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SPURIOUS VALLEYS, NP-HARDNESS, AND TRACTABILITY1
OF SPARSE MATRIX FACTORIZATION WITH FIXED SUPPORT2

QUOC-TUNG LE∗, ELISA RICCIETTI∗, AND REMI GRIBONVAL∗3

Abstract. The problem of approximating a dense matrix by a product of sparse factors is a4
fundamental problem for many signal processing and machine learning tasks. It can be decomposed5
into two subproblems: finding the position of the non-zero coefficients in the sparse factors, and6
determining their values. While the first step is usually seen as the most challenging one due to its7
combinatorial nature, this paper focuses on the second step, referred to as sparse matrix approximation8
with fixed support. First, we show its NP-hardness, while also presenting a nontrivial family of9
supports making the problem practically tractable with a dedicated algorithm. Then, we investigate10
the landscape of its natural optimization formulation, proving the absence of spurious local valleys11
and spurious local minima, whose presence could prevent local optimization methods to achieve global12
optimality. The advantages of the proposed algorithm over state-of-the-art first-order optimization13
methods are discussed.14
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1. Introduction. Matrix factorization with sparsity constraints is the problem of17
approximating a (possibly dense) matrix as the product of two or more sparse factors.18
It is playing an important role in many domains and applications such as dictionary19
learning and signal processing [39, 35, 34], linear operator acceleration [27, 26, 5],20
deep learning [10, 11, 6], to mention only a few. Given a matrix Z, sparse matrix21
factorization can be expressed as the optimization problem:22

(1.1)
Minimize
X1,...,XN

‖Z −X1 . . . XN‖2F

subject to: constraints on supp(Xi), ∀1 ≤ i ≤ N
23

where supp(X) := {(i, j) | Xi,j 6= 0} is the set of indices whose entries are nonzero.24
For example, one can employ generic sparsity constraints such as |supp(Xi)| ≤25

ki, 1 ≤ i ≤ N where ki controls the sparsity of each factor. More structured types26
of sparsity (for example, sparse rows/ columns) can also be easily encoded since the27
notion of support supp(X) captures completely the sparsity structure of a factor.28

Despite its importance, Problem (1.1) is challenging due to its non-convexity as29
well as the discrete nature of supp(Xi) (which can lead to an exponential number of30
supports to consider). Existing algorithms to tackle Problem (1.1) directly comprise31
heuristics such as Proximal Alternating Linearization Minimization (PALM) [3, 27]32
and its variants [23].33

In this work, we consider a restricted class of instances of Problem (1.1), in which34
just two factors are considered (N = 2) and with prescribed supports. We call this35
problem fixed support (sparse) matrix factorization (FSMF). In details, given a matrix36
A ∈ Rm×n, we look for two sparse factors X,Y that solve the following problem:37

(FSMF)
Minimize

X∈Rm×r,Y ∈Rn×r
L(X,Y ) = ‖A−XY >‖2

Subject to: supp(X) ⊆ I and supp(Y ) ⊆ J
38
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where ‖ · ‖ is the Frobenius norm, I ⊆ JmK × JrK, J ⊆ JnK × JrK1 are given support39
constraints, i.e., supp(X) ⊆ I implies that ∀(i, j) /∈ I,Xij = 0.40

The main aim of this work is to investigate the theoretical properties of (FSMF).41
To the best of our knowledge the analysis of matrix factorization problems with42
fixed supports has never been addressed in the literature. This analysis is however43
interesting, for the following reasons:44
1. The asymptotic behaviour of heuristics such as PALM [3, 27] when applied to45

Problem (1.1) can be characterized by studying the behaviour of the method on an46
instance of (FSMF). Indeed, PALM updates the factors alternatively by a projected47
gradient step onto the set of the constraints. It is experimentally observed that48
for many instances of the problem, the support becomes constant after a certain49
number of iterations. Let us illustrate this on an instance of Problem (1.1) with50
N = 2, Xi ∈ R100×100, i = 1, 2 and the constraints |supp(Xi)| ≤ 1000, i = 1, 2.51
In this setting, running PALM is equivalent to an iterative method in which we52
consecutively perform one step of gradient descent for each factor, while keeping53
the other fixed, and project that factor onto {X | X ∈ R100×100, |supp(X)| ≤ 1000}54
by simple hard-thresholding. Figure 1 illustrates the evolution of the difference55
between the support of each factor before and after each iteration of PALM56
through 1000 iterations (the difference between two sets B1 and B2 is measured by57
|(B1 \B2)∪ (B2 \B1)|). We observe that when the iteration counter is large enough,58
the factor supports do not change (or equivalently they become fixed): further59
iterations of the algorithm simply optimize an instance of (FSMF). Therefore, to60
develop a more precise understanding of the possible convergence of PALM in such a61
context, it is necessary to understand properties of (FSMF). For instance, we show62
that PALM can potentially lead to iterates (X1

n, X
2
n) diverging to infinity due to63

the presence of a spurious local valley in the landscape of L(X,Y ) (cf Remark 4.22).64
This is not in conflict with the convergence results for PALM in this context [3, 27]65
since these are established under the assumption of bounded iterates.

Fig. 1. Support change of the first (a) and the second (b) factors during PALM.

66
2. While (FSMF) is just a class of the general problem (1.1), its coverage includes67

many other interesting problems:68
• Low rank matrix approximation (LRMA) [12]: By taking I = JmK× JrK,69
J = JnK × JrK, addressing (FSMF) is equivalent to looking for the best rank r70
matrix approximating A, cf. Figure 2(a). We will refer to this instance in the71
following as the full support case. This problem is known to be polynomially72
tractable, cf. Section 3. This work enlarges the family of supports for which73
(FSMF) remains tractable.74

1∀m ∈ N, JmK := {1, . . . ,m}
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FIXED SUPPORT MATRIX FACTORIZATION 3

• LU decomposition [17, Chapter 3.2]: Considering m = n = r and I =75
J = {(i, j) | 1 ≤ j ≤ i ≤ n}, it is easy to check that (FSMF) is equivalent to76
factorizing A into a lower and an upper triangular matrix (X and Y respectively,77
cf. Figure 2(b)), and in this case, the infimum of (FSMF) is always zero. It78
is worth noticing that there exists a non-empty set of matrices for which this79
infimum is not attained (or equivalently matrices which do not admit the LU80
decomposition [17]). This behaviour will be further discussed in Section 2 and81
Section 4. More importantly, our analysis of (FSMF) will cover the non-zero82
infimum case as well.

Fig. 2. Illustrations for(a) LRMA and (b) LU decomposition as instances of (FSMF).

83
• Butterfly structure and fast transforms [10, 6, 11, 26, 5]: Many linear84

operators admit fast algorithms since their associated matrices can be written as85
a product of sparse factors whose supports are known to possess the butterfly86
structure (and they are known in advance). This is the case for instance of87
the Discrete Fourier Transform (DFT) or the Hadamard transform (HT). For88
example, a Hadamard transform of size 2N × 2N can be written as the product89
of N factors of size 2N × 2N whose factors have two non-zero coefficients per row90
and per column. Figure 3 illustrates such a factorization for N = 3. Although

Fig. 3. The factorization of the Hadamard transform of size 8× 8 (N = 3).

91
our analysis of (FSMF) only deals with N = 2, the butterfly structure allows one92
to reduce to the case N = 2 in a recursive2 manner [25, 44].93

• Hierarchical H-matrices [19, 20]: We prove in Appendix E that the class of94
hierarchically off-diagonal low-rank (HODLR) matrices (defined in [1, Section95
3.1], [19, Section 2.3]), a subclass of hierarchical H-matrices, can be expressed as96
the product of two factors with fixed supports, that are illustrated on Figure 4.97
Therefore, the task of finding the best H-matrix from this class to approximate a98
given matrix is reduced to (FSMF).99

• Matrix completion: We show that matrix completion can be reduced to100
(FSMF), which is the main result of Section 2.101
Our aim is to then study the theoretical properties of (FSMF) and in particular102

to assess its difficulty. This leads us to consider four complementary aspects.103
First, we show the NP-hardness of (FSMF). While this result contrasts with the104

theory established for coefficient recovery with a fixed support in the classical sparse105

2While revising this manuscript we heard about the work of Dao et al [9] introducing the “Monarch”
class of structured matrices, essentially corresponding to the first stage of the recursion from [25, 44].
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4 QUOC T. LE, ELISA RICCIETTI, REMI GRIBONVAL

Fig. 4. Two fixed supports for factors of a HODLR matrix of size 8× 8 illustration based on
analysis of Appendix E.

recovery problem (that can be trivially addressed by least squares), it is in line with the106
known hardness of related matrix factorization with additional constraints or different107
losses. Indeed, famous variants of matrix factorization such as non-negative matrix108
factorization (NMF) [41, 36], weighted low rank [15] and matrix completion [15] were109
all proved to be NP-hard. We prove the NP-hardness by reduction from the Matrix110
Completion problem with noise. To our knowledge this proof is new and cannot be111
trivially deduced from any existing result on the more classical full support case.112

Second, we show that besides its NP-hardness, problem (FSMF) also shares some113
properties with another hard problem: low-rank tensor approximation [37]. Similarly114
to the classical example of [37], which shows that the set of rank-two tensors is not115
closed, we show that there are support constraints I, J such that the set of matrix116
products XY > with “feasible” (X,Y ) (i.e., {XY > | supp(X) ⊆ I, supp(Y ) ⊆ J}),117
is not a closed set. Important examples are the supports (I, J) for which (FSMF)118
corresponds to LU matrix factorization. For such support constraints, there exists119
a matrix A such that the infimum of L(X,Y ) is zero and can only be approached if120
either X or Y have at least an arbitrarily large coefficient. This is precisely one of the121
settings leading to a diverging behavior of PALM (cf Remark 4.22).122

Third, we show that despite the hardness of (FSMF) in the general case, many123
pairs of support constraints (I, J) make the problem solvable by an effective direct124
algorithm based on the block singular value decomposition (SVD). The investigation125
of those supports is also covered in this work and a dedicated polynomial algorithm is126
proposed to deal with this family of supports. This includes for example the full support127
case. Our analysis of tractable instances of (FSMF) actually includes and substantially128
generalizes the analysis of the instances that can be classically handled with the129
SVD decomposition. In fact, the presence of the constraints on the support makes it130
impossible to directly use the SVD to solve the problem, because coefficients outside131
the support have to be zero. However, the presented family of support constraints132
allows for an iterative decomposition of the problem into "blocks" that can be exploited133
to build up an optimal solution using blockwise SVDs. This technique can be seen in134
many sparse representations of matrices (for example, hierarchical H-matrices [19, 20])135
to allow fast matrix-vector and matrix-matrix multiplication.136

The fourth contribution of this paper is the study of the landscape of the objective137
function L of (FSMF). Notably, we investigate the existence of spurious local minima138
and spurious local valleys, which will be collectively referred to as spurious objects.139
They will be formally introduced in Section 4, but intuitively these objects may140

This manuscript is for review purposes only.



FIXED SUPPORT MATRIX FACTORIZATION 5

represent a challenge for the convergence of local optimization methods.141
The global landscape of the loss functions for matrix decomposition related142

problems (matrix sensing [2, 28], phase retrieval [38], matrix completion [14, 13, 7])143
and neural network training (either with linear [45, 21, 42] or non-linear activation144
functions [29, 30]) has been a popular subject of study recently. These works have145
direct link to ours since matrix factorization without any support constraint can be146
seen either as a matrix decomposition problem or as a specific case of neural network147
(with two layers, no bias and linear activation function). Notably it has been proved148
[45] that for linear neural networks, every local minimum is a global minimum and if149
the network is shallow (i.e., there is only one hidden layer), critical points are either150
global minima or strict saddle points (i.e., their Hessian have at least one –strictly–151
negative eigenvalue). However, there is still a tricky type of landscape that could152
represent a challenge for local optimization methods and has not been covered until153
recently: spurious local valleys [29, 42]. In particular, the combination of these results154
shows the benign landscape for LMRA, a particular instance of (FSMF).155

However, to the best of our knowledge, existing analyses of landscape are only156
proposed for neural network training in general and matrix factorization problem in157
particular without support constraints, cf. [45, 42, 21], while the study of the landscape158
of (FSMF) remains untouched in the literature and our work can be considered as159
a generalization of such previous results. Moreover, unlike many existing results of160
matrix decomposition problems that are proved to hold with high probability under161
certain random models [2, 28, 38, 14, 13, 7, 8]), our result deterministically ensures162
the benign landscape for each matrix A, under certain conditions on the support163
constraints (I, J).164

To summarize, our main contributions in this paper are:165
1) We prove that (FSMF) is NP-hard in Theorem 2.4. In addition, in light of classical166

results on the LU decomposition, we highlight in Section 2 a challenge related to167
the possible non-existence of an optimal solution of (FSMF) .168

2) We introduce families of support constraints (I, J) making (FSMF) tractable169
(Theorem 3.3 and Theorem 3.8) and provide dedicated polynomial algorithms for170
those families.171

3) We show that the landscape of (FSMF) corresponding to the support pairs (I, J)172
in these families are free of spurious local valleys, regardless of the factorized173
matrix A (Theorem 4.12, Theorem 4.13). We also investigate the presence of174
spurious local minima for such families (Theorem 4.12, Theorem 4.19).175

4) These results might suggest a conjecture that holds true for the full support case:176
an instance of (FSMF) is tractable if and only if its corresponding landscape is177
benign, i.e. free of spurious objects. We give a counter-example to this conjecture178
(Remark 4.23) and illustrate numerically that even with support constraints179
ensuring a benign landscape, state-of-the-art gradient descent methods can be180
significantly slower than the proposed dedicated algorithm.181

1.1. Notations. For n ∈ N, define JnK := {1, . . . , n}. The notation 0 (resp. 1)182
stands for a matrix with all zeros (resp. all ones) coefficients. The identity matrix of183
size n× n is denoted by In. Given a matrix A ∈ Rm×n and T ⊆ JnK, A•,T ∈ Rm×|T |184
is the submatrix of A restricted to the columns indexed in T while AT ∈ Rm×n is185
the matrix that has the same columns as A for indices in T and is zero elsewhere.186
If T = {k} is a singleton, A•,T is simplified as A•,k (the kth column of A). For187
(i, j) ∈ JmK× JnK, Ai,j is the coefficient of A at index (i, j). If S ⊆ JmK, T ⊆ JnK, then188
AS,T ∈ R|S|×|T | is the submatrix of A restricted to rows and columns indexed in S189

This manuscript is for review purposes only.



6 QUOC T. LE, ELISA RICCIETTI, REMI GRIBONVAL

and T respectively.190
A support constraint I on a matrix X ∈ Rm×r can be interpreted either as a191

subset I ⊆ JmK× JrK or as its indicator matrix 1I ∈ {0, 1}m×r defined as: (1I)i,j = 1192
if (i, j) ∈ I and 0 otherwise. Both representations will be used interchangeably and193
the meaning should be clear from the context. For T ⊆ JrK, we use the notation194
IT := I ∩ (JmK× T ) (this is consistent with the notation AT introduced earlier).195

The notation supp(A) is used for both vectors and matrices: if A ∈ Rm is a vector,196
then supp(A) = {i | Ai 6= 0} ⊆ JmK; if A ∈ Rm×n is a matrix, then supp(A) = {(i, j) |197
Ai,j 6= 0} ⊆ JmK × JnK. Given two matrices A,B ∈ Rm×n, the Hadamard product198
A�B between A and B is defined as (A�B)i,j = Ai,jBi,j ,∀(i, j) ∈ JmK× JnK. Since199
a support constraint I of a matrix X can be thought of as a binary matrix of the same200
size, we define X � I := X � 1I analogously (it is a matrix whose coefficients in I are201
unchanged while the others are set to zero).202

2. Matrix factorization with fixed support is NP-hard. To show that203
(FSMF) is NP-hard we use the classical technique to prove NP-hardness: reduction.204
Our choice of reducible problem is matrix completion with noise [15].205

Definition 2.1 (Matrix completion with noise [15]). Let W ∈ {0, 1}m×n be a206
binary matrix. Given A ∈ Rm×n, s ∈ N, the matrix completion problem (MCP) is:207

(MCP) Minimize
X∈Rm×s,Y ∈Rn×s

‖A−XY >‖2W = ‖(A−XY >)�W‖2.208

This problem is NP-hard even when s = 1 [15] by its reducibility from Maximum-Edge209
Biclique Problem, which is NP-complete [33]. This is given in the following theorem:210

Theorem 2.2 (NP-hardness of matrix completion with noise [15]). Given a211
binary weighting matrix W ∈ {0, 1}m×n and A ∈ [0, 1]m×n, the optimization problem212

(MCPO) Minimize
x∈Rm,y∈Rn

‖A− xy>‖2W .213

is called rank-one matrix completion problem (MCPO). Denote p∗ the infimum of214
(MCPO) and let ε = 2−12(mn)−7. It is NP-hard to find an approximate solution with215
objective function accuracy less than ε, i.e. with objective value p ≤ p∗ + ε.216

