Levenberg-Marquardt methods for the solution of noisy nonlinear least squares problems

PhD Candidate: Elisa Riccietti

Università degli Studi di Firenze
Dipartimento di Matematica e Informatica 'Ulisse Dini'
Institut National Polytechnique (INP), Toulouse

Supervisor: Stefania Bellavia, French supervisor: Serge Gratton

PhD defence, 26/02/2018.
Noisy least-squares problems

Nonlinear least-squares problems

Given $R : \mathbb{R}^n \rightarrow \mathbb{R}^m$, $m \geq n$, nonlinear, continuously differentiable solve

$$\min_{x \in \mathbb{R}^n} \Phi(x) = \frac{1}{2} \| R(x) \|^2.$$

Let x^* be a solution of the problem.
Nonlinear least-squares problems

Given $R : \mathbb{R}^n \to \mathbb{R}^m$, $m \geq n$, nonlinear, continuously differentiable solve

$$\min_{x \in \mathbb{R}^n} \Phi(x) = \frac{1}{2} \| R(x) \|^2.$$

Let x^* be a solution of the problem.

Noisy least-squares problems

We assume that Φ and its derivatives are not available. We look for an approximation to x^* considering a sequence of approximations to the objective function:

$$\Phi_{\delta_k} \sim \Phi$$
Nonlinear least-squares problems

Given $R : \mathbb{R}^n \rightarrow \mathbb{R}^m$, $m \geq n$, nonlinear, continuously differentiable solve

$$
\min_{x \in \mathbb{R}^n} \Phi(x) = \frac{1}{2} \| R(x) \|^2 \rightarrow \text{unperturbed problem}
$$

Let x^* be a solution of the problem.

Noisy least-squares problems

We assume that Φ and its derivatives are not available. We look for an approximation to x^* considering a sequence of approximations to the objective function:

$$
\Phi_{\delta_k} \sim \Phi
$$
We are interested into two classes of such problems:

- **Ill-posed problems.** Data fitting problems with noisy data such that the solution does not depend continuously on the data. The noise is fixed and arises from measurements errors: $\Phi_{\delta_k} \equiv \Phi_{\delta}$ for each k.

AIM: design stable methods for their solution.

Large scale noisy problems. Objective function is expensive to compute, we want to use cheaper approximations. The approximation can be improved reducing the noise level.

AIM: design fast methods for the solution of the unperturbed problem considering a sequence of function approximations of increasing accuracy.

\(\rightarrow\) study performed in collaboration with Prof. Serge Gratton in Toulouse.

Elisa Riccietti (DIMAI - UNIFI)
Toulouse, 26/02/2018
We are interested in two classes of such problems:

- **Ill-posed problems.** Data fitting problems with noisy data such that the solution *does not depend continuously on the data*. The noise is fixed and arises from measurements errors: $\Phi_{\delta_k} \equiv \Phi_\delta$ for each k.

 AIM: design stable methods for their solution.

- **Large scale noisy problems.** Objective function is expensive to compute, we want to use cheaper approximations. The approximation can be improved reducing the noise level.

 AIM: design fast methods for the solution of the unperturbed problem considering a sequence of function approximations of increasing accuracy.
We are interested into two classes of such problems:

- **Ill-posed problems.** Data fitting problems with noisy data such that the solution **does not depend continuously on the data.** The noise is fixed and arises from measurements errors: $\Phi_{\delta_k} \equiv \Phi_\delta$ for each k.

 AIM: design stable methods for their solution.

- **Large scale noisy problems.** Objective function is expensive to compute, we want to use cheaper approximations. The approximation can be improved reducing the noise level.

 AIM: design fast methods for the solution of the unperturbed problem considering a sequence of function approximations of increasing accuracy. → study performed in collaboration with Prof. Serge Gratton in Toulouse.
Outline

- Background material: introduction to Levenberg-Marquardt and trust-region methods.

I part: Ill-posed problems
- regularizing method for zero residual problems,
- regularizing method for non-zero residual problems.

II part: Large scale problems with expensive objective function.

Conclusions and perspectives.

Research outputs.
Levenberg-Marquardt method

It is an iterative method for solving a least-squares problem. It builds the sequence of solution approximations as $x_{k+1} = x_k + p_k$ where p_k is the solution of:

$$\min_{p \in \mathbb{R}^n} m_k^{LM}(p) = \frac{1}{2} \| R(x_k) + J(x_k)p \|^2 + \frac{1}{2} \lambda_k \| p \|^2$$

where J is the Jacobian matrix of R and $\lambda_k \geq 0$ is a regularization parameter.

