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Multilevel optimization methods

Context

We consider large-scale nonlinear unconstrained optimization
problems:

min
x

f (x)

Classical iterative optimization methods:

f (xk + s) ≃ T2(xk , s)

with T2(xk , s) Taylor model of order 2. At each iteration we
compute a step sk to update the iterate:

min
s

mq,k(xk , s) = T2(xk , s) + r(λk), λk > 0

r(λk) regularization term.
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Multilevel optimization methods

A classical example

Adaptive Cubic Regularization method (ARC):

m(xk , s) = f (xk) + sT∇f (xk) +
1

2
sT∇2f (xk)s +

λk
3

∥s∥3

C. Cartis, N. Gould, Ph. Toint, ’Adaptive cubic
regularisation methods for unconstrained optimization’,
2009
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Multilevel optimization methods

Extension to higher-order methods (q > 2)

E. G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and
Ph. L. Toint, ’Worst-case evaluation complexity for
unconstrained nonlinear optimization using high-order
regularized models’, 2017

Model of order q:

min
s

mq,k(xk , s) = Tq(xk , s) +
λk
q + 1

∥s∥q+1, λk > 0.

Tq(xk , s) =
q

∑
i=1

1

i !
∇i f (xk)(

i times
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ
s, . . . , s)
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Multilevel optimization methods

High order methods

E. G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and
Ph. L. Toint, ’Worst-case evaluation complexity for
unconstrained nonlinear optimization using high-order
regularized models’, 2017

Unifying framework for global convergence and worst-case
complexity is presented.

, better complexity
/ needs higher-order derivatives, model is expensive to minimize
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Multilevel optimization methods

Bottelneck: Subproblem solution

Solving

min
s

Tq(xk , s) +
λk
q + 1

∥s∥q+1

represents greatest cost per iteration, which depends on the size of
the problem.

⇓

S. Gratton, A. Sartenaer, PH. Toint, ’Multilevel trust region
method’ 2008

Hierarchy of problems

{fl(xl)}, xl ∈ Dl

∣Dl ∣ < ∣Dl+1∣
fl is cheaper to optimize compared to fl+1
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Multilevel optimization methods

Our contributions

E. G. Birgin, J. L. Gardenghi, J. M. Martinez, S. A. Santos
and Ph. L. Toint, 2017

one level methods: non-scalable

S. Gratton, A. Sartenaer, PH. Toint, 2008

method for second order models

⇓

We propose a family of scalable multilevel methods using
high-order models.
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Multilevel optimization methods

Outline

Part I: multilevel extension of iterative high-order optimization
methods

global convergence
worst-case complexity
local convergence rate

Part II: use of the multilevel methods for the training of
artificial neural network

multilevel methods in the literature used just for problems with
a geometrical structure
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Multilevel optimization methods

High-order multilevel optimization methods

Part I

1 Multilevel extension of iterative high-order optimization
methods

9 / 37



Multilevel optimization methods

High-order multilevel optimization methods

Multilevel setting

At each level l , x ∈ Rnl . lmax finest level, 0 coarsest level.

level lmax Rn x lmax f lmax = f µlmax = f
⋮ ⋮ ⋮ ⋮

level l + 1 Rnl+1 x l+1 f l+1 µl+1

R l+1 ⇓ ⇑ P l+1

level l Rnl x l f l µl

⋮ ⋮ ⋮ ⋮
level 0 Rn0 x0 f 0 µ0

f l represents f on the coarse spaces (it is e.g. the
discretization of f on a coarse space)

The functions µl are modifications of the f l to ensure
inter-level coherence.

