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Noisy least-squares problems

Nonlinear least-squares problems

Given R : Rn → Rm, m ≥ n, nonlinear, continuously differentiable solve

min
x∈Rn

Φ(x) =
1

2
‖R(x)‖2.

Let x∗ be a solution of the problem.

Noisy least-squares problems

We assume that Φ and its derivatives are not available. We look for an
approximation to x∗ considering a sequence of approximations to the
objective function:

Φδk ∼ Φ
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Noisy least-squares problems

Nonlinear least-squares problems

Given R : Rn → Rm, m ≥ n, nonlinear, continuously differentiable solve

min
x∈Rn

Φ(x) =
1

2
‖R(x)‖2 → unperturbed problem

Let x∗ be a solution of the problem.

Noisy least-squares problems
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We are interested into two classes of such problems:

Ill-posed problems. Data fitting problems with noisy data such that
the solution does not depend continuously on the data.
The noise is fixed and arises from measurements errors: Φδk ≡ Φδ for
each k.
AIM: design stable methods for their solution.

Large scale noisy problems. Objective function is expensive to
compute, we want to use cheaper approximations.
The approximation can be improved reducing the noise level.
AIM: design fast methods for the solution of the unperturbed
problem considering a sequence of function approximations of
increasing accuracy. → study performed in collaboration with Prof.
Serge Gratton in Toulouse.
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Outline

Background material: introduction to Levenberg-Marquardt and
trust-region methods.

I part: Ill-posed problems

regularizing method for zero residual problems,
regularizing method for non-zero residual problems.

II part: Large scale problems with expensive objective function.

Conclusions and perspectives.

Research outputs.
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Levenberg-Marquardt method

It is an iterative method for solving a least-squares problem. It builds the
sequence of solution approximations as xk+1 = xk + pk where pk is the
solution of:

min
p∈Rn

mLM
k (p) =

1

2
‖R(xk) + J(xk)p‖2 +

1

2
λk‖p‖2

where J is the Jacobian matrix of R and λk ≥ 0 is a regularization
parameter.

Remark

pk is the solution of
(Bk + λk I )pk = −gk

with Bk = J(xk)T J(xk), gk = J(xk)TR(xk).
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Classical Levenberg-Marquardt method

Given xk ∈ Rn and λk ≥ 0, find the step pk ∈ Rn minimizing

mLM
k (p) =

1

2
‖R(xk) + J(xk)p‖2 +

1

2
λk‖p‖2.

Set Φ(x) = 1
2‖R(x)‖2, and compute

ρk(pk) =
Φ(xk)− Φ(xk + pk)

mLM
k (0)−mLM

k (pk)
.

Step acceptance. Given η ∈ (0, 1):

If ρk < η reject the step: xk+1 = xk and increase λk .
If ρk ≥ η accept the step: xk+1 = xk + pk .
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Trust-region methods

Given xk and the trust-region radius ∆k > 0 find the step pk solving

min
p

mTR
k (p) =

1

2
‖R(xk) + J(xk)p‖2,

s.t. ‖p‖ ≤ ∆k

Set Φ(x) = 1
2‖R(x)‖2. Compute

ρk(pk) =
Φ(xk)− Φ(xk + pk)

mTR
k (0)−mTR

k (pk)
.

Step acceptance and trust-region radius update. Given η ∈ (0, 1):

If ρk < η then set ∆k+1 < ∆k and xk+1 = xk .
If ρk ≥ η then set ∆k+1 ≥ ∆k and xk+1 = xk + pk .
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Trust-region methods

Trust-region methods falls into the class of Levenberg-Marquardt methods.

Levenberg-Marquardt - Trust region

LM: min
p

mLM
k (p) =

1

2
‖R(xk) + J(xk)p‖2+

λk
2
‖p‖2

TR:
min
p

mTR
k (p) =

1

2
‖R(xk) + J(xk)p‖2,

s.t. ‖p‖ ≤ ∆k

It is possible to prove that for TR pk solves

(Bk + λk I )pk = −gk , Bk = J(xk)T J(xk), gk = J(xk)TR(xk)

for some λk ≥ 0 such that

λk(‖pk‖ −∆k) = 0.

