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Noisy least-squares problems

Nonlinear least-squares problems

Given R : R"” — R™, m > n, nonlinear, continuously differentiable solve

1
in ®(x) = Z||R(x)]°.
i (x) = SIRG)

Let x* be a solution of the problem.
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Let x* be a solution of the problem.

Noisy least-squares problems
We assume that ® and its derivatives are not available. We look for an
approximation to x* considering a sequence of approximations to the

objective function:
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Noisy least-squares problems

Nonlinear least-squares problems

Given R : R"” — R™, m > n, nonlinear, continuously differentiable solve

1
min ®(x) = ~||R(x)||> — unperturbed problem
xER"M 2

Let x* be a solution of the problem.

Noisy least-squares problems
We assume that ® and its derivatives are not available. We look for an
approximation to x* considering a sequence of approximations to the

objective function:
o5, ~
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We are interested into two classes of such problems:
o lll-posed problems. Data fitting problems with noisy data such that
the solution does not depend continuously on the data.
The noise is fixed and arises from measurements errors: ®; = ®; for

each k.
AIM: design stable methods for their solution.
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o lll-posed problems. Data fitting problems with noisy data such that
the solution does not depend continuously on the data.
The noise is fixed and arises from measurements errors: ®; = ®; for
each k.
AIM: design stable methods for their solution.

o Large scale noisy problems. Objective function is expensive to
compute, we want to use cheaper approximations.
The approximation can be improved reducing the noise level.
AIM: design fast methods for the solution of the unperturbed
problem considering a sequence of function approximations of
increasing accuracy.
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We are interested into two classes of such problems:

o lll-posed problems. Data fitting problems with noisy data such that
the solution does not depend continuously on the data.
The noise is fixed and arises from measurements errors: ®; = ®; for
each k.
AIM: design stable methods for their solution.

o Large scale noisy problems. Objective function is expensive to
compute, we want to use cheaper approximations.
The approximation can be improved reducing the noise level.
AIM: design fast methods for the solution of the unperturbed
problem considering a sequence of function approximations of
increasing accuracy. — study performed in collaboration with Prof.
Serge Gratton in Toulouse.
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@ Background material: introduction to Levenberg-Marquardt and
trust-region methods.
o | part: lll-posed problems
e regularizing method for zero residual problems,
e regularizing method for non-zero residual problems.
o Il part: Large scale problems with expensive objective function.

@ Conclusions and perspectives.

Research outputs.

Elisa Riccietti (DIMAI - UNIFI) Toulouse, 26/02/2018



Levenberg-Marquardt method

It is an iterative method for solving a least-squares problem. It builds the
sequence of solution approximations as xx+1 = Xk + px where py is the
solution of:

. 1 1
min mgM(p) = S{[R(xk) + J(xi)pll> + S Axllpll?
pER” 2 2

where J is the Jacobian matrix of R and Ay > 0 is a regularization
parameter.

| A

RENELS

Pk is the solution of
(Bk + Al )px = —gk

with By = J(xk) T J(xx), gk = J(xk) T R(xk).

\
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Classical Levenberg-Marquardt method

@ Given x, € R” and A\, > 0, find the step px € R” minimizing
LM 1 2 1 2
mEM(p) = S IRG4) + J0s)pl + 5 Mol

o Set O(x) = %||R(X)||2 and compute

_ b)) — P(xk + px)
PP) = n(0) — mE(pi)

@ Step acceptance. Given n € (0,1):

o If px < 1 reject the step: Xx+1 = Xk and increase \.
o If px > n accept the step: xxr1 = Xk + pk-
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Trust-region methods

@ Given x, and the trust-region radius Ay > 0 find the step pk solving
. 1
min m{®(p) = 3 IIR(x) + J(x)pl.
s.t. [|pll < Ak
e Set ®(x) = 1||R(x)||>. Compute

P(xx) — P(xk + Pr)

pk(Pk) = mZ-R(O) _ mZ—R(Pk) .

