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Abstract In this work we consider the stable numerical solution of large-scale ill-posed nonlinear least
squares problems with nonzero residual. We propose a non-stationary Tikhonov method with inexact step
computation, specially designed for large-scale problems. At each iteration the method requires the solution
of an elliptical trust-region subproblem to compute the step. This task is carried out employing a Lanczos
approach, by which an approximated solution is computed. The trust region radius is chosen to ensure the
resulting Tikhonov regularization parameter to satisfy a prescribed condition on the model, which is proved to
ensure regularizing properties to the method. The proposed approach is tested on a parameter identification
problem and on an image registration problem, and it is shown to provide important computational savings
with respect to its exact counterpart.

1 Introduction

Let F : D(F ) ⊆ Rn → Rm, with m ≥ n, be a continuously differentiable nonlinear function. We denote with
D(F ) the domain of definition of F and consider problems of the form:

min
x
f(x) =

1

2
‖F (x)− y‖2, (1)

that are ill-posed, in the sense that the solutions do not depend continuously on the data. We assume that
a solution x† for (1) exists. If for all the solutions of (1) it holds ‖F (x) − y‖ > 0, we say that the problem
has nonzero residual.

We suppose to have only noisy data yδ at disposal, such that, given δ ≥ 0:

‖y − yδ‖ ≤ δ, (2)

so that we have to deal with the following noisy problem:

min
x
fδ(x) =

1

2
‖F (x)− yδ‖2. (3)

Many approaches have been proposed in the literature to deal with this problem, such as nonstationary
iterated Tikhonov regularization or regularized versions of trust region methods [1,2,14,28,29,15,6,30].

In this paper we assume the problem to be large-scale, i.e. we assume n to be large. The large-scale
setting has been deeply analysed especially in the case of the linear counterpart of this problem, see for
example [7,24,19,23,12,22,26,16,8,4], among the others. The main approach used in this case combines a
standard regularization technique, such as Tikhonov regularization, with an iterative method based on partial
Lanczos bidiagonalization of the operator [22]. These are called hybrid methods because they apply Tikhonov
regularization to the projected problem into the Krylov subspace at each iteration [3]. Thus, regularization in
hybrid methods is achieved both by Krylov filtering and by appropriate choice of a regularization parameter
at each iteration.

In this paper we propose a non-stationary Tikhonov procedure with inexact step computation, specially
designed for nonlinear large-scale ill-posed problems. The method is based on an automatic strategy for
choosing the free regularization parameter, that requires the solution of an elliptical trust-region subproblem.
The radius of the trust-region is chosen to ensure the resulting Tikhonov regularization parameter to satisfy a
prescribed condition on the model, which is proved to ensure regularizing properties to the method. The step
to update the iterate is then the solution of the trust-region subproblem, which is approximated employing
a Lanczos approach. Hence, our method falls into the class of hybrid methods since at each iteration the
linearized problem associated to the Jacobian matrix is solved in the Krylov subspace generated by the
partial Lanczos bidiagonalization.

This method represents an inexact version of the approach proposed in [2], which is tailored for small-
medium scale problems. The method indeed employs the singular value decomposition (SVD) of the Jacobian
matrix, which can be too costly to compute for large-scale problems. Avoiding this computation we introduce
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Dipartimento di Scienza e Alta Tecnologia, Università dell’ Insubria, via Valleggio 11, 22100 Como, Italy.

E. Riccietti
IRIT-INPT, rue Charles Camichel, B.P. 7122 31071, Toulouse Cedex 7, France. E-mail: elisa.riccietti@enseeiht.it



2 Stefania Bellavia et al.

several sources of inexactness, that will be described in details in the following section. Due to this, from a
theoretical point of view, we cannot expect the same regularizing properties of its exact counterpart in [2],
but the proposed approach reduces to the method in [2] when the dimension of the Lancsoz space ` reaches
n. However, we are still able to show that it is possible to control how the distance of the current solution
approximation from an exact solution of the problem changes from an iteration to the other, and that this
decreases if the dimension of the Lanczos space is large enough.

In case of noise-free problems, the proposed procedure is shown to be globally convergent, as the reduction
in the quadratic model provided by the computed step is greater than that provided by the so-called Cauchy
step. In the case of noisy data, the process is stopped before the convergence is reached, to avoid approaching
a solution of the noisy problem. In this case we are not considering the global convergence issue. However,
the trust-region mechanism guarantees that the stopping criterion is satisfied after O(δ−2) iterations.

Numerical tests enlighten that in practice the method behaves really well and shows good regularizing
properties, just as its exact counterpart. As expected, the proposed approach provides a considerable overall
reduction of the CPU time over its exact counterpart. Even if theoretical results requires ` large enough to
prove regularization properties, the numerical tests show that such properties are maintained also for small
values of `.