⇒ Trust-region methods are Levenberg-Marquardt methods!
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I part: Ill-posed least squares problems
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I part: Ill-posed least squares problems

Let us consider the following least squares problem: given X ,Y Hilbert
spaces, F : X → Y, nonlinear, continuously differentiable and y ∈ Y, solve

min
x∈X

Φ(x) = ‖F (x)− y‖2
Y .

Definition

The problem is well-posed if:

1 ∀y ∈ Y it exists a solution x ∈ X ,

2 the solution is unique,

3 property of stability holds (the solution depends continuously on the
data).

The problem is ill-posed if one or more of the previous properties do not
hold.
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Ill-posed problems

Let us consider problems of the form

min
x∈Rn

Φ(x) = ‖F (x)− y‖2, x ∈ (Rn, ‖ · ‖2), y ∈ (Rm, ‖ · ‖2),

with F : Rn → Rm and m ≥ n, arising from the discretization of an
ill-posed problem.

In a realistic situation the data y are affected by noise, we have at
disposal only y δ such that:

‖y − y δ‖ ≤ δ

for some positive δ .

We can handle only a noisy problem:

min
x∈Rn

Φδ(x) = ‖F (x)− y δ‖2.
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Need for regularization

As stability does not hold, the solutions of the original problem do not
depend continuously on the data.
=⇒ The solutions of the noisy problem may not be meaningful
approximations of the original problem solutions.

Classical methods used for well-posed systems are not suitable in this
contest.

⇓
Need for regularization.
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Iterative regularization methods

Iterative regularization methods generate a sequence {xδk}.
Regularizing properties arise from:

construction of the iterates,

the choice of a suitable stopping criterion.

If the process is stopped at iteration k∗(δ) the method is supposed to
guarantee the following properties, given x∗ a solution of the unperturbed
problem:

xδk∗(δ) is an approximation of x∗;

{xδk∗(δ)} tends to x∗ if δ tends to zero;

local convergence to x∗ in the noise-free case.
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Outline

We consider regularizing trust-region approaches

1) Zero-residual problems: F (x) = y δ

It exists x† such that F (x†) = y . We propose a regularizing trust-region
approach, able to find an approximation to a solution of the unperturbed
problem.

2) Non-zero residual problems: minx∈Rn ‖F (x)− y δ‖2

It does not exist x† such that F (x†)− y = 0.
We extend the trust-region approach designed for zero-residual problem to
small residual problems.
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Zero-residual problems

Zero-residual problems

We consider

F (x) = y δ,

with δ fixed noise level, and let x† be a solution of F (x) = y .
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Standard trust-region

Standard trust-region

The step pk solves

(Bk + λk I )pk = −gk
for some λk ≥ 0 such that

λk(‖pk‖ −∆k) = 0.

Bk is ill-conditioned.

In trust-region methods the trust region is eventually inactive:
‖pk‖ < ∆k → λk = 0.

It is not a regularization method!

Elisa Riccietti (DIMAI - UNIFI) Toulouse, 26/02/2018 17 / 52



How to obtain a regularizing method?

Noisy problem

min
x∈Rn

1

2
‖F (x)− y δ‖2

Exact problem

min
x∈Rn

1

2
‖F (x)− y‖2

1 stopping criterion

2 small steps
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Regularizing trust-region

1) Stopping criterion: with noisy data the process is stopped at iteration
k∗(δ) such that xδk∗(δ) satisfies the discrepancy principle:

‖F (xδk∗(δ))− y δ‖ ≤ τδ < ‖F (xδk )− y δ‖

for 0 ≤ k < k∗(δ) and τ > 1 suitable parameter.

0 10 20 30 40 50 60 70 80

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
Error history

||
x

k
−

x
T
||

k

SEMI CONVERGENCE
Plot of the error ‖xδk − x†‖

versus iteration number.

Elisa Riccietti (DIMAI - UNIFI) Toulouse, 26/02/2018 19 / 52



Regularizing trust-region

2) q-condition: ‖F (xδk )− y δ + J(xδk )p‖ ≥ q‖F (xδk )− y δ‖, q ∈ (0, 1)
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δ
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is active.

Elisa Riccietti (DIMAI - UNIFI) Toulouse, 26/02/2018 20 / 52



Algorithm : k-th iteration of regularizing trust-region

Given xδk , η ∈ (0, 1), γ ∈ (0, 1), 0 < Cmin < Cmax.

