High-order multilevel optimization methods and training of artificial neural networks

E. Riccietti (IRIT-INP, Toulouse)

Joint work with: H. Calandra (Total) S. Gratton (IRIT-INP, Toulouse) X. Vasseur (ISAE-SUPAERO, Toulouse)

2nd IMA and OR Society Conference on Mathematics of Operational Research Birmingham- 25-26 April 2019

Context

We consider large-scale nonlinear unconstrained optimization problems:

 $\min_{x} f(x)$

Context

We consider large-scale nonlinear unconstrained optimization problems:

$$\min_{x} f(x)$$

Classical iterative optimization methods:

$$f(x_k+s)\simeq T_2(x_k,s)$$

with $T_2(x_k, s)$ Taylor model of order 2. At each iteration we compute a step s_k to update the iterate:

$$\min_{s} m_{q,k}(x_k,s) = T_2(x_k,s) + r(\lambda_k), \qquad \lambda_k > 0$$

 $r(\lambda_k)$ regularization term.

A classical example

• Adaptive Cubic Regularization method (ARC):

$$m(x_k,s) = f(x_k) + s^T \nabla f(x_k) + \frac{1}{2}s^T \nabla^2 f(x_k)s + \frac{\lambda_k}{3} \|s\|^3$$

C. Cartis, N. Gould, Ph. Toint, 'Adaptive cubic regularisation methods for unconstrained optimization', 2009

Extension to higher-order methods (q > 2)

E. G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and Ph. L. Toint, 'Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models', 2017

Model of order q:

$$\min_{s} m_{q,k}(x_k,s) = T_q(x_k,s) + \frac{\lambda_k}{q+1} \|s\|^{q+1}, \qquad \lambda_k > 0.$$

$$T_q(x_k,s) = \sum_{i=1}^q \frac{1}{i!} \nabla^i f(x_k) (\overbrace{s,\ldots,s}^{i \text{ times}})$$

High order methods

E. G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and Ph. L. Toint, 'Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models', 2017

Unifying framework for global convergence and worst-case complexity is presented.

③ better complexity

© needs higher-order derivatives, model is expensive to minimize

Bottelneck: Subproblem solution

Solving

$$\min_{s} T_q(x_k,s) + \frac{\lambda_k}{q+1} \|s\|^{q+1}$$

represents greatest cost per iteration, which depends on the size of the problem.

∥

S. Gratton, A. Sartenaer, PH. Toint, 'Multilevel trust region method' 2008

Hierarchy of problems

- $\{f_l(x_l)\}, x_l \in \mathcal{D}_l$
- $|\mathcal{D}_I| < |\mathcal{D}_{I+1}|$
- f_l is cheaper to optimize compared to f_{l+1}

Our contributions

- E. G. Birgin, J. L. Gardenghi, J. M. Martinez, S. A. Santos and Ph. L. Toint, 2017
 - one level methods: non-scalable
- S. Gratton, A. Sartenaer, PH. Toint, 2008
 - method for second order models

₽

We propose a family of scalable multilevel methods using high-order models.

Outline

- Part I: multilevel extension of iterative high-order optimization methods
 - global convergence
 - worst-case complexity
 - local convergence rate

Outline

- Part I: multilevel extension of iterative high-order optimization methods
 - global convergence
 - worst-case complexity
 - local convergence rate
- Part II: use of the multilevel methods for the training of artificial neural network
 - multilevel methods in the literature used just for problems with a geometrical structure

High-order multilevel optimization methods

Part I

 Multilevel extension of iterative high-order optimization methods

Multilevel setting

• At each level *I*, $x \in \mathbb{R}^{n_I}$. I_{max} finest level, 0 coarsest level.

- *f*¹ represents *f* on the coarse spaces (it is e.g. the discretization of *f* on a coarse space)
- The functions μ^{l} are modifications of the f^{l} to ensure inter-level coherence.

•
$$R^{I} = \alpha (P^{I})^{T}$$
, for some $\alpha > 0$.

One level strategy

 x_{k}^{\prime}

At level $l = l_{max}$, let x'_k be the current approximation. We look for a correction s'_k to define the new approximation $x'_{k+1} = x'_k + s'_k$.

