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Ill-posed least squares

Let us consider the following least squares problem: given
F : Rn → Rm with m ≥ n, nonlinear, continuously differentiable
and y ∈ Rm, solve

min
x∈Rn

1

2
‖F (x)− y‖2.

→ We are interested in ill-posed problems.

Ill-posed problems

The problem is ill-posed if:

1 ∀y ∈ Rm the existence and uniqueness of the solution x ∈ Rn

of the problem are not guaranteed,

2 stability does not hold: the solutions do not depend
continuously on the data.
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Noisy case

In a realistic situation only noisy data y δ are given:

‖y − y δ‖ ≤ δ,

where δ is the noise level.

The solution does not depend continuously on the data that
are noisy: the solution of the noisy problem is not a good
solution of the original one.

As the problem is ill-posed, no finite bounds on the inverse of
the norm of the Jacobian matrix: classical methods used for
well-posed problems are not suitable in this contest.

⇓
Need for regularization
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Outline

Introduction to iterative regularization methods.

Description of Levenberg-Marquardt method and of its
regularizing variant.

Description of a new regularizing trust-region approach,
obtained by a suitable choice of the trust region radius .

Regularization and convergence properties of the new
approach.

Numerical tests: we compare the new trust-region approach
to the regularizing Levenberg-Marquardt and standard
trust-region methods.

Open issues and future developments.
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Iterative regularization methods

Hypothesis: it exists x† solution of min 1
2‖F (x)− y‖2.

Definition

Iterative regularization methods generate a sequence {xδk}. If the
process is stopped at iteration k∗(δ) the method is supposed to
guarantee the following properties:

xδk∗(δ) is an approximation of x†;

{xδk∗(δ)} tends to x† if δ tends to zero;

local convergence to x† in the noise-free case.
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Regularizing methods for zero residual problems

Landweber (gradient-type method)[ Hanke, Neubauer,
Scherzer, 1995,Kaltenbacher, Neubauer, Scherzer, 2008 ]

Truncated Newton - Conjugate Gradients [Hanke,1997,
Rieder, 2005]

Iterative Regularizing Gauss-Newton [Bakushinsky, 1992,
Blaschke, Neubauer, Scherzer, 1997]

Levenberg-Marquardt [Hanke,1997,2010,Vogel 1990,
Kaltenbacher, Neubauer, Scherzer, 2008]

Trust region methods [Wang, Yuan 2002,Bellavia, Morini, R.
2016]

Most of these methods are analyzed only under local assumptions.
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Levenberg-Marquardt method

Given xδk ∈ Rn and λk > 0, we denote with J ∈ Rm×n the
Jacobian matrix of F . The step pk ∈ Rn is the minimizer of

mLM
k (p) =

1

2
‖F (xδk )− y δ + J(xδk )p‖2 +

1

2
λk‖p‖2;

pk = p(λk) is the solution of

(J(xδk )T J(xδk ) + λk I )pk = −J(xδk )T (F (xδk )− y δ).

The step is then used to compute the new iterate

xδk+1 = xδk + pk .
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Regularizing Levenberg-Marquardt (LM) method for zero
residual problems

The regularizing properties are given by two choices:

The parameter λk > 0 satisfies:

‖F (xδk )− y δ + J(xδk )p(λk)‖ = q‖F (xδk )− y δ‖

with q ∈ (0, 1);

With noisy data the process is stopped at iteration k∗(δ) such
that xδk∗(δ) satisfies the discrepancy principle:

‖F (xδk∗(δ))− y δ‖ ≤ τδ < ‖F (xδk )− y δ‖

for 0 ≤ k < k∗(δ) and τ > 1 suitable parameter.

[Hanke, 1997,2010]
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Local analysis

Assumption

Given the starting guess x0, it exist positive ρ and c such that

the system F (x) = y is solvable in Bρ(x0);

for x , x̃ ∈ B2ρ(x0)

‖F (x)− F (x̃)− J(x)(x − x̃)‖ ≤ c‖x − x̃‖‖F (x)− F (x̃)‖.

Due to the ill-posedness of the problem it is not possible to
assume that a finite bound on the inverse of the Jacobian
matrix exists.