Remark

p_k is the solution of

$$(B_k + \lambda_k I)p_k = -g_k$$

with $B_k = J(x_k)^T J(x_k)$, $g_k = J(x_k)^T R(x_k)$.
Classical Levenberg-Marquardt method

- Given $x_k \in \mathbb{R}^n$ and $\lambda_k \geq 0$, find the step $p_k \in \mathbb{R}^n$ minimizing

 $$m_k^{LM}(p) = \frac{1}{2} \| R(x_k) + J(x_k)p \|^2 + \frac{1}{2} \lambda_k \| p \|^2.$$

- Set $\Phi(x) = \frac{1}{2} \| R(x) \|^2$, and compute

 $$\rho_k(p_k) = \frac{\Phi(x_k) - \Phi(x_k + p_k)}{m_k^{LM}(0) - m_k^{LM}(p_k)}.$$

- Step acceptance. Given $\eta \in (0, 1)$:
 - If $\rho_k < \eta$ reject the step: $x_{k+1} = x_k$ and increase λ_k.
 - If $\rho_k \geq \eta$ accept the step: $x_{k+1} = x_k + p_k$.
Trust-region methods

- Given x_k and the trust-region radius $\Delta_k > 0$ find the step p_k solving

$$
\min_p m_k^{TR}(p) = \frac{1}{2} \| R(x_k) + J(x_k)p \|^2,
$$

s.t. $\|p\| \leq \Delta_k$

- Set $\Phi(x) = \frac{1}{2} \| R(x) \|^2$. Compute

$$
\rho_k(p_k) = \frac{\Phi(x_k) - \Phi(x_k + p_k)}{m_k^{TR}(0) - m_k^{TR}(p_k)}.
$$

- Step acceptance and trust-region radius update. Given $\eta \in (0, 1)$:

 - If $\rho_k < \eta$ then set $\Delta_{k+1} < \Delta_k$ and $x_{k+1} = x_k$.
 - If $\rho_k \geq \eta$ then set $\Delta_{k+1} \geq \Delta_k$ and $x_{k+1} = x_k + p_k$.
Trust-region methods

Trust-region methods falls into the class of Levenberg-Marquardt methods.

Levenberg-Marquardt - Trust region

\[
\begin{align*}
\text{LM: } & \quad \min_p m_k^{LM}(p) = \frac{1}{2} \| R(x_k) + J(x_k)p \|^2 + \frac{\lambda_k}{2} \| p \|^2 \\
\text{TR: } & \quad \min_p m_k^{TR}(p) = \frac{1}{2} \| R(x_k) + J(x_k)p \|^2, \\
& \quad \text{s.t. } \| p \| \leq \Delta_k
\end{align*}
\]

It is possible to prove that for TR \(p_k \) solves

\[
(B_k + \lambda_k I)p_k = -g_k, \quad B_k = J(x_k)^T J(x_k), \quad g_k = J(x_k)^T R(x_k)
\]

for some \(\lambda_k \geq 0 \) such that

\[
\lambda_k(\| p_k \| - \Delta_k) = 0.
\]

\[\Rightarrow\] Trust-region methods are Levenberg-Marquardt methods!
I part: Ill-posed least squares problems
I part: Ill-posed least squares problems

Let us consider the following least squares problem: given \mathcal{X}, \mathcal{Y} Hilbert spaces, $F : \mathcal{X} \to \mathcal{Y}$, nonlinear, continuously differentiable and $y \in \mathcal{Y}$, solve

$$\min_{x \in \mathcal{X}} \Phi(x) = \|F(x) - y\|_Y^2.$$

Definition

The problem is well-posed if:

1. $\forall y \in \mathcal{Y}$ it exists a solution $x \in \mathcal{X}$,
2. the solution is unique,
3. property of stability holds (the solution depends continuously on the data).

The problem is ill-posed if one or more of the previous properties do not hold.
Let us consider problems of the form

$$ \min_{x \in \mathbb{R}^n} \Phi(x) = \| F(x) - y \|^2, \quad x \in (\mathbb{R}^n, \| \cdot \|_2), \ y \in (\mathbb{R}^m, \| \cdot \|_2), $$

with $F : \mathbb{R}^n \to \mathbb{R}^m$ and $m \geq n$, arising from the discretization of an ill-posed problem.

In a realistic situation the data y are affected by noise, we have at disposal only y^δ such that:

$$ \| y - y^\delta \| \leq \delta $$

for some positive δ.

We can handle only a noisy problem:

$$ \min_{x \in \mathbb{R}^n} \Phi_\delta(x) = \| F(x) - y^\delta \|^2. $$
Need for regularization

- As stability does not hold, the solutions of the original problem do not depend continuously on the data.

 \[\rightarrow \] The solutions of the noisy problem may not be meaningful approximations of the original problem solutions.
Need for regularization

- As stability does not hold, the solutions of the original problem do not depend continuously on the data.
 \[\Rightarrow \] The solutions of the noisy problem may not be meaningful approximations of the original problem solutions.

- Classical methods used for well-posed systems are not suitable in this contest.

\[\Downarrow \]

Need for regularization.
Iterative regularization methods generate a sequence \(\{x^\delta_k\} \). Regularizing properties arise from:

- construction of the iterates,
- the choice of a suitable stopping criterion.