Exact data: y , q ∈ (0, 1).

Noisy data: yδ, q ∈ (0, 1), τ > 1/q.

1. Compute Bk = J(xδk )TJ(xδk ) and gδk = J(xδk )T (F (xδk )− yδ).

2. Choose ∆k ∈
[
Cmin‖gδk ‖, min

{
Cmax,

1− q

‖Bk‖

}
‖gδk ‖

]
3. Repeat

3.1 Compute the solution pk of trust-region problem.
3.2 Compute

ρk(pk) =
Φ(xδk )− Φ(xδk + pk)

mTR
k (0)−mTR

k (pk)

with Φ(x) = 1
2
‖F (x)− yδ‖2, mTR

k (p) = 1
2
‖F (xδk ) + J(xδk )p‖2.

3.3 If ρk(pk) < η,set ∆k = γ∆k .
Until ρk(pk) ≥ η.

4. Set xδk+1 = xδk + pk .
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Local analysis

Assumption 1: For index k̄ it exist positive ρ and c such that

1 the system F (x) = y is solvable in Bρ(xδ
k̄

);

2 for x , x̃ ∈ B2ρ(xδ
k̄

) the following tangential cone condition holds,

‖F (x)− F (x̃)− J(x)(x − x̃)‖ ≤ c‖x − x̃‖‖F (x)− F (x̃)‖.

For well-posed systems: ‖F (x)− F (x̃)− J(x)(x − x̃)‖ ≤ c‖x − x̃‖2.

Assumption 2: It exists positive KJ such that

‖J(x)‖ ≤ KJ

for all x ∈ L = {x ∈ Rn s.t. Φ(x) ≤ Φ(x0)}.
[Iterative regularization methods for nonlinear ill-posed problems, Kaltenbacher,
Neubauer,Scherzer,2008]
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Theoretical results

Lemma

The method generates a sequence {xδk} such that:
1) the trust-region is active, i.e. λk > 0,
2) error decreases monotonically: ‖xδk+1 − x†‖ < ‖xδk − x†‖,
for k ≥ k̄, with k̄ < k∗(δ) for noisy data.

Theorem

If δ = 0 the sequence {xk} converges to a solution x∗ of F (x) = y such
that ‖x∗ − x†‖ ≤ ρ.
If δ > 0 the discrepancy principle is satisfied after a finite number of
iterations k∗(δ) and the sequence {xδk∗(δ)} converges to a solution of

F (x) = y if δ tends to zero.

→ Regularizing method, [S. Bellavia, B. Morini, E. R., COAP, 2016].
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Test problems

Four nonlinear ill-posed systems arising from the discretization of
nonlinear first-kind Fredholm integral equation are considered,
they model gravimetric and geophysics problems:∫ 1

0
k(t, s, x(s))ds = y(t), t ∈ [0, 1],

P1,P2, [Vogel, 1990], P3,P4 [Kaltenbacher,2007];

Their kernel is of the form

k(t, s, x(s)) = log

(
(t − s)2 + H2

(t − s)2 + (H − x(s))2

)
;

k(t, s, x(s)) =
1√

1 + (t − s)2 + x(s)2
;
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Regularizing properties of the method.
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level δ.

Elisa Riccietti (DIMAI - UNIFI) Toulouse, 26/02/2018 25 / 52



Computed solution approximations
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Comparison between regularizing and standard trust-region
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Contribution

Theoretical study and implementation of a Regularizing Trust-region
approach

The methods represents an improvement over the
Levenberg-Marquardt method in [Hanke 1996] based on the condition

‖F (xδk )− y δ + J(xδk )pk(λk)‖ = q‖F (xδk )− y δ‖ (1)

which is not ensured to have a solution far from x†, while the
condition we adopted can always be satisfied. The proposed method
results to be more robust.

The Trust-region approach is also shown to be less-dependent on the
free parameters of the method (q).

We analyzed the practical implementation of the method in [Hanke
1996] that was not considered in the original paper or in related
articles. Specifically we discuss how to solve (1) in a reliable way.
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Non-zero residual problems

Non-zero residual problems

It does not exist x such that F (x)− y = 0, but it exists x† local minimum
of the problem

min
x

1

2
‖F (x)− y‖2.