The Jacobian may be singular at the solution.
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Regularizing properties of the LM method

Choosing λk solution of

‖F (xδk )− y δ + J(xδk )p(λk)‖ = q‖F (xδk )− y δ‖

and stopping the process when the discrepancy principle

‖F (xδk∗(δ))− y δ‖ ≤ τδ < ‖F (xδk )− y δ‖

is satisfied, Hanke proves that:

Lemma

With exact data (δ = 0): local convergence to x† ,

With noisy data (δ > 0): Choosing x0 close to x† the
discrepancy principle is satisfied after a finite number of
iterations k∗(δ) and {xδk∗(δ)} converges to a solution of

F (x) = y if δ tends to zero.

Regularizing method.
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Drawbacks of the LM approach

The existence of λk > 0 s.t.
‖F (xδk )− y δ + J(xδk )p(λk)‖ = q‖F (xδk )− y δ‖
is guaranteed only whenever xk is close to a solution.

If λk does not exists it is not clear how to choose λ: from a
computational point of view the choice of λ is crucial.

Global convergence is not enforced either in the noise-free
case.

On the other hand,Trust-Region methods are LM methods.

Can we obtain more robust regularizing methods than the Hanke’s
LM approach and enforce global convergence in the noise-free
case?

First step in proving regularization properties of Trust-Region
methods: [Wang, Yuan, 2002]
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Standard TR approach: observations

The trial step pk is solution to:

min
‖p‖≤∆k

mTR
k (p) = ‖F (xδk )− y δ + J(xδk )p‖2.

The role of ∆k is to provide global convergence of the
procedure.

The solution pk of the TR subproblem is a LM step as it is
the solution of the linear system

(J(xδk )T J(xδk ) + λk I )p = −J(xδk )T (F (xδk )− y δ)

with λk ≥ 0 s.t. λk(‖pk‖ −∆k) = 0.
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Standard TR approach: observations

As λk(‖pk‖ −∆k) = 0:

If the minimum norm solution p∗ of

J(xδk )T J(xδk )p = −J(xδk )T (F (xδk )− y δ)

satisfies ‖p∗‖ ≤ ∆k then λk = 0 and pk = p(0);

Otherwise λk 6= 0, ‖pk‖ = ∆k and pk = p(λk) is a
Levenberg-Marquardt step.

The standard trust-region does not ensure regularizing properties,
trust-region should be active to have a regularizing method:

‖pk‖ = ∆k .
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Goals

We modify the standard trust-region to have:

monotone decay of the function

Φ(x) =
1

2
‖F (x)− y δ‖2,

the q-condition to hold:

‖F (xδk )− y δ + J(xδk )p(λk)‖ ≥ q‖F (xδk )− y δ‖.

the same regularizing properties of Levenberg-Marquardt
method.

The q-condition is a relaxed reformulation of

‖F (xδk )− y δ + J(xδk )p(λk)‖ = q‖F (xδk )− y δ‖.
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Trust-region radius choice

Let Bk = J(xδk )T J(xδk ) and gk = J(xδk )T (F (xδk )− y δ).

Lemma

Let pk the solution of trust-region problem. If

∆k ≤
1− q

‖Bk‖
‖gk‖

then pk satisfies the q-condition.

Trust region radius choice:

∆k ∈
[
Cmin‖gk‖, min

{
Cmax,

1− q

‖Bk‖

}
‖gk‖

]
With noisy data the process is stopped at iteration k∗(δ) such
that xδk∗(δ) satisfies the discrepancy principle:

‖F (xδk∗(δ))− y δ‖ ≤ τδ < ‖F (xδk )− y δ‖ with τ > 1
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Algorithm : k-th iteration of regularizing trust-region

Given xδk , η ∈ (0, 1), γ ∈ (0, 1), 0 < Cmin < Cmax.

Exact data: y , q ∈ (0, 1).

Noisy data: yδ, q ∈ (0, 1), τ > 1/q.

1. Compute Bk = J(xδk )TJ(xδk ) and
gk = J(xδk )T (F (xδk )− yδ).

2. Choose ∆k ∈
[
Cmin‖gk‖, min

{
Cmax,

1− q

‖Bk‖

}
‖gk‖

]
3. Repeat

3.1 Compute the solution pk of trust-region problem.
3.2 Compute

πk(pk) =
Φ(xδk )− Φ(xδk + pk)

mTR
k (0)−mTR

k (pk)

with Φ(x) = 1
2
‖F (x)− yδ‖2,

mTR
k (p) = 1

2
‖F (xδk ) + J(xδk )p‖2.