The following lemma gives a reduction from (MCPO) to (FSMF).217

Lemma 2.3. For any binary matrix W ∈ {0, 1}m×n, there exist an integer r and218
two sets I and J such that for all A ∈ Rm×n, (MCPO) and (FSMF) share the same219
infimum. I and J can be constructed in polynomial time. Moreover, if one of the220
problems has a known solution that provides objective function accuracy ε, we can find221
a solution with the same accuracy for the other one in polynomial time.222

Proof sketch. Up to a transposition, we can assume without loss of generality223
that m ≥ n. Let r = n + 1 = min(m,n) + 1. We define I ∈ {0, 1}m×(n+1) and224
J ∈ {0, 1}n×(n+1) as follows:225

Ii,j =

{
1−Wi,j if j 6= n

1 if j = n+ 1
, Ji,j =

{
1 if j = i or j = n+ 1

0 otherwise
226

This construction can clearly be made in polynomial time. We show in the supplemen-227
tary material (Appendix A) that the two problems share the same infimum.228

Using Lemma 2.3, we obtain a result of NP-hardness for (FSMF) as follows.229
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Theorem 2.4. When A ∈ [0, 1]m×n, it is NP-hard to solve (FSMF) with arbitrary230
index sets I, J and objective function accuracy less than ε = 2−12(mn)−7.231

Proof. Given any instance of (MCPO) (i.e., two matrices A ∈ [0, 1]m×n and232
W ∈ {0, 1}m×n), we can produce an instance of (FSMF) (the same matrix A and233
I ∈ {0, 1}m×r, J ∈ {0, 1}n×r) such that both have the same infimum (Lemma 2.3).234
Moreover, for any given objective function accuracy, we can use the procedure of235
Lemma 2.3 to make sure the solutions of both problems share the same accuracy.236

Since all procedures are polynomial, this defines a polynomial reduction from237
(MCPO) to (FSMF). Because (MCPO) is NP-hard to obtain a solution with objective238
function accuracy less than ε (Theorem 2.2), so is (FSMF).239

We point out that, while the result is interesting on its own, for some applications,240
such as those arising in machine learning, the accuracy bound O((mn)−7) may not be241
really appealing. We thus keep as an interesting open research direction to determine242
if some precision threshold exists that make the general problem easy.243

Lemma 2.3 constructs a hard instance where (I, J) ∈ {0, 1}m×r × {0, 1}n×r and244
r = min(m,n) + 1. It is also interesting to investigate the hardness of (FSMF) given a245
fixed r. When r = 1, the problem is polynomially tractable since this case is covered by246
Theorem 3.3 below. On the other hand, when r ≥ 2, the question becomes complicated247
due to the fact that the set {XY > | supp(X) ⊆ I, supp(Y ) ⊆ J} is not always closed.248
In Remark A.1, we show an instance of (FSMF) where the infimum is zero but cannot249
be attained. Interestingly enough, this is exactly the example for the non-existence250
of an exact LU decomposition of a matrix in R2×2 presented in [17, Chapter 3.2.12].251
We emphasize that this is not a mere consequence of the non-coercivity of L(X,Y ) –252
which follows from rescaling invariance, see e.g. Remark 4.2 – as we will also present253
support constraints for which the problem always admits a global minimizer and254
can be solved with an efficient algorithm. More generally, one can even show that255
the set L of square matrices of size n × n having an exact LU decomposition (i.e.,256
L := {XY > | supp(X) ⊆ I, supp(J) ⊆ J} where I = J = {(i, j) | 1 ≤ j ≤ i ≤ n}) is257
dense in Rn×n (since a matrix having all non-zero leading principal minors admits an258
exact LU factorization [17, Theorem 3.2.1]) but L ( Rn×n. Thus, L is not closed.259

3. Tractable instances of matrix factorization with fixed support. Even260
though (FSMF) is generally NP-hard, when we consider the full support case I =261
JmK× JrK, J = JnK× JrK the problem is equivalent to LRMA [12], which can be solved262
using the Singular Value Decomposition (SVD) [16]3. This section is devoted to enlarge263
the family of supports for which (FSMF) can be solved by an effective direct algorithm264
based on blockwise SVDs. We start with an important definition:265

Definition 3.1 (Support of rank-one contribution). Given two support con-266
straints I ∈ {0, 1}m×r and J ∈ {0, 1}n×r of (FSMF) and k ∈ JrK, we define the267
kth rank-one contribution support Sk(I, J) (or in short, Sk) as: Sk(I, J) = I•,kJ

>
•,k.268

This can be seen either as: a tensor product: Sk ∈ {0, 1}m×n is a binary matrix or a269
Cartesian product: Sk is a set of matrix indices defined as supp(I•,k)× supp(J•,k).270

Given a pair of support constraints I, J , if supp(X) ⊆ I, supp(Y ) ⊆ J , we271
have: supp(X•,kY

>
•,k) ⊆ Sk, ∀k ∈ JrK. Since XY > =

∑r
k=1X•,kY

>
•,k the notion of272

contribution support Sk captures the constraint on the support of the kth rank-one273
contribution, X•,kY >•,k, of the matrix product XY > (illustrated in Figure 5).274

3SVD can be computed to machine precision in O(mn2) [22], see also [40, Lecture 31, page 236].
It is thus convenient to think of LRMA as polynomially solvable.
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In the case of full supports (Sk = 1m×n for each k ∈ JrK), the optimal solution can275
be obtained in a greedy manner: indeed, it is well known that Algorithm 3.1 computes276
factors achieving the best rank-r approximation to A (notice that here the algorithm277
also works for complex-valued matrices):278

Algorithm 3.1 Generic Greedy Algorithm
Require: A ∈ Rm×n or Cm×n; {Sk}k∈JrK rank-one supports
1: for i ∈ JrK do
2: (X•,i, Y•,i) = (u, v) where uv> is any best rank-one approximation to A� Si
3: A = A−X•,i, Y >•,i
4: end for
5: return (X,Y )

Even beyond the full support case, the output of Algorithm 3.1 always satisfies the279
support constraints due to line 2, however it may not always be the optimal solution280
of (FSMF). Our analysis of the polynomial tractability conducted below will allow us281
to show that, under appropriate assumptions on I, J , one can compute in polynomial282
time an optimal solution of (FSMF) using variants of Algorithm 3.1. The definition of283
these variants will involve a partition of JrK in terms of equivalence classes of rank-one284
supports:285

Fig. 5. Illustration the idea of support of rank-one contribution. Colored rectangles indicate the
support constraints (I, J) and the support constraints Sk on each component matrix X•,kY >•,k.

Definition 3.2 (Equivalence classes of rank-one supports, representative rank-286
one supports). Given I ∈ {0, 1}m×r, J ∈ {0, 1}n×r, define an equivalence relation287
on JrK as: i ∼ j if and only if Si = Sj (or equivalently (I•,i, J•,i) = (I•,j , J•,j)). This288
yields a partition of JrK into equivalence classes.289

Denote P the collection of equivalence classes. For each class P ∈ P denote SP a290
representative rank-one support, RP ⊆ JmK and CP ⊆ JnK the supports of rows and291
columns in SP , respectively. For every k ∈ P we have Sk = SP and supp(I•,k) = RP ,292
supp(J•,k) = CP .293

For every P ′ ⊆ P denote SP′ = ∪P∈P′SP ⊆ JmK×JnK and S̄P′ = (JmK×JnK)\SP′ .294

For instance, in the example in Figure 5 we have three distinct equivalence classes.295
With the introduction of equivalence classes, one can modify Algorithm 3.1 to make it296
more efficient, as in Algorithm 3.2: Instead of computing the SVD r times, one can297
simply compute it only |P| times. For the full support case, we have P = {JrK}, thus298
Algorithm 3.2 is identical to the classical SVD.299
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FIXED SUPPORT MATRIX FACTORIZATION 9

Fig. 6. An instance of support constraints (I, J) satisfying Theorem 3.3. We use colored
rectangles to indicate the support constraints (I, J). The indices belonging to the same equivalence
class share the same color.

Algorithm 3.2 Alternative Generic Greedy Algorithm
Require: A ∈ Rm×n or Cm×n; {SP }P∈P representative rank-one supports
1: for P ∈ P do
2: (X•,P , Y•,P ) = (U, V ) where UV > is any best rank-|P | approximation to A�SP
3: A = A−X•,P , Y >•,P
4: end for
5: return (X,Y )

A first simple sufficient condition ensuring the tractability of an instance of (FSMF)300
is stated in the following theorem.301

Theorem 3.3. Consider I ∈ {0, 1}m×r, J ∈ {0, 1}n×r, and P the collection of302
equivalence classes of Definition 3.2. If the representative rank-one supports are pair-303
wise disjoint, i.e., SP ∩ SP ′ = ∅ for each distinct P, P ′ ∈ P, then matrix factorization304
with fixed support is tractable for any A ∈ Rm×n.305

Proof. In this proof, for each equivalent class P ∈ P (Definition 3.2) we use the306
notations XP ∈ Rm×r, YP ∈ Rn×r (introduced in Subsection 1.1). We also use the307
notations RP , CP (Definition 3.2). For each equivalent class P , we have:308

(3.1) (XPY
>
P )RP ,CP = XRP ,PY

>
CP ,P309

and the product XY > can be decomposed as: XY > =
∑
P∈P XPY

>
P . Due to the310

hypothesis of this theorem, with P, P ′ ∈ P, P ′ 6= P , we further have:311

(3.2) XP ′Y
>
P ′ � SP = 0312

Algorithm 3.3 Fixed support matrix factorization (under Theorem 3.3 assumptions)
1: procedure SVD_FSMF(A ∈ Rm×n, I ∈ {0, 1}m×r, J ∈ {0, 1}n×r)
2: Partition JrK into P (Definition 3.2) to get {SP }P∈P
3: return (X,Y ) using Algorithm 3.2 with input A, {SP }P∈P
4: end procedure
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The objective function L(X,Y ) is:313

‖A−XY >‖2 =

(∑
P∈P
‖(A−XY >)� SP ‖2

)
+ ‖(A−XY >)� S̄P‖2

=

(∑
P∈P
‖(A−

∑
P ′∈P

XP ′Y
>
P ′)� SP ‖2

)
+ ‖(A−

∑
P ′∈P

XP ′Y
>
P ′)� S̄P‖2

(3.2)
=

(∑
P∈P
‖(A−XPY

>
P )� SP ‖2

)
+ ‖A� S̄P‖2

=

(∑
P∈P
‖ARP ,CP − (XPY

>
P )RP ,CP ‖2

)
+ ‖A� S̄P‖2

(3.1)
=

(∑
P∈P
‖ARP ,CP −XRP ,PY

>
CP ,P ‖

2

)
+ ‖A� S̄P‖2

(3.3)

314

Therefore, if we ignore the constant term ‖A � S̄P‖2, the function L(X,Y ) is de-315
composed into a sum of functions ‖ARP ,CP − XRP ,PY

>
CP ,P

‖2, which are LRMA316
instances. Since all the optimized parameters are {(XRP ,P , YCP ,P )}P∈P , an opti-317
mal solution of L is {(X?

RP ,P
, Y ?CP ,P )}P∈P , where (X?

RP ,P
, Y ?CP ,P ) is a minimizer of318

‖ARP ,CP −XRP ,PY
>
CP ,P

‖2 which is computed efficiently using a truncated SVD. Since319
the blocks associated to distinct P are disjoint, these SVDs can be performed blockwise,320
in any order, and even in parallel.321

For these easy instances, we can therefore recover the factors in polynomial time322
with the procedure described in Algorithm 3.3. Given a target matrix A ∈ Rm×n323
and support constraints I ∈ {0, 1}m×r, J ∈ {0, 1}n×r satisfying the condition in324
Theorem 3.3, Algorithm 3.3 returns two factors (X,Y ) solution of (FSMF).325

As simple as this condition is, it is satisfied in some important cases, for instance326
for a class of Hierarchical matrices (HODLR, cf. Appendix E), or for the so-called327
butterfly supports: in the latter case, the condition is used in [25, 44] to design an328
efficient hierarchical factorization method, which is shown to outperform first-order329
optimization approaches commonly used in this context, in terms both of computational330
time and accuracy.331

In the next result, we explore the tractability of (FSMF) while allowing partial332
intersection between two representative rank-one contribution supports.333

Definition 3.4 (Complete equivalence classes of rank-one supports - CEC).334
P ∈ P is a complete equivalence class (or CEC) if |P | ≥ min{|CP |, |RP |} with335
CP , RP as in Definition 3.2. Denote P? ⊆ P the family of all complete equivalence336
classes, T = ∪P∈P?P ⊆ JrK, T̄ = JrK\T , and the shorthand ST = SP? .337

The interest of complete equivalence classes is that their expressivity is powerful338
enough to represent any matrix whose support is included in ST , as illustrated by the339
following lemma.340

Lemma 3.5. Given I ∈ {0, 1}m×r, J ∈ {0, 1}n×r, consider T , ST as in Defi-341
nition 3.4. For any matrix A ∈ Rm×n such that supp(A) ⊆ ST , there exist X ∈342
Rm×r, Y ∈ Rn×r such that A = XY > and supp(X) ⊆ IT , supp(Y ) ⊆ JT . Such a pair343
can be computed using Algorithm 3.3 (X,Y ) = SVD_FSMF(A, IT , JT ).344
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The proof of Lemma 3.5 is deferred to the supplementary material (Appendix B.1).345
The next definition introduces the key properties that the indices k ∈ JrK which are346
not in any CEC need to satisfy in order to make (FSMF) overall tractable.347

Definition 3.6 (Rectangular support outside CECs of rank-one supports). Given348
I ∈ {0, 1}m×r, J ∈ {0, 1}n×r, consider T and ST as in Definition 3.4 and T̄ = JrK \T .349
For k ∈ T̄ define the support outside CECs of the kth rank-one support. as: S ′k =350
Sk \ ST . If S ′k = Rk × Ck for some Rk ⊆ JmK, Ck ⊆ JnK, (or equivalently S ′k is of351
rank at most one), we say the support outside CECs of the kth rank-one support S ′k is352
rectangular.353

To state our tractability result, we further categorize the indices in I and J as follows:354

Definition 3.7 (Taxonomy of indices of I and J). With the notations of Defini-355
tion 3.6, assume that S ′k is rectangular for all k ∈ T̄ . We decompose the indices of I356
(resp J) into three sets as follows:357

Classification for I Classification for J

1 IT = {(i, k) | k ∈ T, i ∈ JmK} ∩ I JT = {(j, k) | k ∈ T, j ∈ JnK} ∩ J
2 I1

T̄
= {(i, k) | k /∈ T, i ∈ Rk} ∩ I J1

T̄
= {(j, k) | k /∈ T, j ∈ Ck} ∩ J

3 I2
T̄

= {(i, k) | k /∈ T, i /∈ Rk} ∩ I J2
T̄

= {(j, k) | k /∈ T, j /∈ Ck} ∩ J

The following theorem generalizes Theorem 3.3.358

Theorem 3.8. Consider I ∈ {0, 1}m×r, J ∈ {0, 1}n×r. Assume that for all k ∈ T̄ ,359
S ′k is rectangular and that for all k, l ∈ T̄ we have S ′k = S ′l or S ′k ∩ S ′l = ∅. Then,360
(I1
T̄
, J1
T̄

) satisfy the assumptions of Theorem 3.3. Moreover, for any matrix A ∈ Rm×n,361
two instances of (FSMF) with data (A, I, J) and (A� S̄T , I1

T̄
, J1
T̄

) respectively, share362
the same infimum. Given an optimal solution of one instance, we can construct the363
optimal solution of the other in polynomial time. In other word, (FSMF) with (A, I, J)364
is polynomially tractable.365

Theorem 3.8 is proved in the supplementary material (Appendix B.2). It implies366
that solving the problem with support constraints (I, J) can be achieved by reducing to367
another problem, with support constraints satisfying the assumptions of Theorem 3.3.368
The latter problem can thus be efficiently solved by Algorithm 3.3. In particular,369
Theorem 3.3 is a special case of Theorem 3.8 when all the equivalent classes (including370
CECs) have disjoint representative rank-one supports.371

Figure 7 shows an instance of (I, J) satisfying the assumptions of Theorem 3.8.372
The extension in Theorem 3.8 is not directly motivated by concrete examples, but it373
is rather introduced as a first step to show that the family of polynomially tractable374
supports (I, J) can be enlarged, as it is not restricted to just the family introduced in375
Theorem 3.3. An algorithm for instances satisfying the assumptions of Theorem 3.8 is376
given in Algorithm 3.4 (more details can be found in Corollary B.3 and Remark B.4377
in Appendix B in the supplementary material). In Algorithm 3.4, two calls to378
Algorithm 3.3 are made, they can be done in any order (Line 3 and Line 4 can be379
switched without changing the result).380
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Fig. 7. An instance of support constraints (I, J) satisfying the assumptions of Theorem 3.8.
We have T = {2, 3}. The supports outside CEC S′1 and S′4 are disjoint.

Algorithm 3.4 Fixed support matrix factorization (under Theorem 3.8’s assumptions)
1: procedure SVD_FSMF2(A ∈ Rm×n, I ∈ {0, 1}m×r, J ∈ {0, 1}n×r)
2: Partition the indices of I, J into IT , I1

T̄
, I2
T̄
(and JT , J1

T̄
, J2
T̄
) (Definition 3.6).