The paper is organized as follows. In Section 2 we briefly describe the exact method in [2] and the
standard Lanczos bidiagonalization method. In Section 3 we describe the new approach we propose, which
represents an extension of the method in [2], suitable to handle large-scale problems thanks to the use of
Lanczos technique in the trust-region scheme. In Section 4 we introduce the so-called projected q-condition,
which will be used to prove regularizing properties of the method. We show how to choose the trust-region
radius to automatically obtain a regularization parameter that satisfies such condition. Section 5 and Section
6 are devoted to the theoretical analysis of the proposed method, in particular in Section 5 we discuss the
convergence, complexity and computational cost, while in Section 6 we focus on the regularizing properties
of the proposed method. Finally in Section 7, in order to avoid the estimation of the further parameter `, we
propose to use a nonstationary non-decreasing sequence of values for ` and show the regularizing behavior
of the method in practice.

Notations Throughout the paper the symbol ‖ · ‖ will be used to denote the 2-norm. We denote the iterates
as xδk, if the data are exact xk may be used in alternative to xδk. By xδ0 = x0 we denote an initial guess which
may incorporate a-priori knowledge of an exact solution. We also define

Bk = J(xδk)TJ(xδk), gk = ∇fδ(xδk) = J(xδk)T (F (xδk)− yδ), (4)

mk(p(λ)) = Bkp(λ) + gk, (5)

where J(xδk) is the Jacobian of F (xδk). We will denote ςk1 ≥ · · · ≥ ςkn the singular values of J(xδk) and e1 the
first vector of the canonical basis.

2 Preliminaries

2.1 Exact method in [2]

In this section we briefly outline the procedure in [2]. For simplicity we consider the case in which J has full
rank, but the procedure can be easily extended also the rank-deficient case, cf. [2].

At k-th iteration of the method in [2], given the trust-region radius ∆k > 0 and the current iterate xδk,
the following elliptic trust-region subproblem is solved ([21, ch. 4], [5, §7.4]):

min
p

1

2
‖F (xδk)− yδ + J(xδk)p‖2,

s.t. ‖B−1/2k p‖ ≤ ∆k,
(6)

which has a unique solution. Letting z = B
−1/2
k p problem (6) reduces to

min
z

1

2
zTB2

kz + zTB
1/2
k gk + fδ(x

δ
k)

s.t. ‖z‖ ≤ ∆k.
(7)

KKT conditions for problem (7) are given by

(B2
k + λI)z(λ) = −B1/2

k gk, (8a)

λ(‖z(λ)‖ −∆k) = 0, (8b)

λ ≥ 0, (8c)

‖z(λ)‖ ≤ ∆k. (8d)

Let (λk, z(λk)) ∈ R+ ×Rn be the solution of (8), with zk = z(λk) minimum norm solution of (8a). If we let

p(λ) = B
1/2
k z(λ), (9)

and pk = p(λk), the couple (λk, pk) is a KKT point for (6). The solution of (6) can be then found by solving
(7), and through relation (9). At each iteration the trust-region radius is chosen to satisfy:

∆k ≤
1− q
‖Bk‖2

‖B1/2
k gk‖, (10)
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for a given q ∈ (0, 1). The process is stopped at iteration k∗(δ), when the following discrepancy principle is
satisfied:

‖gk∗(δ)‖ ≤ τkδ < ‖gk‖, 0 ≤ k < k∗(δ), τk = τ̄‖J(xδk)‖, (11)

with τ̄ a chosen constant.
The k-th iteration of the process is sketched in Algorithm 1.

Algorithm 1 k-th iteration of the regularizing trust-region method in [2]

Given xδk, η ∈ (0, 1), γ ∈ (0, 1), 0 < Cmin < Cmax, q ∈ (0, 1).

Exact data: y; Noisy data: yδ.

1. Choose ∆k ∈
[
Cmin‖B

1/2
k gk‖, min

{
Cmax,

1− q
‖Bk‖2

}
‖B1/2

k gk‖
]

.

2. Repeat
2.1 Find the pair (zk, λk) solution of KKT conditions (8).

2.2 Set pk = B
1/2
k zk.

2.3 Compute

πk(pk) =
fδ(x

δ
k)− fδ(xδk + pk)

fδ(x
δ
k)− 1

2
‖F (xδk)− yδ + J(xδk)pk‖2

.

2.4 If πk(pk) < η, set ∆k = γ∆k.
Until πk(pk) ≥ η.
3. Set xδk+1 = xδk + pk.

The acceptance criterion in Step 2.4 provides global convergence of the procedure in case of noise-free
problems [21]. In the case of noisy data, the process is stopped before the convergence is reached, to avoid
approaching a solution of the noisy problem. In this case we are not considering the global convergence
issue. However, the trust-region acceptance mechanism guarantees that the stopping criterion is satisfied
after O(δ−2) iterations.