One level strategy

At level $l = l_{max}$, let x'_k be the current approximation. We look for a correction s'_k to define the new approximation $x'_{k+1} = x'_k + s'_k$.

$$x_k^{l} \xrightarrow{T_q^{l}} x_{k+1}^{l} = x_k^{l} + s_k^{l}$$

Multilevel strategy

Two choices:

- minimize regularized Taylor model, get s_k^l ,
- 2 choose lower level model μ^{l-1} :

 x_{k}^{l}

Multilevel strategy

- minimize regularized Taylor model, get s_k^l ,
- 2 choose lower level model μ^{l-1} :

$$x'_{k} \xrightarrow{T'_{q}} x'_{k+1} = x'_{k} + s'_{k}$$

Multilevel strategy

- minimize regularized Taylor model, get s_k^l ,
- 2 choose lower level model μ^{l-1} :

Multilevel strategy

- minimize regularized Taylor model, get s_k^l ,
- 2 choose lower level model μ^{l-1} :

$$x_k^l$$

Multilevel strategy

- minimize regularized Taylor model, get s_k^l ,
- 2 choose lower level model μ^{l-1} :

$$\begin{array}{c}
x_{k}^{\prime} \\
R^{\prime} \\
\downarrow \\
R^{\prime} x_{k}^{\prime} \coloneqq x_{0,k}^{\prime-}
\end{array}$$

Multilevel strategy

- minimize regularized Taylor model, get s_k^l ,
- 2 choose lower level model μ^{l-1} :

Multilevel strategy

- minimize regularized Taylor model, get s_k^l ,
- 2 choose lower level model μ^{l-1} :

$$\begin{array}{cccc}
x'_{k} & x'_{k+1} = x'_{k} + s'_{k} \\
R' \downarrow & & \uparrow s'_{k} = P'(x'^{l-1}_{*,k} - x'^{l-1}_{0,k}) \\
R' x'_{k} := x'^{l-1}_{0,k} & & & x'^{l-1}_{*,k}
\end{array}$$

Multilevel strategy

- minimize regularized Taylor model, get s_k^l ,
- 2 choose lower level model μ^{l-1} :

- The lower level model is cheaper to optimize.
- The procedure is recursive: more levels can be used.

Coherence between levels, q = 1

Lower level model:

• Let $x_{0,k}^{l-1} = Rx_k^l$. Model with first order correction:

$$\mu_{1,k}^{l-1} = f^{l-1} (x_{0,k}^{l-1} + s^{l-1}) + (R^{l} \nabla f^{l} (x_{k}^{l}) - \nabla f^{l-1} (x_{k}^{l-1}))^{T} s^{l-1}$$

This ensures that

$$\nabla \mu_{1,k}^{l-1}(x_{0,k}^{l-1}) = R^{l} \nabla f^{l}(x_{k}^{l})$$

 \rightarrow first-order behaviours of f' and μ^{l-1} are coherent in a neighbourhood of the current approximation. If $s' = P's^{l-1}$

$$\nabla f'(x_k^{\prime})^{\mathsf{T}} s^{\prime} = \nabla f'(x_k^{\prime})^{\mathsf{T}} P' s^{\prime-1} = \nabla \mu_{1,k}^{\prime-1} (x_{0,k}^{\prime-1})^{\mathsf{T}} s^{\prime-1}.$$

Coherence between levels, q = 2

Lower level model: Let $x_{0,k}^{l-1} = Rx_k^l$. We define $\mu_{2,k}^{l-1}$ as

$$\mu_{2,k}^{l-1}(x_{0,k}^{l-1} + s^{l-1}) = f^{l-1}(x_{0,k}^{l-1} + s^{l-1}) + (R^{l} \nabla f^{l}(x_{k}^{l}) - \nabla f^{l-1}(x_{k}^{l-1}))^{T} s^{l-1}$$

$$+ \frac{1}{2}(s^{l-1})^{T}((R^{l})^{T} \nabla f^{l}(x_{k}^{l})P^{l} - \nabla^{2}f^{l-1}(x_{k}^{l-1}))s^{l-1}$$

 \rightarrow We can generalize this up to order q to have the behaviours of f' and $\mu_{q,k}^{l-1}$ to be coherent up to order q in a neighbourhood of the current approximation.