R l = α(P l)T , for some α > 0.
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Multilevel optimization methods

High-order multilevel optimization methods

One level strategy

At level l = lmax, let x lk be the current approximation. We look for
a correction s lk to define the new approximation x lk+1 = x lk + s lk .

x lk

x lk+1 = x lk + s lk

T l
q
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Multilevel optimization methods

High-order multilevel optimization methods

Multilevel strategy

Two choices:

1 minimize regularized Taylor model, get s lk ,

2 choose lower level model µl−1:

x lk

x lk+1 = x lk + s lk

T l
q
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Multilevel optimization methods

High-order multilevel optimization methods

Multilevel strategy

Two choices:

1 minimize regularized Taylor model, get s lk ,

2 choose lower level model µl−1:

x lk

R lx lk ∶= x l−1
0,k

R l

x l−1
∗,k

µl−1

x lk+1 = x lk + s lk

s lk = P l(x l−1
∗,k − x l−1

0,k )

The lower level model is cheaper to optimize.

The procedure is recursive: more levels can be used.
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Multilevel optimization methods

High-order multilevel optimization methods

Coherence between levels, q = 1

Lower level model:

Let x l−1
0,k = Rx lk . Model with first order correction:

µl−1
1,k = f l−1(x l−1

0,k + s l−1) + (R l∇f l(x lk) −∇f
l−1(x l−1

k ))T s l−1

This ensures that

∇µl−1
1,k (x

l−1
0,k ) = R l∇f l(x lk)

→ first-order behaviours of f l and µl−1 are coherent in a
neighbourhood of the current approximation. If s l = P ls l−1

∇f l(x lk)
T s l = ∇f l(x lk)

TP ls l−1 = ∇µl−1
1,k (x

l−1
0,k )T s l−1.
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Multilevel optimization methods

High-order multilevel optimization methods

Coherence between levels, q = 2

Lower level model: Let x l−1
0,k = Rx lk . We define µl−1

2,k as

µl−1
2,k (x

l−1
0,k + s l−1) = f l−1(x l−1

0,k + s l−1) + (R l∇f l(x lk) −∇f
l−1(x l−1

k ))T s l−1

+ 1

2
(s l−1)T ((R l)T∇f l(x lk)P

l −∇2f l−1(x l−1
k ))s l−1

→ We can generalize this up to order q to have the behaviours of
f l and µl−1

q,k to be coherent up to order q in a neighbourhood of the
current approximation.
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Multilevel optimization methods

High-order multilevel optimization methods

Coherence up to order q

We define

µl−1
q,k(x

l−1
0,k , s

l−1) =f l−1(x l−1
0,k + s l−1)+

q

∑
i=1

1

i !
[R(∇i f l(xk)) −∇i f l−1(x l−1

0,k )] (s l−1, . . . , s l−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i times

,

where R(∇i f l(x lk)) is such that for all i = 1, . . . ,q and
s l−1

1 , . . . , s l−1
i ∈ Rnl−1

[R(∇i f l(x lk))](s
l−1
1 , . . . , s l−1

i ) ∶= ∇i f l(x lk ,Ps
l−1
1 , . . . ,Ps l−1

i ),

where ∇i f l denotes the i-th order tensor of f l .
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Multilevel optimization methods

High-order multilevel optimization methods

Basic iterative optimization algorithm

Until convergence

Define the local model mk of f around xk , depending on λk

Compute a trial point xk + sk that decreases this model

Compute the predicted reduction mk(xk) −mk(xk + sk)
Evaluate change in the objective function f (xk) − f (xk + sk)
If achieved change ∼ predicted reduction then

Accept trial point as new iterate xk+1 = xk + sk
else

Reject the trial point xk+1 = xk
Increase λk
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Multilevel optimization methods

High-order multilevel optimization methods

Recursive multilevel q-order methods

Until convergence

Choose either a q-order Taylor model or the lower level model.

Taylor model: compute a Taylor step satisfying a sufficient
decrease property
Lower level: apply the algorithm recursively

Evaluate change in the objective function and in the model

If achieved change ∼ predicted reduction then

Accept trial point as new iterate

else

Reject the trial point
Increase λk

19 / 37



Multilevel optimization methods

High-order multilevel optimization methods

Theoretical results: Assumptions

Assumption 1

Let us assume that for all l the q-th derivative tensors of f l are
Lipschitz continuous.

