Artificial Neural Networks : scalable optimization methods for large-scale training problems

E. Riccietti (IRIT-INP, Toulouse)

Joint work with: H. Calandra (Total) S. Gratton (IRIT-INP, Toulouse) X. Vasseur (ISAE-SUPAERO, Toulouse)

ISMP 2018 - Bordeaux - 1-6 July 2018

The problem

We consider optimization problems arising in the training of artificial neural networks:

$$\min_{p} \mathcal{L}(p, z)$$
 $z \in \mathcal{T}$

where \mathcal{L} is the loss function, p is the vector of weights and biases of the network, z is the problem's variable and \mathcal{T} is the training set.

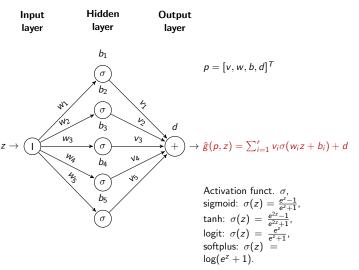
Example: approximate y = g(z)

Given a training set $\{(z_1, y_1), \dots, (z_t, y_t)\}$ and denoted with \hat{g} the output of the network, we define

- L_1 loss: $\mathcal{L}(p,z) = \frac{1}{t} \sum_{i=1}^{t} |y_i \hat{g}(z_i, p)|$,
- L_2 loss: $\mathcal{L}(p,z) = \frac{1}{t} \sum_{i=1}^t (y_i \hat{g}(z_i, p))^2$,
- Logistic loss: $\mathcal{L}(p,z) = \frac{1}{t} \sum_{i=1}^{t} \frac{1}{1+e^{y_i-\hat{g}(z_i,p)}}$.

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ · ㅌ · 쒸٩C

Network architecture



Large-scale problems

The optimization problem may be a large-scale problem, for example if g is an oscillatory function. Many nodes may be necessary to have a network able to accurately approximate it.

We look for an efficient scalable optimization method to solve the training problem.

Can we exploit the structure of the network?

Idea

We have to solve a large-scale problem

$$\min_{p} \mathcal{L}(p,z) = \mathcal{F}(\hat{g}(p,z) - y), \qquad z \in \mathcal{T}.$$

Can we exploit the structure of the network to build a hierarchy of problems approximating the original one?

Hierarchy of problems

 $\{\mathcal{F}_{I}(\hat{g}_{I}(p_{I},z)-y)\}, p_{I} \in \mathcal{D}_{I} \text{ such that } |\mathcal{D}_{I}| < |\mathcal{D}_{I+1}| \text{ and } \mathcal{F}_{I} \text{ is cheaper to}$ optimize compared to \mathcal{F}_{l+1} .

This is the idea on which classical multigrid methods are based

E. Riccietti Scalable training methods 5 / 25

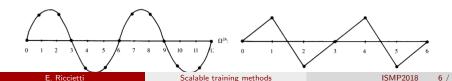
Classical multigrid methods

- Consider a linear elliptic PDE: D(z, u(z)) = f(z) $z \in \Omega + b.c.$
- Discretize on grid h.
- Get a large-scale linear system $A_h x_h = b_h$.

Multigrid methods

Consider the discretization of the same PDE problem on a coarser grid: $A_H x_H = b_H$, H > h.

- Relaxation methods fails to eliminate smooth components of the error efficiently.
- Smooth components projected on a coarser grid appear more oscillatory.



Coarse problem construction

Define transfer grid operators: P prolongation and R restriction to project vectors from a grid to another: $x_H = Rx_h$, $x_h = Px_H$, such that $R = \alpha P^T$.

Geometry exploitation

The geometrical structure of the problem is exploited to build R and P.

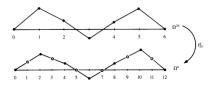


Figure 3.2: Interpolation of a vector on coarse grid Ω^{2h} to fine grid Ω^{h} .

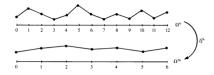


Figure 3.4: Restriction by full weighting of a fine-grid vector to the coarse grid.

Remark

This strategy is also available in the nonlinear case (Full Approximation Scheme (FAS) algorithm).

Optimization methods

We have a nonlinear problem to solve

$$\min_{x} f(x)$$

Classical iterative optimization methods:

$$f(x_k + s) \simeq T_q(x_k, s) = f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T B_k s$$

with $T_q(x_k, s)$ Taylor model of order q = 1, 2, B_k approximation to Hessian matrix. At each iteration we compute a step s_k to update the iterate:

$$\min_{s} m_k(x_k, s) = T_q(x_k, s) + \frac{\lambda_k}{q+1} ||s||^{q+1}, \qquad \lambda_k > 0$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

Higher-order models

Classical choices:

- Least-squares: Levenberg-Marquardt (LM), q = 1, $B_k = J(x_k)^T J(x_k)$.
- Adaptive Cubic Regularization method (ARC), q = 2, $B_k = \nabla^2 f(x_k)$.