Coherence up to order q

We define

$$\mu_{q,k}^{l-1}(x_{0,k}^{l-1}, s^{l-1}) = f^{l-1}(x_{0,k}^{l-1} + s^{l-1}) + \sum_{i=1}^{q} \frac{1}{i!} [\mathcal{R}(\nabla^{i} f^{l}(x_{k})) - \nabla^{i} f^{l-1}(x_{0,k}^{l-1})] \underbrace{(s^{l-1}, \dots, s^{l-1})}_{i \text{ times}},$$

where $\mathcal{R}(\nabla^i f^l(\mathbf{x}_k^l))$ is such that for all i = 1, ..., q and $s_1^{l-1}, \ldots, s_i^{l-1} \in \mathbb{R}^{n_{l-1}}$

$$[\mathcal{R}(\nabla^{i}f'(x_{k}^{\prime}))](s_{1}^{\prime-1},\ldots,s_{i}^{\prime-1}) \coloneqq \nabla^{i}f'(x_{k}^{\prime},Ps_{1}^{\prime-1},\ldots,Ps_{i}^{\prime-1}),$$

where $\nabla^i f^l$ denotes the *i*-th order tensor of f^l .

Basic iterative optimization algorithm

Until convergence

- Define the local model m_k of f around x_k , depending on λ_k
- Compute a trial point $x_k + s_k$ that decreases this model
- Compute the predicted reduction $m_k(x_k) m_k(x_k + s_k)$
- Evaluate change in the objective function $f(x_k) f(x_k + s_k)$
- If achieved change ~ predicted reduction then

• Accept trial point as new iterate $x_{k+1} = x_k + s_k$ else

- Reject the trial point $x_{k+1} = x_k$
- Increase λ_k

Recursive multilevel *q*-order methods

Until convergence

- Choose either a *q*-order Taylor model or the lower level model.
 - Taylor model: compute a Taylor step satisfying a sufficient decrease property
 - Lower level: apply the algorithm recursively
- Evaluate change in the objective function and in the model
- If achieved change ~ predicted reduction then
 - Accept trial point as new iterate

else

- Reject the trial point
- Increase λ_k

Theoretical results: Assumptions

Assumption 1

Let us assume that for all l the q-th derivative tensors of f^{l} are Lipschitz continuous.

Assumption 2

There exist strictly positive scalars κ_{EB} , $\rho > 0$ such that

$$\operatorname{dist}(x,\mathcal{X}) \leq \kappa_{EB} \|\nabla_x f(x)\|, \quad \forall x \in \mathcal{N}(\mathcal{X},\rho),$$

where \mathcal{X} is the set of second-order critical points of f, $\operatorname{dist}(x, \mathcal{X})$ denotes the distance of x to \mathcal{X} and $\mathcal{N}(\mathcal{X}, \rho) = \{x \mid \operatorname{dist}(x, \mathcal{X}) \leq \rho\}.$

Yue, M.C. and Zhou, Z. and So, A.M.C. 'On the Quadratic Convergence of the Cubic Regularization Method under a Local Error Bound Condition', 2018: generalized to higher-order methods

Theoretical results: 1) global convergence

Theorem

Let Assumption 1 hold. Then, the sequence of iterates generated by the algorithm converges globally to a first-order stationary point.

Theoretical results: 1) global convergence

Theorem

Let Assumption 1 hold. Then, the sequence of iterates generated by the algorithm converges globally to a first-order stationary point.

- E. G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and Ph. L. Toint, 2017: generalized to multilevel framework
- Gratton, Sartenaer, Toint, 2008: extended to higher-order models and simplified

Theoretical results: 2) complexity

Theorem

Let Assumption 1 hold. Let f_{low} be a lower bound on f. Then, the method requires at most

$$K_{3}\frac{\left(f\left(x_{k_{1}}\right)-f_{low}\right)}{\epsilon^{\frac{q+1}{q}}}\left(1+\frac{\left|\log\gamma_{1}\right|}{\log\gamma_{3}}\right)+\frac{1}{\log\gamma_{3}}\log\left(\frac{\lambda_{\max}}{\lambda_{0}}\right)$$

iterations to achieve an iterate x_k such that $\|\nabla f(x_k)\| \le \epsilon$, where

$$K_3 \coloneqq \frac{q+1}{\eta_1 \lambda_{\min}} \max\{K_1^{1/q}, K_2^{1/q}\}.$$

E. G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and Ph. L. Toint, 2017: $k = O(e^{-\frac{q+1}{q}})$ Complexity of standard method is maintained