Assumption 2

There exist strictly positive scalars κEB , ρ > 0 such that

dist(x ,X ) ≤ κEB∥∇x f (x)∥, ∀x ∈ N (X , ρ),

where X is the set of second-order critical points of f , dist(x ,X )
denotes the distance of x to X and N (X , ρ) = {x ∣ dist(x ,X ) ≤ ρ}.

Yue, M.C. and Zhou, Z. and So, A.M.C. ’On the Quadratic
Convergence of the Cubic Regularization Method under a
Local Error Bound Condition’, 2018: generalized to
higher-order methods 20 / 37



Multilevel optimization methods

High-order multilevel optimization methods

Theoretical results: 1) global convergence

Theorem

Let Assumption 1 hold. Then, the sequence of iterates generated
by the algorithm converges globally to a first-order stationary point.

E. G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and
Ph. L. Toint, 2017: generalized to multilevel framework

Gratton, Sartenaer, Toint, 2008: extended to higher-order
models and simplified
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Multilevel optimization methods

High-order multilevel optimization methods

Theoretical results: 2) complexity

Theorem

Let Assumption 1 hold. Let flow be a lower bound on f . Then, the
method requires at most

K3
(f (xk1) − flow)

ε
q+1
q

⎛
⎝

1 + ∣log γ1∣
log γ3

⎞
⎠
+ 1

log γ3
log (λmax

λ0
)

iterations to achieve an iterate xk such that ∥∇f (xk)∥ ≤ ε, where

K3 ∶=
q + 1

η1λmin
max{K 1/q

1 ,K
1/q
2 }.

E. G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and

Ph. L. Toint, 2017: k = O(ε−
q+1
q ) Complexity of standard

method is maintained
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Multilevel optimization methods

High-order multilevel optimization methods

Theoretical result: 3) local convergence

Theorem

Let Assumptions 1 and 2 hold. Assume that L(f (xhk )) is bounded
for some k ≥ 0 and that it exists an accumulation point x∗ such
that x∗ ∈ X . Then, the whole sequence {xhk } converges to x∗ and
it exist strictly positive constants c ∈ R and k̄ ∈ N such that:

∥x lk+1 − x∗∥
∥x lk − x∗∥q

≤ c , ∀k ≥ k̄ .

E. G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and
Ph. L. Toint, 2017: local convergence not proved

Gratton, Sartenaer, Toint, 2008: local convergence not proved
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Multilevel optimization methods

Artificial neural networks

Part II

1 Use of the multilevel methods for the training of artificial
neural networks

24 / 37



Multilevel optimization methods

Artificial neural networks

Artificial neural networks

Iz → σ

b3

σ

b4

σ

b5

σ

b2

σ

b1

+

d

→ ĝ(p, z) = ∑
r
i=1 viσ(wiz + bi) + d

z ∈ R,
p = [v ,w ,b,d]T

ĝ(p, z) ∼ g(z)

Input
layer

Hidden
layer

Output
layer

Activation funct. σ,
sigmoid: σ(z) = ez−1

ez+1 ,

tanh: σ(z) = e2z−1
e2z+1

,

logit: σ(z) = ez

ez+1 , soft-
plus: σ(z) = log(ez+1).

w2

w 1

w3

w
4

w
5

v2

v
1

v3

v4

v 5
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Multilevel optimization methods

Artificial neural networks

Exploit multilevel method for training of ANNs

Training problem:

min
p
L(p, z) = F(ĝ(p, z) − g(z)), z ∈ T

ĝ(p, z) =
r

∑
i=1

viσ(wiz + bi) + d

where L is the loss function, T training set.

Large-scale problem: can we exploit multilevel methods for the
training?

How to build the coarse problem? The variables to be
optimized are the network’s weights:
NO evident geometrical structure to exploit!

