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We consider large-scale nonlinear unconstrained optimization
problems:
min f(x)
X

Classical iterative optimization methods:
f(Xk + S) ~ TQ(Xk,S)

with Ty(xk,s) Taylor model of order 2. At each iteration we
compute a step s, to update the iterate:

min mq7k(xk,5) = TQ(Xk,S)-i-r(/\k), /\k>0
s

r(Ax) regularization term.



Multilevel optimization methods

A classical example

e Adaptive Cubic Regularization method (ARC):

1
m(xe.8) = () + TV (x0) + 55T V2 (s + %Hsll3

[§ C. Cartis, N. Gould, Ph. Toint, 'Adaptive cubic
regularisation methods for unconstrained optimization’,
2009
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Extension to higher-order methods (g > 2)

[§ E. G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and
Ph. L. Toint, "Worst-case evaluation complexity for
unconstrained nonlinear optimization using high-order
regularized models’, 2017

Model of order g:

. Ak 1
min Mg k(xk,s) = Tq(xk,s) + ] Is]l9, Ak > 0.
a1 i times
. —_——
kas) Z—Ivlf(Xk)(S,...,S)

i=1 1
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High order methods

[§ E.G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and
Ph. L. Toint, "Worst-case evaluation complexity for
unconstrained nonlinear optimization using high-order
regularized models’, 2017

Unifying framework for global convergence and worst-case
complexity is presented.

® better complexity
® needs higher-order derivatives, model is expensive to minimize
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Bottelneck: Subproblem solution

Solving
. Ak
T A, S g+1
min To(0,5) + =% s

represents greatest cost per iteration, which depends on the size of
the problem.

U

[§ S. Gratton, A. Sartenaer, PH. Toint, 'Multilevel trust region
method’ 2008

Hierarchy of problems

o {fi(x))}, x1 €D
o D) <Dyl

@ f is cheaper to optimize compared to fj;1

6 /37



Multilevel optimization methods

Our contributions

[§ E. G. Birgin, J. L. Gardenghi, J. M. Martinez, S. A. Santos
and Ph. L. Toint, 2017

@ one level methods: non-scalable

[§ S. Gratton, A. Sartenaer, PH. Toint, 2008

@ method for second order models

U

We propose a family of scalable multilevel methods using
high-order models.
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@ Part I: multilevel extension of iterative high-order optimization
methods

e global convergence

e worst-case complexity
e local convergence rate
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Outline

@ Part I: multilevel extension of iterative high-order optimization
methods

e global convergence

e worst-case complexity
e local convergence rate

o Part II: use of the multilevel methods for the training of
artificial neural network
e multilevel methods in the literature used just for problems with
a geometrical structure
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Part |

@ Multilevel extension of iterative high-order optimization
methods
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Multilevel setting

@ At each level /, x e R™. [yax finest level, O coarsest level.

level fhax R" xhmax  fhmac = f ,u’max =f
level /+1 R+ x!*1 i+t T
RI+1 U ﬂ PI+1
level / R™ x! f! s
level 0 R x0 fo u°

o f/ represents f on the coarse spaces (it is e.g. the
discretization of f on a coarse space)

e The functions 1/ are modifications of the f/ to ensure
inter-level coherence.

o R'=a(P"T, for some a > 0.

10/37
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One level strategy

At level | = lhax, let x/< be the current approximation. We look for

a correction s,/( to define the new approximation x,’<+1 = x,’< + s,’<.



Multilevel optimization methods
High-order multilevel optimization methods

One level strategy

At level | = lhax, let x/< be the current approximation. We look for

a correction s,/( to define the new approximation x,’<+1 = x,’< + s,’<.

I
XI Tq XI _XI +SI
k * Xpr1 = Xie Sk
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© minimize regularized Taylor model, get s,
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Multilevel strategy

Two choices:
© minimize regularized Taylor model, get s,’(,
@ choose lower level model p/71:
I
Tq

I I,
Xy P Xpp1 = X 5k
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Multilevel strategy

Two choices:
© minimize regularized Taylor model, get s,’<,

@ choose lower level model p/71:

X

/
k
¢

Il . -1
R'x : X0 k
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Multilevel strategy

Two choices:
© minimize regularized Taylor model, get s,’<,

@ choose lower level model p/71:

X

/
k
¢
-1

- H -
R’x,’(: -1 -1

1l

B
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Multilevel strategy

Two choices:
© minimize regularized Taylor model, get s,’<,

@ choose lower level model p/71:

I Il
Xk Xiy1 = Xp T Sk
I _plfol-1 -1
R" sk—P(X*yk—ka)
-1
-1 H -1

Il ._
Rixj=xo )0 ——————— Xk

13 /37
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Multilevel strategy

Two choices:
. . . . l
© minimize regularized Taylor model, get s,

@ choose lower level model p/71:

/ ool o
Xk Xir1 = X TS
I _plfol-1 i1

R' Sk—'D(X*.,k_XOk)

-1
Il -1 H -1
Rixjo=xg )0 ——————— X

@ The lower level model is cheaper to optimize.

@ The procedure is recursive: more levels can be used.

14 /37
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Coherence between levels, g =1

Lower level model'

o Let x0 L = Rx,. Model with first order correction:

P = O 517 + (RIVF () - 0P () TS

)

This ensures that
Vi k(XO ) = R'vf(x)

— first-order behaviours of f/ and p/~! are coherent in a
neighbourhood of the current approximation. If s/ = P/s/~!

Vi(x)Ts' =V Oq) TP's"™ = Vi () s

15 /37
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Coherence between levels, g =2

Lower level model: Let xéj = ka We define ,u2 k as
B 45 = PO+ 5 + (RIVF () - 971 () TS
+§(s’*l) (R)TOF () P = w271 0q 1))s™

— We can generalize this up to order g to have the behaviours of
f! and ,ug_,i to be coherent up to order g in a neighbourhood of the
current approximation.

16 /37



Multilevel optimization methods
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Coherence up to order g

We define

- - 1 / 1 /-1 /-1
Hq,k ( ) =f ( Ok +5 )+
1 i il- - - -
Tl RV (%)) - V' l(x(/Lkl 1(s7 s,
i=1 ———

i times

Q0

where R(V'f'(x})) is such that for all i =1,...,q and
5{_1,...,5/_1 e RM-1

ROV AN, s = P, Pl PstY),

where V/f! denotes the i-th order tensor of f'.

17 /37
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Basic iterative optimization algorithm

Until convergence
@ Define the local model my of f around x;, depending on Ay
@ Compute a trial point xi + s, that decreases this model
e Compute the predicted reduction my(xx) — my(xx + sk)
e Evaluate change in the objective function f(xyx) — f(xx + sk)
@ If achieved change ~ predicted reduction then
o Accept trial point as new iterate xx1 = Xk + Sk

else

e Reject the trial point xx.1 = Xk
o Increase A\

18 /37
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Recursive multilevel g-order methods

Until convergence

@ Choose either a g-order Taylor model or the lower level model.

e Taylor model: compute a Taylor step satisfying a sufficient
decrease property
o Lower level: apply the algorithm recursively
@ Evaluate change in the objective function and in the model
o If achieved change ~ predicted reduction then
e Accept trial point as new iterate
else

o Reject the trial point
o Increase \j

19/37
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High-order multilevel optimization methods

Theoretical results: Assumptions

Let us assume that for all / the g-th derivative tensors of ! are
Lipschitz continuous.

| \

Assumption 2
There exist strictly positive scalars kgg, p > 0 such that

dist(x, &) < ke[ VXf ()|, Vx e N(X, p),

where X is the set of second-order critical points of f, dist(x, X))
denotes the distance of x to X and N (X, p) = {x | dist(x, X) < p}.

[3 Yue, M.C. and Zhou, Z. and So, A.M.C. 'On the Quadratic
Convergence of the Cubic Regularization Method under a
Local Error Bound Condition’, 2018: generalized to
hicher-order methods

20 /37
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Theoretical results: 1) global convergence

Let Assumption 1 hold. Then, the sequence of iterates generated
by the algorithm converges globally to a first-order stationary point.
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Theoretical results: 1) global convergence

Let Assumption 1 hold. Then, the sequence of iterates generated
by the algorithm converges globally to a first-order stationary point.