If the process is stopped at iteration \(k^*(\delta) \) the method is supposed to guarantee the following properties, given \(x^* \) a solution of the unperturbed problem:

- \(x^\delta_{k^*(\delta)} \) is an approximation of \(x^* \);
- \(\{x^\delta_{k^*(\delta)}\} \) tends to \(x^* \) if \(\delta \) tends to zero;
- local convergence to \(x^* \) in the noise-free case.
We consider regularizing trust-region approaches

1) Zero-residual problems: \(F(x) = y^\delta \)

It exists \(x^\dagger \) such that \(F(x^\dagger) = y \). We propose a regularizing trust-region approach, able to find an approximation to a solution of the unperturbed problem.

2) Non-zero residual problems: \(\min_{x \in \mathbb{R}^n} \| F(x) - y^\delta \|^2 \)

It does not exist \(x^\dagger \) such that \(F(x^\dagger) - y = 0 \). We extend the trust-region approach designed for zero-residual problem to small residual problems.
Zero-residual problems

We consider

\[F(x) = y^\delta, \]

with \(\delta \) fixed noise level, and let \(x^\dagger \) be a solution of \(F(x) = y \).
The step p_k solves

$$(B_k + \lambda_k I)p_k = -g_k$$

for some $\lambda_k \geq 0$ such that

$$\lambda_k(\|p_k\| - \Delta_k) = 0.$$

- B_k is ill-conditioned.
- In trust-region methods the trust region is eventually inactive: $\|p_k\| < \Delta_k \rightarrow \lambda_k = 0$.
- It is not a regularization method!
How to obtain a regularizing method?

Noisy problem

\[
\min_{x \in \mathbb{R}^n} \frac{1}{2} \| F(x) - y^\delta \|^2
\]

Exact problem

\[
\min_{x \in \mathbb{R}^n} \frac{1}{2} \| F(x) - y \|^2
\]

1. stopping criterion
2. small steps
1) **Stopping criterion:** with noisy data the process is stopped at iteration $k^*(\delta)$ such that $x^\delta_{k^*(\delta)}$ satisfies the **discrepancy principle**:

$$\|F(x^\delta_{k^*(\delta)}) - y^\delta\| \leq \tau \delta < \|F(x^\delta_k) - y^\delta\|$$

for $0 \leq k < k^*(\delta)$ and $\tau > 1$ suitable parameter.

SEMI CONVERGENCE

Plot of the error $\|x^\delta_k - x^\dagger\|$ versus iteration number.
2) q-condition: \[\|F(x^\delta_k) - y^\delta + J(x^\delta_k)p\| \geq q\|F(x^\delta_k) - y^\delta\|, \quad q \in (0, 1) \]

\[\rightarrow \text{If } \Delta_k \leq \frac{1-q}{\|B_k\|} \|g_k^\delta\| \text{ then } p_k \text{ satisfies the q-condition and the trust region is active.} \]
Algorithm: k-th iteration of regularizing trust-region

Given x_k^δ, $\eta \in (0, 1)$, $\gamma \in (0, 1)$, $0 < C_{\text{min}} < C_{\text{max}}$.

Exact data: $y, q \in (0, 1)$.
Noisy data: $y^\delta, q \in (0, 1)$, $\tau > 1/q$.

1. Compute $B_k = J(x_k^\delta)^T J(x_k^\delta)$ and $g_k^\delta = J(x_k^\delta)^T (F(x_k^\delta) - y^\delta)$.

2. Choose $\Delta_k \in \left[C_{\text{min}} \|g_k^\delta\|, \min \left\{ C_{\text{max}}, \frac{1 - q}{\|B_k\|} \right\} \|g_k^\delta\| \right]$.

3. Repeat
 3.1 Compute the solution p_k of trust-region problem.
 3.2 Compute
 $$\rho_k(p_k) = \frac{\Phi(x_k^\delta) - \Phi(x_k^\delta + p_k)}{m_k^{TR}(0) - m_k^{TR}(p_k)}$$
 with $\Phi(x) = \frac{1}{2} \|F(x) - y^\delta\|^2$, $m_k^{TR}(p) = \frac{1}{2} \|F(x_k^\delta) + J(x_k^\delta)p\|^2$.
 3.3 If $\rho_k(p_k) < \eta$, set $\Delta_k = \gamma \Delta_k$.

Until $\rho_k(p_k) \geq \eta$.

4. Set $x_{k+1}^\delta = x_k^\delta + p_k$.
Local analysis

- **Assumption 1:** For index \bar{k} it exist positive ρ and c such that
 1. the system $F(x) = y$ is solvable in $B_{\rho}(x_{\bar{k}}^\delta)$;
 2. for $x, \tilde{x} \in B_{2\rho}(x_{\bar{k}}^\delta)$ the following **tangential cone condition** holds,

$$\|F(x) - F(\tilde{x}) - J(x)(x - \tilde{x})\| \leq c\|x - \tilde{x}\|\|F(x) - F(\tilde{x})\|.$$

For well-posed systems: $\|F(x) - F(\tilde{x}) - J(x)(x - \tilde{x})\| \leq c\|x - \tilde{x}\|^2$.