Extension to higher-order methods

[Birgin, Gardenghi, Martnez, Santos, and Toint, 2017] extension to order q > 2.

Unifying framework for global convergence is presented.

Basic iterative optimization algorithm

Until convergence

- Define the local model m_k of f around x_k , depending on λ_k
- Compute a trial point $x_k + s_k$ that decreases this model
- Compute the predicted reduction $m_k(x_k) m_k(x_k + s_k)$
- Evaluate change in the objective function $f(x_k) f(x_k + s_k)$
- ullet If achieved change \sim predicted reduction then
 - Accept trial point as new iterate $x_{k+1} = x_k + s_k$ else
 - Reject the trial point $x_{k+1} = x_k$
 - Increase λ_k

Subproblem solution

Solving

$$\min_{s} T_q(x_k, s) + \frac{\lambda_k}{q+1} ||s||^{q+1}$$

represents greatest cost per iteration, which depends on the size of the problem.

Recursive multilevel trust region method [Gratton, Sartenaer, Toint, 2008]

Assumption

- **①** Assume to have at disposal a sequence of approximations $\{f_l\}$ to the objective function f such that f_l is cheaper to optimize than f_{l+1} .
- ② Assume to have linear full-rank operators R_l and P_l to move from a level to another, such that $R_l = P_l^T$ (up to a scalar).

Multigrid setting

• At each level I, $x \in \mathbb{R}^{n_I}$. I_{max} finest level, 0 coarsest level.

- f' represent f on the coarse spaces (it is e.g. the discretization of f on a coarse space)
- The functions μ^I are modifications of the f^I 's to ensure inter-level coherence.

Coherence between levels

Lower level model:

• Let $x_0^{l-1} = Rx_k^l$. Model with first order correction:

$$\mu^{l-1} = f^{l-1}(x_0^{l-1} + s^{l-1}) + (R^l \nabla f^l(x_k^l) - \nabla f^{l-1}(x_k^{l-1}))^T s^{l-1}$$

This ensures that

$$\nabla \mu^{l-1}(x_0^{l-1}) = R^l \nabla f^l(x_k^l)$$

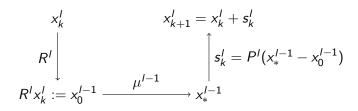
 \rightarrow first-order behaviours of f^l and μ^{l-1} are coherent in a neighbourhood of the current approximation. If $s^l=P^ls^{l-1}$

$$\nabla f^{l}(x_{k}^{l})^{T} s^{l} = \nabla f^{l}(x_{k}^{l})^{T} P^{l} s^{l-1} = \frac{1}{\alpha} \nabla \mu^{l-1} (x_{0}^{l-1})^{T} s^{l-1}.$$

Multilevel strategy

At level I, let x_k^I be the current approximation. We look for a correction s_k^I to define the new approximation $x_{k+1}^I = x_k^I + s_k^I$. Two choices:

- minimize regularized Taylor model, get s_k^l ,
- ② choose lower level model μ^{l-1} :



Our contribution

In [Gratton, Sartenaer, Toint, 2008] second-order models are considered (q=2).

- We combine ideas from [Gratton, Sartenaer, Toint, 2008] and [Birgin, Gardenghi, Martnez, Santos, and Toint, 2017] and we propose a family of scalable, multilevel optimization methods of order $q \geq 1$, which are proved to be globally convergent.
- We propose a suitable mechanism to construct a hierarchy of problems for the specific case of neural network training.
- We specialize the training method to least-squares problems (recursive multilevel Levenberg-Marquardt method).
- On scalable multilevel optimization strategies for large-scale problems arising in the training of artificial neural networks

Recursive multi-scale *q*-order methods

Until convergence

- Choose $q \ge 1$. Choose either a Taylor or a (useful) recursive model.
 - Taylor model: compute a Taylor step satisfying a sufficient decrease property
 - Recursive: apply the algorithm recursively
- Evaluate change in the objective function
- ullet If achieved change \sim predicted reduction then
 - Accept trial point as new iterate

else

- Reject the trial point
- Increase λ

The algorithm is proved globally convergent to first order critical points

Exploit multi-scale method for training of ANNs

How to build the coarse problem?

Remark

The variables to be optimized are the network's weights:

$$\min_{p} \mathcal{L}(p, z)$$
 $z \in \mathcal{T}$

NO evident geometrical structure to exploit!