& E.G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and
Ph. L. Toint, 2017: generalized to multilevel framework

[§ Gratton, Sartenaer, Toint, 2008: extended to higher-order
models and simplified

21/37
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Theoretical results: 2) complexity

Let Assumption 1 hold. Let fi,,, be a lower bound on f. Then, the
method requires at most

K3(f(xk1) - ﬁOW)(1+ ||Og71|) I 1 Iog()\max)

S logys | logs Ao

iterations to achieve an iterate x such that |V f(xy)| <€, where

1
Ks = = max{KM9 K9}
1 Amin

v

[ E.G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and

+1
Ph. L. Toint, 2017: k = O(e_qT) Complexity of standard
method is maintained
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High-order multilevel optimization methods

Theoretical result: 3) local convergence

Theorem

Let Assumptions 1 and 2 hold. Assume that £(f(x[)) is bounded
for some k >0 and that it exists an accumulation point x* such
that x* € X. Then, the whole sequence {x/'} converges to x* and
it exist strictly positive constants ¢ € R and k € N such that:

/ u* _
I =x1 sk

I = xx9
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Theoretical result: 3) local convergence

Theorem

Let Assumptions 1 and 2 hold. Assume that £(f(x[)) is bounded
for some k >0 and that it exists an accumulation point x* such
that x* € X. Then, the whole sequence {x/'} converges to x* and
it exist strictly positive constants ¢ € R and k € N such that:

I * _
I =x1 sk

I = xx9

v

[ E.G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and
Ph. L. Toint, 2017: local convergence not proved

[§ Gratton, Sartenaer, Toint, 2008: local convergence not proved

23 /37
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Atrtificial neural networks

Part I

@ Use of the multilevel methods for the training of artificial
neural networks

24 /37
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Artificial neural networks

Input Hidden Output
layer layer layer
b zeR,
p=[v,w,bd]"
- &(p,z) ~ g(2)
2
Ny G
P
s b@s\ d
w: % A
z=>(J () ————=(+)» &(p.2) = L vio(wiz + b)) + d
% ba NS
% ¢
bs Activation funct. o,
sigmoid: o(z) = ez&'
tanh: o(z) = Z;:i
logit: 0(z) = o575, soft-

plus: o(z) = log(e*+1).

25 /37
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Exploit multilevel method for training of ANNs

Training problem:

mpinﬁ(p,z):f(é(p,z)—g(z)), ZET
g(p,z) = Zr; vio(wjz + b;) +d

where L is the loss function, T training set.

26 /37
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Exploit multilevel method for training of ANNs

Training problem:

min L(p,z) =F(&(p,z) -g(2)), zeT

g(p,z) =) vio(wjz+b;)+d
|

where L is the loss function, T training set.

Large-scale problem: can we exploit multilevel methods for the

training?

26 /37
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Exploit multilevel method for training of ANNs

Training problem:

mpin‘c(pvz):F(g(pvz)_g(z))a zeT
g(p,z) =) vio(wiz+ b)) +d
i-1
where L is the loss function, T training set.

Large-scale problem: can we exploit multilevel methods for the

training?

@ How to build the coarse problem? The variables to be
optimized are the network’s weights:
NO evident geometrical structure to exploit!

26
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Exploit multilevel method for training of ANNs

Training problem:

min L(p,z) =F(&(p,z) -g(2)), zeT

g(p,z) =) vio(wjz+b;)+d
i-1

where L is the loss function, T training set.

Large-scale problem: can we exploit multilevel methods for the

training?
@ How to build the coarse problem? The variables to be
optimized are the network’s weights:
NO evident geometrical structure to exploit!
@ The network possesses a purely algebraic structure: can we
exploit it?

26

37
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Artificial neural networks

Exploit multilevel method for training of ANNs

Fi:R31 SR
g(p,z) = Yiep, vio(wjz + b)) +d
|I1|:r1

F>: R >R
g(p,z) = Lie, vio(wiz + bj) +d
/2 [« /1, |/2| =n<n

F3: R >R
g(p,z) = Licp, vio(wiz + bj) +d
/3 C /2, |/3| =r3<n

27 /37
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Artificial neural networks

How do we select the hierarchy of variables?

Algebraic multigrid: C/F splitting

Ruge and Stueben C/F splitting for Ax = b

@ Two variables /,j are said to be coupled if a;j # 0.

@ We say that a variable i is strongly coupled to another
variable j, if —a;; > emaxg, , <olaj x| for a fixed 0 < e <1,
usually € = 0.25.