- **Assumption 2:** It exists positive K_J such that

$$\|J(x)\| \leq K_J$$

for all $x \in \mathcal{L} = \{x \in \mathbb{R}^n \text{ s.t. } \Phi(x) \leq \Phi(x_0)\}$.

[Iterative regularization methods for nonlinear ill-posed problems, Kaltenbacher, Neubauer, Scherzer, 2008]
Theoretical results

Lemma

The method generates a sequence \(\{x^\delta_k\} \) such that:

1) the trust-region is active, i.e. \(\lambda_k > 0 \),
2) error decreases monotonically:
 \[
 \|x^\delta_{k+1} - x^\dagger\| < \|x^\delta_k - x^\dagger\|,
 \]
 for \(k \geq \bar{k} \), with \(\bar{k} < k^*(\delta) \) for noisy data.

Theorem

If \(\delta = 0 \) the sequence \(\{x_k\} \) converges to a solution \(x^* \) of \(F(x) = y \) such that
\[
\|x^* - x^\dagger\| \leq \rho.
\]
If \(\delta > 0 \) the discrepancy principle is satisfied after a finite number of iterations \(k^*(\delta) \) and the sequence \(\{x^\delta_{k^*(\delta)}\} \) converges to a solution of \(F(x) = y \) if \(\delta \) tends to zero.

Four nonlinear ill-posed systems arising from the discretization of the nonlinear first-kind Fredholm integral equation are considered, they model gravimetric and geophysics problems:

\[
\int_0^1 k(t, s, x(s)) ds = y(t), \quad t \in [0, 1],
\]

P1, P2, [Vogel, 1990], **P3, P4** [Kaltenbacher, 2007];

Their kernel is of the form

\[
k(t, s, x(s)) = \log \left(\frac{(t - s)^2 + H^2}{(t - s)^2 + (H - x(s))^2} \right); \\
k(t, s, x(s)) = \frac{1}{\sqrt{1 + (t - s)^2 + x(s)^2}};
\]
Regularizing properties of the method.

Semilogarithmic plot of the error $\|x_{k^*(\delta)}^\delta - x^\dagger\|$ as a function of the noise level δ.
\[\delta = 10^{-2}. \textbf{Blue}: \text{regularizing TR}, \textbf{Solid line}: \text{solution of the original problem.} \]
\(\delta = 10^{-2} \). **Left:** regularizing TR, **Right:** standard TR, **Solid line:** solution of the original problem.
Contribution

- Theoretical study and implementation of a Regularizing Trust-region approach
- The methods represents an improvement over the Levenberg-Marquardt method in [Hanke 1996] based on the condition

\[\| F(x_k^\delta) - y^\delta + J(x_k^\delta)p_k(\lambda_k) \| = q\| F(x_k^\delta) - y^\delta \| \] \hspace{1cm} (1)

which is not ensured to have a solution far from \(x^\dagger \), while the condition we adopted can always be satisfied. The proposed method results to be more robust.
- The Trust-region approach is also shown to be less-dependent on the free parameters of the method (q).
- We analyzed the practical implementation of the method in [Hanke 1996] that was not considered in the original paper or in related articles. Specifically we discuss how to solve (1) in a reliable way.
Non-zero residual problems

It does not exist x such that $F(x) - y = 0$, but it exists x^\dagger local minimum of the problem

$$\min_x \frac{1}{2} \|F(x) - y\|^2.$$

- Non-zero residual problems frequently appear in applications, especially when a natural phenomenon is represented through a mathematical model.
 - The most part of the literature on ill-posed nonlinear least squares deals with zero residual problems, we are not aware of other contributions on this topic.
- Usually the modelling error is incorporated in the data error and the problem is solved as a zero residual problem
 - Estimation of the modelling error is not required.
We extend the approach for zero-residual problems to small residual problems. We propose an elliptical trust-region approach.

At a generic iteration \(k \), given \(\Delta_k > 0 \), the following problem is solved:

\[
\min_{p} m_k(p) := \frac{1}{2} \| F(x^\delta_k) - y^\delta + J(x^\delta_k)p \|^2,
\]

s.t. \(\|(B_k)^{-\frac{1}{2}}p\| \leq \Delta_k \).

1. **discrepancy principle:**

\[
\| J(x^{\delta}_{k^*}(\delta))^T (F(x^{\delta}_{k^*}(\delta)) - y^\delta) \| \leq \tau \delta < \| J(x^\delta_k)^T (F(x^\delta_k) - y^\delta) \|.
\]

2. **q-condition:**

\[
\| J(x^\delta_k)^T (F(x^\delta_k) - y^\delta + J(x^\delta_k)p_k) \| \geq q \| J(x^\delta_k)^T (F(x^\delta_k) - y^\delta) \|.
\]

Regularizing method [S. Bellavia, E. R., submitted to JOTA (second revision)]
II part: Large scale problems with expensive objective function

6-months collaboration with S. Gratton, INP-ENSEEIHT, Toulouse.
II part: Large scale problems with expensive objective function