3.3 If πk(pk) < η,set ∆k = γ∆k .
Until πk(pk) ≥ η.

4. Set xδk+1 = xδk + pk .
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Solution of the TR subproblem

At each iteration we have to deal with the solution of

min
‖p‖≤∆k

mTR
k (p) = ‖F (xδk )− y δ + J(xδk )p‖2.

that is equivalent to

(J(xδk )T J(xδk ) + λk I )p = −J(xδk )T (F (xδk )− y δ)

for a parameter λk such that:

λk(‖p(λk)‖ −∆k) = 0.
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Small scale problems

As the TR is active, to compute parameters λk we have to
solve the following non linear equation:

‖p(λ)‖ = ∆k .

We used Newton method to solve this reformulation of the
condition:

ψ(λ) =
1

‖p(λ)‖
− 1

∆k
= 0.

that is more suitable to the application of Newton method.

Each Newton iteration requires Cholesky factorization of
J(xδk )T J(xδk ) + λk I .
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Large scale problems

CGLS is applied to the linear system

J(xδk )p = −(F (xδk )− y δ)

If the initial guess is zero, the sequence of computed
approximations is increasing in norm.

As a consequence, it is acceptable to stop iterating as soon as
the trust-region boundary is reached, because no further
iterates giving a lower value of ‖J(xδk )p + F (xδk )‖ will be
inside the trust region.

Then, once the trust-region is left the process is stopped and
the previous iteration (still inside the TR) is taken as an
approximation of the subproblem solution.

In the trust-region the q-condition is satisfied, due to the
choice of trust-region radius.
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Convergence analysis: noise free case

limk→∞ ‖gk‖ = 0 so the trust-region radius tends to zero.

Assumption

There exists k̄ s.t. the system F (x) = y is solvable in Bρ(xk̄) and
for x , x̃ ∈ B2ρ(xk̄)
‖F (x)− F (x̃)− J(x)(x − x̃)‖ ≤ c‖x − x̃‖‖F (x)− F (x̃)‖.

Lemma

For k ≥ k̄

trust-region is active, i.e. λk > 0;

Error monotonic decrease: ‖xk+1 − x†‖ < ‖xk − x†‖;

Theorem

The sequence {xk} converges to a solution x∗ of F (x) = y such
that ‖x∗ − x†‖ ≤ ρ .
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Convergence analysis: noisy case

Lemma

Let k̄ < k∗(δ). For k̄ ≤ k < k∗(δ)

the trust-region is active, i.e. λk > 0;

xδk belongs to B2ρ(xδ
k̄

) and to Bρ(x†);

‖xδk+1 − x†‖ < ‖xδk − x†‖;

Theorem

The discrepancy principle is satisfied after a finite number of
iterations k∗(δ),

The sequence {xδk∗(δ)} converges to a solution of F (x) = y if
δ tends to zero.

Regularizing method.
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Test problems

We consider small scale problems.

Four nonlinear ill-posed systems arising from the discretization
of nonlinear first-kind Fredholm integral equation are
considered, they model gravimetric and geophysics problems:∫ 1

0
k(t, s, x(s))ds = y(t), t ∈ [0, 1],

P1,P2, [Vogel, 1990], P3,P4 [Kaltenbacher,2007];

Their kernel is of the form

k(t, s, x(s)) = log

(
(t − s)2 + H2

(t − s)2 + (H − x(s))2

)
;

k(t, s, x(s)) =
1√

1 + (t − s)2 + x(s)2
;
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Regularizing trust-region implementation

Trust-region radius update:

∆k = µk‖F (xδk )− y δ‖, µk =


1

6
µk−1 if qk−1 < q

2µk−1 if qk−1 > νq

µk−1 otherwise

with qk =
‖F (xδk )−yδ+J(xδk )pk‖

||F (xδk )−yδ|| , and ν = 1.1.

This choice preserves convergence to zero if δ = 0.

In the update the fulfilment of q-condition is considered.
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Regularizing properties
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The q-condition is satisfied in most of the iterations even if not
explicitly imposed.
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Regularizing properties of the method.
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Comparison between regularizing TR-LM, δ = 10−2.