3: (XT , YT ) = SVD_FSMF(A� ST , IT , JT ) (T,ST as in Definition 3.4).
4: (X1

T̄
, Y 1
T̄

) = SVD_FSMF(A� S̄T , I1
T̄
, J1
T̄

)
5: return (XT +X1

T̄
, YT + Y 1

T̄
)

6: end procedure

4. Landscape of matrix factorization with fixed support. In this section,381
we first recall the definition of spurious local valleys and spurious local minima, which382
are undesirable objects in the landscape of a function, as they may prevent local383
optimization methods to converge to globally optimal solutions. Previous works384
[42, 45, 21] showed that the landscape of the optimization problem associated to385
low rank approximation is free of such spurious objects, which potentially gives the386
intuition for its tractability.387

We prove that similar results hold for the much richer family of tractable support388
constraints for (FSMF) that we introduced in Theorem 3.3. The landscape with the389
assumptions of Theorem 3.8 is also analyzed. These results might suggest a natural390
conjecture: an instance of (FSMF) is tractable if and only if the landscape is benign.391
However, this is not true. We show an example that contradicts this conjecture: we392
show an instance of (FSMF) that can be solved efficiently, despite the fact that its393
corresponding landscape contains spurious objects.394

4.1. Spurious local minima and spurious local valleys. We start by recalling395
the classical definitions of global and local minima of a real-valued function.396

Definition 4.1 (Spurious local minimum [45, 31]). Consider L : Rd → R. A397
vector x∗ ∈ Rd is a:398
• global minimum (of L) if L(x∗) ≤ L(x),∀x.399
• local minimum if there is a neighborhood N of x∗ such that L(x∗) ≤ L(x),∀x ∈ N .400
• strict local minimum if there is a neighborhood N of x∗ such that L(x∗) <401
L(x),∀x ∈ N , x 6= x∗.402

• (strict) spurious local minimum if x∗ is a (strict) local minimum but it is not403
a global minimum.404

The presence of spurious local minima is undesirable because local optimization405
methods can get stuck in one of them and never reach the global optimum.406
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Remark 4.2. With the loss functions L(X,Y ) considered in this paper, strict local407
minima do not exist since for every invertible diagonal matrix D, possibly arbitrarily408
close to the identity, we have L(XD,Y D−1) = L(X,Y ).409

However, this is not the only undesirable landscape in an optimization problem:410
spurious local valleys, as defined next, are also challenging.411

Definition 4.3 (Sublevel Set [4]). Consider L : Rd → R. For every α ∈ R, the412
α-level set of L is the set Eα = {x ∈ Rd | L(x) ≤ α}.413

Definition 4.4 (Path-Connected Set and Path-Connected Component). A subset414
S ⊆ Rd is path-connected if for every x, y ∈ S, there is a continuous function r :415
[0, 1] → S such that r(0) = x, r(1) = y. A path-connected component of E ⊆ Rd416
is a maximal path-connected subset: S ⊆ E is path-connected, and if S′ ⊆ E is417
path-connected with S ⊆ S′ then S = S′.418

Definition 4.5 (Spurious Local Valley [42, 29]). Consider L : Rd → R and a set419
S ⊂ Rd.420
• S is a local valley of L if it is a non-empty path-connected component of some421
sublevel set.422
• S is a spurious local valley of L if it is a local valley of L and does not contain423
a global minimum.424

The notion of spurious local valley is inspired by the definition of a strict spurious425
local minimum. If x∗ is a strict spurious local minimum, then {x∗} is a spurious local426
valley. However, the notion of spurious local valley has a wider meaning than just427
a neighborhood of a strict spurious local minimum. Figure 8 illustrates some other428
scenarios: as shown on Figure 8a, the segment (approximately) [10,+∞) creates a

Fig. 8. Examples of functions with spurious objects.

429
spurious local valley, and this function has only one local (and global) minimizer,430
at zero; in Figure 8b, there are spurious local minima that are not strict, but form431
a spurious local valley anyway. It is worth noticing that the concept of a spurious432
local valley does not cover that of a spurious local minimum. Functions can have433
spurious (non-strict) local minima even if they do not possess any spurious local valley434
(Figure 8c). Therefore, in this paper, we treat the existence of spurious local valleys435
and spurious local minima independently. The common point is that if the landscape436
possesses either of them, local optimization methods need to have proper initialization437
to have guarantees of convergence to a global minimum.438

4.2. Previous results on the landscape. Previous works [21, 45] studied the439
non-existence of spurious local minima of (FSMF) in the classical case of “low rank440
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matrix approximation” (or full support matrix factorization)4. To prove that a critical441
point is never a spurious local minimum, previous work used the notion of strict saddle442
point (i.e a point where the Hessian is not positive semi-definite, or equivalently has443
at least one –strictly – negative eigenvalue), see Definition 4.10 below. To prove the444
non-existence of spurious local valleys, the following lemma was employed in previous445
works [42, 29]:446

Lemma 4.6 (Sufficient condition for the non-existence of any spurious local valley447
[42, Lemma 2]). Consider a continuous function L : Rd → R. Assume that, for any448
initial parameter x̃ ∈ Rd, there exists a continuous path f : t ∈ [0, 1]→ Rd such that:449

a) f(0) = x̃.450
b) f(1) ∈ arg minx∈Rd L(x).451
c) The function L ◦ f : t ∈ [0, 1]→ R is non-increasing.452

Then there is no spurious local valley in the landscape of function L.453

The result is intuitive and a formal proof can be found in [42]. The theorem claims454
that given any initial point, if one can find a continuous path connecting the initial455
point to a global minimizer and the loss function is non-increasing on the path, then456
there does not exist any spurious local valley. We remark that although (FSMF) is a457
constrained optimization problem, Lemma 4.6 is still applicable because one can think458
of the objective function as defined on a subspace: L : R|I|+|J| → R. In this work, to459
apply Lemma 4.6, the constructed function f has to be a feasible path, defined as:460

Definition 4.7 (Feasible path). A feasible path w.r.t the support constraints461
(I, J) (or simply a feasible path) is a continuous function f(t) = (Xf (t), Yf (t)) :462
[0, 1]→ Rm×r × Rn×r satisfying supp(Xf (t)) ⊆ I, supp(Yf (t)) ⊆ J, ∀t ∈ [0, 1].463

Conversely, we generalize and formalize an idea from [42] into the following lemma,464
which gives a sufficient condition for the existence of a spurious local valley:465

Lemma 4.8 (Sufficient condition for the existence of a spurious local valley).466
Consider a continuous function L : Rd → R whose global minimum is attained. Assume467
we know three subsets S1, S2, S3 ⊂ Rd such that:468

1) The global minima of L are in S1.469
2) Every continuous path from S3 to S1 passes through S2.470
3) inf

x∈S2

L(x) > inf
x∈S3

L(x) > inf
x∈S1

L(x).471

Then L has a spurious local valley. Moreover, any x ∈ S3 such that L(x) < inf
x∈S2

L(x)472

is a point inside a spurious local valley.473

Proof. Denote Σ = {x | L(x) = infx∈Rd L(θ)} the set of global minimizers of L. Σ474
is not empty due to the assumption that the global minimum is attained, and Σ ⊆ S1475
by the first assumption.476

Since infx∈S2
L(x) > infx∈S3

L(x), there exists τ ∈ S3, L(τ) < infx∈S2
L(x). Con-477

sider Φ the path-connected component of the sublevel set {x | L(x) ≤ L(τ)} that478
contains τ . Since Φ is a non-empty path-connected component of a level set, it is a479
local valley. It is thus sufficient to prove that Φ ∩ Σ = ∅ to obtain that it matches the480
very definition of a spurious local valley.481

Indeed, by contradiction, let’s assume that there exists τ ′ ∈ Φ∩Σ. Since τ, τ ′ ∈ Φ482
and Φ is path-connected, by definition of path-connectedness there exists a continuous483

4Since previous works also considered the case r ≥ m,n, low rank approximation might be
misleading sometimes. That is why we occasionally use the name full support matrix factorization to
emphasize this fact., where no support constraints are imposed (I = JmK× JrK, J = JnK× JrK)
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function f : [0, 1] → Φ such that f(0) = τ ∈ S3, f(1) = τ ′ ∈ Σ ⊆ S1. Due to the484
assumption that every continuous path from S3 to S1 has to pass through a point485
in S2, there must exist t ∈ (0, 1) such that f(t) ∈ S2 ∩ Φ. Therefore, L(f(t)) ≤ L(τ)486
(since f(t) ∈ Φ) and L(f(t)) > L(τ) (since f(t) ∈ S2), which is a contradiction.487

To finish this section, we formally recall previous results which are related to488
(FSMF) and will be used in our subsequent proofs. The questions of the existence of489
spurious local valleys and spurious local minima were addressed in previous works for490
full support matrix factorization and deep linear neural networks [42, 29, 45, 21]. We491
present only results related to our problem of interest.492

Theorem 4.9 (No spurious local valleys in linear networks [42, Theorem 11]).493
Consider linear neural networks of any depth K ≥ 1 and of any layer widths pk ≥ 1 and494
any input - output dimension n,m ≥ 1 with the following form: Φ(b, θ) = WK . . .W1b495
where θ = (Wi)

K
i=1, and b ∈ Rn is a training input sample. With the squared loss496

function, there is no spurious local valley. More specifically, the function L(θ) =497
‖A− Φ(B, θ)‖2 satisfies the condition of Lemma 4.6 for any matrices A ∈ Rm×N and498
B ∈ Rn×N (A and B are the whole sets of training output and input respectively).499

Definition 4.10 (Strict saddle property [45, Definition 3]). Consider a twice500
differentiable function f : Rd → R. If each critical point of f is either a global minimum501
or a strict saddle point then f is said to have the strict saddle property. When this502
property holds, f has no spurious local minimum.503

Even if f has the strict saddle property, it may have no global minimum, consider e.g.504
the function f(x) = −‖x‖22.505

Theorem 4.11 (No spurious local minima in shallow linear networks [45, Theorem506
3]). Let B ∈ Rd0×N , A ∈ Rd2×N be input and output training examples. Consider the507
problem:508

Minimize
X∈Rd0×d1 ,Y ∈Rd1×d2

L(X,Y ) = ‖A−XY B‖2509

If B is full row rank, f has the strict saddle property (see Definition 4.10) hence f510
has no spurious local minimum.511

Both theorems are valid for a particular case of matrix factorization with fixed512
support: full support matrix factorization. Indeed, given a factorized matrix A ∈513
Rm×n, in Theorem 4.9, if K = 2, B = In (n = N), then the considered function is514
L = ‖A−W2W1‖2. This is (FSMF) without support constraints I and J (and without515
a transpose on W1, which does not change the nature of the problem). Theorem 4.9516
guarantees that L satisfies the conditions of Lemma 4.6, thus has no spurious local517
valley.518

Similarly, in Theorem 4.11, if B = Id0
(d0 = N , therefore B is full row rank), we519

return to the same situation of Theorem 4.9. In general, Theorem 4.11 claims that520
the landscape of the full support matrix factorization problem has the strict saddle521
property and thus, does not have spurious local minima.522

However, once we turn to (FSMF) with arbitrary I and J , such benign landscape523
is not guaranteed anymore, as we will show in Remark 4.23. Our work in the next524
subsections studies conditions on the support constraints I and J ensuring the absence525
/ allowing the presence of spurious objects, and can be considered as a generalization526
of previous results with full supports. [45, 42, 21].527
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4.3. Landscape of matrix factorization with fixed support constraints.528
We start with the first result on the landscape in the simple setting of Theorem 3.3.529

Theorem 4.12. Under the assumption of Theorem 3.3, the function L(X,Y ) in530
(FSMF) does not admit any spurious local valley for any matrix A. In addition, L has531
the strict saddle property.532

Proof. Recall that under the assumption of Theorem 3.3, all the variables to533
be optimized are decoupled into “blocks” {(XRP ,P , YCP ,P )}P∈P (P,P are defined534
in Definition 3.2). We denote P = {P1, P2, . . . , P`}, Pi ⊆ JrK, 1 ≤ i ≤ `. From535
Equation (3.3), we have:536

(4.1) ‖A−XY >‖2 =

(∑
P∈P
‖ARP ,CP −XRP ,PY

>
CP ,P ‖

2

)
+ ‖A� S̄P‖2537

Therefore, the function L(X,Y ) is a sum of functions LP (XRP ,P , YCP ,P ) := ‖ARP ,CP −538
XRP ,PY

>
CP ,P

‖2, which do not share parameters and are instances of the full sup-539
port matrix factorization problem restricted to the corresponding blocks in A. The540
global minimizers of L are {(X?

RP ,P
, Y ?CP ,P )}P∈P , where for each P ∈ P the pair541

(X?
RP ,P

, Y ?CP ,P ) is any global minimizer of ‖ARP ,CP −XRP ,PY
>
CP ,P

‖2.542
1) Non-existence of any spurious local valley: By Theorem 4.9, from any initial543

point (X0
RP ,P

, Y 0
CP ,P

), there exists a continuous function fP (t) = (X̃P (t), ỸP (t)) :544

[0, 1] 7→ R|RP |×|P | × R|CP |×|P | satisfying the conditions in Lemma 4.6, which are:545
i) fP (0) = (X0

RP ,P
, Y 0
CP ,P

).546
ii) fP (1) = (X?

RP ,P
, Y ?CP ,P ).547

iii) LP ◦ fP : [0, 1]→ R is non-increasing.548
Consider a feasible path (Definition 4.7) f(t) = (X̃(t), Ỹ (t)) : [0, 1] 7→ Rm×r×Rr×n549
defined in such a way that X̃(t)RP ,P = X̃P (t) for each P ∈ P and similarly for550

Ỹ (t). Since L ◦ f =
∑
P∈P LP ◦ fP + ‖A � S̄P‖2, f satisfies the assumptions of551

Lemma 4.6, which shows the non-existence of any spurious local valley.552
2) Non-existence of any spurious local minimum: Due to the decomposition in553

Equation (4.1), the gradient and Hessian of L(X,Y ) have the following form:554

∂L

∂XRP ,P
=

∂LP
∂XRP ,P

,
∂L

∂YCP ,P
=

∂LP
∂YCP ,P

, ∀P ∈ P555

556

H(L)|(X,Y )


H(LP1)|(XRP1

,P1
,YCP1

,P1
)) . . . 0

...
. . .

...
0 . . . H(LP`)|(XRP` ,P` ,YCP` ,P` ))

557

Consider a critical point (X,Y ) of L(X,Y ) that is not a global minimizer. Since558
(X,Y ) is a critical point of L(X,Y ), (XRP ,P , YCPP ) is a critical point of the function559
LP for all P ∈ P. Since (X,Y ) is not a global minimizer of L(X,Y ), there exists560
P ∈ P such that (XRP ,P , YCP ,P ) is not a global minimizer of LP . By Theorem 4.11,561
H(LP )|(XRP ,P ,YCP ,P ) is not positive semi-definite. Hence, H(L)|(X,Y ) is not positive562

semi-definite either (since H(L)|(X,Y ) has block diagonal form). This implies that563
(X,Y ) it is a strict saddle point as well (hence, not a spurious local minimum).564

For spurious local valleys, we have the same results for the setting in Theorem 3.8.565
The proof is, however, less straightforward.566
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Theorem 4.13. If I, J satisfy the assumptions of Theorem 3.8, then for each567
matrix A the landscape of L(X,Y ) in (FSMF) has no spurious local valley.568

The following is a concept which will be convenient for the proof of Theorem 4.13.569

Definition 4.14 (CEC-full-rank). A feasible point (X,Y ) is said to be CEC-570
full-rank if ∀P ∈ P?, either XRP ,P or YCP ,P is full row rank.571

We need three following lemmas to prove Theorem 4.13:572

Lemma 4.15. Given I ∈ {0, 1}m×r, J ∈ {0, 1}n×r, consider T and ST as in573
Definition 3.2 and a feasible point (X,Y ). There exists a feasible path f : [0, 1] →574
Rm×r × Rn×r : f(t) = (Xf (t), Yf (t)) such that:575
1) f connects (X,Y ) with a CEC-full-rank point: f(0) = (X,Y ), and f(1) is CEC-576

full-rank.577
2) Xf (t)(Yf (t))> = XY >,∀t ∈ [0, 1].578

Lemma 4.16. Under the assumption of Theorem 3.8, for any CEC-full-rank fea-579
sible point (X,Y ), there exists feasible path f : [0, 1] → Rm×r × Rn×r : f(t) =580
(Xf (t), Yf (t)) such that:581
1) f(0) = (X,Y ).582
2) L ◦ f is non-increasing.583
3) (A−Xf (1)(Yf (1))>)� ST = 0.584

Lemma 4.17. Under the assumption of Theorem 3.8, for any CEC-full-rank fea-585
sible point (X,Y ) satisfying: (A − XY >) � ST = 0, there exists a feasible path586
f : [0, 1]→ Rm×r × Rn×r : f(t) = (Xf (t), Yf (t)) such that:587
1) f(0) = (X,Y ).588
2) L ◦ f is non-increasing.589
3) f(1) is an optimal solution of L.590

The proofs of Lemma 4.15, Lemma 4.16 and Lemma 4.17 can be found in Appendix D.1,591
Appendix D.2 and Appendix D.3 of the supplementary material.592

Proof of Theorem 4.13. Given any initial point (X0, Y 0), Lemma 4.15 shows the593
existence of a continuous path along which the product of XY > = X0(Y 0)> does not594
change (thus, L(X,Y ) is constant) and ending at a CEC-full-rank point. Therefore595
it is sufficient to prove the theorem under the additional assumption that (X0, Y 0)596
is CEC-full-rank. With this additional assumption, one can employ Lemma 4.16597
to build a continuous path f1(t) = (X1(t), Y1(t)), such that t 7→ L(X1(t), Y1(t)) is598
non-increasing, that connects (X0, Y 0) to a point (X1, Y 1) satisfying:599

(A−X1(Y 1)>)� ST = 0.600

Again, one can assume that (X1, Y 1) is CEC-full-rank (one can invoke Lemma 4.15601
one more time). Therefore, (X1, Y 1) satisfies the conditions of Lemma 4.17 . Hence,602
there exists a continuous path f2(t) = (X2(t), Y2(t)) that makes L(X2(t), Y2(t)) non-603
increasing and that connects (X1, Y 1) to (X∗, Y ∗), a global minimizer.604

Finally, since the concatenation of f1 and f2 satisfies the assumptions of Lemma 4.6,605
we can conclude that there is no spurious local valley in the landscape of ‖A−XY >‖2.606

The next natural question is whether spurious local minima exist in the setting of607
Theorem 3.8. While in the setting of Theorem 3.3, all critical points which are not608
global minima are saddle points, the setting of Theorem 3.8 allows second order critical609
points (point whose gradient is zero and Hessian is positive semi-definite), which are610
not global minima.611

This manuscript is for review purposes only.