@ Step acceptance and trust-region radius update. Given n € (0,1):

o If px < nthen set Agi1 < Ay and Xpp1 = Xk.
o If px > n then set Ayi1 > Ay and X1 = Xk + P
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Trust-region methods

Trust-region methods falls into the class of Levenberg-Marquardt methods.

Levenberg-Marquardt - Trust region

o LM: mpln mM(p) = —HR(Xk)—i-J(Xk)PH + HPH2

min ml(p) = 3 1R0w) + Sl
st. [lpl < A

o TR:

It is possible to prove that for TR pj, solves
(Bi+Mcl)pk = —gks B = J0a)TJ(x), gx = J0xk) T R(x«)
for some Ax > 0 such that
Ak(l[pll = Ak) = 0.

= Trust-region methods are Levenberg-Marquardt methods!
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| part: lll-posed least squares problems
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| part: lll-posed least squares problems

Let us consider the following least squares problem: given X', ) Hilbert
spaces, F : X — Y, nonlinear, continuously differentiable and y € Y, solve

: _ . 2
min &(x) = | F(x) ~ I3

Definition

The problem is well-posed if:
1 Vy € ) it exists a solution x € X,
2 the solution is unique,

3 property of stability holds (the solution depends continuously on the
data).

The problem is ill-posed if one or more of the previous properties do not
hold.
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lll-posed problems

@ Let us consider problems of the form
min ®(x) = [F(x) =y x€ @]+ [2), y € (R™,| - 1),

with F : R" — R™ and m > n, arising from the discretization of an
ill-posed problem.
@ In a realistic situation the data y are affected by noise, we have at
disposal only y? such that:
1
ly =y°ll <6
for some positive § .

@ We can handle only a noisy problem:

in ®s5(x) = ||F(x) — y°|%
min ®s(x) = [|F(x) = y°l

Elisa Riccietti (DIMAI - UNIFI)

Toulouse, 26/02/2018 12 / 52



Need for regularization

@ As stability does not hold, the solutions of the original problem do not
depend continuously on the data.
= The solutions of the noisy problem may not be meaningful
approximations of the original problem solutions.
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Need for regularization

@ As stability does not hold, the solutions of the original problem do not
depend continuously on the data.
= The solutions of the noisy problem may not be meaningful
approximations of the original problem solutions.

o Classical methods used for well-posed systems are not suitable in this
contest.

4

Need for regularization.
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Iterative regularization methods

Iterative regularization methods generate a sequence {X,f}
Regularizing properties arise from:

@ construction of the iterates,
@ the choice of a suitable stopping criterion.

If the process is stopped at iteration k*(9) the method is supposed to

guarantee the following properties, given x* a solution of the unperturbed
problem:

° X/f*(a) is an approximation of x*;
° {x,f*(é)} tends to x* if § tends to zero;

@ local convergence to x* in the noise-free case.
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We consider regularizing trust-region approaches

)

1) Zero-residual problems: F(x) =y

It exists x' such that F(x!) = y. We propose a regularizing trust-region
approach, able to find an approximation to a solution of the unperturbed
problem.

2) Non-zero residual problems: min,cg- ||F(x) — y°|?

It does not exist x! such that F(x") —y = 0.
We extend the trust-region approach designed for zero-residual problem to
small residual problems.
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Zero-residual problems

Zero-residual problems

We consider
F(x) =y’

with § fixed noise level, and let xT be a solution of F(x) = y.
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Standard trust-region

Standard trust-region

The step px solves

(Bk + M\l pk = —8x«
for some Ay > 0 such that

Me(llpkll — Ax) = 0.

@ By is ill-conditioned.

@ In trust-region methods the trust region is eventually inactive:
llpl| < Ak — A = 0.

@ It is not a regularization method!
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How to obtain a regularizing method?