Theoretical results: 2) complexity

Theorem

Let Assumption 1 hold. Let f_{low} be a lower bound on f. Then, the method requires at most

$$K_{3}\frac{\left(f\left(x_{k_{1}}\right)-f_{low}\right)}{\epsilon^{\frac{q+1}{q}}}\left(1+\frac{\left|\log\gamma_{1}\right|}{\log\gamma_{3}}\right)+\frac{1}{\log\gamma_{3}}\log\left(\frac{\lambda_{\max}}{\lambda_{0}}\right)$$

iterations to achieve an iterate x_k such that $\|\nabla f(x_k)\| \le \epsilon$, where

$$K_3 \coloneqq \frac{q+1}{\eta_1 \lambda_{\min}} \max\{K_1^{1/q}, K_2^{1/q}\}.$$

E. G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and Ph. L. Toint, 2017: $k = O(e^{-\frac{q+1}{q}})$ Complexity of standard method is maintained

Theoretical result: 3) local convergence

Theorem

Let Assumptions 1 and 2 hold. Assume that $\mathcal{L}(f(x_k^h))$ is bounded for some $k \ge 0$ and that it exists an accumulation point x^* such that $x^* \in \mathcal{X}$. Then, the whole sequence $\{x_k^h\}$ converges to x^* and it exist strictly positive constants $c \in \mathbb{R}$ and $\overline{k} \in \mathbb{N}$ such that:

$$\frac{\|x_{k+1}^{l} - x^{*}\|}{\|x_{k}^{l} - x^{*}\|^{q}} \le c, \quad \forall k \ge \bar{k}.$$

Theoretical result: 3) local convergence

Theorem

Let Assumptions 1 and 2 hold. Assume that $\mathcal{L}(f(x_k^h))$ is bounded for some $k \ge 0$ and that it exists an accumulation point x^* such that $x^* \in \mathcal{X}$. Then, the whole sequence $\{x_k^h\}$ converges to x^* and it exist strictly positive constants $c \in \mathbb{R}$ and $\overline{k} \in \mathbb{N}$ such that:

$$\frac{\|x_{k+1}^{l} - x^{*}\|}{\|x_{k}^{l} - x^{*}\|^{q}} \leq c, \quad \forall k \geq \bar{k}.$$

- E. G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and Ph. L. Toint, 2017: local convergence not proved
- Gratton, Sartenaer, Toint, 2008: local convergence not proved

Part II

 Use of the multilevel methods for the training of artificial neural networks

Artificial neural networks

Training problem:

$$\min_{p} \mathcal{L}(p, z) = \mathcal{F}(\hat{g}(p, z) - g(z)), \qquad z \in \mathcal{T}$$
$$\hat{g}(p, z) = \sum_{i=1}^{r} v_i \sigma(w_i z + b_i) + d$$

where ${\cal L}$ is the loss function, ${\cal T}$ training set.

Training problem:

$$\min_{p} \mathcal{L}(p, z) = \mathcal{F}(\hat{g}(p, z) - g(z)), \qquad z \in \mathcal{T}$$
$$\hat{g}(p, z) = \sum_{i=1}^{r} v_i \sigma(w_i z + b_i) + d$$

where ${\cal L}$ is the loss function, ${\cal T}$ training set.

Large-scale problem: can we exploit multilevel methods for the training?

Training problem:

$$\min_{p} \mathcal{L}(p, z) = \mathcal{F}(\hat{g}(p, z) - g(z)), \qquad z \in \mathcal{T}$$
$$\hat{g}(p, z) = \sum_{i=1}^{r} v_i \sigma(w_i z + b_i) + d$$

where ${\cal L}$ is the loss function, ${\cal T}$ training set.

Large-scale problem: can we exploit multilevel methods for the training?

 How to build the coarse problem? The variables to be optimized are the network's weights: NO evident geometrical structure to exploit!

Training problem:

$$\min_{p} \mathcal{L}(p, z) = \mathcal{F}(\hat{g}(p, z) - g(z)), \qquad z \in \mathcal{T}$$
$$\hat{g}(p, z) = \sum_{i=1}^{r} v_i \sigma(w_i z + b_i) + d$$

where ${\cal L}$ is the loss function, ${\cal T}$ training set.

Large-scale problem: can we exploit multilevel methods for the training?