18 QUOC T. LE, ELISA RICCIETTI, REMI GRIBONVAL

Example 4.18. Consider the following pair of support contraints I, J and factorized612
matrix I =

[
1 1
0 1

]
, J =

[
1 1
1 1

]
, A =

[
10 0
0 1

]
. With the notations of Definition 3.4 we613

have T = {1} and one can check that this choice of I and J satisfies the assumptions614
of Theorem 3.8. The infimum of L(X,Y ) = ‖A − XY >‖2 is zero, and attained,615
for example at X∗ = I2, Y

∗ = A. Consider the following feasible point (X0, Y0):616
X0 =

[
0 1
0 0

]
, Y0 =

[
0 10
0 0

]
. Since X0Y

>
0 =

[
10 0
0 0

]
6= A, (X0, Y0) is not a global optimal617

solution. Calculating the gradient of L verifes that (X0, Y0) is a critical point:618

∇L(X0, Y0) = ((A−X0Y
>
0 )Y0, (A

> − Y0X
>
0 )X0) = (0,0)619

Nevertheless, the Hessian of the function L at (X0, Y0) is positive semi-definite. Direct620
calculation can be found in Appendix D.5 of the supplementary material.621

This example shows that if we want to prove the non-existence of spurious local minima622
in the new setting, one cannot rely on the Hessian. This is challenging since the second623
order derivatives computation is already tedious. Nevertheless, with Definition 4.14,624
we can still say something about spurious local minima in the new setting.625

Theorem 4.19. Under the assumptions of Theorem 3.8, if a feasible point (X,Y )626
is CEC-full-rank, then (X,Y ) is not a spurious local minimum of (FSMF). Otherwise627
there is a feasible path, along which L(·, ·) is constant, that joins (X,Y ) to some (X̃, Ỹ )628
which is not a spurious local minimum.629

When (X,Y ) is not CEC-full-rank, the theorem guarantees that it is not a strict630
local minimum, since there is path starting from (X,Y ) with constant loss. This should631
however not be a surprise in light of Remark 4.2: indeed, the considered loss function632
admits no strict local minimum at all. Yet, the path with “flat” loss constructed in the633
theorem is fundamentally different from the ones naturally due to scale invariances of634
the problem and captured by Remark 4.2. Further work would be needed to investigate635
whether this can be used to get a stronger result.636

Proof sketch. To prove this theorem, we proceed through two main steps:637
1) First, we show that any local minimum satisfies:638

(4.2) (A−XY >)� ST = 0639

2) Second, we show that if a point (X,Y ) is CEC-full-rank and satisfies Equation (4.2),640
it cannot be a spurious local minimum.641

Combining the above to steps, we obtain as claimed that if a feasible pair (X,Y ) is642
CEC-full-rank, then it is not a spurious local minimum. Finally, if a feasible pair (X,Y )643
is not CEC-full-rank, Lemma 4.15 yields a feasible path along which L is constant644
that joins (X,Y ) to some feasible (X̃, Ỹ ) which is CEC-full-rank, hence (as we have645
just shown) not a spurious local mimimum.646

A complete proof is presented in Appendix D.4 of the supplementary material.647

Although Theorem 4.19 does not exclude completely the existence of spurious648
local minima, together with Theorem 4.12, we eliminate a large number of such points.649

4.4. Absence of correlation between tractability and benign landscape.650
So far, we have witnessed that the instances of (FSMF) satisfying the assumptions651
of Theorem 3.8 are not only efficiently solvable using Algorithm 3.4: they also have652
a landscape with no spurious local valleys and favorable in terms of spurious local653
minima Theorem 4.19. The question of interest is: Is there a link between such benign654
landscape and the tractability of the problem? Even if the natural answer could655
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intuitively seem to be positive, as it is the case for the full support case, we prove that656
this conjecture is not true. We provide a counter example showing that tractability657
does not imply a benign landscape. First, we establish a sufficient condition for the658
existence of a spurious local valley in (FSMF).659

Theorem 4.20. Consider function L(X,Y ) = ‖A−XY >‖2 in (FSMF). Given660
two support constraints I ∈ {0, 1}m×r, J ∈ {0, 1}n×r, if there exist i1 6= i2 ∈ JmK, j1 6=661
j2 ∈ JnK and k ∈ JrK such that (i2, j2) belongs to at least 2 rank-one supports, one of662
which is Sk, and if (i1, j1), (i2, j1), (i1, j2) belong only to Sk, then:663
1) There exists A such that: L(X,Y ) has a spurious local valley.664
2) There exists A such that: L(X,Y ) has a spurious local minimum.665

In both cases, A can be chosen so that the global minimum of L(X,Y ) under the666
considered support constraints is achieved and is zero.667

Remark 4.21. Note that the conditions of Theorem 4.20 exclude these of Theo-668
rem 3.3 and Theorem 3.8 (which is reasonable since the assumptions of Theorem 3.3669
and Theorem 3.8 rule out the possibility of spurious local valleys for any matrix A.).670

Proof. Let l 6= k be another rank-one contribution support Sl that contains (i1, j1).671
Without loss of generality, we can assume i1 = j1 = 1, i2 = j2 = 2 and k = 1, l = 2. In672
particular, let I ′ = J ′ := {(1, 1), (2, 1), (2, 2)}, then I ′ ⊆ I, J ′ ⊆ J . When m = n = 2,673
these are the support constraints for the LU decomposition.674
1) We define the matrix A by block matrices as:675

(4.3) A =

(
A′ 0
0 0

)
, where A′ =

(
1 1
1 0

)
∈ R2×2.676

The minimum of L(X,Y ) := ‖A −XY >‖2 over feasible pairs is zero and it is677
attained at X =

[
X′ 0
0 0

]
, Y =

[
Y ′ 0
0 0

]
where X ′ =

[
1 0
1 1

]
, Y ′ =

[
1 0
1 −1

]
. (X,Y ) is678

feasible since supp(X) = supp(X ′) = I ′ ⊆ I, supp(Y ) = supp(Y ′) = J ′ ⊆ J .679
Moreover,680

(4.4) XY > =

(
X ′Y ′> 0

0 0

)
=

(
A′ 0
0 0

)
= A.681

Using Lemma 4.8 we now prove that this matrix A produces a spurious local682
valley for L(X,Y ) with the considered support constraints (I, J). In fact, since683
(1, 1), (1, 2), (2, 1) are only in S1 and in no other support S`, ` 6= 1, one can easily684
check that for every feasible pair (X,Y ) we have:685

(4.5) (XY >)i,j = Xi,1Yj,1, ∀(i, j) ∈ {(1, 1), (1, 2), (2, 1)}.686

Thus, every feasible pair (X?, Y ?) reaching the global optimum ‖A−X?(Y ?)>‖ =687
0 must satisfy X?

1,1Y
?
1,1 = X?

2,1Y
?
1,1 = X?

1,1Y
?
2,1 = 1. This implies X?

2,1Y
?
2,1 =688

(X?
2,1Y

?
1,1)(X?

1,1Y
?
2,1)/(X?

1,1Y
?
1,1) = 1. Moreover, such an optimum feasible pair689

also satisfies 0 = A2,2 = (X?(Y ?)>)2,2 =
∑
pX

?
2,pY

?
2,p, hence

∑
p 6=1X

?
2,pY

?
2,p =690

−X?
2,1Y

?
2,1 = −1.691

To show the existence of a spurious local valley we use Lemma 4.8 and consider692
the set S̃σ = {(X,Y ) | supp(X) ⊆ I, supp(Y ) ⊆ J,

∑
p 6=1X2,pY2,p = σ}. We will693

show that S1 := S̃−1, S2 := S̃1, S3 := S̃5 satisfy the assumptions of Lemma 4.8.694
To compute inf(X,Y )∈Si L(X,Y ), we study g(σ) := inf(X,Y )∈S̃σ L(X,Y ). Denoting695
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Z =
[
12×2 0
0 0

]
∈ {0, 1}m×n we have:696

g(σ) = inf
(X,Y )∈S̃σ

‖A−XY >‖2

≥ inf
(X,Y )∈S̃σ

‖(A−XY >)� Z‖2

(4.5)
= inf

(X,Y )∈S̃σ

∥∥∥∥(A1,1 −X1,1Y1,1 A1,2 −X11Y21

A2,1 −X2,1Y1,1 A2,2 − σ −X2,1Y2,1

)∥∥∥∥2

= inf
X1,1,X2,1,Y1,1,Y2,1

∥∥∥∥(1−X1,1Y1,1 1−X11Y21

1−X2,1Y1,1 −σ −X2,1Y2,1

)∥∥∥∥2

697

Besides Equation (4.5), the third equality exploits the fact that (XY >)2,2 =698 ∑
pX2,pY2,p = X2,1Y2,1 + σ. The last quantity is the loss of the best rank-one699

approximation of Ã =
[

1 1
1 −σ

]
∈ R2×2. Since this is a 2 × 2 symmetric matrix,700

its eigenvalues can be computed as the solutions of a second degree polynomial,701

leading to an analytic expression of this last quantity as: 2(σ+1)2

(σ2+3)+
√

(σ2+3)2−4(σ+1)2
.702

Moreover, this infimum can be attained if
[
X1,1, X2,1

]
=
[
Y1,1, Y2,1

]
is the first703

eigenvector of Ã and the other coefficients of X,Y are set to zero. Therefore,704

(4.6) g(σ) =
2(σ + 1)2

(σ2 + 3) +
√

(σ2 + 3)2 − 4(σ + 1)2
.705

We can now verify that S1, S2, S3 satisfy all the conditions of Lemma 4.8.706
1) The minimum value of L is zero. As shown above, it is only attained with707 ∑

p 6=1X
?
2,pY

?
2,p = −1 as shown. Thus, the global minima belong to S1 = S̃−1.708

2) For any feasible path r : [0, 1] → Rm×r × Rn×r : t → (X(t), Y (t)) we have709
σr(t) =

∑
p 6=1X(t)2,pY (t)2,p is also continuous. If (X(0), Y (0)) ∈ S3 = S̃5710

and (X(1), Y (1)) ∈ S1 = S̃−1 then σr(0) = 5 and σr(1) = −1), hence by the711
Mean Value Theorem, there must exist t ∈ (0, 1) such that σr(t) = 1, which712
means (X(t), Y (t)) ∈ S2 = S̃1.713

3) Since one can check numerically that g(1) > g(5) > g(−1), we have714

inf
(X,Y )∈S2

L(X,Y ) > inf
(X,Y )∈S3

L(X,Y ) > inf
(X,Y )∈S1

L(X,Y ).715

The proof is concluded with the application of Lemma 4.8. In addition, any716
point (X,Y ) satisfying σ = 5 and L(X,Y ) < g(1) = 2 is inside a spurious717
local valley. For example, one of such a point is X =

[
X′ 0
0 0

]
, Y =

[
Y ′ 0
0 0

]
where718

X ′ =
[

1 0
−5 1

]
, Y ′ =

[−1/5 0
1 5

]
.719

2) We define the matrix A by block matrices as:720

(4.7) A =

(
A′ 0
0 0

)
, where A′ =

(
b 0
0 a

)
∈ R2×2.721

where a > b > 0. It is again evident that The infimum of ‖A−XY >‖2 under the722
considered support constraints is zero, and is achieved (taking X =

[
X′ 0
0 0

]
, Y =723 [

Y ′ 0
0 0

]
where X ′ =

[
b 0
0 a

]
, Y ′ =

[
1 0
0 1

]
and with the same proof as in Equation (4.4),724

we have XY > = A.)725
Now, we will consider X̃ =

[
X′ 0
0 0

]
, Ỹ =

[
Y ′ 0
0 0

]
where X ′ =

[
0 0
a 0

]
, Y ′ =

[
0 0
1 0

]
.726

Since L(X̃, Ỹ ) = b2 > 0 it cannot be a global minimum. We will show that (X̃, Ỹ )727
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is indeed a local minimum, which will thus imply that (X̃, Ỹ ) is a spurious local728
minimum. For each feasible pair (X,Y ) we have:729

‖A−XY >‖2 =
∑
i,j

(Ai,j − (XY >)i,j)
2

≥ (A1,1 − (XY >)1,1)2 + (A2,1 − (XY >)2,1)2 + (A1,2 − (XY >)1,2)2

(4.5)
= (b−X1,1Y1,1)2 + (X2,1Y1,1)2 + (X1,1Y2,1)2

≥ (X1,1Y1,1)2 − 2bX1,1Y1,1 + b2 + 2(X2,1Y2,1)|X1,1Y1,1|
≥ 2(X2,1Y2,1 − b)|X1,1Y1,1|+ b2.

730

where in the third line we used that for u = |X2,1|Y11, v = X11|Y2,1|, since731

(u − v)2 ≥ 0 we have u2 + v2 ≥ 2uv. Since X̃2,1Ỹ2,1 = a > b, there exists732

a neighborhood of (X̃, Ỹ ) such that X2,1Y2,1 − b > 0 for all (X,Y ) in that733
neighbourhood. Since |X1,1Y1,1| ≥ 0 in this neighborhood it follows that ‖A −734

XY >‖2 ≥ b2 = L(X̃, Ỹ ) > 0 in that neighborhood. This concludes the proof.735

Remark 4.22. Theorem 4.20 is constructed based on the LU structure. We736
elaborate our intuition on the technical proof of Theorem 4.20 as follows: Consider737
the LU decomposition problem of size 2 × 2 (i.e., I = J = {(1, 1), (2, 1), (2, 2)}). It738
is obvious that such (I, J) satisfies the assumptions of Theorem 4.20 (for i1 = j1 =739
1, i2 = j2 = 2). We consider three matrices of size 2× 2:740

A1 =

(
1 1
1 0

)
, A2 =

(
1 0
0 2

)
, A3 =

(
0 1
1 0

)
.741

A1 (resp. A2) is simply the matrix A′ in (4.3) (resp. in (4.7), with a = 2, b = 1) in the742
proof of Theorem 4.20. A3 is a matrix which does not admit an LU decomposition.743
We plot the graphs of gi(σ) = inf

X2,2Y2,2=σ
‖Ai −XY >‖ (this is exactly g(σ) introduced744

in the proof of Theorem 4.20) in Figure 9.

Fig. 9. Illustration of the functions gi(σ), i = 1, 2, 3 from left to right.