Noisy problem

1
in ZIlIF 002
min S[[F(x) = y7ll

| A\

Exact problem

1
1 == . 2
min >[IF() — v

v

© stopping criterion
@ small steps
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Regularizing trust-region

1) Stopping criterion: with noisy data the process is stopped at iteration
k*(9) such that x,‘f*(é) satisfies the discrepancy principle:
1) 19 1) 1)
IF i) = ¥l < 76 < IIFGE) — ¥

for 0 < k < k*(6) and 7 > 1 suitable parameter.

Error history
26 - T T T

SEMI CONVERGENCE
Plot of the error ||x} — x|
versus iteration number.
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Regularizing trust-region

2) g-condition: ||F(x7) — y* + J(xp)pll = qllF(x}) = ¥°ll, g € (0,1)

I1F(23) = + J(=)pWN)]|

— If Ay < ﬁ\!g}f\\ then py satisfies the g-condition and the trust region
is active.
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Algorithm : k-th iteration of regularizing trust-region
Given x¢, 7 € (0,1), v € (0,1), 0 < Guin < Crax-

Exact data: y, g € (0,1).

Noisy data: y°, g € (0,1), 7 > 1/q.

1. Compute By = J(x{)TJ(x0) and gf = J(x))T(F(x}) — y°%).

1-—
2. Choose Ay € [Cm;anfH, min {Cmax, q} HgEH}

[ Bl
3. Repeat
3.1 Compute the solution py of trust-region problem.
3.2 Compute

®(x0) = O(xk + i)
m*(0) — m{%(px)

pr(p) =

with ®(x) = 3[|F(x) — y°|
3.3 If pe(pk) < m,set Ax = yAx.
Until pi(px) = 7.

4. Set x,‘fﬂ =x{ + px.

2 m{®(p) = JIF(x) + J0x)pll.

Elisa Riccietti (DIMAI - UNIFI) Toulouse, 26/02/2018
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Local analysis

e Assumption 1: For index k it exist positive p and ¢ such that
1 the system F(x) = y is solvable in B,(x?);
2 for x, X € sz(xg) the following tangential cone condition holds,

IF(x) = F(%) = J(x)(x = K)I| < cllx = K[[[|F(x) = F(R)]I.
For well-posed systems: ||F(x) — F(X) — J(x)(x — X)|| < cl|x — X2
@ Assumption 2: It exists positive K, such that
MO < Ky

forall x e L={x € R" s.t. d(x) < d(x)}.

[Iterative regularization methods for nonlinear ill-posed problems, Kaltenbacher,
Neubauer,Scherzer,2008]
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Theoretical results

The method generates a sequence {x?} such that:

1) the trust-region is active, i.e. A >0,

2) error decreases monotonically: ||x,‘fJrl —xt| < [Ix¢ — x|,
for k > k, with k < k*(9) for noisy data.

Theorem

If 6 = 0 the sequence {xx} converges to a solution x* of F(x) = y such
that ||x* — xT|| < p.

If 6 > 0 the discrepancy principle is satisfied after a finite number of
iterations k*(0) and the sequence {x,f*(é)} converges to a solution of
F(x) =y if ¢ tends to zero.

— Regularizing method, [S. Bellavia, B. Morini, E. R., COAP, 2016].
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Test problems

@ Four nonlinear ill-posed systems arising from the discretization of
nonlinear first-kind Fredholm integral equation are considered,

they model gravimetric and geophysics problems:
1
| Kesxshas =y, tef.1l

P1,P2, [Vogel, 1990], P3,P4 [Kaltenbacher,2007];

@ Their kernel is of the form

_ (t—s)>+ H? _
o) = s (g o)
1

\/1+(t—s)2+x(5)2;

k(t,s,x(s))

Toulouse, 26/02/2018
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Regularizing properties of the method.