The network possesses a purely algebraic structure: can we
exploit it?
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Multilevel optimization methods

Artificial neural networks

Exploit multilevel method for training of ANNs

Iz → σ

b3

σ

b4

σ

b5

σ

b2

σ

b1

+

dw2

w 1

w3

w
4

w
5

v2

v
1

v3

v4
v 5

F1 ∶ R3r1 → R
ĝ(p, z) = ∑i∈I1 viσ(wiz + bi) + d
∣I1∣ = r1

R1 ⇓ P1 ⇑

Iz → σ

b3

σ

b4

σ

b1

+

d

w 1

w3

w
4

v
1

v3

v4

F2 ∶ R3r2 → R
ĝ(p, z) = ∑i∈I2 viσ(wiz + bi) + d
I2 ⊂ I1, ∣I2∣ = r2 < r1

R2 ⇓ P2 ⇑

Iz → σ

b3

σ

b1

+

d
w3

w 1

v3

v
1

F3 ∶ R3r3 → R
ĝ(p, z) = ∑i∈I3 viσ(wiz + bi) + d
I3 ⊂ I2, ∣I3∣ = r3 < r2
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Multilevel optimization methods

Artificial neural networks

How do we select the hierarchy of variables?

Algebraic multigrid: C/F splitting

Ruge and Stueben C/F splitting for Ax = b

Two variables i , j are said to be coupled if ai ,j ≠ 0.

We say that a variable i is strongly coupled to another
variable j , if −ai ,j ≥ εmaxai,k<0∣ai ,k ∣ for a fixed 0 < ε < 1,
usually ε = 0.25.

Prolongation-Restriction operators

P = [I ; ∆], R = PT .

28 / 37



Multilevel optimization methods

Artificial neural networks

Which matrix should we use?

Assume to use a second-order model:

m(xk , s) = f (xk) + sT∇f (xk) +
1

2
sT∇2f (xk)s +

λk
3

∥s∥3

m(xk , s) = f (xk) + sT∇f (xk) +
1

2
sTBks +

λk
2

∥s∥2

At each iteration we have to solve a linear system of the form:

(Bk + λ̃k I )s = −∇f (xk), λ̃k > 0.

As in AMG for linear systems, we use information contained in
matrix Bk .
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Multilevel optimization methods

Artificial neural networks

Which matrix should we use?

Remark
Variables are
coupled!
{wi ,bi , vi}

Iz → σ

b3

σ

b4

σ

b5

σ

b2

σ

b1

+

dw2

w 1

w
4

w
5

v2

v3

v4

v 5

We do not use the full matrix Bk and we define A as:

Bk =
⎡⎢⎢⎢⎢⎢⎣

fv ,v .. ..
.. fw ,w ..
.. .. fb,b

⎤⎥⎥⎥⎥⎥⎦
→ A =

fv ,v

∥fv ,v∥∞
+

fw ,w

∥fw ,w∥∞
+

fb,b

∥fb,b∥∞

We define the coarse/fine splitting based on the auxiliary matrix A.
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Multilevel optimization methods

Artificial neural networks

Application: solution of PDEs

Approximate the solution u(z) of a PDE:

D(z ,u(z)) = g(z), z ∈ (a,b);

u(a) = A, u(b) = B.

We approximate the solution of the PDE with a neural network:

u(z) ∼ û(p, z), p ∈ Rn

Iz → σ

b3

σ

b4

σ

b5

σ

b2

σ

b1

+

d

→ û(p, z) = ∑r
i=1 viσ(wiz + bi) + d

p = [v ,w ,b,d]T

w2

w 1

w3

w
4

w
5

v2

v
1

v3

v4

v 5
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Multilevel optimization methods

Artificial neural networks

Application: solution of PDEs

We select a training set T s.t. ∣T ∣ = t:

z = [z1, . . . , zt]T , a ≤ z1 < ⋅ ⋅ ⋅ < zt ≤ b

We define

L(p, z) = 1

2t
(∥D(z , û(z))−g(z)∥2+λp(∥û(a)−A∥2+∥û(b)−B∥2))

for û(z) ∈ Rt .