Non-zero residual problems frequently appear in applications,
especially when a natural phenomenon is represented through a
mathematical model.

The most part of the literature on ill-posed nonlinear least squares
deals with zero residual problems, we are not aware of other
contributions on this topic.

Usually the modelling error is incorporated in the data error and the
problem is solved as a zero residual problem

Estimation of the modelling error is not required.
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Small residual problems

We extend the approach for zero-residual problems to small residual
problems. → We propose an elliptical trust-region approach.

At a generic iteration k , given ∆k > 0, the following problem is solved:

min
p

mk(p) :=
1

2
‖F (xδk )− y δ + J(xδk )p‖2,

s.t. ‖(Bk)−
1
2 p‖ ≤ ∆k .

1 discrepancy principle :

‖J(xδk∗(δ))T (F (xδk∗(δ))− y δ)‖ ≤ τδ < ‖J(xδk )T (F (xδk )− y δ)‖

2 q-condition:

‖J(xδk )T (F (xδk )− y δ + J(xδk )pk)‖ ≥ q‖J(xδk )T (F (xδk )− y δ)‖

Regularizing method [S.Bellavia, E.R., submitted to JOTA (second
revision)]
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II part: Large scale problems with expensive objective function

6-months collaboration with S. Gratton, INP-ENSEEIHT, Toulouse.
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II part: Large scale problems with expensive objective
function

We consider large-scale problems for which the objective function is
expensive to evaluate:

min
x

Φ(x) =
1

2
‖F (x)‖2

We consider an iterative process that employs a sequence of
approximations {Φδk} of the original objective function

Φδk (x) =
1

2
‖Fδk (x)‖2, Fδk ∼ F

δk is the accuracy level of the approximations:

|Φδk (xk)− Φ(xk)| ≤ δk .

We assume that the accuracy level can be improved along the
optimization process: δk ↘ 0.
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Typical applications

Subsampling techniques

Machine learning, Data assimilation.

Large set of data at disposal: {1, . . . ,N}.
Subsampling: Xk ⊆ {1, . . . ,N} such that |Xk | = Kk ≤ N is selected.

Fδk : Rn → RKk such that (Fδk )i = Fj , j ∈ Xk is built.

Φδk (x) = 1
2‖Fδk (x)‖2

approximation can be improved by considering more observations.

Iterative methods

Φ is the result of an iterative process (solution of a nonlinear equation
or an inversion process) that can be stopped when a certain accuracy
level is reached.

By varying the stopping criterion we vary the accuracy of the
approximation.
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Levenberg-Marquardt method

We consider a Levenberg-Marquardt method that at each iteration
uses an approximated model employing the approximations to
function and derivatives:

mk(pk) =
1

2
‖Fδk (xk) + Jδk (xk)pk‖2 +

λk
2
‖pk‖2

for Jδk an approximation to J.

At each iteration the step is found minimizing the noisy model, i.e.
solving a linear systems of the form:

(Jδk (xk)T Jδk (xk) + λk I )pk = −gδk (xk), gδk (xk) = Jδk (xk)TFδk (xk)

Elisa Riccietti (DIMAI - UNIFI) Toulouse, 26/02/2018 34 / 52



Inexact step

Large-scale problems: approximate solution of LM subproblem

p provides the sufficient Cauchy decrease:

mk(0)−mk(pk) ≥ θ

2

‖gδk (xk)‖2

‖Jδk (xk)‖2 + λk
, θ > 0.

The Levenberg-Marquardt step computed as

(Jδk (xk)T Jδk (xk) + λk I )pk = −gδk (xk)+rk

for a residual rk satisfying ‖rk‖ ≤ εk‖gδk (xk)‖, with εk such that

0 ≤ εk ≤ min

{
θ1

λαk
,

√
θ2

λk
‖Jδk (xk)‖2 + λk

}
,

where θ1 > 0, θ2 ∈
(
0, 1

2

]
and α ∈

[
1
2 , 1
)

achieves the Cauchy decrease.
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Step acceptance

After the step is computed, we have to decide whether to accept the
step.

Step acceptance is based on the ratio:

ρδkk (pk) =
Φδk (xk)− Φδk (xk + pk)

mk(0)−mk(pk)
.