Prolongation-Restriction operators

P=[I;A], R=PT.

28 /37
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Which matrix should we use?

Assume to use a second-order model:
T 1 12 Ak i3
m(xi; 8) = f(xc) + 57 VF(xe) + 557V F (xi)s + s
T 1 r WARE
m(xk,s) = f(xk) +s" VF(x) + 55 Bis+ 7”5”
At each iteration we have to solve a linear system of the form:
(Bk+5\kl)5=—Vf(Xk), 5‘k>0-
As in AMG for linear systems, we use information contained in

matrix By.

29 /37
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Which matrix should we use?

Remark
Variables are

coupled!
{w;, bi, vi}

We do not use the full matrix By and we define A as:

f\ . .
v fv,v fw,w fb,b

Bk= .. fWW o - A=
’ fVV fWW f
il Tl Tl Tfosl

We define the coarse/fine splitting based on the auxiliary matrix A.

30/37
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Application: solution of PDEs

Approximate the solution u(z) of a PDE:
D(z,u(2)) = g(2), z € (a,b);
u(a) =A, u(b) =B.
We approximate the solution of the PDE with a neural network

u(z) ~ a(p,2),

n
peR
by
p=[v,w,b.d]"
by
s 5
w by 2 d
z ) @$. > 0(p.2) = £y vio(wiz + by) +d
& by N&
% ©

31/37
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Application: solution of PDEs

We select a training set T s.t. |T|=1t:
z:[zl,...,zt]T, a<zi<---<z<h
We define
1 . . N
L(p,z) = 5 (ID(z, 0(2))-g(2) [ +Ap(a(a) - Al* + |a(b) - B*))

for 0(z) € R™.

Advantages
@ No need of discretization: we get an analytical expression of
the solution, with good generalization properties (also for
points outside the interval)
@ We can solve also nonlinear equations, or equations with
highly-nonlinear solution

@ Overcome the curse of dimensionality

32/37
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Choice of the true solution

D(z,u(z))=g(z), z<(a,b);

e We choose g to have true solution ut(z,) depending on v

@ As v increases the function becomes more oscillatory and it is
harder to approximate.

@ The size of the problem increases with the number of nodes.
@ 7 equispaced points in (0,1) with h= % (Shannon's
criterion).

Least-squares problem — multi-level Levenberg-Marquardt method

33/37
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Preliminary results: Poisson’s equation 10 runs

1D v =20 r=2° v=25 =210
Solver | iter RMSE save iter RMSE save
LM 869 l.e-4 1439 1.e-3
MLM | 507 led4 1.1-26-43 | 1325 1e3 1.2-1.7-28

Table: 1D Poisson’s equation, ut(z,v) = cos(vz), 10 runs

2D v=>5 r=210 v==0 r=21
Solver | iter RMSE save iter RMSE save
LM 633 1.e3 1213 1.e-3
MLM | 643 1e3 1.1-15-21 | 1016 1l.e-3 1.2-1.9-2.4

Table: 2D Poisson’s equation, ut(z,v) = cos(vz), 10 runs

save(min,average,max)=ratio between total number of flops required for
matrix-vector products 3437
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Helmholtz's and nonlinear equations, 10 runs

v=>5 r=

Solver | iter RMSE save
LM 1159 1.e-3

MLM | 1250 1.e-3 1.2-1.9-3.1

Table: Helmholtz's equations. Au(z) +1?u(z) =0,
ur(z,v) =sin(vz) + cos(vz)

v=20 r=29 v=1 r=29
Method | iter RMSE save iter RMSE save
LM 950 107° 270 1073
MLM 1444 107> 0.8-2.9-531 320 10°% 1.2-1.7-18

Table: Left: Au+sinu=g; (1D) ur(z,v) =0.1cos(vz). Right:
Au+e' =g (2D), ur(z,v) =

v
|Og z1+22+10
35/37
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Conclusions

@ Theoretical contribution: We have presented a class of
multilevel high-order methods for optimization and proved
their global and local convergence and complexity.

@ Practical contribution: We have got further insight on the
methods proposing a AMG strategy to build coarse
representations of the problem to use some methods in the
family for the training of artificial neural networks.
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Atrtificial neural networks

Thank you for your attention!
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If g =1, the regularized model is defined as
Ak 2
FOac) + VF () + - [s7, (1)

where in case of a least-squares problem V£ (xx) = J(xi) T F (k).
For a positive definite matrix M € R™" and x € R", we can define
the following norm:

Ixp = xT Mx.