Problem Regularizing TR Regularizing LM
x0 it nf cf it nf cf

P1 0 e 20 21 6 17 18 4
−0.5 e 29 30 6 22 23 4
−1 e 35 36 5 24 25 4
−2 e 40 41 5 25 26 4

P2 0 e 30 31 5 * * *
0.5 e 25 26 5 * * *

1 e 29 30 5 22 23 5
2 e 37 39 5 25 26 5

P3 x0(1.25) 15 16 4 12 13 4
x0(1.5) 17 18 4 14 15 4

x0(1.75) 19 20 4 15 16 4
x0(2) 22 23 4 16 17 4

P4 x0(1, 1) 17 18 5 10 11 4
x0(0.5, 0) 20 21 4 * * *
x0(1.5, 1) 22 23 4 15 16 4
x0(1.5, 0) 26 27 4 * * *

it=iterations,
nf=function
evaluations,

cf=mean

number of

Cholesky

factorizations.

∗=failure,

reached

maximum

number of

iterations or

convergence to a

solution of the

noisy problem

e = (1, . . . , 1)T , P3: (x0(α))j = (−4α+ 4)s2
j + (4α− 4)sj + 1, P4:

x0(β, χ) = β − χsj , sj grid points, j = 1, . . . , n.
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Comparison between regularizing TR and LM, δ = 10−2
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Comparison between regularizing TR e LM, δ = 10−2
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The q-condition

The condition imposed by Hanke is strongly dependent on the
choice of the value of free parameter q. Values of
q = 0.67, 0.70, 0.73, 0.87, δ = 10−2.
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Comparison between regularizing and standard trust-region
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Open issues and future developments

We are currently working on designing new methods for non
zero residual ill-posed problems,

elliptical trust-region approach to solve small scale small
residual problems,
Levenberg-Marquardt approach for large scale problems.

In many applications bounds on the variables must be
enforced: methods able to handle bounds and ill-posedness
are needed.

Results for zero residual problems in:
Bellavia, Morini, R., On an adaptive regularization for ill-posed nonlinear
systems and its trust-region implementation, COAP, 2016

THANK YOU FOR YOUR ATTENTION!
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Open issues: Convergence to the infinite dimensional
solution.

Let X ,Y be Hilbert spaces, F∞ : X → Y, y∞ ∈ Y. The nonlinear
system is the discretization of a infinite dimensional problem: find
x∞ ∈ X such that F∞(x∞) = y∞. We are interested in the
convergence of the discrete solution x̂n(s) =

∑n
j=1 Φj(s)xj to a

solution of the infinite dimensional problem as n→∞.

Theorem

The sequence {x̂n} has a weakly convergent subsequence {x̂k}.

Theorem

The sequence {‖F∞(x̂k)− y∞‖} converges to zero as k tends to
infinite, i.e. the weak limit x∗ of sequence {x̂k} is a solution of the
original problem, F∞(x∗) = y∞.
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Open issues: peaks

Problem: when solving the nonlinear system obtained
computing the integral by the trapezoidal rule, the
approximated solution shows peaks at the end points of the
interval. Peaks are higher and higher as the starting guess
moves away from the solution and the noise increases.

When solving the nonlinear system obtained computing the
integral by the rectangular rule, the approximated solution
does not show peaks at the end points of the interval.
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Computed solution
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trapezoidal rule
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rectangular rule

Computed solution, x0 = 1e, δ = 1.e − 2. Left: trapezoidal rule, Right: rectangular

rule, Solid line: solution of the original problem.
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Comparison of the nonlinear systems

Trapezoidal rule: the resulting nonlinear system is

1

2
k(ti , s1, x1)+1k(ti , s2, x2)+· · ·+1k(ti , sn−1, xn−1)+

1

2
k(ti , sn, xn) = y(ti ),

i = 1, . . . , n.

Rectangular rule: the resulting nonlinear system is

1k(ti , s1, x1)+1k(ti , s2, x2)+· · ·+1k(ti , sn−1, xn−1)+1k(ti , sn, xn) = y(ti ),

i = 1, . . . , n.
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Linear system: trapezoidal rule

We solve (JT J + λI )p(λ) = −JT (F − y δ). Let n = 5.

J =


1
2
∂1k(t1, s1, x1) 1∂2k(t1, s2, x2) . 1∂4k(t1, s4, x4) 1

2
∂5k(t1, s5, x5)

. . . . .

. . . .

. . . . .
1
2
∂1k(t5, s1, x1) 1∂2k(t5, s2, x2) . 1∂4k(t5, s4, x4) 1

2
∂5k(t5, s5, x5)


We denote ki ,j = k(ti , sj , xj) i , j = 1, . . . , n.