If the noise is too high, the reduction in Φδk can be just an effect of
the presence of the noise.

Need for a strategy to control the noise!!
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Noise control

Noise control

[Trust region methods, 2000] Let

max{|Φδk (xk)−Φ(xk)|, |Φδk (xk + pk)− Φ(xk + pk)|} ≤ δk
δk ≤ η0(mk(0)−mk(pk)).

If

ρδkk (pk) =
Φδk (xk)− Φδk (xk + pk)

mk(0)−mk(pk)
> η

then also

ρk(pk) =
Φ(xk)− Φ(xk + pk)

mk(0)−mk(pk)
> η.

→ True reduction in the noise-free objective function Φ

In our approach: mk(0)−mk(pk) ∼ 1
2λk‖pk‖

2.
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Algorithm : k-th iteration of regularizing Levenberg-Marquardt

Given α ∈
(

1
2
, 1
]
, δ0, η1 ∈ (0, 1), η2 > 0, λmax > λmin > 0, γ > 1, x0 and

λmax > λ0 ≥ λmin.

Compute Φδ0 (x0). For k = 0, 1, 2, ...

1. Compute a solution pk of the LM subproblem.

2. If δk ≤ κd
1
2
λαk ‖pk‖2, compute Φδk (xk + pk), else reduce δk and go

back to 1.

3. Compute

ρ
δk
k (pk) =

Φδk (xk)− Φδk (xk + pk)

mk(0)−mk(pk)
.

3.1 If ρδkk (pk) ≥ η1, then set xk+1 = xk + pk and update λ.

3.2 Otherwise set xδkk+1 = xδkk , λk+1 = γλk .
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Regularization Parameter update

The parameter update is inspired by [Bergou, Gratton, Vicente, 2016] and
[Bandeira, Scheinberg, Vicente, 2014]. If success, given γ > 1:

λk+1 =

{
min{γλk , λmax} if ‖gδk (xδk )‖ < η2/λk ,
max{λk , λmin} if ‖gδk (xδk )‖ ≥ η2/λk .

Gradient approximations

We can control the accuracy on the gradient approximation:
‖g(xk )‖
(1+ck ) ≤ ‖gδk (xk)‖ ≤ ‖g(xk )‖

(1−ck ) , with ck = O

(
1

λ
1−α/2
k

)
.
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Theoretical results

Assumptions

Assumption 1:
Function f is continuously differentiable, and it exists κJ > 0 such
that for all k ≥ 0 and all x ∈ [xk , xk + pLMk ], ‖Jδk (x)‖ ≤ κJ .

Assumption 2: f has Lipschitz continuous gradient:
‖g(x)− g(y)‖ ≤ L‖x − y‖ for all x , y ∈ Rn.
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Global Convergence

Let the residual be small enough, i.e. rk satisfies ‖rk‖ ≤ εk‖gδk‖, with

εk ≤ min

{
θ1

λαk
,

√
θ2

λk
‖Jδk (xk)‖2 + λk

}

where θ1 > 0, θ2 ∈
(
0, 1

2

]
and α ∈

[
1
2 , 1
)
.

Lemma

The sequences {δk} and {xk} generated by the Algorithm are such that

lim
k→∞

δk ≤ lim
k→∞

1

2
λαk ‖pk‖2 = 0 lim

k→∞
‖g(xk)‖ = 0.

[S.Bellavia, S.Gratton, E.R., submitted to Numerische Mathematik
(second revision)].
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Local convergence

Asymptotic step behaviour

The LM step asymptotically tends to the direction of the negative
perturbed gradient:

lim
k→∞

(pLMk )i +
θ

κ2
J + λk

(gδk (xk))i = 0 for i = 1, . . . , n,

where (·)i denotes the i-th vector component.

Lemma

Let pSDk = − θ
κ2
J+λk

gδk (xk) and xk+1 = xk + pSDk . If xk̄ ∈ Br (x∗) and λk̄
big enough,

‖xk+1 − x∗‖ < ‖xk − x∗‖, for all k ≥ k̄ .

‖xk − x∗‖ tends to zero.
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Complexity analysis

Assumption

Let assume that the procedure is stopped when ‖gδk (xk)‖ ≤ ε.

The number of successful iterations N1 is bounded above by:

N1 ≤ O(ε−2).