107
102 10 1074 10° 10°® 107 108

Semilogarithmic plot of the error HX;(E*((s) — xT|| as a function of the noise
level 6.
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Computed solution approximations

- - -regularizing trust-region

- - - regularizing trust-region

- - -regularizing trust-region

§ = 1072, Blue: regularizing TR, Solid line: solution of the original problem.
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Comparison between regularizing and standard trust-region

018 9 9 9 o1 standard trust-region

- - -regularizing trust-region standard trust-region

§ = 1072, Left: regularizing TR, Right: standard TR, Solid line: solution of the original

problem.
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Contribution

@ Theoretical study and implementation of a Regularizing Trust-region
approach

@ The methods represents an improvement over the
Levenberg-Marquardt method in [Hanke 1996] based on the condition

IF() = y° + J0)peA) | = allF(x) = v° | (1)

which is not ensured to have a solution far from xf, while the
condition we adopted can always be satisfied. The proposed method
results to be more robust.

@ The Trust-region approach is also shown to be less-dependent on the
free parameters of the method (q).

e We analyzed the practical implementation of the method in [Hanke
1996] that was not considered in the original paper or in related
articles. Specifically we discuss how to solve (1) in a reliable way.
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Non-zero residual problems

Non-zero residual problems

It does not exist x such that F(x) —y = 0, but it exists xT local minimum
of the problem

1
min 31 F() =y,

@ Non-zero residual problems frequently appear in applications,
especially when a natural phenomenon is represented through a
mathematical model.

e The most part of the literature on ill-posed nonlinear least squares
deals with zero residual problems, we are not aware of other
contributions on this topic.

@ Usually the modelling error is incorporated in the data error and the
problem is solved as a zero residual problem

e Estimation of the modelling error is not required.
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Small residual problems

@ We extend the approach for zero-residual problems to small residual
problems. — We propose an elliptical trust-region approach.

At a generic iteration k, given Ay > 0, the following problem is solved:

min m(p) := *HF(Xk) y’ + ()b,
st [(Bi) 2p] < A

@ discrepancy principle :

1906 () T (F(e=5)) = ¥ < 76 < [19066) T (F(x) = )l

@ g-condition:
190) T (FOR) =y + J()p)ll = allJ ) T (F(x) = vO)|

Regularizing method [S.Bellavia, E.R., submitted to JOTA (second
revision)]
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Il part: Large scale problems with expensive objective function

6-months collaboration with S. Gratton, INP-ENSEEIHT, Toulouse.
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Il part: Large scale problems with expensive objective

function

@ We consider large-scale problems for which the objective function is
expensive to evaluate:

min@(x) = 3 [FG)P

@ We consider an iterative process that employs a sequence of
approximations {®;, } of the original objective function

1
®5,(x) = §\|Fak(X)II2, Fs, ~ F
@ 0y is the accuracy level of the approximations:
|®s, (xk) — P(xic)| < G-

@ We assume that the accuracy level can be improved along the
optimization process: 0, N\, 0.
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Typical applications

Subsampling techniques

@ Machine learning, Data assimilation.

o Large set of data at disposal: {1,...,N}.
Subsampling: X, C {1,..., N} such that |[Xx| = Kx < N is selected.

o Fj5, :R" — RX« such that (Fs,); = Fj, j € Xk is built.
1
b5, (x) = 311F5, (x)|1?
approximation can be improved by considering more observations.

Iterative methods
@ & is the result of an iterative process (solution of a nonlinear equation
or an inversion process) that can be stopped when a certain accuracy
level is reached.
@ By varying the stopping criterion we vary the accuracy of the
approximation.

v
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Levenberg-Marquardt method

@ We consider a Levenberg-Marquardt method that at each iteration
uses an approximated model employing the approximations to
function and derivatives:

1 A
mie(p) = 511, () + s, (x)piell* + 5 el

for Js, an approximation to J.

@ At each iteration the step is found minimizing the noisy model, i.e.
solving a linear systems of the form:

(5, ) T s, (k) + M) pre = — a5, (%), 85, () = I (k) T Fis (i)
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Inexact step

Large-scale problems: approximate solution of LM subproblem

p provides the sufficient Cauchy decrease:

0 llgs, (x>

mk(O) = mk(pk) > 0 > 0.