Each iteration of the method requires two computations that are expensive if the problem is large scale:

– the computation of the square root of the matrix Bk, to evaluate the right hand side in (8a), to compute
the step p(λk) from z(λk) by (9), and to update the trust region radius in (10),

– the computation of an approximation to z(λk) through (8) requires the solution of the secular equation
(cf. (55) below) via Newton’s method [21,5]. This requires the solution of a sequence of linear system of
the form (8a), which are large scale systems.

In [2] these operations are performed computing the SVD decomposition of matrix J(xδk), which is not feasible
if the size of the matrix becomes large. Having in mind to extend the procedure to large-scale problems,
these computations cannot be performed exactly. It is then necessary to design some cheap procedure to

approximate the action of matrix B
1/2
k onto a vector, and to find an approximate solution to (7). For the

first task, we will need to define an operator sq : Rn×n × Rn → Rn, that maps a matrix A and a vector

b to an approximation of the product A1/2b, so that sq(Bk, gk) will be an approximation to B
1/2
k gk. Then,

the method will produce a sequence of solution approximations {xδk}, forming at each iteration the new
approximation as xδk+1 = xδk + pk, where pk is defined as

pk = p(λk) = sq(Bk, z(λk)), (12)

with z(λk) approximated solution of

min
z

1

2
zTB2

kz + zT sq(Bk, gk) + fδ(x
δ
k)

s.t. ‖z‖ ≤ ∆k.
(13)

To avoid the computation of the SVD of J(xδk) and to build an approximation sq(Bk, z(λk)) to pk and
approximately solve the minimization problems (13), we employ the Lanczos method, that we describe in
the following section. There are several methods to approximate the SVD of a matrix. We have chosen the
Lanczos method as it allows us to cope with both our issues at the same time and because the structure
induced in the computed step by the Lanczos method allows us to maintain (and theoretically prove) some
of the regularizing properties of the method in [2], cf. Remark 6.1.

2.2 Lanczos bidiagonalization method

Lanczos methods are usually used to solve large scale linear systems, cf. for example [9,10]. They make
computing the SVD of the operator feasible by projecting the problem onto a subspace of small dimension.

In practice, given a matrix A ∈ Rm×n (generally large) and a scalar ` > 0 (generally l� n), the Lanczos
bidiagonalization technique computes a sequence of Lanczos vectors pj ∈ Rm and qj ∈ Rn and scalars αj ,
βj , j = 1, 2, . . . , `, by the recursive procedure sketched in Algorithm 2, that is initialized by a vector q1 ∈ Rn.

Assume for sake of simplicity that the algorithm is not prematurely halted as αj = 0 or βj = 0 is met
(if αj (βj) equals zero ones must choose a new vector pj+1 (qj+1) which is orthogonal to the previous pj ’s
(qj ’s) [9].) Then after ` steps, GKLB has generated the tridiagonal matrix T` ∈ R`×`

T` =


α1 β1

α2 β2
. . .

. . .

α`−1 β`−1
α`

 ,
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Algorithm 2 GKLB(A,q1,`) (Golub-Kahan-Lanczos Bidiagonalization)

Given A ∈ Rm×n, q1 ∈ Rn, ` ∈ {1, . . . , n}.
1. Set q1 = q1

‖q1‖
, β0 = 0.

2. For j = 1, . . . , `
2.1 pj = Aqj − βj−1pj−1

2.2 αj = ‖pj‖
2.3 pj =

pj
αj

2.4 qj+1 = AT pj − αjqj
2.5 βj = ‖qj+1‖
2.6 qj+1 =

qj+1

βj

the matrix P` ∈ Rm×`, whose j-th column is given by vector pj and the matrix Q` ∈ Rn×` with orthonormal
columns qj , for j = 1, . . . , `.

The first column of Q` is the vector q1
‖q1‖ and at each step j, j = 1, . . . , `, it holds:

AQj = PjTj , (14)

ATPj = QjTj
T + βjqj+1e

T
j , (15)

for Qj ∈ Rn×j , Pj ∈ Rm×j , Tj ∈ Rj×j , qj+1 ∈ Rn, ej ∈ Rj is the last column of the identity matrix of size
j. It also holds

QTj Qj = I, PTj Pj = I, QTj qj+1 = 0. (16)

Algorithm 2 computes the same information as the Lanczos tridiagonalization algorithm applied to the
Hermitian matrix ATA. Indeed, from (14) and (15) we deduce that for each j = 1, . . . , `:

ATAQj = QjT
T
j Tj + βjqj+1e

T
j Tj , QTj A

TA = TTj TjQ
T
j + βjT

T
j ejq

T
j+1. (17)

From these two relations, and taking into account (16), we conclude that:

QTj (ATA)Qj = TTj Tj . (18)

In particular, the Lanczos vectors qj constitute an orthonormal basis of the following Krylov subspace:

K`(ATA, q1) = span{q1, (ATA)q1, . . . , (A
TA)`−1q1}.