The number of unsuccessful iterations N3 is bounded above by a
constant independent of ε:

N3 ≤ c(λmax, λ0, γ).

Complexity

Standard Levenberg-Marquardt methods complexity is preserved:

NT = O(ε−2),
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Numerical results

Data assimilation problem. Nonlinear wave equation:

∂2u(z , t)

∂t2
− ∂2u(z , t)

∂z2
+ µeνu = 0,

u(0, t) = u(1, t) = 0, u(z , 0) = u0(z),

∂u(z , 0)

∂t
= 0, 0 ≤ t ≤ T , 0 ≤ z ≤ 1.

We look for initial state u0(z).

Machine learning problem. Binary classification problem: {(z i , y i )}
with z i ∈ Rn, y i ∈ {−1,+1} and i = 1, . . . ,N.
Training objective function: logistic loss with l2 regularization

f (x) =
1

2N

N∑
i=1

log(1 + exp(−y ixT z i )) +
1

2N
‖x‖2.
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Data assimilation

We look for the initial state u0(z), from the knowledge of observations
u(zi , tj), tj > 0. Data assimilation problem:

min
x∈Rn

1

2
‖x − xb‖2

B−1 +
1

2

Nt∑
j=0

‖Hj(x(tj))− yj‖2
R−1
j

‖x‖2
M = xTMx for a symmetric positive definite matrix M,

xb ∈ Rn is the background vector (a priori estimate)

yj ∈ Rmj is the vector of observations at time tj , mj ≤ n.

Hj is the operator modelling the observation process at tj

x(tj) the state vector, solution of the nonlinear model at time tj .
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Build the approximations

We build the approximations through subsampling techniques.

In both cases

Φ(x) =
N∑
i=1

Φi (x)2.

Function approximations:

Φδk (x) =
∑
i∈Xk

Φi (x)2

with Xk ⊂ {1, . . . ,N}.
Increasing the size of Xk we have a better approximation.
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Data Assimilation Machine learning

All samples Subsampled All samples Subsampled

it 9 12 52 38
costf 10 3 53 16
costp 67 15 808 316
RMSE 1.2e-2 3.8e-2 5.4e-2 6.0e-2

savef 67% 70%
savep 78% 61%

z

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u
0
(z

)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

FLM

z

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u
0
(z

)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

K
0
=2000, κ

d
=10

Figure: Solution approximation, Left: all samples, Right: Subsampled
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Contribution

We proposed a method to solve least squares problems with both
noisy function and gradients.

We are not aware of methods for noisy non-zero residual nonlinear
least squares problems, for which both local and global convergence is
proved.

The proposed Levenberg-Marquardt method allows considerable
savings in terms of function evaluations and matrix-vector products
compared to inexact Levenberg-Marquardt methods and
Gauss-Newton methods employing the exact objective function and
Jacobian.
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Research Outputs

Development of the code implementing three numerical methods:

Regularizing Trust-Region method. Ill-posed nonlinear least-squares
problems with zero-residual.

Elliptical regularizing Trust-Region method. Ill-posed nonlinear
least-squares problems with non zero-residual.

Levenberg-Marquardt method for large scale problems with dynamic
noise. Large scale problems for least-squares problem with objective
function that can be computed with dynamic accuracy.
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Research Outputs

Articles related to the thesis:

S.Bellavia, B.Morini, E.Riccietti, On an adaptive regularization for ill-posed
nonlinear systems and its trust-region implementation (Computational
Optimization and Applications, 2016).

S.Bellavia, E.Riccietti, On non-stationary Tikhonov procedures for ill-posed
nonlinear least squares problems, submitted to Journal of Optimization Theory and
Applications (second revision).

S.Bellavia, S.Gratton, E.Riccietti, A Levenberg-Marquardt method for large
nonlinear least squares problems with noisy functions and gradients, submitted to
Numerische Mathematik (second revision).

Other articles:

E.Riccietti, J.Bellucci, M.Checcucci, M.Marconcini, A.Arnone, Support Vector
Machine classification applied to the parametric design of centrifugal pumps,
(Engineering Optimization, 2017).

E.Riccietti, S.Bellavia, S.Sello, Numerical methods for optimization problems
arising in energetic districts, (ECMI proceeding, 2016).