= 2[5, (i) [I2 + A

The Levenberg-Marquardt step computed as

(I, (k) T s, (k) + M) pie = — s, (k) + 1

for a residual ry satisfying ||rk|| < exl||gs, (xk)||. with €, such that

. )01 Ak
0<ex<ming —,,/0 )
s {Xz \/2|uak(xk>||2+Ak}

where 61 > 0, 65 € (0, %] and o € [%, 1) achieves the Cauchy decrease.
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Step acceptance

@ After the step is computed, we have to decide whether to accept the
step.
@ Step acceptance is based on the ratio:

ey Pa (k) — Ps, (xk + P)
P (px) = me(0) — my(px) .

o If the noise is too high, the reduction in ®;_can be just an effect of
the presence of the noise.
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Step acceptance

@ After the step is computed, we have to decide whether to accept the
step.
@ Step acceptance is based on the ratio:

®s, (xi) — D5, (xx + px)
m(0) — mi(pi)

)
P (pk) =

o If the noise is too high, the reduction in ®;_can be just an effect of
the presence of the noise.

Need for a strategy to control the noise!!
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Noise control

[Trust region methods, 2000] Let

max{|®s, (xk) =P (xi)|, |Ps, (xk + px) — Pxic + pr)[} < Ik
ok < no(mi(0) — mk(px))-

If
5, (xx) — D5, (xk + Pk)
Ok o \ Xk 5k \ Xk k
= >
pk (pk) mk(O) — mk(Pk) n
then also () — )
Xk ) — Xk +
Pk(Pk) _ k k T Pk

my(0) — mi(px)

— True reduction in the noise-free objective function ®

In our approach: my(0) — my(px) ~ 3 A«l|pill.

Elisa Riccietti (DIMAI - UNIFI)
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Algorithm : k-th iteration of regularizing Levenberg-Marquardt

Given a € (3,1], do, m € (0,1), 72 > 0, Amax > Amin > 0, ¥ > 1, xo and
)\max > )\0 2 /\min-

Compute ®%(x). For k =0,1,2,...
Compute a solution px of the LM subproblem.

1.
2. If o < /sd%)\prkHz, compute 5, (xk + pk), else reduce dx and go
back to 1.

3. Compute

Pék(Pk) — s, (xk) — P, (xk + Pk).

g m(0) — mi(px)

311If pik(pk) > m1, then set xx41 = xk + px and update A.
3.2 Otherwise set X;j:_l = x,fk, Akl = Yk
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Regularization Parameter update

The parameter update is inspired by [Bergou, Gratton, Vicente, 2016] and
[Bandeira, Scheinberg, Vicente, 2014]. If success, given v > 1:

)< m2/ Ak,

Aot :{ min{ YAk, Amax}  if [|gs, (X,
- M= 12/ Ak

max{ Ak, Amin}  if [|gs,(x

XX,

Gradient approximations

We can control the accuracy on the gradient approximation:

o < g o0l < B0, with o = 0 (r3en

Elisa Riccietti (DIMAI - UNIFI) Toulouse, 26/02/2018



Theoretical results

@ Assumption 1:
Function f is continuously differentiable, and it exists x; > 0 such
that for all k >0 and all x € [xk, xk + pEM], [|Js,(x)|| < Ky .

@ Assumption 2: f has Lipschitz continuous gradient:
lg(x) —gW)Il < Lix — y| for all x,y € R".
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Global Convergence

Let the residual be small enough, i.e. ry satisfies ||ry| < ex||gs, ||, with

] 01 Ak
€x <min< —, /0
- {Xz \/zwgk(xk)uuxk}

where 61 >0, 6, € (0,3] and a € [3,1).

The sequences {0k} and {xx} generated by the Algorithm are such that

1 .
I|m S < I|m XY el = kImellg(Xk)ll =0.

[S.Bellavia, S.Gratton, E.R., submitted to Numerische Mathematik
(second revision)].
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Local convergence

Asymptotic step behaviour

The LM step asymptotically tends to the direction of the negative
perturbed gradient:

0
(pléM)l + )

l 7 =0 for i=1,...
Jim_ 2 )\k(gék(xk)): or i=1,...,n,

where (-); denotes the i-th vector component.