If applied to J(xδk), these approaches are convenient for our problem, as they allow us to solve both our
issues. The factorisation of the form (18), provided by the Lanczos process, can be used to approximately

evaluate B
1/2
k gk, and an approximation to a solution of (13) can be sought in the Krylov subspace generated

by the Lanczos process. We will describe in next section how to combine the two methods described in this
section to obtain a hybrid Lanczos method for large-scale ill-posed problems.

3 Regularizing Lanczos trust-region hybrid approach

At each iteration k of the trust-region method, we apply the Lanczos bidiagonalization technique to matrix
J(xδk) ∈ Rm×n.

If we perform n steps of the GKLB procedure, i.e. ` = n, the Lanzos process produces the following
decomposition:

J(xδk) = PnTnQ
T
n , Bk = QnT

T
n TnQn (19)

where Pn is a m× n matrix with orthonormal columns, Qn is a unitary matrix of order n, and Tn ∈ Rn×n
is an upper bidiagonal matrix.

Employing the factorization (19), given a function f , we can evaluate the action of f(Bk) onto a vector
b in the following way, cf. [17, ch.13]:

f(Bk)b = f(QnT
T
n TnQ

T
n )b = Qnf(TTn Tn)QTn b.

To compute f(TTn Tn) we can take advantage of the special structure of matrix TTn Tn, that is a tridiagonal
matrix. If q1 = b is chosen, QTn b = ‖b‖e1, where e1 ∈ Rn is the first vector of the canonical basis, as a
consequence of the orthogonality of matrix Qn.

In particular, if f(x) =
√
x, we can compute the action of B

1/2
k onto a vector b as

B
1/2
k b = Qn(TTn Tn)1/2QTn b.

However, performing n steps of the Lanczos method and computing the SVD of Tn may be not feasible.
Then, we perform `k < n steps of the Lanczos process, obtaining an approximate factorization of matrix Bk,
as in (18) with j = `k and A = J(xδk):

QT`kBkQ`k = TT`kT`k . (20)

This can be used to define an approximation to B
1/2
k b:

sq(Bk, b) := Q`k(TT`kT`k)1/2QT`kb, ∀b ∈ Rn. (21)

We are actually evaluating the function on the Krylov subspace K`k := K`k(Bk, q1) and expanding the result
back onto the original space Rn, cf. [17]. Of course this is an approximation, that would be exact if `k = n.
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Usually a good approximation can be obtained with a `k � n, then TT`kT`k will have much smaller
dimension than Bk, and the evaluation of the function will be feasible by direct computation of the SVD of
T`k . Then, if we choose q1 = gk, we get the approximation we were looking for:

s̃k := sq(Bk, gk) = Q`k(TT`kT`k)1/2QT`kgk. (22)

The computed SVD can be employed also to find an approximate solution to (13), by projecting the
problem onto the Krylov subspace generated by the Lanczos factorization. At each iteration k of the trust-
region method, we look for a solution in the subspace: z = Q`kw. The projection of problem (13) is given
by:

min
z∈K`k

1

2
zTB2

kz + s̃Tk z + fδ(x
δ
k) s.t. ‖z‖ ≤ ∆k.

Noting that ‖z‖ = ‖Q`kw‖ = ‖w‖, as the columns of Q`k are orthogonal, it can be reformulated as

min
w∈R`k

1

2
wTQT`kB

2
kQ`kw + wTQT`k s̃k + fδ(x

δ
k) s.t. ‖w‖ ≤ ∆k. (23)

We remark that from (16) and (17) with A = J(xδk) and j = `k, it follows :

QT`kB
2
kQ`k = (TT`kT`k)2 + ‖q`k+1‖2β2

`k
TT`ke`ke

T
`k
T`k . (24)

To simplify the subsequent convergence analysis we make a further approximation and we drop the rank-
one perturbation, approximating therefore QT`kB

2
kQ`k with (TT`kT`k)2, band matrix with bandwidth 2. We

highlight that the rank-one term that we choose to neglect is of the form ‖q`k+1‖2β2
`k
α2
`k
e`ke

T
`k

, and it is zero
when `k = n. It is therefore a residual term, coming from the fact that we prematurely stop the Lanczos
process. As we point out in Remark 6.1, the presence of this term alters the peculiar structure of the step,
which is crucial to prove a fundamental relation between the model and the step itself.

The projected problem becomes then

min
w∈R`k

1

2
wT (TT`kT`k)2w + wTQT`k s̃k + fδ(x

δ
k) s.t. ‖w‖ ≤ ∆k. (25)

Reminding that QT`kgk = ‖gk‖e1 as we set q1 = gk, the KKT conditions for (25) are the following:

[(TT`kT`k)2 + λI]w(λ) = −(TT`kT`k)1/2‖gk‖e1, (26a)

λ(∆k − ‖w(λ)‖) = 0, (26b)

λ ≥ 0, (26c)

‖w(λ)‖ ≤ ∆k. (26d)

To solve (26) we look for a couple (w(λk), λk) satisfying (26a) and such that ‖z(λk)‖ = ‖w(λk)‖ = ∆k

and we employ Newton’s method to compute such λk, cf. [5, ch. 7]. We will see that, as in [2], this is exactly
what is required, as we will show that λk > 0 and by (26b) it follows ‖w(λk)‖ = ∆k. At each iteration of
Newton’s method we need to solve a sequence of linear systems of the form (26a) for fixed λ. The linear
systems (26a) can be solved directly, due to the small size of the matrix.