- How to build the coarse problem? The variables to be optimized are the network's weights: NO evident geometrical structure to exploit!
- The network possesses a purely algebraic structure: can we exploit it?

$$\begin{aligned} \mathcal{F}_1 &: \mathbb{R}^{3r_1} \to \mathbb{R} \\ \hat{g}(p, z) &= \sum_{i \in I_1} v_i \sigma(w_i z + b_i) + d \\ |I_1| &= r_1 \end{aligned}$$

$$\begin{aligned} \mathcal{F}_2 &: \mathbb{R}^{3r_2} \to \mathbb{R} \\ \hat{g}(p,z) &= \sum_{i \in I_2} v_i \sigma(w_i z + b_i) + d \\ I_2 &\subset I_1, \ |I_2| = r_2 < r_1 \end{aligned}$$

$$\begin{aligned} \mathcal{F}_3 &: \mathbb{R}^{3r_3} \to \mathbb{R} \\ \hat{g}(p,z) &= \sum_{i \in I_3} v_i \sigma(w_i z + b_i) + d \\ I_3 &\subset I_2, \ |I_3| &= r_3 < r_2 \end{aligned}$$

How do we select the hierarchy of variables?

Algebraic multigrid: C/F splitting

Ruge and Stueben C/F splitting for Ax = b

- Two variables i, j are said to be *coupled* if $a_{i,j} \neq 0$.
- We say that a variable i is strongly coupled to another variable j, if −a_{i,j} ≥ ε max<sub>a_{i,k}<0|a_{i,k}| for a fixed 0 < ε < 1, usually ε = 0.25.
 </sub>

Prolongation-Restriction operators

 $P = [I; \Delta], R = P^T.$

Which matrix should we use?

Assume to use a second-order model:

$$m(x_{k},s) = f(x_{k}) + s^{T} \nabla f(x_{k}) + \frac{1}{2} s^{T} \nabla^{2} f(x_{k}) s + \frac{\lambda_{k}}{3} ||s||^{3}$$
$$m(x_{k},s) = f(x_{k}) + s^{T} \nabla f(x_{k}) + \frac{1}{2} s^{T} B_{k} s + \frac{\lambda_{k}}{2} ||s||^{2}$$

At each iteration we have to solve a linear system of the form:

$$(B_k + \tilde{\lambda}_k I)s = -\nabla f(x_k), \quad \tilde{\lambda}_k > 0.$$

As in AMG for linear systems, we use information contained in matrix B_k .

Which matrix should we use?

Remark Variables are

 $\frac{\text{coupled}!}{\{w_i, b_i, v_i\}}$

We do not use the full matrix B_k and we define A as:

$$B_{k} = \begin{bmatrix} f_{v,v} & \cdots & \cdots \\ \cdots & f_{w,w} & \cdots \\ \cdots & \cdots & f_{b,b} \end{bmatrix} \rightarrow A = \frac{f_{v,v}}{\|f_{v,v}\|_{\infty}} + \frac{f_{w,w}}{\|f_{w,w}\|_{\infty}} + \frac{f_{b,b}}{\|f_{b,b}\|_{\infty}}$$

We define the coarse/fine splitting based on the auxiliary matrix A.

Application: solution of PDEs

Approximate the solution u(z) of a PDE:

$$D(z, u(z)) = g(z), z \in (a, b);$$

 $u(a) = A, u(b) = B.$

We approximate the solution of the PDE with a neural network:

$$u(z) \sim \hat{u}(p, z), \quad p \in \mathbb{R}^n$$

Application: solution of PDEs

We select a training set T s.t. |T| = t:

$$z = [z_1, \ldots, z_t]^T, \quad a \le z_1 < \cdots < z_t \le b$$

We define

 $\mathcal{L}(p,z) = \frac{1}{2t} (\|D(z,\hat{u}(z)) - g(z)\|^2 + \lambda_p (\|\hat{u}(a) - A\|^2 + \|\hat{u}(b) - B\|^2))$ for $\hat{u}(z) \in \mathbb{R}^t$.

Advantages

- No need of discretization: we get an analytical expression of the solution, with good generalization properties (also for points outside the interval)
- We can solve also nonlinear equations, or equations with highly-nonlinear solution
- Overcome the curse of dimensionality

Choice of the true solution

$D(z,u(z)) = g(z), z \in (a,b);$

• We choose g to have true solution $u_T(z, \nu)$ depending on ν

Remark

- As ν increases the function becomes more oscillatory and it is harder to approximate.
- The size of the problem increases with the number of nodes.
- T: equispaced points in (0,1) with $h = \frac{1}{3\nu}$ (Shannon's criterion).