- We consider large-scale problems for which the objective function is expensive to evaluate:

\[
\min_x \Phi(x) = \frac{1}{2} \|F(x)\|^2
\]

- We consider an iterative process that employs a sequence of approximations \(\{\Phi_{\delta_k}\} \) of the original objective function

\[
\Phi_{\delta_k}(x) = \frac{1}{2} \|F_{\delta_k}(x)\|^2, \quad F_{\delta_k} \sim F
\]

- \(\delta_k \) is the accuracy level of the approximations:

\[
|\Phi_{\delta_k}(x_k) - \Phi(x_k)| \leq \delta_k.
\]

- We assume that the accuracy level can be improved along the optimization process: \(\delta_k \downarrow 0 \).
Typical applications

Subsampling techniques

- Machine learning, Data assimilation.
- Large set of data at disposal: \(\{1, \ldots, N\} \).
- Subsampling: \(X_k \subseteq \{1, \ldots, N\} \) such that \(|X_k| = K_k \leq N \) is selected.
- \(F_{\delta_k} : \mathbb{R}^n \rightarrow \mathbb{R}^{K_k} \) such that \((F_{\delta_k})_i = F_j, j \in X_k \) is built.
- \(\Phi_{\delta_k}(x) = \frac{1}{2} \| F_{\delta_k}(x) \|_2^2 \)

approximation can be improved by considering more observations.

Iterative methods

- \(\Phi \) is the result of an iterative process (solution of a nonlinear equation or an inversion process) that can be stopped when a certain accuracy level is reached.
- By varying the stopping criterion we vary the accuracy of the approximation.
We consider a Levenberg-Marquardt method that at each iteration uses an approximated model employing the approximations to function and derivatives:

\[m_k(p_k) = \frac{1}{2} \| F_{\delta_k}(x_k) + J_{\delta_k}(x_k)p_k \|^2 + \frac{\lambda_k}{2} \| p_k \|^2 \]

for \(J_{\delta_k} \) an approximation to \(J \).

At each iteration the step is found minimizing the noisy model, i.e. solving a linear systems of the form:

\[(J_{\delta_k}(x_k)^T J_{\delta_k}(x_k) + \lambda_k I)p_k = -g_{\delta_k}(x_k), \quad g_{\delta_k}(x_k) = J_{\delta_k}(x_k)^T F_{\delta_k}(x_k) \]
Inexact step

Large-scale problems: approximate solution of LM subproblem

\(p \) provides the sufficient Cauchy decrease:

\[
m_k(0) - m_k(p_k) \geq \frac{\theta}{2} \frac{\|g_{\delta_k}(x_k)\|^2}{\|J_{\delta_k}(x_k)\|^2 + \lambda_k}, \quad \theta > 0.
\]

The Levenberg-Marquardt step computed as

\[
(J_{\delta_k}(x_k)^T J_{\delta_k}(x_k) + \lambda_k I) p_k = -g_{\delta_k}(x_k) + r_k
\]

for a residual \(r_k \) satisfying \(\|r_k\| \leq \epsilon_k \|g_{\delta_k}(x_k)\| \), with \(\epsilon_k \) such that

\[
0 \leq \epsilon_k \leq \min \left\{ \frac{\theta_1}{\lambda_k^{\alpha}}, \sqrt{\theta_2 \frac{\lambda_k}{\|J_{\delta_k}(x_k)\|^2 + \lambda_k}} \right\},
\]

where \(\theta_1 > 0, \theta_2 \in (0, \frac{1}{2}] \) and \(\alpha \in \left[\frac{1}{2}, 1 \right) \) achieves the Cauchy decrease.
After the step is computed, we have to decide whether to accept the step.

Step acceptance is based on the ratio:

$$\rho_{\delta_k}(p_k) = \frac{\Phi_{\delta_k}(x_k) - \Phi_{\delta_k}(x_k + p_k)}{m_k(0) - m_k(p_k)}.$$

If the noise is too high, the reduction in Φ_{δ_k} can be just an effect of the presence of the noise.
After the step is computed, we have to decide whether to accept the step.

Step acceptance is based on the ratio:

$$\rho_k^\delta(p_k) = \frac{\Phi_{\delta_k}(x_k) - \Phi_{\delta_k}(x_k + p_k)}{m_k(0) - m_k(p_k)}.$$

If the noise is too high, the reduction in Φ_{δ_k} can be just an effect of the presence of the noise.

