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-
The problem

We consider optimization problems arising in the training of artificial
neural networks:

min L(p, z) zeT
p

where L is the loss function, p is the vector of weights and biases of the
network, z is the problem’s variable and 7T is the training set.
Example: approximate y = g(z)

Given a training set {(z1,y1),-..,(2t, y:)} and denoted with g the output
of the network, we define

@ Ly loss: L(p,z) = %Zf:ﬂyi —&(zi,p)|,
@ Ly loss: L(p,z) = %Zle()/i — &(zi,p))?,

. ) 1t 1
o LOngth loss: ,C(p, Z) = T Zi:]_ W
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Network architecture
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tanh: o(z) = :Z;i
logit: o(z) = ef—jrl
softplus: o(z) =
log(e* +1).
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Large-scale problems

The optimization problem may be a large-scale problem, for example if g

is an oscillatory function. Many nodes may be necessary to have a network
able to accurately approximate it.

We look for an efficient scalable optimization method to solve the training
problem.

4

Can we exploit the structure of the network?
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N
Idea

We have to solve a large-scale problem

mplnﬁ(paz):f(é‘(pvz)_y)v ZET'

Can we exploit the structure of the network to build a hierarchy of
problems approximating the original one?

Hierarchy of problems

{Fi(&(pi,z) —y)}, pi € Dy such that |D;| < |Djy1| and Fj is cheaper to
optimize compared to Fji1.

This is the idea on which classical multigrid methods are based
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Classical multigrid methods

e Consider a linear elliptic PDE: D(z,u(z)) =f(z) z€ Q + b.c.

@ Discretize on grid h.
o Get a large-scale linear system Apxp = by,.

Multigrid methods
Consider the discretization of the same PDE problem on a coarser grid:

Apxy = by, H > h.
@ Relaxation methods fails to eliminate smooth components of the error

efficiently.
@ Smooth components projected on a coarser grid appear more
oscillatory.

N\
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Coarse problem construction

Define transfer grid operators: P prolongation and R restriction to project
vectors from a grid to another: xy = Rxp, x» = Pxy, such that R = aP’.

Geometry exploitation
The geometrical structure of the problem is exploited to build R and P. J
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Figure 3.2: Interpolation of a vector on coarse grid Q2 to fine grid Q". Figure 3.4: Restriction by full weighting of a fine-grid vector to the coarse grid.
Remark

This strategy is also available in the nonlinear case (Full Approximation
Scheme (FAS) algorithm).
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Optimization methods

We have a nonlinear problem to solve

min f(x)

X

Classical iterative optimization methods:
T I r
f(Xk + S) ~ Tq(Xk,S) = f(Xk) +s Vf(Xk) + 55 Bys

with T4(xk, s) Taylor model of order g = 1,2, By approximation to Hessian
matrix. At each iteration we compute a step sk to update the iterate:

, Ak
min Mi(Xk, 8) = Tq(xk,s) + mHSHqH, Ak >0
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Higher-order models

Classical choices:
e Least-squares: Levenberg-Marquardt (LM), g = 1, Bx = J(xx) T J(xx).
e Adaptive Cubic Regularization method (ARC), g = 2, Bx = V2f(xk).

Extension to higher-order methods

[Birgin, Gardenghi, Martnez, Santos, and Toint, 2017] extension to order
q > 2.

Unifying framework for global convergence is presented.
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Basic iterative optimization algorithm

Until convergence

@ Define the local model my of f around xi, depending on Aj
Compute a trial point xx + s, that decreases this model
Compute the predicted reduction my(xx) — myg(xx + sk)

Evaluate change in the objective function f(xx) — f(xx + sk)
If achieved change ~ predicted reduction then

o Accept trial point as new iterate xxi1 = Xk + Sk
else

o Reject the trial point xx11 = Xk

o Increase A\
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Subproblem solution

Solving
: Ak
T g+1
min Ty(r,5) + - sl

represents greatest cost per iteration, which depends on the size of the
problem.

4

Recursive multilevel trust region method [Gratton, Sartenaer, Toint, 2008]

Assumption

@ Assume to have at disposal a sequence of approximations {f;} to the
objective function f such that f; is cheaper to optimize than f/;;.

@ Assume to have linear full-rank operators R; and P; to move from a
level to another, such that R, = P;” (up to a scalar).
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Multigrid setting

@ At each level /, x € R™. [,ax finest level, 0 coarsest level.

level fnax R" xlmax  fhoac — ,U,l’“"’x —f
level [+ 1 R X1 i pl+
Rl+1 U’ ﬂ Pl+1
level / R" x! fl !
level 0 R" x° o u°

o f! represent f on the coarse spaces (it is e.g. the discretization of f
on a coarse space)
@ The functions 1/ are modifications of the f!'s to ensure inter-level

coherence.
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Coherence between levels

Lower level model:
o Let x(’)_1 = Rx.. Model with first order correction:

p = F g T+ (RIVF () — V2 (1) TS/

This ensures that
Vil ) = RVF(x)
— first-order behaviours of f/ and p/~! are coherent in a neighbourhood

of the current approximation. If s/ = P/s/~1

1
VfI(X/i)TSI — VfI(X/()TPISI_l — avul—l(xé—l)Tsl—l'
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-
Multilevel strategy

At level /, let x/( be the current approximation. We look for a correction s,’(

to define the new approximation XL+1 = x,’< + s,’<. Two choices:

© minimize regularized Taylor model, get s,

@ choose lower level model /1

/ Il I
X Xp41 = Xk + Sy
R sf = Pt
-1
1ol -1 H -1
Rix, =xy  —— x,
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Our contribution

In [Gratton, Sartenaer, Toint, 2008] second-order models are considered
(g=2).