745
In particular, the spurious local valley constructed in the proof of Theorem 4.20746

with A1 is a spurious local valley extending to infinity. With A2, one can see that747
g2(σ) has a plateau with value 1 = b2. The local minimum that we consider in the748
proof of Theorem 4.20 is simply a point in this plateau (where σ = 0). Lastly, since749
the matrix A3 does not admit an LU decomposition, there is no optimal solution.750
Nevertheless, the infimum zero can be approximated with arbitrary precision when σ751
tends to infinity (two valleys extending to ±∞).752
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For the cases with the matrices A1 and A3, once initialized inside the valleys of753
their landscapes, any sequence (Xk, Yk) with sufficiently small steps associated to754
a decreasing loss L(Xk, Yk) will have the corresponding parameter σ converging to755
infinity. As a consequence, at least one parameter of either Xk or Yk has to diverge.756
This is thus a setting in which PALM (and other optimization algorithms which seek757
to locally decrease their objective function in a monotone way) can diverge.758

We can now exhibit the announced counter-example to the mentioned conjecture:759

Remark 4.23. Consider the LU decomposition as an instance of (FSMF) with760
m = n = r, I = J = {(i, j) | 1 ≤ j ≤ i ≤ n}, taking i1 = j1 = 1, i2 = j2 = 2 shows that761
the LU decomposition satisfies the condition of Theorem 4.20. Consequently, there762
exists a matrix A such that the global optimum of L(X,Y ) is achieved (and is zero),763
yet the landscape of L(X,Y ) will have spurious objects. Nevertheless, a polynomial764
algorithm to compute the LU decomposition exists [32]. This example is in the same765
spirit of a recent result presented in [43], where a polynomially solvable instance of766
Matrix Completion is constructed, whose landscape can have an exponential number767
of spurious local minima.768

The existence of spurious local valleys shown in Theorem 4.20 highlights the769
importance of initialization: if an initial point is already inside a spurious valley,770
first-order methods cannot escape this suboptimal area. An optimist may wonder if771
there nevertheless exist a smart initialization that avoids all spurious local valleys772
initially. The answer is positive, as shown in the following theorem.773

Theorem 4.24. Given any I, J,A such that the infimum of (FSMF) is attained,774
every initialization (X,0), supp(X) ⊆ I (or symmetrically (0, Y ), supp(Y ) ⊆ J) is not775
in any spurious local valley. In particular, (0,0) is never in any spurious local valley.776

Proof. Let (X∗, Y ∗) be a minimizer of (FSMF), which exists due to our assump-777
tions. We only prove the result for the initialization (X,0), supp(X) ⊆ I. The case of778
the initialization (0, Y ), supp(Y ) ⊆ J can be dealt with similarly.779

To prove the theorem, it is sufficient to construct f(t) = (Xf (t), Yf (t)) : [0, 1]→780
Rm×r × Rn×r as a feasible path such that:781
1) f(0) = (X,0).782
2) f(1) = (X∗, Y ∗).783
3) L ◦ f is non-increasing w.r.t t.784

Indeed, if such f exists, the sublevel set corresponding to L(X,0) has both (X,0) and785
(X∗, Y ∗) in the same path-connected components (since L ◦ f is non-increasing).786

We will construct such a function feasible path f as a concatenation of two787
functions feasible paths f1 : [0, 1/2] → Rm×r × Rn×r, f2 : [1/2, 1] → Rm×r × Rn×r,788
defined as follows:789
1) f1(t) = ((1− 2t)X + 2tX∗,0).790
2) f2(t) = (X∗, (2t− 1)Y ∗).791

It is obvious that f(0) = f1(0) = (X,0) and f(1) = f2(1) = (X∗, Y ∗). Moreover f is792
continuous since f1(1/2) = f2(1/2) = (X∗,0). Also, L ◦ f is non-increasing on [0, 1]793
since:794
1) L(f1(t)) = ‖A− ((1− 2t)X + 2tX∗)0>‖2 = ‖A‖2 is constant for t ∈ [0, 1/2].795
2) L(f2(t)) = ‖A− (2t− 1)X∗Y ∗‖2 is convex w.r.t t. Moreover, it attains a global796

minimum at t = 1 (since we assume that (X∗, Y ∗) is a global minimizer of797
(FSMF)). As a result, t 7→ L(f2(t)) is non-increasing on [1/2, 1].798

Yet, such an initialization does not guarantee that first-order methods converge to799
a global minimum. Indeed, while in the proof of this result we do show that there800
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exists a feasible path joining this “smart” initialization to an optimal solution without801
increasing the loss function, the value of the objective function is “flat” in the first802
part of this feasible path. Thus, even if such initialization is completely outside any803
spurious local valley, it is not clear whether local information at the initialization804
allows to “guide” optimization algorithms towards the global optimum to blindly find805
such a path. In fact, first-order methods are not bound to follow our constructive806
continuous path.807

5. Numerical illustration: landscape and behaviour of gradient de-808
scent. As a numerical illustration of the practical impact of our results, we compare809
the performance of Algorithm 3.4 to other popular first-order methods on problem810
(FSMF).811

We consider two types of instances of (FSMF): I1 = 12a×2a ⊗ I2b×2b , J1 =812
I2a×2a ⊗ 12b×2b where ⊗ denotes the Kronecker product, a = dN/2e, b = bN/2c813
(hence a + b = N) and I2 = 12×2 ⊗ I2N−1 , J2 = I2 ⊗ 12N−1×2N−1 . These supports814
are interesting because they are those taken at the first two steps of the hierarchical815
algorithm in [25, 44] for approximating a matrix by a product of N butterfly factors816
[25]. The first pair of support constraints (I1, J1) is also equivalent to the recently817
proposed Monarch parameterization [9]. Both pairs (I1, J1) and (I2, J2) are proved to818
satisfy Theorem 3.3 [44, Lemma 3.15].819

Fig. 10. Evolution of log10 ‖A−XY >‖F for three variants of gradient descent and Algorithm 3.4
with support constraints (I1, J1) (left) and (I2, J2) (right) for N = 10.

We consider A as the Hadamard matrix of size 2N × 2N , which is known to admit820
an exact factorization with each of the considered support constraints, and we employ821
Algorithm 3.4 to factorize A in these two settings. We compare Algorithm 3.4 to822
three variants of gradient descent: vanilla gradient descent (GD), gradient descent823
with momentum (GDMomentum) and ADAM [18, Chapter 8]. We use the efficient824
implementation of these iterative algorithms available in Pytorch 1.11. For each matrix825
size 2N , learning rates for iterative methods are tuned by grid search: we run all the826
factorizations with all learning rates in {5×10−k, 10−k | k = 1, . . . , 4}. Matrix X (resp.827
Y ) is initialized with i.i.d. random coefficients inside its support I (resp. J) drawn828
according to the law N (0, 1/RI) (resp. N (0, 1/RJ)) where RI , RJ are respectively829
the number of elements in each column of I and of J . All these experiments are830
run on an Intel Core i7 CPU 2,3 GHz. In the interest of reproducible research, our831
implementation is available in open source [24]. Since A admits an exact factorization832
with both the supports (I1, J1) and (I2, J2), we set a threshold ε = 10−10 for these833
iterative algorithms (i.e if log10(‖A−XY >‖F ) ≤ −10, the algorithm is terminated and834
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considered to have found an optimal solution). This determines the running time for a835
given iterative algorithm for a given dimension 2N and a given learning rate. For each836
dimension 2N we report the best running time over all learning rates. The reported837
running times do not include the time required for hyperparameters tuning. The

Fig. 11. Running time (in logarithmic scale, contrary to Figure 10) of three variants of gradient
descent and Algorithm 3.4 to reach a precision log10(‖A −XY >‖F ) ≤ −10; N ∈ {3, . . . , 10} with
support constraints (I1, J1) (left) and (I2, J2) (right).

838
experiments illustrated in Figure 10 for N = 10 confirm our results on the landscape839
presented in Subsection 4.3: the assumptions of theorem Theorem 3.3 are satisfied so840
the landscape is benign and all variants of gradient descent are able to find a good841
factorization for A from a random initialization.842

Figure 10 also shows that Algorithm 3.4 is consistently better than the considered843
iterative methods in terms of running time, regardless of the size of A, cf. Figure 11.844
A crucial advantage of Algorithm 3.4 over gradient methods is also that it is free of845
hyperparameter tuning, which is critical for iterative methods to perform well, and may846
be quite time consuming (we recall that the time required for hyperparameters tuning of847
these iterative methods is not considered in Figure 11). In addition, Algorithm 3.4 can848
be further accelerated since its main steps (cf Algorithm 3.2) rely on block SVDs that849
can be computed in parallel (in these experiments, our implementation of Algorithm 3.4850
is not parallelized yet). Interested readers can find more applications of Algorithm 3.4851
on the problem of fixed-support multilayer sparse factorization in [25].852

6. Conclusion. In this paper, we studied the problem of two-layer matrix fac-853
torization with fixed support. We showed that this problem is NP-hard in general.854
Nevertheless, certain structured supports allow for an efficient solution algorithm.855
Furthermore, we also showed the non-existence of spurious objects in the landscape of856
function L(X,Y ) of (FSMF) with these support constraints. Although it would have857
seemed natural to assume an equivalence between tractability and benign landscape858
of (FSMF), we also show a counter-example that contradicts this conjecture. That859
shows that there is still room for improvement of the current tools (spurious objects)860
to characterize the tractability of an instance. We have also shown numerically the861
advantages of the proposed algorithm over state-of-the-art first order optimization862
methods usually employed in this context. We refer the reader to [25] where we propose863
an extension of Algorithm 3.3 to fixed-support multilayer sparse factorization and864
show the superiority of the resulting method in terms of both accuracy and speed865
compared to the state of the art [10].866
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Appendix A. Proof of Lemma 2.3. Up to a transposition, we can assume996
WLOG that m ≥ n. We will show that with r = n+ 1 = min(m,n) + 1, we can find997
two supports I and J satisfying the conclusion of Lemma 2.3.998

To create an instance of (FSMF) (i.e., two supports I, J) that is equivalent to999
(MCPO), we define I ∈ {0, 1}m×(n+1) and J ∈ {0, 1}n×(n+1) as follows:1000

(A.1) Ii,j =

{
1−Wi,j if j 6= n

1 if j = n+ 1
, Ji,j =

{
1 if j = i or j = n+ 1

0 otherwise
1001

Figure 12 illustrates an example of support constraints built from W .

Fig. 12. Factor supports I and J constructed from the weighted matrix W ∈ {0, 1}4×3. Colored
squares in I and J are positions in the supports.

1002
We consider the (FSMF) with the same matrix A and I, J defined as in Equation1003

(A.1). This construction (of I and J) can clearly be made in polynomial time. Consider1004
the coefficients (XY >)i,j :1005

1) If Wi,j = 0: (XY >)i,j =
∑n+1
k=1 Xi,kYj,k = Xi,jYj,j + Xi,n+1Yj,n+1 (except for1006

k = n+ 1, only Yj,j can be different from zero due to our choice of J).1007

2) If Wi,j = 1: (XY >)i,j =
∑n+1
k=1 Xi,kYj,k = Xi,n+1Yj,n+1 (same reason as in the1008

previous case, in addition to the fact that Ii,j = 1−Wi,j = 0).1009
Therefore, the following equation holds:1010

(A.2) (XY >)�W = (X•,n+1Y
>
n+1,•)�W1011

We will prove that (FSMF) and (MCPO) share the same infimum5. Let µ1 =1012
infx∈Rm,y∈Rn ‖A − xy>‖2W and µ2 = infsupp(X)⊆I,supp(Y )⊆J ‖A − XY >‖2. It is clear1013
that µi ≥ 0 > −∞, i = 1, 2. Our objective is to prove µ1 ≤ µ2 and µ2 ≤ µ1.1014
1) Proof of µ1 ≤ µ2: By definition of an infimum, for all µ > µ1, there exist x, y such1015

that ‖A−xy>‖2W ≤ µ. We can choose X and Y (with supp(X) ⊆ I, supp(Y ) ⊆ J)1016
as follows: we take the last columns of X and Y equal to x and y (X•,n+1 =1017
x, Y•,n+1 = y). For the remaining columns of X and Y , we choose:1018

Xi,j = Ai,j − xiyj if Ii,j = 1, j ≤ n
Yi,j = 1 if Ji,j = 1, j ≤ n

1019

This choice of X and Y will make ‖A−XY >‖2 = ‖A− xy>‖2W ≤ µ. Indeed, for1020
all (i, j) such that Wi,j = 0, we have:1021

(A−XY >)i,j = Ai,j −Xi,jYj,j −Xi,n+1Yj,n+1 = Ai,j −Ai,j + xiyj − xiyj = 01022

5We focus on the infimum instead of minimum since there are cases where the infimum is not
attained, as shown in Remark A.1
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Therefore, it is clear that: (A−XY >)� (1−W ) = 0.1023

‖A−XY >‖2 = ‖(A−XY >)�W‖2 + ‖(A−XY >)� (1−W )‖2

= ‖(A−XY >)�W‖2

(A.2)
= ‖(A−X•,n+1Y

>
•,n+1)�W‖2

= ‖(A− xy>)�W‖2

= ‖A− xy>‖2W

1024

Therefore, µ2 ≤ µ1.1025
2) Proof of µ1 ≤ µ2 : Inversely, for all µ > µ2, there exists X,Y satisfying supp(X) ⊆1026

I, supp(Y ) ⊆ J such that ‖A−XY >‖2 ≤ µ. We choose x = X•,n+1, y = Y•,n+1.1027
It is immediate that:1028

‖A− xy>‖2W = ‖(A− xy>)�W‖2

= ‖(A−X•,n+1Y
>
•,n+1)�W‖2

(A.2)
= ‖(A−XY >)�W‖2

≤ ‖(A−XY >)�W‖2 + ‖(A−XY >)� (1−W )‖2

= ‖A−XY >‖2

1029

Thus, ‖A− xy>‖2W ≤ ‖A−XY >‖2 ≤ µ. We have µ1 ≤ µ2.1030
This shows that µ1 = µ2. Moreover, the proofs of µ1 ≤ µ2 and µ2 ≤ µ1 also show1031
the procedures to obtain an optimal solution of one problem with a given accuracy ε1032
provided that we know an optimal solution of the other with the same accuracy.1033

Remark A.1. In the proof of Lemma 2.3, we focus on the infimum instead of1034
minimum since there are cases where the infimum is not attained. Indeed, consider the1035
following instance of (FSMF) with: A =

[
0 1
1 0

]
, I =

[
1 1
0 1

]
, J =

[
1 1
0 1

]
. The infimum of1036

this problem is zero, which can be shown by choosing: Xk =
[−k k

0 1
k

]
, Yk =

[ k k
0 1
k

]
. In1037

the limit, when k goes to infinity, we have:1038

lim
k→∞

‖A−XkY
>
k ‖2 = lim

k→∞

1

k2
= 0.1039

Yet, there does not exist any couple (X,Y ) such that ‖A−XY >‖2 = 0. Indeed, any1040
such couple would need to satisfy: X1,2Y2,2 = 1, X2,2Y1,2 = 1, X2,2Y2,2 = 0. However,1041
the third equation implies that either X2,2 = 0 or Y2,2 = 0, which makes either1042
X2,2Y1,2 = 0 or X1,2Y2,2 = 0. This leads to a contradiction.1043

In fact, I and J are constructed from the weight binary matrix W =
[

0 1
1 1

]
(the1044

construction is similar to one in the proof of Lemma 2.3). Problem (MCPO) with1045
(A,W ) has unattainable infimum as well. Note that this choice of (I, J) also makes1046
this instance of (FSMF) equivalent to the problem of LU decomposition of matrix A.1047

Appendix B. Proofs for section 3.1048

B.1. Proof of Lemma 3.5. Denote P the partition of JrK into equivalence classes1049
defined by the rank-one supports associated to (I, J), and P? ⊆ P the corresponding1050
CECs. Since T ⊆ JrK is precisely the set of indices of CECs, and since IT (resp.1051
JT ) is the restriction of I (resp. of J) to columns indexed by T , the partition of JrK1052
into equivalence classes w.r.t (IT , JT ) is precisely P?, and for P ∈ P\P∗, we have1053
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SP = ∅. WLOG, we assume P? = {Pi | 1 ≤ i ≤ `}. Denote Pk = {P1, . . . , Pk},1054
SPk = ∪1≤i≤kSPi for 1 ≤ k ≤ ` and SP0

= ∅. We prove below that (X,Y ) =1055
SVD_FSMF(A, IT , JT ) satisfies:1056

(B.1) XPkY
>
Pk

= A� (SPk \ SPk−1
),∀ 1 ≤ k ≤ `,1057

which implies: XY > =
∑
P∈P? XPY

>
P =

∑`
k=1A�(SPk \SPk−1

) = A�S` = A�ST =1058
A (since we assume supp(A) = ST ). This yields the conclusion since supp(X) ⊆ IT1059
and supp(Y ) ⊆ JT by definition of SVD_FSMF(·).1060

We prove Equation (B.1) by induction on `. To ease the reading, in this proof, we1061
denote CPk , RPk (Definition 3.4) by Ck, Rk respectively.1062

For ` = 1 it is sufficient to consider k = 1: we have SP1
\ SP0

= C1 ×R1. Since1063
min(|R1|, |C1|) ≤ |P1| (Definition 3.4), taking the best rank-|P1| approximation of1064
A�(R1×C1) (whose rank is at most min(|R1|, |C1|)) yields XP1Y

>
P1

= A�(R1×C1) =1065
A� (SP1 \ SP0).1066

Assume that Equation (B.1) holds for ` − 1. We prove its correctness for `.1067
Consider: A′ := A −

∑
k<`XPkY

>
Pk

= A − A � SP`−1
= A � S̄P`−1

. Therefore,1068
A′ � SP` = A � (SP` \ SP`−1

). Again, since min(|R`|, |C`|) ≤ |P`| (Definition 3.4),1069
taking the best rank-|P`| approximation of A′ � SP` = A′ � (R` × C`) (whose rank is1070
at most min(|R`|, |C`|)) yields XP`Y

>
P`

= A′ � (R` × C`) = A � (SP` \ SP`−1
). That1071

implies Equation (B.1) is correct for all `.1072

B.2. Proof of Theorem 3.8. First, we decompose the factors X and Y using1073
the taxonomy of indices from Definition 3.7.1074

Definition B.1. Given IT , JT and Ii
T̄
, J i
T̄
, i = 1, 2 as in Definition 3.7, consider1075