Finally, given (wk(λk), λk) solution to (26), z(λk) can be recovered as z(λk) = Q`kw(λk) and p(λ) defined
in (9) can be approximated by (21) with b = z(λ), so that

p(λ) = Q`k(TT`kT`k)1/2QT`kz(λ), (27a)

pk = p(λk) = Q`k(TT`kT`k)1/2QT`kz(λk). (27b)

We remark again that, due to the small size of the matrix, (TT`kT`k)1/2 can be computed directly, via an SVD
decomposition.

4 Choice of the trust-region radius

Taking into account that the problem is ill-posed, we aim at defining a trust-region method that shows
regularizing properties. To this end we require that the step pk = p(λk) satisfies the following condition:

‖QT`kmk(p(λk))‖ ≥ q‖gk‖, (28)

for q a given constant in (0, 1). We will show that this property ensures regularizing properties to the method
and that it can be satisfied by an appropriate choice of the trust-region radius.

Remark 4.1 This is a different condition from the so-called q-condition, employed in [2]:

‖mk(p(λk))‖ ≥ q‖gk‖. (29)

We will refer to (28) as the projected q-condition, as ‖Q`kQT`kw‖ = ‖QT`kw‖, for any w ∈ Rn, and therefore

condition (28) is equivalent to ‖Q`kQT`kmk(p(λk))‖ ≥ q‖gk‖.
Notice that if `k = n, Q`kQ

T
`k

is the identity matrix and the original condition (29) is recovered.

We need to introduce this new condition to take into account that we are restricting the solution of (13)
to the subspace spanned by the columns of Q`k .

We can prove that it exists a λqk such that ‖QT`kmk(p(λqk))‖ = q‖gk‖ and that condition (28) is satisfied
for all λk ≥ λqk.



6 Stefania Bellavia et al.

Lemma 4.1 ‖QT`kmk(p(λ))‖ is a monotone function of λ such that

lim
λ→∞

‖QT`kmk(p(λ))‖ = ‖gk‖,

lim
λ→0
‖QT`kmk(p(λ))‖ = 0.

Moreover, it exists λqk > 0 such that

λqk ≤
q

1− q
‖TT`kT`k‖

2, (30)

‖QT`kmk(p(λqk))‖ = q‖gk‖, (31)

and condition (28) is satisfied for all λk ≥ λqk.

Proof We first prove that ‖QT`kmk(p(λ))‖ is a monotonic increasing function of λ. Let UΣUT be the SVD

decomposition of matrix TT`kT`k . Then (TT`kT`k)2 = UΣ2UT and by (20) QT`kBkQ`k = TT`kT`k = UΣUT . From
(26a) and (27b) it follows:

w(λ) = −U(Σ2 + λI)−1Σ1/2UTQT`kgk, (32)

z(λ) = −Q`kU(Σ2 + λI)−1Σ1/2UTQT`kgk, (33)

p(λ) = Q`k(TT`kT`k)1/2QT`kz(λ) = −Q`kUΣ1/2(Σ2 + λI)−1Σ1/2UTQT`kgk. (34)

Moreover by (20)

QT`kmk(p(λ)) =QT`kBkp(λ) +QT`kgk = −QT`kBkQ`kUΣ(Σ2 + λI)−1UTQT`kgk +QT`kgk

=− UΣ2(Σ2 + λI)−1UTQT`kgk + U(Σ2 + λI)(Σ2 + λI)−1UTQT`kgk

=λU(Σ2 + λI)−1UTQT`kgk.

Then, denoting r = UTQT`kgk and σ1, . . . , ς
k
`k

the singular values of TT`kT`k , we obtain

‖QT`kmk(p(λ))‖2 =

`k∑
i=1

(
λ

σ2
i + λ

)2

r2i (35)

and taking the derivative with respect to λ

d

dλ
‖QT`kmk(p(λ))‖2 =

`k∑
i=1

2λ

σ2
i + λ

σ2
i

(σ2
i + λ)2

r2i > 0.

Moreover from (35)

lim
λ→∞

‖QT`kmk(p(λ))‖ = ‖r‖ = ‖gk‖

lim
λ→0
‖QT`kmk(p(λ))‖ = 0.