JT J =
1
4

∑5
i=1 ∂1ki,1∂1ki,1

1
2

∑5
i=1 ∂1ki,1∂2ki,2 . 1

2

∑5
i=1 ∂1ki,1∂4ki,4

1
4

∑5
i=1 ∂1ki,1∂5ki,5

1
2

∑5
i=1 ∂2ki,2∂1ki,1 1

∑5
i=1 ∂2ki,2∂2ki,2 . 1

∑5
i=1 ∂2ki,2∂4ki,4

1
2

∑5
i=1 ∂2ki,2∂5ki,5

. . . . .
1
2

∑5
i=1 ∂4ki,5∂1ki,1 1

∑5
i=1 ∂4ki,5∂2k1,2 . 1

∑5
i=1 ∂4ki,5∂4ki,4

1
2

∑5
i=1 ∂4ki,5∂5ki,5

1
4

∑5
i=1 ∂4ki,5∂1ki,1

1
2

∑5
i=1 ∂5ki,5∂2k1,2 . 1

2

∑5
i=1 ∂5ki,5∂4ki,4

1
4

∑5
i=1 ∂5ki,5∂5ki,5

 .
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Linear system: rectangular rule

We solve (JT J + λI )p(λ) = −JT (F − y δ). Let n = 5.

J =


1∂1k(t1, s1, x1) 1∂2k(t1, s2, x2) . 1∂4k(t1, s4, x4) 1∂5k(t1, s5, x5)

. . . . .

. . . .

. . . . .
1∂1k(t5, s1, x1) 1∂2k(t5, s2, x2) . 1∂4k(t5, s4, x4) 1∂5k(t5, s5, x5)


We denote ki ,j = k(ti , sj , xj) i , j = 1, . . . , n.

JT J =
1
∑5

i=1 ∂1ki,1∂1ki,1 1
∑5

i=1 ∂1ki,1∂2ki,2 . 1
∑5

i=1 ∂1ki,1∂4ki,4 1
∑5

i=1 ∂1ki,1∂5ki,5
1
∑5

i=1 ∂2ki,2∂1ki,1 1
∑5

i=1 ∂2ki,2∂2ki,2 . 1
∑5

i=1 ∂2ki,2∂4ki,4 1
∑5

i=1 ∂2ki,2∂5ki,5
. . . . .

1
∑5

i=1 ∂4ki,5∂1ki,1 1
∑5

i=1 ∂4ki,5∂2k1,2 . 1
∑5

i=1 ∂4ki,5∂4ki,4 1
∑5

i=1 ∂4ki,5∂5ki,5
1
∑5

i=1 ∂4ki,5∂1ki,1 1
∑5

i=1 ∂5ki,5∂2k1,2 . 1
∑5

i=1 ∂5ki,5∂4ki,4 1
∑5

i=1 ∂5ki,5∂5ki,5

 .
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SVD decomposition: trapezoidal rule

Let consider matrix JT J SVD decomposition.

JT J = UΣUT

cond(JT J) = 106, λ = 15.7, cond(JT J + λI ) = 1.2 100

σ = diag(Σ) =


3.8 100

8.5 10−2

2.3 10−3

7.1 10−5

1.6 10−6

 , p =


−7.6 10−2

−1.7 10−1

−1.8 10−1

−1.7 10−1

−7.6 10−2



U =


−0.24 −0.44 0.58 0.56 0.32
−0.54 −0.56 0.04 −0.44 −0.46
−0.56 3.5 10−8 −0.56 −7.3 10−8 0.61
−0.54 0.56 0.04 0.44 −0.46
−0.24 0.44 0.58 −0.56 0.32



Elisa Riccietti Adaptive Trust-Region Regularization.



SVD decomposition: rectangular rule

Let consider matrix JT J SVD decomposition.

JT J = UΣUT

cond(JT J) = 106, λ = 17.4, cond(JT J + λI ) = 1.3 100

σ = diag(Σ) =


5.1 100

1.8 10−1

5.8 10−3

1.3 10−4

1.8 10−6

 , p =


−1.8 10−1

−2.0 10−1

−2.1 10−1

−2.0 10−1

−1.8 10−1



U =


−0.41 −0.60 0.55 −0.38 −0.17
−0.46 −0.38 −0.19 0.60 0.5
−0.48 −4.1 10−8 −0.57 −1.4 10−6 −0.66
−0.46 0.38 −0.19 −0.60 0.50
−0.41 0.60 0.55 0.38 −0.17


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