(X,Y ) a feasible point of (FSMF), we denote:1076
1) XT = X � IT , Xi

T̄
= X � Ii

T̄
, for i = 1, 2.1077

2) YT = Y � IT , Y iT̄ = Y � Ii
T̄
, for i = 1, 2.1078

with � the Hadamard product between a matrix and a support constraint (introduced1079
in subsection 1.1).1080

The following is a technical result.1081

Lemma B.2. Given I, J support constraints of (FSMF), consider T,ST ,SP as in1082
Definition 3.2, XT , X

i
T̄
, YT , Y

i
T̄
as in Definition 3.6 and assume that for all k ∈ T̄ , S ′k1083

is rectangular. It holds:1084
C1 supp(XTY

>
T ) ⊆ ST .1085

C2 supp(X1
T̄

(Y 1
T̄

)>) ⊆ SP \ ST .1086

C3 supp(Xi
T̄

(Y j
T̄

)>) ⊆ ST ,∀1 ≤ i, j ≤ 2, (i, j) 6= (1, 1).1087

Proof. We justify (C1)-(C3) as follow:1088
• C1: Since XTY

>
T =

∑
i∈T X•,iY

>
•,i, supp(XTY

>
T ) ⊆ ∪i∈TSk = ST .1089

• C2: Consider the coefficient (i, j) of (X1
T̄

)(Y 1
T̄

)>1090

((X1
T̄ )(Y 1

T̄ )>)i,j =
∑
k

(X1
T̄ )i,k(Y 1

T̄ )j,k =
∑

(i,k)∈I1
T̄
,(j,k)∈J1

T̄

Xi,kYj,k1091

By the definition of I1
T̄
, J1
T̄
, (X1

T̄
)(Y 1

T̄
)>i,j 6= 0 iff (i, j) ∈ ∪`∈T̄R` × C` = SP \ ST .1092

• C3: We prove for the case of (X1
T̄

)(Y 2
T̄

)>. Others can be proved similarly.1093

(B.2) ((X1
T̄ )(Y 2

T̄ )>)i,j =
∑
k

(X1
T̄ )i,k(Y 2

T̄ )j,k =
∑

(i,k)∈I1
T̄
,(j,k)∈J2

T̄

Xi,kYj,k1094
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Since ∀` ∈ T̄ ,S ′` is rectangular, SP \ ST = ∪`∈T̄S ′` = ∪`∈T̄R` × C`. If (i, j) ∈1095
SP \ ST , Equation (B.2) shows that ((X1

T̄
)(Y 2

T̄
)>)i,j = 0 since there is no k1096

such that (i, k) ∈ I2
T̄
, (j, k) ∈ J2

T̄
due to the definition of I1

T̄
, J2
T̄
). Moreover,1097

supp((X1
T̄

)(Y 2
T̄

)>) ⊆ SP (since supp(X1
T̄

) ⊆ I, supp(Y 2
T̄

) ⊆ J). Thus, it shows1098

that supp((X1
T̄

)(Y 2
T̄

)>) ⊆ SP \ (SP \ ST ) = ST .1099

Here, we present the proof of Theorem 3.8.1100

Proof of Theorem 3.8. Given X,Y feasible point of the input (A, I, J), consider1101
XT , YT , X

i
T̄
, Y i
T̄
, i = 1, 2 defined as in Definition B.1. Let µ1 and µ2 be the infimum1102

value of (FSMF) with (A, I, J) and with (A′, I1
T̄
, J1
T̄

) (A′ = A� S̄T ) respectively.1103
First, we remark that I1

T̄
and J1

T̄
satisfy the assumptions of Theorem 3.3. Indeed,1104

it holds Sk(I1
T̄
, J1
T̄

) = Sk(I, J) \ ST = S ′k by construction. For any two indices k, l ∈ T̄ ,1105
the representative rank-one supports are either equal (S ′k = S ′l) or disjoint (S ′k∩S ′l = ∅)1106
by assumption. That shows why I1

T̄
and J1

T̄
satisfy the assumptions of Theorem 3.3.1107

Next, we prove that µ1 = µ2. Since (ST ,SP \ST , S̄P) form a partition of JmK×JnK,1108
we have C �D = 0, C 6= D,C,D ∈ {ST ,SP \ ST , S̄P}. From the definition of A′ it1109
holds A′�S̄P = A�S̄P and A′�ST = 0. Moreover, it holds (X1

T̄
)(Y 1

T̄
)>�ST ∪ S̄P = 01110

due to C2.1111
Since supp(XT ) ⊆ IT , supp(Xi

T̄
) ⊆ IT̄ , supp(YT ) ⊆ JT , supp(Y i

T̄
) ⊆ JT̄ , i = 1, 2,1112

the product XY > can be decomposed as:1113

(B.3) XY > = XTY
>
T +

∑
1≤i,j≤2

(Xi
T̄ )(Y j

T̄
)>.1114

Consider the loss function of (FSMF) with input (A′, I1
T̄
, J1
T̄

) and solution (X1
T̄
, Y 1
T̄

):1115

(B.4)

‖A′ −X1
T̄ (Y 1

T̄ )>‖2

= ‖(A′ −X1
T̄ (Y 1

T̄ )>)� ST ‖2 + ‖(A′ −X1
T̄ (Y 1

T̄ )>)� (SP \ ST )‖2

+ ‖(A′ −X1
T̄ (Y 1

T̄ )>)� S̄P‖2

C2
= ‖(A′ − (X1

T̄ )(Y 1
T̄ )>)� SP \ ST ‖2 + ‖A′ � S̄P‖2

C1+C3
= ‖(A−XTY

>
T −

∑
1≤i,j≤2

(Xi
T̄ )(Y j

T̄
)>)� (SP \ ST )‖2 + ‖A� S̄P‖2

(B.3)
= ‖(A−XY >)� (SP \ ST )‖2 + ‖A� S̄P‖2

1116

Perform the same calculation with (A, I, J) and solution (X,Y ):1117
(B.5)
‖(A−XY >)‖2

= ‖(A−XY >)� ST ‖2 + ‖(A−XY >)� (SP \ ST )‖2 + ‖(A−XY >)� S̄P‖2

= ‖(A−XY >)� ST ‖2 + ‖(A−XY >)� (SP \ ST )‖2 + ‖A� S̄P‖2
1118

where the last equality holds since supp(XY >) ⊆ SP . Therefore, for any feasible1119
point (X,Y ) of instance (A, I, J), we can choose X̃ = X1

T̄
, Ỹ = Y 1

T̄
feasible point of1120

(A′, I1
T̄
, J1
T̄

) such that ‖A−XY >‖ ≥ ‖A′−X̃Ỹ >‖ (Equation (B.4) and Equation (B.5)).1121
This shows µ1 ≥ µ2.1122

On the other hand, given any feasible point (X̃, Ỹ ) of instance (A′, I1
T̄
, J1
T̄

), we1123

can construct a feasible point (X,Y ) for instance (A, I, J) such that ‖A−XY >‖2 =1124
‖A′ −X ′Y ′>‖2. We construct (X,Y ) = (XT +X1

T̄
+X2

T̄
, YT + Y 1

T̄
+ Y 2

T̄
) where:1125

This manuscript is for review purposes only.



32 QUOC T. LE, ELISA RICCIETTI, REMI GRIBONVAL

1) X1
T̄

= X̃, Y 1
T̄

= Ỹ ,1126
2) X2

T̄
, Y 2
T̄

can be chosen arbitrarily such that supp(X2
T̄

) ⊆ I2
T̄
, supp(Y 2

T̄
) ⊆ J2

T̄
1127

3) XT and YT such that supp(XT ) ⊆ IT , supp(YT ) ⊆ JT and:1128

XTY
>
T = (A− (X1

T̄ +X2
T̄ )(Y 1

T̄ + Y 2
T̄ )>)� ST1129

(XT , YT ) exists due to Lemma 3.5. By Lemma B.2, with this choice we have:1130

(A−XY >)� ST
(B.3)
= (A− (X1

T̄ +X2
T̄ )(Y 1

T̄ + Y 2
T̄ )> −XTY

>
T )� ST

C1
= (A− (X1

T̄ +X2
T̄ )(Y 1

T̄ + Y 2
T̄ )>)� ST )−XTY

>
T = 0

(B.6)1131

Therefore ‖A−XY >‖2 = ‖A′ − X̃Ỹ >‖2 (Equation (B.4) and Equation (B.5)). Thus,1132
µ2 ≥ µ1. We obtain µ1 = µ2. In addition, given (X,Y ) an optimal solution of (FSMF)1133
with instance (A, I, J), we have shown how to construct an optimal solution (X̃, Ỹ )1134
with instance (A� S̄T , I1

T̄
, J1
T̄

) and vice versa. That completes our proof.1135

The following Corollary is a direct consequence of the proof of Theorem 3.8.1136

Corollary B.3. With the same assumptions and notations as in Theorem 3.8, a1137
feasible point (X,Y ) (i.e., such that supp(X) ⊆ I, supp(Y ) ⊆ J) is an optimal solution1138
of (FSMF) if and only if:1139
1) (X � I1

T̄
, Y � J1

T̄
) is an optimal solution of (FSMF) with (A� S̄T , I1

T̄
, J1
T̄

).1140

2) The following equation holds: (A−XY >)� ST = 01141

Remark B.4. In the proof of Theorem 3.8, for an optimal solution, one can choose1142
X2
T̄
, Y 2
T̄

arbitrarily. If we choose X2
T̄

= 0, Y 2
T̄

= 0, thanks to (B.6), XT and YT has to1143
satisfy:1144

XTY
>
T = (A− (X1

T̄ +X2
T̄ )(Y 1

T̄ + Y 2
T̄ )>)� ST = (A−X1

T̄ (Y 1
T̄ )>)� ST

C2
= A� ST1145

Appendix C. Proofs for a key lemma. In this section, we will introduce an1146
important technical lemma. It is used extensively for the proof of the tractability and1147
the landscape of (FSMF) under the assumptions of Theorem 3.8, cf. Appendix D.4.1148

Lemma C.1. Consider I, J support constraints of (FSMF) such that P? = P.1149
For any CEC-full-rank feasible point (X,Y ) and continuous function g : [0, 1]→ Rm×n1150
satisfying supp(g(t)) ⊆ ST (Definition 3.4) and g(0) = XY >, there exists a feasible1151
continuous function f : [0, 1]→ Rm×r × Rn×r : f(t) = (Xf (t), Yf (t)) such that:1152

A1 f(0) = (XT , YT ).1153
A2 g(t) = Xf (t)Yf (t)>,∀t ∈ [0, 1].1154
A3 ‖f(z)− f(t)‖2 ≤ C‖g(z)− g(t)‖2,∀t, z ∈ [0, 1].1155

where C = max
P∈P?

(
max

(∣∣∣∣∣∣∣∣∣X†RP ,P ∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ,P ∣∣∣∣∣∣∣∣∣2)) (D† and |||D||| denote the pseudo-1156

inverse and operator norm of a matrix D respectively ).1157

Lemma C.1 consider the case where P only contains CECs. Later in other proofs,1158
we will control the factors (X,Y ) by decomposing X = XT +XT̄ (and Y = YT +XT̄ )1159
(T, T̄ defined in Definition 3.4) and manipulate (XT , YT ) and (XT̄ , YT̄ ) separately.1160
Since the supports of (XT , YT ) satisfy Lemma C.1, it provides us a tool to work with1161
(XT , YT ).1162

The proof of Lemma C.1 is carried out by induction. We firstly introduce and1163
prove two other lemmas: Lemma C.2 and Lemma C.3. While Lemma C.2 is Lemma C.11164
without support constraints, Lemma C.3 is Lemma C.1 where |P?| = 1.1165
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Lemma C.2. Let X ∈ Rm×r, Y ∈ Rn×r,min(m,n) ≤ r and assume that X or1166
Y has full row rank. Given any continuous function g : [0, 1] → Rm×n in which1167
g(0) = XY >, there exists a continuous function f : [0, 1] → Rm×r × Rn×r : f(t) =1168
(Xf (t), Yf (t)) such that:1169
1) f(0) = (X,Y ).1170
2) g(t) = Xf (t)Yf (t)>,∀t ∈ [0, 1].1171
3) ‖f(z)− f(t)‖2 ≤ C‖g(z)− g(t)‖2,∀t, z ∈ [0, 1].1172

where C = max
(∣∣∣∣∣∣X†∣∣∣∣∣∣2, ∣∣∣∣∣∣Y †∣∣∣∣∣∣2).1173

Proof. WLOG, we can assume that X has full row rank. We define f as:1174

(C.1)
Xf (t) = X

Yf (t) = Y + (g(t)− g(0))>(XX>)−1X = Y + (X†(g(t)− g(0)))>
1175

where X† = X>(XX>)−1 the pseudo-inverse of X. The function Yf is well-defined1176
due to the assumption of X being full row rank. It is immediate for the first two1177
constraints. Since ‖f(z)− f(t)‖2 = ‖Yf (z)− Yf (t)‖2 = ‖X†(g(z)− g(t))‖2, the third1178
one is also satisfied as:1179

‖f(z)− f(t)‖2 = ‖X†(g(z)− g(t))‖2 ≤
∣∣∣∣∣∣X†∣∣∣∣∣∣2‖g(z)− g(t)‖2 ≤ C‖g(z)− g(t)‖21180

Lemma C.3. Consider I, J support of (FSMF) where P? = P = {P}, for any fea-1181
sible CEC-full-rank point (X,Y ) and continuous function g : [0, 1]→ Rm×n satisfying1182
supp(g(t)) ⊆ SP (Definition 3.2) and g(0) = XY >, there exists a feasible continuous1183
function f : [0, 1]→ Rm×r × Rn×r : f(t) = (Xf (t), Yf (t)) such that:1184

B1 f(0) = (X,Y ).1185
B2 g(t) = Xf (t)Yf (t)>,∀t ∈ [0, 1].1186
B3 ‖f(z)− f(t)‖2 ≤ C‖g(z)− g(t)‖2.1187

where C = max

(∣∣∣∣∣∣∣∣∣X†RP ,P ∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ,P ∣∣∣∣∣∣∣∣∣2).1188

Proof. WLOG, we assume that P = J|P |K, RP = J|RP |K, CP = J|CP |K. Further-1189
more, we can assume |P | ≥ |RP | and XRP ,P is full row rank (due to the hypothesis1190
and the fact that P is complete).1191

Since P? = P = {P}, a continuous feasible function f(t) must have the form:1192

Xf (t) =
[
X̃f (t) 0

0 0

]
and Yf (t) =

[
Ỹf 0
0 0

]
where X̃f : [0, 1] → R|RP |×|P |, Ỹf : [0, 1] →1193

R|CP |×|P | are continuous functions. f is fully determined by (X̃f (t), Ỹf (t)).1194
Moreover, if g : [0, 1]→ Rm×n satisfying supp(g(t)) ⊆ ST , then g has to have the1195

form: g(t) =
[
g̃ 0
0 0

]
where g̃ : [0, 1]→ R|RP |×|CP | is a continuous function.1196

Since g(0) = XY >, g̃(0) = (XRP ,P )(YCP ,P )>. Thus, to satisfy each constraint1197

B1-B3, it is sufficient to find X̃f and Ỹf such that:1198

B1: X̃f (0) = XRP ,P , Ỹf (0) = YCP ,P .1199

B2: g̃(t) = X̃f (t)Ỹf (t)>,∀t ∈ [0, 1] because:1200

Xf (t)Yf (t)> =

(
X̃f (t)Ỹf (t)> 0

0 0

)
=

(
g̃(t) 0
0 0

)
= g(t)1201

B3: ‖X ′(z) − X ′(t)‖2 + ‖Y ′(z) − Y ′(t)‖2 ≤ C‖A′(z) − A′(t)‖2 since ‖X ′f (z) −1202

Xf (t)‖2 + ‖Y ′f (z)− Yf (t)‖2 = ‖f(z)− f(t)‖2 and ‖A′(z)−A′(t)‖=‖g(z)− g(t)‖2.1203
Such function exists thanks Lemma C.2 (since we assume XRP ,P has full rank).1204
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Proof of Lemma C.1. We prove by induction on the size P. By Lemma C.3 the1205
result is true if |P| = 1. Assume the result is true if |P| ≤ p. We consider the case1206
where |P| = p + 1. Let P ∈ P and partition P into P ′ = P \ {P} and {P}. Let1207
T ′ = ∪P ′∈P′P ′ = T \ P . Since |P ′| = p, we can use induction hypothesis. Define:1208

h1(t) = (g(t)−XPY
>
P )� SP′ , h2(t) = XPY

>
P � SP′ + g(t)� SP \ SP′1209

We verify that the function h1(t) satisfying the hypotheses to use induction step:1210
h1 continuous, supp(h1(t)) ⊆ SP′ and finally h1(0) = (g(0) − XPY

>
P ) � SP′ =1211

XT ′Y
>
T ′ � SP′ = XT ′Y

>
T ′ . Using the induction hypothesis with P ′, there exists a1212

function f1 : [0, 1]→ Rm×r × Rn×r : f1(t) = (X1
f (t), Y 1

f (t)) such that:1213

1) supp(X1
f (t)) ⊆ IT ′ , supp(Y 1

f (t)) ⊆ JT ′ .1214
2) f1(0) = (XT ′ , YT ′).1215
3) h1(t) = X1

f (t)Y 1
f (t)>,∀t ∈ [0, 1].1216

4) ‖f1(z)− f1(t)‖2 ≤ C′‖h1(z)− h1(t)‖2.1217

where C′ = max
P ′∈P′

(
max

(∣∣∣∣∣∣∣∣∣X†RP ′ ,P ′∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ,P ∣∣∣∣∣∣∣∣∣2
))