Advantages

No need of discretization: we get an analytical expression of
the solution, with good generalization properties (also for
points outside the interval)

We can solve also nonlinear equations, or equations with
highly-nonlinear solution

Overcome the curse of dimensionality
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Multilevel optimization methods

Artificial neural networks

Choice of the true solution

D(z ,u(z)) = g(z), z ∈ (a,b);

We choose g to have true solution uT (z , ν) depending on ν

Remark

As ν increases the function becomes more oscillatory and it is
harder to approximate.

The size of the problem increases with the number of nodes.

T : equispaced points in (0,1) with h = 1
3ν (Shannon’s

criterion).

Least-squares problem → multi-level Levenberg-Marquardt method

33 / 37



Multilevel optimization methods

Artificial neural networks

Preliminary results: Poisson’s equation 10 runs

1D ν = 20 r = 29 ν = 25 r = 210

Solver iter RMSE save iter RMSE save

LM 869 1.e-4 1439 1.e-3
MLM 507 1.e-4 1.1-2.6-4.3 1325 1.e-3 1.2-1.7-2.8

Table: 1D Poisson’s equation, uT (z , ν) = cos(νz), 10 runs

2D ν = 5 r = 210 ν = 6 r = 211

Solver iter RMSE save iter RMSE save

LM 633 1.e-3 1213 1.e-3
MLM 643 1.e-3 1.1-1.5-2.1 1016 1.e-3 1.2-1.9-2.4

Table: 2D Poisson’s equation, uT (z , ν) = cos(νz), 10 runs

save(min,average,max)=ratio between total number of flops required for

matrix-vector products 34 / 37
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Helmholtz’s and nonlinear equations, 10 runs

ν = 5 r = 210

Solver iter RMSE save

LM 1159 1.e-3
MLM 1250 1.e-3 1.2-1.9-3.1

Table: Helmholtz’s equations. ∆u(z) + ν2u(z) = 0 ,
uT (z , ν) = sin(νz) + cos(νz)

ν = 20 r = 29 ν = 1 r = 29

Method iter RMSE save iter RMSE save

LM 950 10−5 270 10−3

MLM 1444 10−5 0.8-2.9-5.3 320 10−3 1.2-1.7-1.8

Table: Left: ∆u + sinu = g1 (1D) uT (z , ν) = 0.1 cos(νz). Right:

∆u + eu = g1 (2D), uT (z , ν) = log ( ν
z1+z2+10

)
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Conclusions

Theoretical contribution: We have presented a class of
multilevel high-order methods for optimization and proved
their global and local convergence and complexity.

Practical contribution: We have got further insight on the
methods proposing a AMG strategy to build coarse
representations of the problem to use some methods in the
family for the training of artificial neural networks.
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Thank you for your attention!
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If q = 1, the regularized model is defined as

f (xk) +∇f (xk) +
λk
2

∥s∥2, (1)

where in case of a least-squares problem ∇f (xk) = J(xk)TF (xk).
For a positive definite matrix M ∈ Rn×n and x ∈ Rn, we can define
the following norm:

∥x∥M = xTMx .

If we define M = Bk
λk
+ I , then we have λk

2 ∥s∥2
M = 1

2s
TBks + λk

2 ∥s∥2,
so that the model

mk(xk , s) = f (xk) +∇f (xk) +
λk
2

∥s∥2
M ,

corresponds to q = 1, just with a different norm for the
regularization term.
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Tensor of order 3

Definition

Let T ∈ Rn3
, and u, v ,w ∈ Rn. Then T (u, v ,w) ∈ R, T (v ,w) ∈ Rn

T (u, v ,w) =
n

∑
i=1

n

∑
j=1

n

∑
k=1

T (i , j , k)u(i)v(j)w(k),

T (v ,w)(i) =
n

∑
j=1

n

∑
k=1

T (i , j , k)v(j)w(k), i = 1, . . . ,n.
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Tensor of order i

