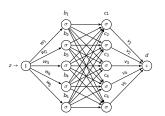
Future work 1: Extend the method to multilayer networks.

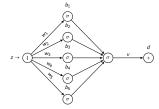
• Extend the method as it is: use a sparse network.



Future work 1: Extend the method to multilayer networks.

- Extend the method as it is: use a sparse network.
- Change strategy to build coarse problems: compress variables in a layer to exploit the structure of the multilayer network.





Thank you for your attention!

For more details:

On high-order multilevel optimization strategies and their application to the training of artificial neural networks

Prolongation operator

$$x_i^h = (Px^H)_i = \begin{cases} x_i^H & \text{if } i \in C, \\ \sum_{k \in P_i} \delta_{i,k} x_k^H & \text{if } i \in F, \end{cases}$$

with

$$\delta_{i,k} = \begin{cases} -\alpha_i a_{i,k}/a_{i,i} & \text{if } k \in P_i^-, \\ -\beta_i a_{i,k}/a_{i,i} & \text{if } k \in P_i^+, \end{cases} \qquad \alpha_i = \frac{\sum_{j \in N_i} a_{i,j}^-}{\sum_{k \in P_i} a_{i,k}^-}, \qquad \beta_i = \frac{\sum_{j \in N_i} a_{i,j}^+}{\sum_{k \in P_i} a_{i,k}^+},$$

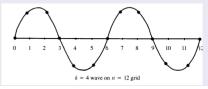
where $a_{i,j}^+ = \max\{a_{i,j}, 0\}$, $a_{i,j}^- = \min\{a_{i,j}, 0\}$, N_i is the set of variables connected to i (i.e. all j such that $a_{i,j} \neq 0$), P_i the set of coarse variables strongly connected to i, which is partitioned in P_i^- (negative couplings) and P_i^+ (positive couplings). The interpolation operator, assuming to have regrouped and ordered the variables to have all those corresponding to indexes in C at the beginning, is then defined as $P = [I; \Delta]$ where I is the identity matrix of size |C| and Δ is the matrix such that $\Delta_{i,j} = \delta_{i,j}$.

Classical multigrid methods

- Consider a linear elliptic PDE: D(z, u(z)) = f(z) $z \in \Omega + b.c.$
- Discretize on grid h. Get a large-scale linear system $A_hx_h = b_h$.

Consider the discretization of the same PDE problem on a coarser grid: $A_H x_H = b_H$, H > h.

- Relaxation methods fails to eliminate smooth components of the error efficiently.
- Smooth components projected on a coarser grid appear more oscillatory.



Coarse problem construction

Define transfer grid operators: P prolongation and R restriction to project vectors from a grid to another: $x_H = Rx_h$, $x_h = Px_H$, such that $R = \alpha P^T$.

Geometry exploitation

The geometrical structure of the problem is exploited to build R and P.

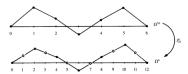


Figure 3.2: Interpolation of a vector on coarse grid Ω^{2h} to fine grid Ω^h .