.1218

On the other hand, h2(t) satisfies the assumptions of Lemma C.3: h2(t) is con-1219
tinuous and supp(h2(t)) = supp(XPY

>
P � SP′ + g(t) � SP \ SP′) ⊆ supp(XPY

>
P ) ∪1220

(SP \ SP′) = SP .1221
In addition, since g(0) � SP \ SP′ = (XY >) � SP \ SP′ = (XT ′Y

>
T ′ + XPY

>
P ) �1222

SP \ SP′ = XPY
>
P � SP \ SP′ , we have h2(0) = XPY

>
P � SP′ + g(0) � SP \ SP′ =1223

XPY
>
P � (SP′ + SP \ SP′) = XPY

>
P . Invoking Lemma C.3 with the singleton {P},1224

there exists a function (X2
f (t), Y 2

f (t)) such that:1225

1) supp(X2
f (t)) ⊆ IP , supp(Y 2

f (t)) ⊆ JP .1226
2) f2(0) = (XP , YP ).1227
3) h2(t) = X2

f (t)Y 2
f (t)>,∀t ∈ [0, 1].1228

4) ‖f2(z)− f2(t)‖2 ≤ max

(∣∣∣∣∣∣∣∣∣X†RP ,P ∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ,P ∣∣∣∣∣∣∣∣∣2) ‖h2(z)− h2(t)‖2.1229

We construct the functions f(t) = (Xf (t), Yf (t)) as:1230

Xf (t) = X1
f (t) +X2

f (t), Yf (t) = Y 1
f (t) + Y 2

f (t)1231

We verify the validity of this construction. f is clearly feasible due to the supports of1232
Xi
f (t), Y if (t), i = 1, 2. The remaining conditions are:1233

A1:1234

Xf (0) = X1
f (0) +X2

f (0) = XT ′ +XP = X

Yf (0) = Y 1
f (0) + Y 2

f (0) = YT ′ + YP = Y
1235

A2:1236

Xf (t)Yf (t)> = X1
f (t)Y 1

f (t)> +X2
f (t)Y 2

f (t)>

= h1(t) + h2(t)

= (g(t)−XPY
>
P )� SP′ +XPY

>
P � SP′ + g(t)� SP \ SP′

= g(t)� (SP′ + SP \ SP′) = g(t)

1237
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A3:1238

‖f(z)− f(t)‖2

= ‖f1(z)− f1(t)‖2 + ‖f2(z)− f2(t)‖2

≤ C′‖h1(z)− h1(t)‖2 + max

(∣∣∣∣∣∣∣∣∣X†RP ,P ∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ,P ∣∣∣∣∣∣∣∣∣2) ‖h2(z)− h2(t)‖2

≤ C(‖h1(z)− h1(t)‖2 + ‖h2(z)− h2(t)‖2)

= C(‖(g(z)− g(t))� SP′‖2 + ‖(g(z)− g(t))� SP \ SP′‖2)

= C‖g(z)− g(t)‖2

1239

Appendix D. Proofs for section 4.1240

D.1. Proof of Lemma 4.15. The proof relies on two intermediate results that1241
we state first: Lemma D.1 and Corollary D.2. The idea of Lemma D.1 can be found1242
in [42]. Since it is not formally proved as a lemma or theorem, we reprove it here1243
for self-containedness. In fact, Lemma D.1 and Corollary D.2 are special cases of1244
Lemma 4.15 with no support contraints and P? = P = {P} respectively.1245

Lemma D.1. Let X ∈ RR×p, Y ∈ RC×p,min(R,C) ≤ p. There exists a continuous1246
function f(t) = (Xf (t), Yf (t)) on [0, 1] such that:1247
• f(0 = (X,Y ).1248
• XY > = Xf (t)(Yf (t))>,∀t ∈ [0, 1].1249
• Xf (1) or Yf (1) has full row rank.1250

Proof. WLOG, we assume that m ≤ r. If X has full row rank, then one can choose1251
constant function f(t) = (X,Y ) to satisfy the conditions of the lemma. Therefore, we1252
can focus on the case where rank(X) = q < m. WLOG, we can assume that the first1253
q columns of X (X1, . . . , Xq) are linearly independent. The remaining columns of X1254
can be expressed as:1255

Xk =

q∑
i=1

αkiXi,∀q < k ≤ r1256

We define a matrix Ỹ by their columns as follow:1257

Ỹi =

{
Yi +

∑r
k=q+1 α

k
i Yk if i ≤ q

0 otherwise
1258

By construction, we have XY > = XỸ >. We define the function f1 : [0, 1] →1259
Rm×r × Rn×r as:1260

f1(t) = (X, (1− t)Y + tỸ )1261

This function will not change the value of f since we have:1262

X((1− t)Y > + tỸ >) = (1− t)XY > + tXỸ > = XY >.1263

Let X̃ be a matrix whose first q columns are identical to that of X and rank(X̃) = m.1264
The second function f2 defined as:1265

f2(t) = ((1− t)X + tX̃, Ỹ )1266
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also has their product unchanged (since first q columns of (1− t)X + tX̃ are constant1267
and last r − q rows of Ỹ are zero). Moreover, f2(0) = (X̃, Ỹ ) where X̃ has full row1268
rank. Therefore, the concatenation of two functions f1 and f2 (and shrink t by a factor1269
of 2) are the desired function f .1270

Corollary D.2. Consider I, J support constraints of (FSMF) with P? = P =1271
{P}. There is a feasible continuous function f : [0, 1] 7→ Rm×r × Rn×r : f(t) =1272
(Xf (t), Yf (t)) such that:1273

1. f(0) = (X,Y );1274
2. Xf (t)(Yf (t))> = XY >,∀t ∈ [0, 1];1275
3. (Xf (1))RP ,P or (Yf (1))CP ,P has full row rank.1276

Proof of Corollary D.2. WLOG, up to permuting columns, we can assume P =
J|P |K, RP = J|RP |K and CP = J|CP |K (RP and CP are defined in Definition Defini-
tion 3.2). A feasible function f = (Xf (t), Yf (t)) has the form:

Xf (t) =

(
X̃f (t) 0
0 0

)
, Yf (t) =

(
Ỹf (t) 0
0 0

)
where X̃f : [0, 1] 7→ RRP×P , Ỹf : [0, 1] 7→ RCP×P .1277

Since P is a CEC, we have p ≥ min(RP , CP ). Hence we can use Lemma D.1 to1278
build (X̃f (t), Ỹf (t)) satisfying all conditions of Lemma D.1. Such (X̃f (t), Ỹf (t)) fully1279
determines f and make f our desirable function.1280

Proof of Lemma 4.15. First, we decompose X and Y as:1281

X = XT̄ +
∑
P∈P?

XP , Y = YT̄ +
∑
P∈P?

YP1282

Since T̄ and P ∈ P? form a partition of JrK, the product XY > can be written as:1283

XY > = XT̄Y
>
T̄ +

∑
P∈P?

XPY
>
P .1284

For each P ∈ P?, (IP , JP ) contains one CEC. By applying Corollary D.2, we can build1285
continuous functions (XP

f (t), Y Pf (t)), supp(XP
f (t)) ⊆ IP , supp(Y Pf (t)) ⊆ JP ,∀t ∈ [0, 1]1286

such that:1287
1. (XP

f (0), Y Pf (0)) = (XP , YP ).1288

2. XP
f (t)(Y Pf (t))> = XPY

>
P ,∀t ∈ [0, 1].1289

3. (XP
f (1))RP ,P or (Y Pf (1))CP ,P has full row rank.1290

Our desirable f(t) = (Xf (t), Yf (t)) is defined as:1291

Xf (t) = XT̄ +
∑
P∈P?

XP
f (t), Y (t) = YT̄ +

∑
P∈P?

Y Pf (t)1292

To conclude, it is immediate to check that f = (Xf (t), Yf (t)) is feasible, f(0) = (X,Y ),1293
f(1) is CEC-full-rank and Xf (t)Yf (t)> = XY >,∀t ∈ [0, 1].1294

D.2. Proof of Lemma 4.16. Denote Z = XY >, we construct f such that1295
Xf (t)Yf (t)> = B(t), where B(t) = Z � S̄T + (At+ Z(1− t))� ST . Such function f1296
makes L(Xf (t), Yf (t)) non-increasing since:1297

‖A−Xf (t)Yf (t)>‖2 = ‖A−B(t)‖2

= ‖(A− Z)� S̄T ‖2 + (1− t)2‖(A− Z)� ST ‖2
(D.1)1298
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Thus, the rest of the proof is devoted to show that such a function f exists by using1299
Lemma C.1. Consider the function g(t) = B(t) − XT̄ (YT̄ )>. We have that g(t) is1300
continuous, g(0) = B(0)−XT̄ (YT̄ )> = Z −XT̄ (YT̄ )> = XT (YT )> and:1301

g(t)� S̄T = (B(t)−XT̄ (YT̄ )>)� S̄T
= (Z −XT̄ (YT̄ )>)� S̄T
= (XTY

>
T )� S̄T = 0

1302

which shows supp(g(t)) ⊆ ST . Since (XT , YT ) is CEC-full-rank (by our assumption,1303
(X,Y ) is CEC-full-rank), invoking Lemma C.1 with (IT , JT ), there exists fT (t) =1304
(XT

f (t), Y Tf (t)) such that:1305

D1 supp(XT
f (t)) ⊆ IT , supp(Y Cf (t)) ⊆ JT .1306

D2 fT (0) = (XT , YT ).1307
D3 g(t) = XT

f (t)(Y Tf (t))>,∀t ∈ [0, 1].1308
We can define our desired function f(t) = (Xf (t), Yf (t)) as:1309

Xf (t) = XT̄ +XT
f (t), Y = YT̄ + Y Tf (t)1310

f is clearly feasible due to (D1). The remaining condition to be checked is:1311
• First condition:1312

Xf (0) = XT
f (0) +XT̄ = XT +XT̄ = X, Yf (0) = Y Tf (0) + YT̄ = YT + YT̄ = Y1313

• Second condition: holds thanks to Equation (D.1) and:1314

Xf (t)(Yf (t))> = XT̄Y
>
T̄ +XC

f (t)(Y Cf (t))> = XT̄Y
>
T̄ + g(t) = B(t)1315

• Third condition:1316

(A−Xf (1)(Yf (1))>)� ST = (A−B(1))� ST1317

= (A− Z � S̄T −A� ST )� ST = 013181319

D.3. Proof of Lemma 4.17. Consider XT , X
i
T̄
, YT , Y

i
T̄
, i = 1, 2 as in Defini-1320

tion B.1. We redefine A′ = A� S̄T , I ′ = I1
T̄
, J ′ = J1

T̄
as in Theorem 3.8.1321

In light of Corollary B.3, an optimal solution (X̃, Ỹ ) has the following form:1322
1) X̃1

T̄
= X̃ � I1

T̄
, Ỹ 1
T̄

= Ỹ � J1
T̄
is an optimal solution of (FSMF) with (A′, I ′, J ′).1323

2) X̃2
T̄

= X̃ � I2
T̄
, Ỹ 2
T̄

= Ỹ � J2
T̄
can be arbitrary.1324

3) X̃T = X̃ � IT , ỸT = Ỹ � JT satisfy:1325

X̃T Ỹ
>
T = (A−

∑
(i,j) 6=(1,1)

X̃i
T̄ Ỹ

j
T̄

)> � ST1326

Since (I ′, J ′) has its support constraints satisfying Theorem 3.3 assumptions as shown1327
in Theorem 3.8, by Theorem 4.12, there exists a function (X T̄

f (t), Y T̄f (t)) such that:1328

1) supp(X T̄
f (t)) ⊆ I1

T̄
, supp(Y T̄f (t)) ⊆ J1

T̄
.1329

2) X T̄
f (0) = X1

T̄
, Y T̄f (0) = Y 1

T̄
.1330

3) L′(X T̄
f (t), Y T̄f (t)) = ‖A′ −X T̄

f (t)Y T̄f (t)>‖2 is non-increasing.1331

4) (X T̄
f (1), Y T̄f (1)) is an optimal solution of the instance of (FSMF) with (A′, I ′, J ′).1332
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Consider the function g(t) =
(
A− (X T̄

f (t) +X2
T̄

)(Y T̄f (t) + Y 2
T̄

)>
)
� ST . This con-1333

struction makes g(0) = XTY
>
T . Indeed,1334

g(0) =
(
A− (X T̄

f (0) +X2
T̄ )(Y T̄f (0) + Y 2

T̄ )>
)
� ST

=
(
A− (X1

T̄ +X2
T̄ )(Y 1

T̄ + Y 2
T̄ )>

)
� ST

(1)
=
(
XY > − (X1

T̄ +X2
T̄ )(Y 1

T̄ + Y 2
T̄ )>

)
� ST

(2)
= XTY

>
T

1335

where (1) holds by the hypothesis (A−XY >)�ST = 0, and (2) holds by Equation (B.3)1336
and supp(XTY

>
T ) ⊆ ST . Due to our hypothesis (X,Y ) is CEC-full-rank, (XT , YT )1337

is CEC-full-rank. In addition, g(t) continuous, supp(g(t)) ⊆ ST and g(0) = XTY
>
T .1338

Invoking Lemma C.1 with (IT , JT ), there exist functions (XC
f (t), Y Cf (t)) satisfying:1339

1) supp(XT
f (t)) ⊆ IT , supp(Y Tf (t)) ⊆ JT .1340

2) fT (0) = (XT , YT ).1341
3) g(t) = XT

f (t)Y Tf (t)>,∀t ∈ [0, 1].1342
Finally, one can define the function Xf (t), Yf (t) satisfying Lemma 4.17 as:1343

Xf (t) = X T̄
f (t) +XC

f (t) +X2
T̄ , Yf (t) = Y T̄f (t) + Y Cf (t) + Y 2

T̄1344

f is feasible due to the supports of XP
f (t), Y Pf (t), P ∈ {T̄ , C} and X2

T̄
, Y 2
T̄
. The1345

remaining conditions are satisfied as:1346
• First condition:1347

Xf (0) = X T̄
f (0) +XC

f (0) +X2
T̄ = X1

T̄ +XT +X2
T̄ = X

Yf (0) = Y T̄f (0) + Y Cf (0) + Y 2
T̄ = Y 1

T̄ + YT + Y 2
T̄ = Y

1348

• Second condition:1349

‖A−Xf (t)Yf (t)>‖2 = ‖A−XT
f (t)(Y Tf (t))> − (X T̄

f (t) +X2
T̄ )(Y T̄f (t) + Y 2

T̄ )>‖2

= ‖g(t)−XT
f (t)Y Tf (t)>‖2 + ‖(A−X T̄

f (t)(Y T̄f (t))>)� SP \ ST ‖2 + ‖A� S̄P‖2

= ‖(A′ −X T̄
f (t)(Y T̄f (t))>)� SP \ ST ‖2 + ‖A� S̄P‖2

(B.4)
= ‖A′ −X T̄

f (t)(Y T̄f (t))>‖2

1350

Since ‖A′ −X T̄
f (t)(Y T̄f (t))>‖2 is non-increasing, so is ‖A−Xf (t)Yf (t)>‖2.1351

• Third condition: By Theorem 3.8, (Xf (1), Yf (1)) is a global minimizer since1352

‖A − Xf (1)Yf (1)>‖2 = ‖A′ − X T̄
f (1)(Y T̄f (1))>‖2 where (X T̄

f (1), Y T̄f (1)) is an1353
optimal solution of the instance of (FSMF) with (A′, I ′, J ′).1354

D.4. Proof of Theorem 4.19. The following corollary is necessary for the proof1355
of Theorem 4.19.1356

Corollary D.3. Consider I, J support constraints of (FSMF), such that P? = P.1357
Given any feasible CEC-full-rank point (X,Y ) and any B satisfying supp(B) ⊆ SP ,1358
there exists (X̃, Ỹ ) such that:1359

E1 supp(X̃) ⊆ I, supp(Ỹ ) ⊆ J1360
E2 X̃Ỹ > = B.1361
E3 ‖X − X̃‖2 + ‖Y − Ỹ ‖2 ≤ C‖XY > −B‖2.1362
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where C = max
P∈P?

