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Context: solution of PDEs by neural networks
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Context: solution of PDEs by neural networks

PDE: D(z,u(z))=f(2), zeQ BC: u(z)=g(z), ze 9Q

Input Hidden Hidden Output
layer ayer ayer layer
p vector of

weights and bi-
ases

%
S @—@ in(p,z) ~ u(z)

Idea: approximate the solution u(z) of the PDE by a neural
network by exploiting the physics of the problem:
Physics Informed Neural Networks (PINNs)
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Physics informed neural networks (PINNs)

PDE: D(z,u(z))=1(z), zeQ BC: u(z)=g(z), ze 9Q
PINNs training problem: find the network weights p by minimizing

»C(P) = RMSEres(P) + RMSEdata(p)
Ar ~ r r
RMSE es(p) = —,||D(Z, in(p;z") - (2N,

m

A - ”
RMSEgota(p) = il in(pi 2™) =~ u(z™)|,

given training points z" € € and measurement points z™ € Q U 992
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Physics informed neural networks (PINNs)

@ No need of discretization: we get an analytical expression of
the solution, with good generalization properties (also for
points outside the interval)

@ Natural approach for solving nonlinear equations

@ Alleviate the curse of dimensionality

@ Overcoming the curse of dimensionality in the numerical approximation of
semilinear parabolic partial differential equations (2018).

@ Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations (2019)

@ Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework
for Assimilating Flow Visualization Data (2018)
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Usually trained by SGD:
@ convergence may be slow
@ convergence depends on the choice of the learning rate

@ training is time consuming
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Usually trained by SGD:
@ convergence may be slow
@ convergence depends on the choice of the learning rate

@ training is time consuming

Idea: transpose acceleration methods classically used for PDEs to
neural networks
Focus on multigrid methods
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Classical multigrid methods

Discretization on grid h: large-scale linear system Apup = fp.

@ Relaxation methods fails to eliminate smooth components of
the error efficiently.

@ Smooth components projected on a coarser grid appear to be
more oscillatory.
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Multigrid methods

Ingredient 1: coarse grid

Want to solve Apup = f,. Exploit a coarser discretization H. Get a
lower dimensional problem: Apuy = fy.

Ingredient 2: iterative refinement

Given some approximation v to u, we define

e=u-v,
r=1f—Ay,

Ae = r (residual equation)

To improve v, we solve the residual equation and set v =v + e.
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Classical multigrid scheme

V-cycle on two levels

@ Relax 11 times on Ajup = f, to obtain an approximation vy,
@ Compute the residual r, = f, — Avy, .

@ Project the residual on the coarse level ry = Rry,

@ Relax v, times on the residual eq. Ayey = ry to obtain ey

@ Correct the fine level approximation v, = v, + Pey

8/16



Classical multigrid scheme

V-cycle on two levels

@ Relax 11 times on Ajup = f, to obtain an approximation vy,
@ Compute the residual r, = f, — Avy, .

@ Project the residual on the coarse level ry = Rry,

@ Relax v, times on the residual eq. Ayey = ry to obtain ey

@ Correct the fine level approximation v, = v, + Pey

State-of-the art method for the solution of PDEs: superior to
one-level relaxation methods already on two-levels
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Multilevel physics informed neural networks (MPINNSs)

@ Two discretization levels

MG: Two grids h, H

MPINN: &y (pn; zn), GH(PH; ZH)
@ Fine problem

MG: Ahuh = fh

MPINN: minp, £(ph) = 7 | D(2h, 8n(pni 24)) = £(21) |
@ Residual equation

MG: AHeH =ry

MPINN ming,, L1(pr) = 53 |1D(2h, 1 (pri 21y)) = r(zpp) |
@ Fine solution update

MG: Vh = Vp + PeH

MPINNSs: dn(ph; zn) = On(ph; zn) + P(dH(pH: 2H))
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MPINNs training

The training in this case follows the following scheme:

@ Perform 17 epochs on the fine problem, get d,(pp,z) of u(z)
Compute the residual ry(z;) = f(z;) — D(z}, )
Project the residual on the coarse level ry = R(rp)

Perform 1, epochs on the residual problem, get dy(py,z)

Correct the fine level approximation
an(pn, zn) + P(an(pH, 2H))-
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Transfer operators

MG: linear operators
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Figure 3.2: Interpolation of a vector on earse grid Q%" to fine grid Q" Figure 3.4: Restriction by full weighting of a fine-grid vector to the course grid.

MPINN: the variables of the optimization problem p don't possess
an evident geometry: apply them to the underlying geometrical
variable z, and thus we define:

i (pH, Rmczn)
an(ph, Pmczr)

R(0r(ph,zn)) :
P(du(pH,zH)) :

Restriction is still a neural network, with less parameters and
evaluated on a smaller set of grid point
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Preliminary results 1D: ADAM

u"(z) —u(z) =f(z),z¢[-1,1]

with f(z) = —(7? + 1) sin(7z) - (a?7? + 1) sin(arz).

Figure: a =3, ADAM
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Preliminary results 1D: ADAM

(h,H) MPINN PINN h PINN h+ H
(50,25)  1.3e-04, 3.1e-04 1.3e-04, 1.2e-04 7.0e-04, 4.3e-03
(200,100) 2.0e-04, 3.1e-04 1.1e-03, 2.9e-03 2.0e-03, 2.5e-03
(300,150) 1.4e-03, 5.2e-03  6.1e-03, 9.5e-1 >1

Table: o = 3. Median and IQR for the RMSE

MPINNs are less sensible to the choice of the learning rate
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Preliminary results 1D: BFGS

Figure: a =7, BFGS

o} MPINN PINN h PINN h

8 3.0e-3, 3.0e-3 1.5e-2,2.2e-2 1.7e-2, 3.0e-2
10 1.0e-2, 3.1e-2 1.3e-1, 2.8e-1 4.0e-2, 1.8e-1
12 3.0e-2, 1.0e-1 1.0e-1, 3.5 1.7e-1, 1.4
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Other tests

Nonlinear 2D: —Au+ e =f in Q=[0,1] x [0,1]

ou &%u

Burger's equation: @ +u—=v—s.
ot Ox  Ox?
MPINN PINN 40 PINN 30
RMSE 1.3e-1,0.4e-1 1.8e-1, 0.4e-1 1.7e-1, 1.5e-2
Operations 1 6.1 3.5
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Conclusions and perspectives

Promising preliminary results

Need for a deeper numerical investigation (other problems,
deeper V-cycles)

Need for an efficient implementation

Need for theoretical convergence theory
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Thank you for your attention!

Preprint available soon:

(8 Multilevel physics informed neural networks (MPINNs) E.Riccietti,
V. Mercier, S. Gratton, 2021

Previous work:

8 On a multilevel Levenberg-Marquardt method for the training of
artificial neural networks and its application to the solution of partial
differential equations, H. Calandra, S. Gratton, E. Riccietti X.
Vasseur, SIOPT, 2021.
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Hyperparameters tuning

—+ RMSE

2 & s & 10 120 140
H

Figure: a =3, Ny number of training points, H number of neurons in the
coarse network

Ny 25 50 60 70 100 150
RMSE 2.3 8.0e-4 9.4e-4 28e-4 4.5e-4 23e-4
Op. 0.85 0.88 0.89 0.84 0.94 1

H 10 25 50 60 70 100 150
RMSE 3.2e-3 7.8e-4 4.6e-4 17e-4 3.le-4 16e-4 2.4e-4
Op. 0.88 0.89 0.91 0.93 0.96 0.98 1
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