Least-squares problem \rightarrow multi-level Levenberg-Marquardt method

Preliminary results: Poisson's equation 10 runs

1D		ν = 20	r = 2 ⁹		ν = 25	$r = 2^{10}$
Solver	iter	RMSE	save	iter	RMSE	save
LM	869	1.e-4		1439	1.e-3	
MLM	507	1.e-4	1.1-2.6-4.3	1325	1.e-3	1.2-1.7-2.8

Table: 1D Poisson's equation, $u_T(z, \nu) = cos(\nu z)$, 10 runs

2D		ν = 5	$r = 2^{10}$		ν = 6	$r = 2^{11}$
Solver	iter	RMSE	save	iter	RMSE	save
LM	633	1.e-3		1213	1.e-3	
MLM	643	1.e-3	1.1-1.5-2.1	1016	1.e-3	1.2-1.9-2.4

Table: 2D Poisson's equation, $u_T(z, \nu) = cos(\nu z)$, 10 runs

save(min,average,max)=ratio between total number of flops required for matrix-vector products

Helmholtz's and nonlinear equations, 10 runs

		ν = 5	$r = 2^{10}$
Solver	iter	RMSE	save
LM	1159	1.e-3	
MLM	1250	1.e-3	1.2-1.9-3.1

Table: Helmholtz's equations. $\Delta u(z) + \nu^2 u(z) = 0$, $u_T(z,\nu) = sin(\nu z) + cos(\nu z)$

		ν = 20	$r = 2^9$		ν = 1	$r = 2^{9}$
Method	iter	RMSE	save	iter	RMSE	save
LM	950	10^{-5}		270	10^{-3}	
MLM	1444	10^{-5}	0.8-2.9-5.3	320	10^{-3}	1.2-1.7-1.8
Table: Left: $\Lambda \mu + \sin \mu = \sigma_1 (1D) \mu_{\pm}(z, \mu) = 0.1 \cos(\mu z)$ Right:						

$$\Delta u + e^{u} = g_{1} (2D), \ u_{T}(z, \nu) = \log\left(\frac{\nu}{z_{1} + z_{2} + 10}\right)$$

$$35/37$$

Conclusions

- Theoretical contribution: We have presented a class of multilevel high-order methods for optimization and proved their global and local convergence and complexity.
- Practical contribution: We have got further insight on the methods proposing a AMG strategy to build coarse representations of the problem to use some methods in the family for the training of artificial neural networks.

Thank you for your attention!

If q = 1, the regularized model is defined as

$$f(x_k) + \nabla f(x_k) + \frac{\lambda_k}{2} \|s\|^2, \qquad (1)$$

where in case of a least-squares problem $\nabla f(x_k) = J(x_k)^T F(x_k)$. For a positive definite matrix $M \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^n$, we can define the following norm:

$$\|x\|_M = x^T M x.$$

If we define $M = \frac{B_k}{\lambda_k} + I$, then we have $\frac{\lambda_k}{2} \|s\|_M^2 = \frac{1}{2}s^T B_k s + \frac{\lambda_k}{2} \|s\|^2$, so that the model

$$m_k(x_k,s) = f(x_k) + \nabla f(x_k) + \frac{\lambda_k}{2} \|s\|_M^2,$$

corresponds to q = 1, just with a different norm for the regularization term.

Multilevel optimization methods Artificial neural networks

Tensor of order 3

Definition

Let $T \in \mathbb{R}^{n^3}$, and $u, v, w \in \mathbb{R}^n$. Then $T(u, v, w) \in \mathbb{R}$, $T(v, w) \in \mathbb{R}^n$

$$T(u, v, w) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} T(i, j, k) u(i) v(j) w(k),$$

$$T(v, w)(i) = \sum_{j=1}^{n} \sum_{k=1}^{n} T(i, j, k) v(j) w(k), \quad i = 1, ..., n.$$