Then, ‖QT`kmk(p(λ))‖ is a monotone function of λ that varies between 0 and ‖gk‖.
Then, as 0 < q < 1, there exists λqk such that (31) holds and λqk > 0. Due to the monotonicity of

‖QT`kmk(p(λqk))‖, condition (28) is satisfied for all λk ≥ λqk.
Finally, we derive the bound (30) on λqk. It holds, by (35), that

‖QT`kmk(p(λqk))‖2 ≥

(
λqk

λqk + ‖TT`kT`k‖
2

)2

‖gk‖2.

Then, since λqk satisfies (31), it holds

q‖gk‖ = ‖QT`kmk(p(λqk))‖ ≥
λqk

λqk + ‖TT`kT`k‖
2
‖gk‖

and (30) follows.

This lemma has the following important consequence.

Lemma 4.2 If p(λk) given in (34) is such that the projected q-condition (28) is satisfied, then the trust-
region constraint ‖w(λk)‖ = ∆k is active.

This is a consequence of the previous Lemma. Indeed, as λk ≥ λqk > 0, from (26b) the trust-region must
be active.

In the following lemma we prove that a suitable choice of the trust-region radius provides a parameter λ
for which condition (28) is satisfied. This is really important, as it allows for the sought automatic rule to
satisfy the desired projected q-condition (28).

Lemma 4.3 If

∆k ≤ (1− q)
‖(TT`kT`k)1/2QT`kgk‖

‖TT`kT`k‖
2

, (36)

then the projected q-condition (28) is satisfied.
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Proof From (26a)

‖z(λqk)‖ = ‖QT`kw(λqk)‖ = ‖w(λqk)‖ ≥
‖(TT`kT`k)1/2QT`kgk‖
‖(TT`kT`k)2 + λqkI‖

.

From (30)

‖(TT`kT`k)2 + λqkI‖ ≤
1

1− q
‖TT`kT`k‖

2.

By construction ‖z(λk)‖ ≤ ∆k. Then,

‖z(λk)‖ ≤ ∆k ≤ (1− q)
‖(TT`kT`k)1/2QT`kgk‖

‖TT`kT`k‖
2

≤
‖(TT`kT`k)1/2QT`kgk‖
‖(TT`kT`k)2 + λqkI‖

≤ ‖z(λqk)‖. (37)

From (33),

‖z(λ)‖2 =

`k∑
i=1

σi
(σ2
i + λ)2

r2i

and therefore ‖z(λ)‖ is a decreasing function of λ. Then λk ≥ λqk and from Lemma 4.1 the projected
q-condition is satisfied.

The resulting regularizing inexact Tikhonov method we propose, in its elliptical trust-region implemen-
tation, is sketched in Algorithm 3. We underline that we initialize q1 = gk in GKLB and that the step
acceptance criterion in Step 4.3 is different from that given in Step 2.3 of Algorithm 1. Indeed, we compare
the actual reduction in function values with that predicted by the model

Φk(w) =
1

2
wT (TT`kT`k)2w + wTQT`k s̃k + fδ(x

δ
k) (38)

at wk := w(λk), rather than the classical model 1
2p
TBkp + pT gk + fδ(x

δ
k). This is necessary to take into

account the sources of inexactness introduced in the method and to prove the theoretical results in the
following section.

Algorithm 3 k-th step of the regularizing hybrid Lanczos trust-region method

Given xδk, η ∈ (0, 1), γ ∈ (0, 1), 0 < Cmin < Cmax, q ∈ (0, 1).

Exact data: y; Noisy data: yδ.

1. Choose 1 ≤ `k ≤ n.
2. Compute s̃k as in (22), with Q`k and T`k obtained from GKLB(J(xδk), gk, `k) (Algorithm 2).

3. Choose ∆k ∈
[
Cmin‖s̃k‖, min

{
Cmax,

1− q
‖TT`kT`k‖

2

}
‖s̃k‖

]
.

4. Repeat
4.1 Compute (TT`k

T`k )2 and find the pair (wk, λk) solution of KKT conditions (26).

4.2 Set zk = Q`kwk and pk = Q`k (TT`k
T`k )1/2QT`k

zk.

4.3 Set Φk(wk) = 1
2
wTk (TT`k

T`k )2wk + wTk Q`k s̃k + fδ(x
δ
k) and compute

πk(wk) =
fδ(x

δ
k)− fδ(xδk + pk)

fδ(x
δ
k)− Φk(wk)

4.4 If πk(wk) < η, set ∆k = γ∆k.
Until πk(wk) ≥ η.
5. Set xδk+1 = xδk + pk.

We prove a technical lemma, which will be useful in the following.

Lemma 4.4 Let e1 be first vector of the canonical basis. Let J(xδk) be of rank r and let ςk1 ≥ · · · ≥ ςkr > 0 be
the nonzero singular values of J(xδk). Then, at each iteration of Algorithm 3 the following inequality holds:

t̃k := eT1 T
T
`k
T`ke1 ≥ (ςkr )2.