(
max

(∣∣∣∣∣∣∣∣∣X†RP ,P ∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ,P ∣∣∣∣∣∣∣∣∣2)).1363

Proof. Corollary D.3 is an application of Lemma C.1. Consider the function1364
g(t) = (1 − t)XY > + tB. By construction, g(t) is continuous, g(0) = XY > and1365
supp(g(t)) ⊆ supp(XY >)∪supp(B) = SP . Since (X,Y ) is CEC-full-rank, there exists1366
a feasible function f(t) = (Xf (t), Yf (t)) satisfying A1 - A3 by using Lemma C.1.1367

We choose (X̃, Ỹ ) = (Xf (1), Yf (1)). The verification of constraints is as follow:1368
E1: f is feasible.1369

E2: X̃Ỹ > = Xf (1)Yf (1)>
A2
= g(1) = B.1370

E3: ‖X−X̃‖2+‖Y −Ỹ ‖2 A1
= ‖f(1)−f(0)‖2

A3
≤ C‖g(0)−g(1)‖2 ≤ C‖XY >−B‖2.1371

Proof of Theorem 4.19. As mentioned in the sketch of the proof, given any (X,Y )1372
not CEC-full-rank, Lemma 4.15 shows the existence of a path f along which L is1373
constant and f connects (X,Y ) to some CEC-full-rank (X̃, Ỹ ). Therefore, this proof1374
will be entirely devoted to show that a feasible CEC-full-rank solution (X,Y ) cannot1375
be a spurious local minimum. This fact will be shown by the two following steps:1376
FIRST STEP: Consider the function L(X,Y ), we have:1377

L(X,Y ) = ‖A−XY >‖2 = ‖A−
∑
P ′∈P?

XP ′Y
>
P ′ −XT̄Y

>
T̄ ‖

21378

If (X,Y ) is truly a local minimum, then ∀P ∈ P?, (XP , YP ) is also the local minimum1379
of the following function:1380

L′(XP , YP ) = ‖(A−
∑
P ′ 6=P

XP ′Y
>
P ′ −XT̄Y

>
T̄ )−XPY

>
P ‖21381

where L′ is equal to L but we optimize only w.r.t (XP , YP ) while fixing the other1382
coefficients. In other words, (XP , YP ) is a local minimum of the problem:1383

Minimize
X′∈Rm×r,Y ′∈Rn×r

L′(X ′, Y ′) = ‖B −X ′Y ′>‖2

Subject to: supp(X ′) ⊆ IP and supp(Y ′) ⊆ JP
1384

where B = A −
∑
P ′ 6=P XP ′Y

>
P ′ − XT̄YT̄ . Since all columns of IP (resp. of JP )1385

are identical, all rank-one contribution supports are totally overlapping. Thus, all1386
local minima are global minima (Theorem 4.12). Global minima are attained when1387
XPY

>
P = B � SP due to the expressivity of a CEC (Lemma 3.5). Thus, for any1388

P ∈ P?, ∀(i, j) ∈ SP , we have:1389

0 = (B −XPY
>
P )i,j = (A−

∑
P ′∈P?

XP ′Y
>
P ′ −XT̄Y

>
T̄ )i,j = (A−XY >)i,j1390

which implies Equation (4.2).1391
SECOND STEP: In this step, we assume that Equation (4.2) holds. Consider1392
XT , X

i
T̄
, YT , Y

i
T̄
, i = 1, 2 as in Definition 3.7. Let A′ = A� S̄T , I ′ = I1

T̄
, J ′ = J1

T̄
.1393

We consider two possibilities. First, if (X1
T̄
, Y 1
T̄

) is an optimal solution of the instance1394
of (FSMF) with (A′, I ′, J ′), by Corollary B.3, (X,Y ) is an optimal solution of (FSMF)1395
with (A, I, J) (since Equation (4.2) holds). Hence it cannot be a spurious local1396
minimum. We now focus on the second case, where (X1

T̄
, Y 1
T̄

) is not the optimal1397
solution of the instance of (FSMF) with (A′, I ′, J ′). We show that in this case, in1398
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any neighborhood of (X,Y ), there exists a point (X ′, Y ′) such that supp(X ′) ⊆ I,1399
supp(Y ′) ⊆ J ′ and L(X,Y ) > L(X ′, Y ′). Thus (X,Y ) cannot be a local minimum.1400
Since (I1

T̄
, J1
T̄

) satisfies Theorem 3.3 assumptions, (FSMF) has no spurious local1401
minima (Theorem 4.12). As (X1

T̄
, Y 1
T̄

) is not an optimal solution, it cannot be a1402

local minimum either, i.e., in any neighborhood of (X1
T̄
, Y 1
T̄

), there exists (Ẋ, Ẏ ) with1403

supp(X̃1
T̄

) ⊆ I ′, supp(Ỹ 1
T̄

) ⊆ J ′ and1404

(D.2) ‖A′ −X1
T̄ (Y 1

T̄ )>‖2 > ‖A′ − X̃1
T̄ (Ỹ 1

T̄ )>‖21405

By Equation (B.4), we have:1406

(D.3)
‖A′ − (X1

T̄ )(Y 1
T̄ )>‖2 = ‖(A− (X1

T̄ )(Y 1
T̄ )>)� SP \ ST ‖2 + ‖A� S̄P‖2

‖A′ − (X̃1
T̄ )(Ỹ 1

T̄ )>‖2 = ‖(A− (X̃1
T̄ )(Ỹ 1

T̄ )>)� SP \ ST ‖2 + ‖A� S̄P‖2
1407

By Equation (D.2) and Equation (D.3) we have:1408

(D.4) ‖(A− (X1
T̄ )(Y 1

T̄ )>)� SP \ ST ‖2 > ‖(A− X̃1
T̄ (Ỹ 1

T̄ )>)� SP \ ST ‖21409

Consider the matrix: B :=
(
A− (X̃1

T̄
+X2

T̄
)(Ỹ 1

T̄
+ Y 2

T̄
)>
)
� ST . Since supp(B) ⊆ ST1410

and (XT , YT ) is CEC-full-rank (we assume (X,Y ) is CEC-full-rank), by Corollary D.3,1411
there exists (X̃T , ỸT ) such that:1412
1) supp(X̃T ) ⊆ IT , supp(ỸT ) ⊆ JT .1413
2) X̃T Ỹ

>
T = B.1414

3) ‖XT − X̃T ‖2 + ‖YT − ỸT ‖2 ≤ C‖XTY
>
T −B‖2.1415

where C = max
P∈P?

(
max

(∣∣∣∣∣∣∣∣∣X†RP ,P ∣∣∣∣∣∣∣∣∣2, ∣∣∣∣∣∣∣∣∣Y †CP ,P ∣∣∣∣∣∣∣∣∣2)). We define the point(X̃, Ỹ ) as:1416

X̃ = X̃T + X̃1
T̄ +X2

T̄ , Ỹ = ỸT + Ỹ 1
T̄ + Y 2

T̄1417

The point (X̃, Ỹ ) still satisfies Equation (4.2). Indeed,1418

(A− X̃Ỹ >)� ST =
(
A− X̃T Ỹ

>
T − (X̃1

T̄ +X2
T̄ )(Ỹ 1

T̄ + Y 2
T̄ )>

)
� ST

= (B − X̃T Ỹ
>
T )� ST = 0.

(D.5)1419

It is clear that (X̃, Ỹ ) satisfies supp(X̃) ⊆ I, supp(Ỹ ) ⊆ J due to the support of its1420
components (X̃T , ỸT ), (X̃1

T̄
, Ỹ 1
T̄

), (X2
T̄
, Y 2
T̄

). Moreover, we have:1421

‖A− X̃Ỹ >‖2 = ‖(A− X̃Ỹ >)� ST ‖2 + ‖(A− X̃Ỹ >)� SP \ ST ‖2 + ‖A� S̄P‖2

(D.5)
= ‖(A− X̃1

T̄ (Ỹ 1
T̄ )>)� SP \ ST ‖2 + ‖A� S̄P‖2

(D.4)
< ‖(A−X1

T̄ (Y 1
T̄ )>)� SP \ ST ‖2 + ‖A� S̄P‖2

= ‖A−XY >‖2.

1422

Lastly, we show that (X̃, Ỹ ) can be chosen arbitrarily close to (X,Y ) by choosing1423
(X̃1

T̄
, Ỹ 1
T̄

) close enough to (X1
T̄
, Y 1
T̄

). For this, denoting ε := ‖X1
T̄
− X̃‖2 + ‖Y 1

T̄
− Ỹ ‖2,1424

we first compute:1425

‖X − X̃‖2 + ‖Y − Ỹ ‖2 = ‖XT − X̃T ‖2 + ‖YT − ỸT ‖2 + ‖X1
T̄ − X̃

1
T̄ ‖

2 + ‖Y 1
T̄ − Ỹ

1
T̄ ‖

2

≤ C‖XTY
>
T −B‖2 + ε

1426
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We will bound the value ‖XTY
>
T −B‖2. By using Equation (4.2), we have:1427

(A−
∑

1≤i,j≤2

(Xi
T̄ )(Y j

T̄
)>)� ST −XTY

>
T = (A−XTY

>
T −

∑
1≤i,j≤2

(Xi
T̄ )(Y j

T̄
)>)� ST

= (A−XY >)� ST
(4.2)
= 0

1428

Therefore, XTY
>
T = [A− (X1

T̄
+X2

T̄
)(Y 1

T̄
+ Y 2

T̄
)>]� ST . We have:1429

‖XTY
>
T −B‖2 = ‖[A− (X1

T̄ +X2
T̄ )(Y 1

T̄ + Y 2
T̄ )>]� ST −B‖2

= ‖[(X̃1
T̄ +X2

T̄ )(Ỹ 1
T̄ + Y 2

T̄ )> − (X1
T̄ +X2

T̄ )(Y 1
T̄ + Y 2

T̄ )>]� ST ‖2

≤ ‖(X̃1
T̄ +X2

T̄ )(Ỹ 1
T̄ + Y 2

T̄ )> − (X1
T̄ +X2

T̄ )(Y 1
T̄ + Y 2

T̄ )>‖2
1430

When ε→ 0, we have ‖(X̃1
T̄

+X2
T̄

)(Ỹ 1
T̄

+Y 2
T̄

)>−(X1
T̄

+X2
T̄

)(Y 1
T̄

+Y 2
T̄

)>‖ → 0. Therefore,1431
with ε small enough, one have ‖X −X ′‖2 + ‖Y − Y ′‖2 can be arbitrarily small. This1432
concludes the proof.1433

D.5. Proof for Remark 4.23. Direct calculation of the Hessian of L at point1434
(X0, Y0) is given by:1435

H(L)|(X0,Y0) =



0 0 0 0 0 0 0
0 100 0 0 0 10 0
0 0 100 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 10 0 0 0 1 0
0 0 −1 0 0 0 1


1436

which is indeed positive semi-definite.1437

Appendix E. Expressing any hierarchically off-diagonal low-rank matrix1438
(HODLR) as a product of 2 factors with fixed supports. In the following, we1439
report the definition of HODLR matrices. For convenience, we report the definition1440
only for a square matrix whose size is a power of two, i.e n = 2J , J ∈ N.1441

Definition E.1 (HODLR matrices). A matrix A ∈ R2N×2N is called an HODLR1442
matrix if either of the following two holds:1443
• N = 0, i.e., A ∈ R1×1.1444

• A has the form A =
[
A11 A12

A21 A22

]
for Ai,j ∈ R2N−1×2N−1

, 1 ≤ i, j ≤ 2 such that A21, A121445
are of rank at most one and A11, A22 ∈ R are HODLR matrices.1446

We prove that any HODLR matrix is a product of two factors with fixed support.1447
The result is proved when A12, A21 are of rank at most one, but more generally,1448
if we allow A12 and A21 to have rank k ≥ 1, the general scheme of the proof of1449
Lemma E.2 below still works (with the slight modification |I| = |J | = O(kn log n),1450

I, J ∈ {0, 1}2N×k(3×2N−2)). We prove that any HODLR matrix is a product of two1451
factors with fixed support.1452

Lemma E.2. For each N ≥ 1 there exists I, J ∈ {0, 1}2N×(3×2N−2) support con-1453

straints such that for any HODLR matrix A ∈ R2N×2N , we have:1454
1) A admits a factorization XY > and supp(X) ⊆ I, supp(Y ) ⊆ J .1455
2) |I| = |J | = O(n log n) (n = 2N ).1456
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3) (I, J) satisfies the assumption of Theorem 3.3.1457

Proof. The proof is carried out by induction.1458
1) For N = 1, one can consider (I, J) ∈ {0, 1}2×4 × {0, 1}2×4 defined (in the binary1459

matrix form) as follows:1460

I =

(
1 0 1 0
0 1 0 1

)
, J =

(
0 1 1 0
1 0 0 1

)
.1461

Any (X,Y ) constrained to (I, J) will have the following form:1462

X =

(
x1 0 x3 0
0 x2 0 x4

)
, Y =

(
0 y2 y3 0
y1 0 0 y4

)
, XY > =

(
x3y3 x1y1

x2y2 x4y4

)
.1463

Given any matrix A ∈ R2×2 (and in particular, given any HODLR matrix in1464
this dimension) it is easy to see that A can be represented as XY > such that1465
supp(X) ⊆ I, supp(Y ) ⊆ J (take e.g. x3 = a11, x1 = a12, x2 = a21, x4 = a22 and1466
all yi = 1). It is also easy to verify that this choice of (I, J) makes all the supports of1467
the rank-one contributions pairwise disjoint, so that the assumptions of Theorem 3.31468
are fulfilled. Finally, we observe that |IN | = |JN | = 4.1469

2) Suppose that our hypothesis is correct for N − 1, we need to prove its correctness1470
for N . Let (IN−1, JN−1) be the pair of supports for N − 1, we construct (IN , JN )1471
(still in binary matrix form) as follows:1472

IN =

(
1n/2×1 0n/2×1 IN−1 0n/2×(3n/2−2)

0n/2×1 1n/2×1 0n/2×(3n/2−2) IN−1

)
1473

JN =

(
0n/2×1 1n/2×1 JN−1 0n/2×(3n/2−2)

1n/2×1 0n/2×1 0n/2×(3n/2−2) JN−1

)
1474
1475

where n = 2N and 1p×q (resp. 0p×q) is the matrix of size p× q full of ones (resp.1476
of zeros). Since IN−1 and JN−1 are both of dimension 2N−1 × (3 × 2N−1 − 2) =1477
(n/2)(3n/2−2), the dimensions of IN and JN are both equal to (n, 2×(3n/2−2)+2) =1478
(n, 3n− 2). Moreover, the cardinalities of IN and JN satisfy the following recursive1479
formula:1480

|IN | = n+ 2|IN−1|, |JN | = n+ 2|JN−1|,1481

which justifies the fact that |IN | = |JN | = O(n log n). Finally, any factors (X,Y )1482
respecting the support constraints (IN , JN ) need to have the following form:1483

X =

(
X1 0n/2×1 X3 0n/2×(3n/2−2)

0n/2×1 X2 0n/2×(3n/2−2) X4

)
1484

Y =

(
0n/2×1 Y2 Y3 0n/2×(3n/2−2)

Y1 0n/2×1 0n/2×(3n/2−2) Y4

)
1485
1486

where Xi, Yi ∈ Rn/2, 1 ≤ i ≤ 2, and for 3 ≤ j ≤ 4 we have Xj , Yj ∈ Rn/2×(3n/2−2),1487
supp(Xj) ⊆ IN−1, supp(Yj) ⊆ JN−1. Their product yields:1488

XY > =

(
X3Y

>
3 X1Y

>
1

X2Y
>
2 X4Y

>
4

)
.1489

Given an HODLR matrix A ∈ Rn×n, since A12, A21 ∈ Rn/2×n/2 are of rank at most1490
one, one can find Xi, Yi ∈ Rn/2, 1 ≤ i ≤ 2 such that A12 = X1Y

>
1 , A21 = X2Y

>
2 .1491
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Since A11, A22 ∈ Rn/2×n/2 are HODLR, by the induction hypothesis, one can also1492
find Xi, Yi ∈ Rn/2×(3n/2−2), 3 ≤ i ≤ 4 such that supp(Xi) ⊆ IN−1, supp(Yi) ⊆ IN−11493
and A11 = X3Y

>
3 , A22 = X4Y

>
4 . Finally, this construction also makes all the1494

supports of the rank-one contributions pairwise disjoint: the first two rank-one1495
supports are S1 = {n/2 + 1, . . . , n} × Jn/2K,S2 = Jn/2K× {n/2 + 1, . . . , n}, and the1496
remaining ones are inside Jn/2K × Jn/2K and {n/2 + 1, . . . , n} × {n/2 + 1, . . . , n}1497
which are disjoint by the induction hypothesis.1498

This manuscript is for review purposes only.


	Introduction
	Notations

	Matrix factorization with fixed support is NP-hard
	Tractable instances of matrix factorization with fixed support
	Landscape of matrix factorization with fixed support
	Spurious local minima and spurious local valleys
	Previous results on the landscape
	Landscape of matrix factorization with fixed support constraints
	Absence of correlation between tractability and benign landscape

	Numerical illustration: landscape and behaviour of gradient descent
	Conclusion
	References
	Appendix A. Proof of lem: NPhardness
	Appendix B. Proofs for sec:easyinstance
	Proof of lem: expressibilitytwo
	Proof of theorem: reductiondisjointoverlapping

	Appendix C. Proofs for a key lemma
	Appendix D. Proofs for sec: spuriouslocal
	Proof of lem:fullrankhypothesis
	Proof of lem:connecttozeroCEC
	Proof of lem:connecttooptimal
	Proof of theorem:nospuriousminimaComplex
	Proof for ex:spuriousinstances

	Appendix E. Expressing any hierarchically off-diagonal low-rank matrix (HODLR) as a product of 2 factors with fixed supports