Need for a strategy to control the noise!!
Trust region methods, 2000] Let

$$\max\{|\Phi_{\delta_k}(x_k) - \Phi(x_k)|, |\Phi_{\delta_k}(x_k + p_k) - \Phi(x_k + p_k)|\} \leq \delta_k$$

$$\delta_k \leq \eta_0(m_k(0) - m_k(p_k)).$$

If

$$\rho_k(p_k) = \frac{\Phi_{\delta_k}(x_k) - \Phi_{\delta_k}(x_k + p_k)}{m_k(0) - m_k(p_k)} > \eta$$

then also

$$\rho_k(p_k) = \frac{\Phi(x_k) - \Phi(x_k + p_k)}{m_k(0) - m_k(p_k)} > \eta.$$

→ True reduction in the noise-free objective function Φ

In our approach: $m_k(0) - m_k(p_k) \sim \frac{1}{2}\lambda_k \|p_k\|^2.$
Algorithm: k-th iteration of regularizing Levenberg-Marquardt

Given $\alpha \in (\frac{1}{2}, 1]$, δ_0, $\eta_1 \in (0, 1)$, $\eta_2 > 0$, $\lambda_{\text{max}} > \lambda_{\text{min}} > 0$, $\gamma > 1$, x_0 and $\lambda_{\text{max}} > \lambda_0 \geq \lambda_{\text{min}}$.

Compute $\Phi^{\delta_0}(x_0)$. For $k = 0, 1, 2, ...$

2. If $\delta_k \leq \kappa_d \frac{1}{2} \lambda_k^\alpha \|p_k\|^2$, compute $\Phi_{\delta_k}(x_k + p_k)$, else reduce δ_k and go back to 1.
3. Compute

$$\rho_{\delta_k}^k(p_k) = \frac{\Phi_{\delta_k}(x_k) - \Phi_{\delta_k}(x_k + p_k)}{m_k(0) - m_k(p_k)}.$$

3.1 If $\rho_{\delta_k}^k(p_k) \geq \eta_1$, then set $x_{k+1} = x_k + p_k$ and update λ.
3.2 Otherwise set $x_{k+1}^{\delta_k} = x_k^{\delta_k}$, $\lambda_{k+1} = \gamma \lambda_k$.
The parameter update is inspired by [Bergou, Gratton, Vicente, 2016] and [Bandeira, Scheinberg, Vicente, 2014]. If success, given $\gamma > 1$:

$$
\lambda_{k+1} = \begin{cases}
\min\{\gamma\lambda_k, \lambda_{\text{max}}\} & \text{if } \|g_{\delta_k}(x^\delta_k)\| < \eta_2/\lambda_k, \\
\max\{\lambda_k, \lambda_{\text{min}}\} & \text{if } \|g_{\delta_k}(x^\delta_k)\| \geq \eta_2/\lambda_k.
\end{cases}
$$

Gradient approximations

We can control the accuracy on the gradient approximation:

$$
\frac{\|g(x_k)\|}{1+c_k} \leq \|g_{\delta_k}(x_k)\| \leq \frac{\|g(x_k)\|}{1-c_k}, \text{ with } c_k = O \left(\frac{1}{\lambda_k^{1-\alpha/2}}\right).
$$
Assumptions

• **Assumption 1:** Function f is continuously differentiable, and it exists $\kappa_J > 0$ such that for all $k \geq 0$ and all $x \in [x_k, x_k + \underline{p}^L_k]$, $\|J_{\delta_k}(x)\| \leq \kappa_J$.

• **Assumption 2:** f has Lipschitz continuous gradient:
 $\|g(x) - g(y)\| \leq L\|x - y\|$ for all $x, y \in \mathbb{R}^n$.
Global Convergence

Let the residual be small enough, i.e. r_k satisfies $\|r_k\| \leq \epsilon_k \|g_{\delta_k}\|$, with

$$\epsilon_k \leq \min \left\{ \frac{\theta_1}{\lambda^\alpha_k}, \sqrt{\theta_2 \frac{\lambda_k}{\|J_{\delta_k}(x_k)\|^2 + \lambda_k}} \right\}$$

where $\theta_1 > 0$, $\theta_2 \in (0, \frac{1}{2}]$ and $\alpha \in [\frac{1}{2}, 1)$.

Lemma

The sequences $\{\delta_k\}$ and $\{x_k\}$ generated by the Algorithm are such that

$$\lim_{k \to \infty} \frac{1}{2} \lambda^\alpha_k \|p_k\|^2 = 0$$

$$\lim_{k \to \infty} \|g(x_k)\| = 0.$$

[S.Bellavia, S.Gratton, E.R., submitted to Numerische Mathematik (second revision)].
Local convergence

Asymptotic step behaviour

The LM step asymptotically tends to the direction of the negative perturbed gradient:

$$\lim_{k \to \infty} (p_{LM}^k)_i + \frac{\theta}{\kappa^2_j + \lambda_k} (g_{\delta_k} (x_k))_i = 0 \quad \text{for} \quad i = 1, \ldots, n,$$

where $(\cdot)_i$ denotes the i-th vector component.

Lemma

Let $p_{SD}^k = -\frac{\theta}{\kappa^2_j + \lambda_k} g_{\delta_k} (x_k)$ and $x_{k+1} = x_k + p_{SD}^k$. If $x_{\bar{k}} \in B_r(x^*)$ and $\lambda_{\bar{k}}$ big enough,

- $\|x_{k+1} - x^*\| < \|x_k - x^*\|$, for all $k \geq \bar{k}$.
- $\|x_k - x^*\|$ tends to zero.
Let assume that the procedure is stopped when $\| g_{\delta k}(x_k) \| \leq \epsilon$.