Tensor of order *i*

Definition

Let
$$i \in \mathbb{N}$$
 and $T \in \mathbb{R}^{n^{i}}$, and $u \in \mathbb{R}^{n}$. Then $T(\underbrace{u, \dots, u}_{i \text{ times}}) \in \mathbb{R}$,
 $T(\underbrace{u, \dots, u}_{i-1 \text{ times}}) \in \mathbb{R}^{n}$ and
 $T(\underbrace{u, \dots, u}_{i \text{ times}}) = \sum_{j_{1}=1}^{n} \cdots \sum_{j_{i}=1}^{n} T(j_{1}, \dots, j_{i})u(j_{1}) \dots u(j_{i}),$
 $T(\underbrace{u, \dots, u}_{i-1 \text{ times}})(j_{1}) = \sum_{j_{2}=1}^{n} \cdots \sum_{j_{i}=1}^{n} T(j_{1}, \dots, j_{i})u(j_{2}), \dots u(j_{i}), \quad j_{1} = 1, \dots, n.$

When to use the lower level model?

The lower level model is not always useful, we can use it if

• if $\|\nabla \mu_{q,k}^{l-1}(x_{0,k}^{l-1})\| = \|R^{l}\nabla f^{l}(x_{k}^{l})\| \ge \kappa \|\nabla f^{l}(x_{k}^{l})\|, \kappa > 0$,

• if
$$||R \nabla f'(x_k)|| > \epsilon'$$

Multilevel optimization methods Artificial neural networks

Future work 1: Extend the method to multilayer networks.

• Extend the method as it is: use a sparse network.

Future work 1: Extend the method to multilayer networks.

- Extend the method as it is: use a sparse network.
- Change strategy to build coarse problems: compress variables in a layer to exploit the structure of the multilayer network.

Future work 2: Hessian-free method

- Make it a competitive training method: method needs to compute and store the Hessian matrix (for step computation and to build transfer operators): too expensive for large-scale problems.
- Hessian complete calculation needed just once (first iteration) to compute *R* and *P*.

Thank you for your attention!

For more details:

On high-order multilevel optimization strategies and their application to the training of artificial neural networks

Prolongation operator

$$x_i^h = (Px^H)_i = \begin{cases} x_i^H & \text{if } i \in C, \\ \sum_{k \in P_i} \delta_{i,k} x_k^H & \text{if } i \in F, \end{cases}$$

with

$$\delta_{i,k} = \begin{cases} -\alpha_i a_{i,k} / a_{i,i} & \text{if } k \in P_i^-, \\ -\beta_i a_{i,k} / a_{i,i} & \text{if } k \in P_i^+, \end{cases} \qquad \alpha_i = \frac{\sum_{j \in N_i} a_{i,j}^-}{\sum_{k \in P_i} a_{i,k}^-}, \qquad \beta_i = \frac{\sum_{j \in N_i} a_{i,j}^+}{\sum_{k \in P_i} a_{i,k}^+},$$

where $a_{i,j}^+ = \max\{a_{i,j}, 0\}$, $a_{i,j}^- = \min\{a_{i,j}, 0\}$, N_i is the set of variables connected to *i* (i.e. all *j* such that $a_{i,j} \neq 0$), P_i the set of coarse variables strongly connected to *i*, which is partitioned in P_i^- (negative couplings) and P_i^+ (positive couplings). The interpolation operator, assuming to have regrouped and ordered the variables to have all those corresponding to indexes in *C* at the beginning, is then defined as $P = [I; \Delta]$ where *I* is the identity matrix of size |C| and Δ is the matrix such that $\Delta_{i,j} = \delta_{i,j}$.

Classical multigrid methods

- Consider a linear elliptic PDE: $D(z, u(z)) = f(z) \ z \in \Omega + b.c.$
- Discretize on grid h. Get a large-scale linear system $A_h x_h = b_h$.

Consider the discretization of the same PDE problem on a coarser grid: $A_H x_H = b_H$, H > h.

- Relaxation methods fails to eliminate smooth components of the error efficiently.
- Smooth components projected on a coarser grid appear more oscillatory.

Coarse problem construction

Define transfer grid operators: *P* prolongation and *R* restriction to project vectors from a grid to another: $x_H = Rx_h$, $x_h = Px_H$, such that $R = \alpha P^T$.

Geometry exploitation

The geometrical structure of the problem is exploited to build R and P.

Figure 3.2: Interpolation of a vector on coarse grid Ω^{2h} to fine grid Ω^{h} .

Figure 3.4: Restriction by full weighting of a fine-grid vector to the coarse grid.