Proof From Algorithm 2 it holds eT1 T
T
`k
T`ke1 = α2

1 =
‖J(xδk)gk‖

2

‖gk‖2 =
‖J(xδk)J(x

δ
k)
TF (xδk)‖

2

‖J(xδk)TF (xδk)‖2
. Let J(xδk) = ŪΣ̄V̄ T

be the singular value decomposition of J(xδk) and r = ŪTF (xδk). The thesis follows from

‖J(xδk)J(xδk)TF (xδk)‖2 = ‖ŪΣ̄Σ̄T ŪTF (xδk)‖2 = ‖Σ̄Σ̄T r‖2 =

r∑
i=1

ς4i r
2
i ≥ ς2r

r∑
i=1

ς2i r
2
i ,

and

‖J(xδk)TF (xδk)‖2 = ‖V̄ Σ̄T ŪTF (xδk)‖2 = ‖Σ̄T r‖2 =

r∑
i=1

ς2i r
2
i .
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5 Theoretical analysis: convergence and complexity

In this section we will discuss the convergence, the complexity and the computational cost of the method in
Algorithm 3. To prove these results, we make the following assumptions on J .

Assumption 5.1. Assume that for all x in a neighbourhood of the level set L = {x ∈ Rn s.t. fδ(x) ≤
fδ(x0)}, there exists KJ > 0 such that ‖J(x)‖ ≤ KJ .

Assumption 5.2. The gradient of f is Lipschitz continuous in a neighbourhood of the level set L = {x ∈
Rn s.t. fδ(x) ≤ fδ(x0)} with Lipschitz constant L.

Assumption 5.3. Assume that for all x in a neighbourhood of the level set L = {x ∈ Rn s.t. fδ(x) ≤
fδ(x0)} J(x) has full rank.

We remark that this last assumption makes the proof of the convergence properties easier, but it is not
necessary. We will discuss the properties and implementation of the method in case of rank deficient Jacobian
in Section 6.

We observe that the choice q1 = gk in GKLB Algorithm by (22) yields

∇Φk(0) = QT`k s̃k = (TT`kT`k)1/2QT`kgk = ‖gk‖(TT`kT`k)1/2e1. (39)

This is a crucial property and will be used in the following lemma to quantify the decrease provided by the
so-called Cauchy step and to prove global convergence of the method in the noise-free case and complexity
results in presence of noise. The Cauchy step wck is the minimizer of Φk(w) along −∇Φk(0) within the trust
region, i.e. it is the vector wck := −αk∇Φk(0), where αk satisfies

αk = arg min
α: ‖α∇Φk(0)‖≤∆k

Φk(−α∇Φk(0)). (40)

Lemma 5.1 The decrease in the model Φk(w) given in (38), achieved by the Cauchy step wck, is such that

Φk(0)− Φk(wck) ≥ 1

2
t̃
1/2
k ‖gk‖min

{
∆k,

t̃
1/2
k ‖gk‖
‖TT`kT`k‖

2

}
, (41)

with t̃k defined in Lemma 4.4.

Proof From Lemma 4.3 of [21] it follows

Φk(0)− Φk(wck) ≥ 1

2
‖∇Φk(0)‖min

{
∆k,
‖∇Φk(0)‖
‖TT`kT`k‖

2

}
.

Then the thesis follows taking into account that by (39) we have

‖∇Φk(0)‖ = t̃
1/2
k ‖gk‖.

Let us now present a lower bound on the trust-region radius at k-iteration. This will be used to prove
the complexity result and also ensures that the repeat cycle at Step 4 of Algorithm 3 terminates in a finite
number of steps.

Lemma 5.2 Assume Assumptions 5.1-5.3 hold. In Algorithm 3 the trust region radius ∆k ≥ ∆min,k, with

∆min,k := γ(1− η)
ςk`k
‖gk‖

K2
J(L+K2

J)
.

Proof From Step 4.3 of Algorithm 3

πk(wk)− 1 = −fδ(x
δ
k + pk)− Φk(wk)

fδ(xδk)− Φk(wk)
.

We remark that from (20) it holds ‖TT`kT`k‖ ≤ ‖Bk‖. From this, Assumptions 5.1 and 5.2, the definition of
zk = Q`kwk, the definition of Φk(w) given in (38) and relations (22) and (27b) it holds (reminding also (4)):

|fδ(xδk + pk)− Φk(wk)| =

∣∣∣∣∣
∫ 1

0

∇fδ(xδk + tpk)T pk dt−
1

2
wTk (TT`kT`k)2wk − zTk s̃k

∣∣∣∣∣
(22)
=

∣∣∣∣∣
∫ 1

0

∇fδ(xδk + tpk)T pk dt−
1

2
wTk (TT`kT`k)2wk − zTk Q`k(TT`kT`k)1/2QT`kgk

∣∣∣∣∣
(27b)+(4)

=

∣∣∣∣∣
∫ 1

0

[∇fδ(xδk + tpk)−∇fδ(xδk)]T pk dt−
1

2
wTk (TT`kT`k)2wk

∣∣∣∣∣
≤ L

2
‖pk‖2 +

1

2
K4
J‖wk‖2 ≤

(
L

2
‖TT`kT`k‖+

1

2
K4
J

)
‖zk‖2

≤
(
L

2
K2
J +

1

2
K4
J

)
∆2
k =

K2
J

2
(L+K2

J)∆2
k.