Algebraic multigrid

We can take inspiration from algebraic multigrid techniques.

When solving linear systems Ax = b, the structure is discovered through the matrix A. R and P are built just looking at the entries of the matrix.

Ruge and Stueben AMG

To build the coarse problem, the variables are divided into two sets, set C of coarse variables and set F of fine variables.

Ruge and Stueben C/F splitting

- Two variables i, j are said to be *coupled* if $a_{i,j} \neq 0$.
- We say that a variable i is strongly coupled to another variable j, if

$$-a_{i,j} \ge \epsilon \max_{a_{i,k} < 0} |a_{i,k}|$$

for a fixed $0 < \epsilon < 1$, usually $\epsilon = 0.25$.

 Each F variable is required to have a minimum number of its strong couplings be represented in C. The C/F splitting is usually made choosing some first variable i to become a coarse variable. Then, all variables strongly coupled to it become F variables. The process is repeated until all variables have been split.

Which matrix should we use?

Assume to use a second-order model. At each iteration we have to solve a linear system of the form:

$$(B_k + \tilde{\lambda}_k I)s = -\nabla f(x_k)$$

for $\tilde{\lambda}_k > 0$. As in AMG for linear systems, we use information contained in matrix B_k .

Remark

Variables are coupled! $\mathcal{L}(p,z) = \mathcal{F}(\hat{g}(p,z) - y)$ and $\hat{g}(p,z) = \sum_{i=1}^{r} v_i \sigma(w_i z + b_i) \rightarrow p = \{(v_i, w_i, b_i)\}.$

We do not use the full matrix B_k and we define A as:

$$B_{k} = \begin{bmatrix} A_{v,v} & ... & .. \\ .. & A_{w,w} & ... \\ .. & .. & A_{b,b} \end{bmatrix} \rightarrow A = \frac{A_{v,v}}{\|A_{v,v}\|_{\infty}} + \frac{A_{w,w}}{\|A_{w,w}\|_{\infty}} + \frac{A_{b,b}}{\|A_{b,b}\|_{\infty}}$$

We define the coarse/fine splitting based on the auxiliary matrix A.

19 / 25

Preliminary results: solution of PDEs

Approximate the solution u of a PDE:

$$D(z, u(z)) = g(z), z \in (a, b);$$

 $u(a) = A, u(b) = B.$

We approximate $u \sim \hat{u}(p, z)$ for $p \in \mathbb{R}^n$ and we define

$$\mathcal{L}(p,z) = \frac{1}{2t}(\|D(z,u(z)) - g(z)\|^2 + \lambda_p(\|u(a) - A\|^2 + \|u(b) - B\|^2))$$

for $z \in \mathcal{T}$ training set.

 $Least\text{-}squares \ problem \rightarrow multi\text{-}scale \ Levenberg\text{-}Marquardt \ method$

Choice of the true solution

$$D(z, u(z)) = g(z), z \in (a, b);$$

• We choose g to have true solution $u_T(z, \nu)$ depending on ν

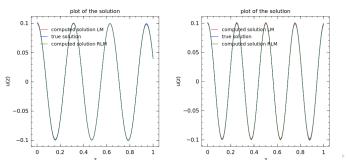
Remark

- ullet As u increases the function becomes more oscillatory and it is harder to approximate.
- The size of the problem increases with the number of nodes.
- \mathcal{T} : equispaced points in (0,1) with $h=\frac{1}{3\nu}$ (Shannon's criterion).

Poisson's equation, $u_T(z, \nu) = cos(\nu z)$, 5 runs

Problem		$\nu = 20$	$r = 2^9$		$\nu = 25$	$r = 2^{10}$
Solver	iter	RMSE	save	iter	RMSE	save
					1.e-2-1.e-3	
RLM	193	1.e-3	1.2-1.75	347	1.e-2-1.e-3	1.2-3.15

save=ratio between total number of flops required for matrix-vector products

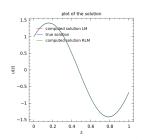


Helmholtz's equation, 5 runs

Equation:
$$\Delta u(z) +
u^2 u(z) = 0$$
 , $u_T(z,
u) = sin(
u z) + cos(
u z)$

Problem		$\nu = 5$	$r = 2^{10}$
Solver	iter	RMSE	save
LM	1243	1.e-2-1.e-3	
RLM	1229	1.e-2-1.e-3	1.2-3.1

save=ratio between total number of flops required for matrix-vector products



Conclusions and future work

- We have presented a class of high-order methods for optimization and proved their global convergence.
- We have proposed a AMG strategy to build coarse representations of the problem to use these methods for the training of artificial neural networks.
- Preliminary tests show encouraging results. In future work we will consider further applications.

Thank you for your attention!