E.Riccietti, S.Bellavia, S.Sello, Sequential Linear Programming and Particle Swarm
Optimization for the optimization of energy districts, (Engineering Optimization,
2018).
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Perspectives

Solution of large scale ill-posed problems.

Variant of the elliptical Trust-Region approach. Critical point: cannot
compute square root of matrix Bk or solve linear systems exactly:
need of iterative solvers that introduces a source of inexactness.

Extension of the method presented in Part II to allow input spaces of
increasing dimensions, to include also multilevel strategies.
Ideas on which the methods presented in Part I and Part II are based
can be coupled, to design a method suitable for handling discrete
ill-posed problems arising from a discretization of the input space of
an infinite dimensional problem: adaptive choice of mesh size.
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Thank you for your attention!
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Noise estimation

We estimate the noise computing the true objective function when
the noise control is not satisfied: δk ∼ |Φ(xk)− Φδk (xk)|.
We could use an estimate:

δk '
√

2(N − Kk)

Kk
, with Kk = |Xk |.

If the components Fi (x) of F (x) were Gaussian,
∑N−Kk

i=1 Fi (x)2 would
follow a Chi-squared distribution with standard deviation√

2(N − Kk).
non-deterministic estimate: not supported by our theory

k

0 5 10 15 20 25 30 35 40

δ
k

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

estimated δ
k

approximated δ
k

Solver it costf costp err
SSLMest 38 15.9 316.7 5.4e-2
SSLMappr 37 17.7 318.1 5.7e-2
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Comparison between regularizing TR-LM, δ = 10−2.

Problem Regularizing TR Regularizing LM
x0 it nf cf it nf cf

P1 0 e 20 21 6 17 18 4
−0.5 e 29 30 6 22 23 4
−1 e 35 36 5 24 25 4
−2 e 40 41 5 25 26 4

P2 0 e 30 31 5 * * *
0.5 e 25 26 5 * * *

1 e 29 30 5 22 23 5
2 e 37 39 5 25 26 5

P3 x0(1.25) 15 16 4 12 13 4
x0(1.5) 17 18 4 14 15 4

x0(1.75) 19 20 4 15 16 4
x0(2) 22 23 4 16 17 4

P4 x0(1, 1) 17 18 5 10 11 4
x0(0.5, 0) 20 21 4 * * *
x0(1.5, 1) 22 23 4 15 16 4
x0(1.5, 0) 26 27 4 * * *

it=iterations,
nf=function
evaluations,

cf=mean number

of Cholesky

factorizations.

∗=failure, reached

maximum number

of iterations or

convergence to a

solution of the

noisy problem

e = (1, . . . , 1)T , P3: (x0(α))j = (−4α+ 4)s2
j + (4α− 4)sj + 1, P4: x0(β, χ) = β − χsj , sj grid

points, j = 1, . . . , n.
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Comparison between regularizing TR and LM, δ = 10−2
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Comparison between regularizing TR e LM, δ = 10−2
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The q-condition

The condition imposed by Hanke is strongly dependent on the choice of
the value of free parameter q. Values of q = 0.67, 0.70, 0.73, 0.87,
δ = 10−2.
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Numerical results

1 P1: We want to reconstruct c in the 2D-elliptic problem

−∆u + cu = f̂ in Ω = (0, 1)× (0, 1)

u = ĝ on ∂Ω

from the knowledge of u in Ω, f̂ ∈ L2(Ω), ĝ the trace of a function in
H2(Ω). If F : D(F )→ L2(Ω) is the operator mapping parameter c to
the solution u we solve

min
c

1

2
‖F (c)− ũ‖2

ũ measured values of u.
2 P2: Reconstruct the conductivity x of the soil from measurements

b = (b1, . . . , bm)T at different heights hi , i = 1, . . . ,m:

min
x

1

2
‖m(x)− b‖2.
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Numerical tests on problem P1, δ = 10−2
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Figure: Solution approximations. Up: RTR with exact data. Lower part: standard
trust-region (left) and RTR (right) for δ = 10−2.
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Numerical tests on problem P2, δ = 10−2
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Figure: (a) plot of the true solution x† and of the computed solution xδk∗(δ) for

δ = 10−2, (b) regularization parameters λk .
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