If we define M = 3 + 1, then we have % |3, = 357 Bis + 3|Is

2
2 !

A
me(x:) = £ () + V() + 5 s,

corresponds to g =1, just with a different norm for the
regularization term.
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Tensor of order 3

Let TeR", and u,v,w e R". Then T(u,v,w) R, T(v,w) eR"

T(u,v,w) =

132 3 T U

T3, k)v(j)w(k), i=1,...,n.

39/37
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Tensor of order |

Let ieNand T €R", and ueR". Then T(u,...,u) €R,

——
i times
T(u,...,u) €eR" and
——
i—1times

T(u,...,u)= an‘--Z:T(jl,...,j,-)u(jl)...u(j,-),

—_———
itimes
T(U,...,U)(jl) = Z Z T(.jla"'7.ji)u(j2)""u(.jl')a .jl = 17"'7”'
5“_’_’ 2=l ji=1

40 /37
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When to use the lower level model?

The lower level model is not always useful, we can use it if
o if [V i o) = IRV ()] = 6]V ()]
o if |[RVFI(x])| > ¢

, k>0,

41 /37
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Artificial neural networks

Future work 1: Extend the method to multilayer
networks.

@ Extend the method as it is: use a sparse network.
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Artificial neural networks

Future work 1: Extend the method to multilayer
networks.

@ Extend the method as it is: use a sparse network.

@ Change strategy to build coarse problems: compress variables
in a layer to exploit the structure of the multilayer network.

43 /37
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Future work 2: Hessian-free method

o Make it a competitive training method: method needs to
compute and store the Hessian matrix (for step computation
and to build transfer operators): too expensive for large-scale
problems.

@ Hessian complete calculation needed just once (first iteration)
to compute R and P.

44 /37
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Thank you for your attention!

For more details:

[§ On high-order multilevel optimization strategies and their
application to the training of artificial neural networks

45 /37
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Artificial neural networks

Prolongation operator

b H x!! if ieC,
Xi = (PX )i = H ¢ -
kep; Oi kX if i €F,
with

. _ - +

5 L= —a,-a,-,k/a,-,,- if ke Pi s o ZjeN,- aiJ ,3 _ ZjeN,- ai,j
I,K — . I — —_ 1 - bl
—ﬁ,-a,-7k/a,-,,- if ke P,-Jr, ZkeP/» 3,-7/( ZkeP,- a?—,k

where aj; = max{a;;,0}, a;; = min{a; ;,0}, N; is the set of
variables connected to i (i.e. all j such that a;; # 0), P; the set of
coarse variables strongly connected to i, which is partitioned in P;
(negative couplings) and P;" (positive couplings). The
interpolation operator, assuming to have regrouped and ordered
the variables to have all those corresponding to indexes in C at the
beginning, is then defined as P = [/; A] where [ is the identity

matrix of size |C| and A is the matrix such that A;; =9, ;.
46 /37
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Classical multigrid methods

e Consider a linear elliptic PDE: D(z,u(z)) =f(z) zeQ + b.c.
@ Discretize on grid h. Get a large-scale linear system Apx; = by,.

Consider the discretization of the same PDE problem on a coarser
grid: Agyxy = by, H> h.
@ Relaxation methods fails to eliminate smooth components of
the error efficiently.
@ Smooth components projected on a coarser grid appear more
oscillatory.

LN [N A A

k= 4waveon n = 6 grid

k= dwaveon n = 12 grid

I47 37
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Artificial neural networks

Coarse problem construction

Define transfer grid operators: P prolongation and R restriction to
project vectors from a grid to another: xy = Rxn, x5 = Pxy, such
that R=aPT.

Geometry exploitation

The geometrical structure of the problem is exploited to build R
and P.

o
o 1 2 3 4 s 6 7 8 9 10 0 B2
A~ ./\, i
o
\ / . ./,’—-0-\_,_/.\./.
0o 1 1A;\/7x9vu non2 o*
0 1 2 3 4 s 6
Figure 3.2: Interpolation of a vector on coarse grid Q* to fine grid Q". Figure 3.4: Restriction by full weighting of a fine-grid vector to the coarse grid.
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