Lemma
Let ppl = —Hii/\kggk(xk) and xx11 = xk + ppP. If xz € B.(x*) and \g
big enough,

o |Ixkr1 — x*|| < [Ixk — x*||, for all k > k.

@ ||xx — x*|| tends to zero.
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Complexity analysis
Let assume that the procedure is stopped when ||gs, (xk)|| < e. \

@ The number of successful iterations N; is bounded above by:

N1 S 0(672).

@ The number of unsuccessful iterations N3 is bounded above by a
constant independent of e:

N3 < C()\maX7)‘07'Y)‘

Standard Levenberg-Marquardt methods complexity is preserved:

Nt = 0(672),

Elisa Riccietti (DIMAI - UNIFI) Toulouse, 26/02/2018



Numerical results

o Data assimilation problem. Nonlinear wave equation:

D%u(z, t) _ u(z,t)

o8 oz THe =0
u(0,t) = u(1,t) =0, u(z,0) = we(z),
w:o, 0<t<T,0<z<1.

We look for initial state up(z).

e Machine learning problem. Binary classification problem: {(z,y")}
with z/ € R", y' € {~1,+1}and i=1,..., N.
Training objective function: logistic loss with / regularization

N
1 i i
() = 55 > log(1 +exp(—y'xT2) + 5 x|
i=1
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Data assimilation

We look for the initial state ug(z), from the knowledge of observations
u(zi, tj), tj > 0. Data assimilation problem:

N
. 1 2 1 2
Xn;;lgn EHX — Xpllg-1 + 5 E - 1H;(x()) — yj”,-ejf1
J:

Ix]|2, = xT Mx for a symmetric positive definite matrix M,
xp € R" is the background vector (a priori estimate)
y;j € R™ is the vector of observations at time t;, m; < n.

H; is the operator modelling the observation process at t;

x(t;) the state vector, solution of the nonlinear model at time t;.
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Build the approximations

@ We build the approximations through subsampling techniques.
@ In both cases

@ Function approximations:

05, (x) = > di(x)?

i€ Xy

with X, C {1,...,N}.

@ Increasing the size of X; we have a better approximation.
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Data Assimilation

Machine learning

All samples | Subsampled | All samples | Subsampled
it 9 12 52 38
cost¢ 10 3 53 16
cost, 67 15 808 316
RMSE 1.2e-2 3.8e-2 5.4e-2 6.0e-2
savef 67% 70%
savep 78% 61%

4 05 06 07
z

08 09

4 05 06 07
z

08 09

Figure: Solution approximation, Left: all samples, Right: Subsampled
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Contribution

@ We proposed a method to solve least squares problems with both
noisy function and gradients.

@ We are not aware of methods for noisy non-zero residual nonlinear
least squares problems, for which both local and global convergence is
proved.

@ The proposed Levenberg-Marquardt method allows considerable
savings in terms of function evaluations and matrix-vector products
compared to inexact Levenberg-Marquardt methods and
Gauss-Newton methods employing the exact objective function and
Jacobian.
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Research Outputs

Development of the code implementing three numerical methods:

o Regularizing Trust-Region method. lll-posed nonlinear least-squares
problems with zero-residual.

o Elliptical regularizing Trust-Region method. lll-posed nonlinear
least-squares problems with non zero-residual.

o Levenberg-Marquardt method for large scale problems with dynamic
noise. Large scale problems for least-squares problem with objective
function that can be computed with dynamic accuracy.
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Solution of large scale ill-posed problems.

@ Variant of the elliptical Trust-Region approach. Critical point: cannot
compute square root of matrix By or solve linear systems exactly:
need of iterative solvers that introduces a source of inexactness.