- The number of successful iterations N_1 is bounded above by:
 $$N_1 \leq O(\epsilon^{-2}).$$

- The number of unsuccessful iterations N_3 is bounded above by a constant independent of ϵ:
 $$N_3 \leq c(\lambda_{\text{max}}, \lambda_0, \gamma).$$

Standard Levenberg-Marquardt methods complexity is preserved:

$$N_T = O(\epsilon^{-2}),$$
Numerical results

- **Data assimilation problem.** Nonlinear wave equation:
 \[
 \frac{\partial^2 u(z, t)}{\partial t^2} - \frac{\partial^2 u(z, t)}{\partial z^2} + \mu e^{\nu u} = 0, \\
 u(0, t) = u(1, t) = 0, u(z, 0) = u_0(z), \\
 \frac{\partial u(z, 0)}{\partial t} = 0, 0 \leq t \leq T, 0 \leq z \leq 1.
 \]
 We look for initial state \(u_0(z)\).

- **Machine learning problem.** Binary classification problem: \(\{(z^i, y^i)\}\) with \(z^i \in \mathbb{R}^n, y^i \in \{-1, +1\}\) and \(i = 1, \ldots, N\).
 Training objective function: logistic loss with \(l_2\) regularization
 \[
 f(x) = \frac{1}{2N} \sum_{i=1}^{N} \log(1 + \exp(-y^i x^T z^i)) + \frac{1}{2N} \|x\|^2.
 \]
We look for the initial state $u_0(z)$, from the knowledge of observations $u(z_i, t_j)$, $t_j > 0$. Data assimilation problem:

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|x - x_b\|_B^{-1} + \frac{1}{2} \sum_{j=0}^{N_t} \|H_j(x(t_j)) - y_j\|_R^{-1}$$

- $\|x\|_M^2 = x^T M x$ for a symmetric positive definite matrix M,
- $x_b \in \mathbb{R}^n$ is the background vector (a priori estimate)
- $y_j \in \mathbb{R}^{m_j}$ is the vector of observations at time t_j, $m_j \leq n$.
- H_j is the operator modelling the observation process at t_j
- $x(t_j)$ the state vector, solution of the nonlinear model at time t_j.
Build the approximations

- We build the approximations through subsampling techniques.
- In both cases
 \[\Phi(x) = \sum_{i=1}^{N} \Phi_i(x)^2. \]
- Function approximations:
 \[\Phi_{\delta_k}(x) = \sum_{i \in X_k} \Phi_i(x)^2 \]
 with \(X_k \subset \{1, \ldots, N\} \).
- Increasing the size of \(X_k \) we have a better approximation.
Data Assimilation

<table>
<thead>
<tr>
<th></th>
<th>All samples</th>
<th>Subsampled</th>
<th></th>
<th>All samples</th>
<th>Subsampled</th>
</tr>
</thead>
<tbody>
<tr>
<td>it</td>
<td>9</td>
<td>12</td>
<td></td>
<td>52</td>
<td>38</td>
</tr>
<tr>
<td>cost$_f$</td>
<td>10</td>
<td>3</td>
<td></td>
<td>53</td>
<td>16</td>
</tr>
<tr>
<td>cost$_p$</td>
<td>67</td>
<td>15</td>
<td></td>
<td>808</td>
<td>316</td>
</tr>
<tr>
<td>RMSE</td>
<td>1.2e-2</td>
<td>3.8e-2</td>
<td></td>
<td>5.4e-2</td>
<td>6.0e-2</td>
</tr>
<tr>
<td>save$_f$</td>
<td>67%</td>
<td></td>
<td></td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>save$_p$</td>
<td>78%</td>
<td></td>
<td></td>
<td>61%</td>
<td></td>
</tr>
</tbody>
</table>

Figure: Solution approximation, Left: all samples, Right: Subsampled
We proposed a method to solve least squares problems with both noisy function and gradients.

We are not aware of methods for noisy non-zero residual nonlinear least squares problems, for which both local and global convergence is proved.

The proposed Levenberg-Marquardt method allows considerable savings in terms of function evaluations and matrix-vector products compared to inexact Levenberg-Marquardt methods and Gauss-Newton methods employing the exact objective function and Jacobian.
Development of the code implementing three numerical methods:

- **Regularizing Trust-Region method.** Ill-posed nonlinear least-squares problems with zero-residual.
- **Elliptical regularizing Trust-Region method.** Ill-posed nonlinear least-squares problems with non-zero residual.
- **Levenberg-Marquardt method for large scale problems with dynamic noise.** Large scale problems for least-squares problem with objective function that can be computed with dynamic accuracy.
Research Outputs

Articles related to the thesis:

Other articles:

Solution of large scale ill-posed problems.

- Variant of the elliptical Trust-Region approach. Critical point: cannot compute square root of matrix B_k or solve linear systems exactly: need of iterative solvers that introduces a source of inexactness.