Definition

Let i ∈ N and T ∈ Rni , and u ∈ Rn. Then T (u, . . . ,u
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
i times

) ∈ R,

T (u, . . . ,u
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
i−1 times

) ∈ Rn and

T (u, . . . ,u
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
i times

) =
n

∑
j1=1

⋅ ⋅ ⋅
n

∑
ji=1

T (j1, . . . , ji)u(j1) . . .u(ji),

T (u, . . . ,u
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
i−1 times

)(j1) =
n

∑
j2=1

⋅ ⋅ ⋅
n

∑
ji=1

T (j1, . . . , ji)u(j2), . . .u(ji), j1 = 1, . . . ,n.
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When to use the lower level model?

The lower level model is not always useful, we can use it if

if ∥∇µl−1
q,k(x

l−1
0,k )∥ = ∥R l∇f l(x lk)∥ ≥ κ∥∇f

l(x lk)∥, κ > 0,

if ∥R∇f l(x lk)∥ > ε
l
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Future work 1: Extend the method to multilayer
networks.

Extend the method as it is: use a sparse network.

Iz → σ

b3

σ

b4

σ

b5

σ

b2

σ

b1

σ
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σ
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c5

σ
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c1

+

dw2

w 1

w3

w
4

w
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Future work 1: Extend the method to multilayer
networks.

Extend the method as it is: use a sparse network.

Change strategy to build coarse problems: compress variables
in a layer to exploit the structure of the multilayer network.

Iz → σ

b3

σ

b4

σ

b5

σ

b2

σ

b1

σ

c3

σ
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σ
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+

d
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Future work 2: Hessian-free method

Make it a competitive training method: method needs to
compute and store the Hessian matrix (for step computation
and to build transfer operators): too expensive for large-scale
problems.

Hessian complete calculation needed just once (first iteration)
to compute R and P.
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Thank you for your attention!

For more details:

On high-order multilevel optimization strategies and their
application to the training of artificial neural networks
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Prolongation operator

xhi = (PxH)i =
⎧⎪⎪⎨⎪⎪⎩

xHi if i ∈ C ,
∑k∈Pi

δi ,kx
H
k if i ∈ F ,

with

δi ,k =
⎧⎪⎪⎨⎪⎪⎩

−αiai ,k/ai ,i if k ∈ P−
i ,

−βiai ,k/ai ,i if k ∈ P+
i ,

αi =
∑j∈Ni

a−i ,j
∑k∈Pi

a−i ,k
, βi =

∑j∈Ni
a+i ,j

∑k∈Pi
a+i ,k

,

where a+i ,j = max{ai ,j ,0}, a−i ,j = min{ai ,j ,0}, Ni is the set of
variables connected to i (i.e. all j such that ai ,j ≠ 0), Pi the set of
coarse variables strongly connected to i , which is partitioned in P−

i

(negative couplings) and P+
i (positive couplings). The

interpolation operator, assuming to have regrouped and ordered
the variables to have all those corresponding to indexes in C at the
beginning, is then defined as P = [I ; ∆] where I is the identity
matrix of size ∣C ∣ and ∆ is the matrix such that ∆i ,j = δi ,j .
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Classical multigrid methods

Consider a linear elliptic PDE: D(z ,u(z)) = f (z) z ∈ Ω + b.c.
Discretize on grid h. Get a large-scale linear system Ahxh = bh.

Consider the discretization of the same PDE problem on a coarser
grid: AHxH = bH , H > h.

Relaxation methods fails to eliminate smooth components of
the error efficiently.

Smooth components projected on a coarser grid appear more
oscillatory.

Figure:
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Coarse problem construction

Define transfer grid operators: P prolongation and R restriction to
project vectors from a grid to another: xH = Rxh, xh = PxH , such
that R = αPT .

Geometry exploitation

The geometrical structure of the problem is exploited to build R
and P.
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