@ Extension of the method presented in Part Il to allow input spaces of
increasing dimensions, to include also multilevel strategies.
Ideas on which the methods presented in Part | and Part |l are based
can be coupled, to design a method suitable for handling discrete
ill-posed problems arising from a discretization of the input space of
an infinite dimensional problem: adaptive choice of mesh size.
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Thank you for your attention!
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Noise estimation

@ We estimate the noise computing the true objective function when

the noise control is not satisfied: § ~ |P(xx) — s, (xk)|-
@ We could use an estimate:

2(N — K
Ok =~ M, with Ky = ‘Xk‘
Kk
If the components F;(x) of F(x) were Gaussian, ZN K F:(x)? would
follow a Chi-squared distribution with standard deviation
2(N — Kg).

@ non-deterministic estimate: not supported by our theory

Solver it cost; cost, err
SSLMes: | 38 159  316.7 5.4e-2
SSLM.per | 37 177 3181 5.7e-2

1075
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Comparison between regularizing TR-LM, § =

Problem Regularizing TR | Regularizing LM
X0 it nf cf it nf cf it=iterations,
P1 Oe | 20 21 6 17 18 4 nf=function
—0.5e | 29 30 6 22 23 4 evaluations,
—le | 35 36 5 124 25 4 cf=mean number
—2e 40 41 5 25 26 4
P2 0e | 30 31 5 [* * of Cholesky
05e | 25 26 5 | * * * factorizations.
le 29 30 5 22 23 5
Qe 37 39 5 25 26 5 *:failure, reached
P3 x0(1.25) 15 16 4 12 13 4 maximum number
x(15) | 17 18 4 |14 15 4 N
x(L75) | 10 20 4 |15 16 4 of iterations or
x(2) | 22 23 4 |16 17 4 convergence to a
P4 x0(1,1) 17 18 5 10 11 4 solution of the
x0(0.5,0) | 20 21 4 * * *
x(1.5,1) | 22 23 4 |15 16 4 noisy problem
xo(1.5,0) 26 27 4 * * *

e=(1,....1)7, P3: (x(a)); = (—4a + 4)sj2 + (4o —4)s; + 1, P4: xo(B,x) = B — xsj, s; grid

points, j =1,...,n.
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Comparison between regularizing TR and LM, § = 102

- - - regularizing trust-region - - - regularizing Levenberg-Marquardt

01
015 0 o1 o0z 03 04 05 06 07 08 09 1
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4
4
- - = regularizing trust-region
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2 regularizing Levenberg-Marquardt
a
3
25
25
2 2
- 15
] — , oo _
os 0s
o 0
05 05
e o1 02 Lo Ld o5 os oz os Lo 1 [ 01 02 03 04 05 06 07 08 09 1

Left: regularizing TR, Right: regularizing LM , Solid line: solution of the original problem.
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Comparison

008
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Left: regularizing TR, Right: regularizing LM , Solid line: solution of the original problem.
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The g-condition

The condition imposed by Hanke is strongly dependent on the choice of

the value of free parameter g. Values of g = 0.67, 0.70, 0.73, 0.87,
§=10"2

10 plot of the true and the computed solution, g=0.67 . plot of the true and the computed solution, g=0.70
- - ~LMg=067| - - LM, g=0.70
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Numerical results

@ P1: We want to reconstruct ¢ in the 2D-elliptic problem
—Au+cu=FfinQ=(0,1) x (0,1)
u= g on 0Q

from the knowledge of u in Q, f € L?(Q), & the trace of a function in
H?(Q). If F: D(F) — L%(Q) is the operator mapping parameter c to
the solution u we solve

.1 112
min > 1F(c) - a]

0 measured values of u.

@ P2: Reconstruct the conductivity x of the soil from measurements
b= (b1,...,bm)" at different heights h;,i =1,..., m:

1
min iHm(X) — b||2.
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Numerical tests on problem P1, § = 1072

"; N
7o
S

Figure: Solution approximations. Up: RTR with exact data. Lower part: standard
trust-region (left) and RTR (right) for § = 1072,
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(a) (b)

)

Figure: (a) plot of the true solution x' and of the computed solution x «(s) for

§ = 1072, (b) regularization parameters \.
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