@ We combine ideas from [Gratton, Sartenaer, Toint, 2008] and [Birgin,
Gardenghi, Martnez, Santos, and Toint, 2017] and we propose a
family of scalable, multilevel optimization methods of order g > 1,
which are proved to be globally convergent.

@ We propose a suitable mechanism to construct a hierarchy of
problems for the specific case of neural network training.

@ We specialize the training method to least-squares problems
(recursive multilevel Levenberg-Marquardt method).

[3 On scalable multilevel optimization strategies for large-scale problems
arising in the training of artificial neural networks
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Recursive multi-scale g-order methods

Until convergence
@ Choose g > 1. Choose either a Taylor or a (useful) recursive model.
e Taylor model: compute a Taylor step satisfying a sufficient decrease

property
e Recursive: apply the algorithm recursively

@ Evaluate change in the objective function
o If achieved change ~ predicted reduction then
o Accept trial point as new iterate
else

o Reject the trial point
e Increase A

The algorithm is proved globally convergent to first order critical points
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-
Exploit multi-scale method for training of ANNs

How to build the coarse problem?

Remark
The variables to be optimized are the network’s weights:

min L(p, z) zeT
p

NO evident geometrical structure to exploit!

Algebraic multigrid

We can take inspiration from algebraic multigrid techniques.

When solving linear systems Ax = b, the structure is discovered through
the matrix A. R and P are built just looking at the entries of the matrix.

v
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-
Ruge and Stueben AMG

To build the coarse problem, the variables are divided into two sets, set C
of coarse variables and set F of fine variables.

Ruge and Stueben C/F splitting
@ Two variables /,j are said to be coupled if a;; # 0.

@ We say that a variable j is strongly coupled to another variable j, if
—ajj > € max |a;
iy = 3i,k<0| ikl

for a fixed 0 < € < 1, usually e = 0.25.

@ Each F variable is required to have a minimum number of its strong
couplings be represented in C. The C/F splitting is usually made
choosing some first variable / to become a coarse variable. Then, all
variables strongly coupled to it become F variables. The process is
repeated until all variables have been split.

v
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Which matrix should we use?

Assume to use a second-order model. At each iteration we have to solve a
linear system of the form:

(Bi + Ml)s = =V F(xk)
for S\k > 0. As in AMG for linear systems, we use information contained in
matrix By.

Remark
Variables are coupled! £(p,z) = F(&(p,z) — y) and
g(p.z) = X1y vio(wiz + bi) — p = {(vj, wi, bj)}.

We do not use the full matrix B, and we define A as:

Bk: s A" . A= Av,v + AW,W + Ab’b
T A ATl TAurllo TAssl o

We define the coarse/fine splitting based on the auxiliary matrix_A.
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Preliminary results: solution of PDEs

Approximate the solution v of a PDE:

D(z,u(z)) = g(z), z € (a,b);
u(a) = A, u(b)=B.

We approximate u ~ {(p, z) for p € R” and we define
1
Lp.z) = 5. (1D(z, u(2)) — g(2)|I? + Ap(llu(a) — All* + |u(b) — B|*))
for z € T training set.

Least-squares problem — multi-scale Levenberg-Marquardt method
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Choice of the true solution

D(z,u(z)) = g(z), z € (a,b);

e We choose g to have true solution ur(z, ) depending on v

Remark

@ As v increases the function becomes more oscillatory and it is harder
to approximate.

@ The size of the problem increases with the number of nodes.

e 7 equispaced points in (0,1) with h = 5= (Shannon’s criterion).
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Poisson’s equation, ut(z,v) = cos(vz), 5 runs

Problem v=20 r=2° v=25 r =210
Solver | iter RMSE save iter RMSE save
LM 282 1.3 632 1l.e-2-1.e-3
RLM 193 1l.e-3 1.2-1.75 || 347 1l.e-2-1e-3 1.2-3.15

save=ratio between total number of flops required for matrix-vector

products

plot of the solution
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Helmholtz's equation, 5 runs

Equation: Au(z) +v%u(z) =0, ur(z,v) = sin(vz) + cos(vz)

Problem v=>5 r =210
Solver iter RMSE save
LM 1243 1l.e-2-1.e-3
RLM 1229 1l.e-2-1e-3 1.2-31

save=ratio between total number of flops required for matrix-vector
products

plot of the solution

/— true soldjon
— computedolution RLM
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Conclusions and future work

@ We have presented a class of high-order methods for optimization and
proved their global convergence.

@ We have proposed a AMG strategy to build coarse representations of
the problem to use these methods for the training of artificial neural
networks.

@ Preliminary tests show encouraging results. In future work we will
consider further applications.
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Thank you for your attention!
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