- Extension of the method presented in Part II to allow input spaces of increasing dimensions, to include also multilevel strategies. Ideas on which the methods presented in Part I and Part II are based can be coupled, to design a method suitable for handling discrete ill-posed problems arising from a discretization of the input space of an infinite dimensional problem: adaptive choice of mesh size.
Thank you for your attention!
Noise estimation

- We estimate the noise computing the true objective function when the noise control is not satisfied: \(\delta_k \sim |\Phi(x_k) - \Phi_{\delta_k}(x_k)|. \)
- We could use an estimate:

\[
\delta_k \approx \frac{\sqrt{2(N - K_k)}}{K_k}, \quad \text{with} \quad K_k = |X_k|.
\]

If the components \(F_i(x) \) of \(F(x) \) were Gaussian, \(\sum_{i=1}^{N-K_k} F_i(x)^2 \) would follow a Chi-squared distribution with standard deviation \(\sqrt{2(N - K_k)}. \)
- non-deterministic estimate: not supported by our theory
Comparison between regularizing TR-LM, $\delta = 10^{-2}$.

<table>
<thead>
<tr>
<th>Problem</th>
<th>x_0</th>
<th>Regularizing TR</th>
<th></th>
<th>Regularizing LM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x_0</td>
<td>it</td>
<td>nf</td>
<td>cf</td>
</tr>
<tr>
<td>P1</td>
<td></td>
<td>0 e</td>
<td>20</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−0.5 e</td>
<td>29</td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−1 e</td>
<td>35</td>
<td>36</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−2 e</td>
<td>40</td>
<td>41</td>
<td>5</td>
</tr>
<tr>
<td>P2</td>
<td></td>
<td>0 e</td>
<td>30</td>
<td>31</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 e</td>
<td>25</td>
<td>26</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 e</td>
<td>29</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 e</td>
<td>37</td>
<td>39</td>
<td>5</td>
</tr>
<tr>
<td>P3</td>
<td>$x_0(1.25)$</td>
<td>15</td>
<td>16</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>$x_0(1.5)$</td>
<td>17</td>
<td>18</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>$x_0(1.75)$</td>
<td>19</td>
<td>20</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>$x_0(2)$</td>
<td>22</td>
<td>23</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>P4</td>
<td>$x_0(1, 1)$</td>
<td>17</td>
<td>18</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>$x_0(0.5, 0)$</td>
<td>20</td>
<td>21</td>
<td>4</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>$x_0(1.5, 1)$</td>
<td>22</td>
<td>23</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>$x_0(1.5, 0)$</td>
<td>26</td>
<td>27</td>
<td>4</td>
<td>*</td>
</tr>
</tbody>
</table>

it=iterations,
nf=function evaluations,
cf=mean number of Cholesky factorizations.
*failure, reached maximum number of iterations or convergence to a solution of the noisy problem

e = (1, \ldots, 1)^T, \ P3: (x_0(\alpha))_j = (-4\alpha + 4)s_j^2 + (4\alpha - 4)s_j + 1, \ P4: x_0(\beta, \chi) = \beta - \chi s_j, s_j \text{ grid points}, j = 1, \ldots, n.
Comparison between regularizing TR and LM, $\delta = 10^{-2}$

Comparison between regularizing TR e LM, $\delta = 10^{-2}$

The q-condition

The condition imposed by Hanke is strongly dependent on the choice of the value of free parameter q. Values of $q = 0.67, 0.70, 0.73, 0.87$, $\delta = 10^{-2}$.

![Plot of the true and the computed solution, q=0.67](image1.png)
![Plot of the true and the computed solution, q=0.70](image2.png)
![Plot of the true and the computed solution, q=0.73](image3.png)
![Plot of the true and the computed solution, q=0.87](image4.png)
P1: We want to reconstruct c in the 2D-elliptic problem

$$-\Delta u + cu = \hat{f} \text{ in } \Omega = (0, 1) \times (0, 1)$$

$$u = \hat{g} \text{ on } \partial\Omega$$

from the knowledge of u in Ω, $\hat{f} \in L^2(\Omega)$, \hat{g} the trace of a function in $H^2(\Omega)$. If $F : D(F) \to L^2(\Omega)$ is the operator mapping parameter c to the solution u we solve

$$\min_c \frac{1}{2} \| F(c) - \tilde{u} \|^2$$

\tilde{u} measured values of u.

P2: Reconstruct the conductivity x of the soil from measurements $b = (b_1, \ldots, b_m)^T$ at different heights $h_i, i = 1, \ldots, m$:

$$\min_x \frac{1}{2} \| m(x) - b \|^2.$$
Numerical tests on problem P1, $\delta = 10^{-2}$

Figure: Solution approximations. Up: RTR with exact data. Lower part: standard trust-region (left) and RTR (right) for $\delta = 10^{-2}$.
Numerical tests on problem P2, $\delta = 10^{-2}$

Figure: (a) plot of the true solution x^{\dagger} and of the computed solution $x_{k^*}^{\delta}$ for $\delta = 10^{-2}$, (b) regularization parameters λ_k.