Moreover, since J(xδk) has full rank by hypothesis, Lemma 4.4 guarantees that t̃k > 0. Assume that ∆k ≤
t̃
1/2
k ‖gk‖
‖TT`kT`k‖

2 . Then, since wk is the solution of (25), from Lemma 4.4 and 5.1 it follows

fδ(x
δ
k)− Φk(wk) ≥ fδ(xδk)− Φk(wck) ≥ 1

2
ςk`k‖gk‖∆k.
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Then,

|πk(wk)− 1| =

∣∣∣∣∣fδ(xδk + pk)− Φk(wk)

fδ(xδk)− Φk(wk)

∣∣∣∣∣ ≤ K2
J

(
L+K2

J

)
∆k

‖gk‖ςk`k
.

Then, πk(wk) ≥ η and the iteration is successful whenever

∆k ≤
(1− η)ςk`k‖gk‖
K2
J (L+K2

J)
= min

{
ςk`k‖gk‖
‖TT`kT`k‖

2
, (1− η)

ςk`k‖gk‖
K2
J (L+K2

J)

}
.

From the updating rule of ∆k at Step 4 of Algorithm 3 it must hold ∆k ≥ ∆min,k.

We are now ready to state the complexity result.

Theorem 5.1 Let Assumptions 5.1-5.3 hold. Assume that there exists ς > 0 such that ςk`k > ς for any k
and fδ is bounded below on the level set L = {x ∈ Rn s.t. f(x) ≤ f(x0)}. Given a positive constant ε > 0,
the method in Algorithm 3 takes at most O(ε−2) iterations to achieve ‖gk‖ ≤ ε.

Proof Let kε be the first iteration index such that ‖gk‖ < ε and fmin
δ be the lower bound of fδ in L. From

Step 4 of Algorithm 3, Lemma 4.4, Lemma 5.2 and (41) it holds:

fδ(x0)− fmin
δ ≥ fδ(x0)− fδ(xδkε) =

kε∑
k=0

fδ(x
δ
k)− fδ(xδk + pk) ≥ η

kε∑
k=0

fδ(x
δ
k)− Φk(wk)

≥ kεη

2
εςk`k min

{
∆min,k,

‖∇Φk(0)‖
‖TT`kT`k‖

2

}

≥ kεη

2
εςγ(1− η)

ςε

K2
J (L+K2

J)
.

Then, kε ≤
⌈
fδ(x0)−fmin

δ

Cε2

⌉
where C =

(
γη(1−η)ς2

2K2
J (L+K

2
J )

)−1
.

In the case of noisy data, the process is stopped before the convergence is reached, to avoid approaching
a solution of the noisy problem, according to (11). Theorem 5.1 guarantees that the stopping criterion is
satisfied after O(δ−2) iterations. From this theorem, the following corollary easily follows, which states the
global convergence of the proposed method.

Corollary 5.1 Let Assumptions in Theorem 5.1 hold. The sequence {xk} generated by Algorithm 3 satisfies

lim inf
k→∞

∇f(xk) = 0.

In terms of computational cost, assuming `k = `, for all k’s, in the worst case the procedure requires
O(δ−2`) matrix-vector products.

6 Theoretical analysis: regularizing properties

In this section we prove that it is possible to control how the distance of the current solution approximation
from an exact solution of the problem changes from an iteration to the other, and that this decreases if the
dimension of the Lanczos space is large enough. We first state all the assumptions we make. They are the
same as in [2].

Assumption 6.1. Given x, x̃ in a suitable neighbourhood of the solution x† to (1), the following inequality
holds:

‖∇f(x̃)−∇f(x)− J(x)TJ(x)(x̃− x)‖ ≤ (c‖x̃− x‖+ σ)‖∇f(x)−∇f(x̃)‖, (42)

where ∇f is the gradient of f and J is the Jacobian of matrix of F , for suitable constants c > 0 and
σ ∈ (0, q).

As explained in [2], the above assumption is reasonable if σ is interpreted as a bound for ‖S(x)‖, with
S(x) =

∑m
i=1(Fi(x)−y)∇2Fi(x), the term containing the second-order information in ∇2f(x). The constant

σ can therefore be interpreted as a combined measure of the nonlinearity and residual size of the problem.
We then prove this technical lemma.

Lemma 6.1 Let mk(p(λ)) be defined in (5). Let Q`k , T`k be the output of GKLB(J(xδk),gk,`k). Let w(λ) be
such that (26a) hold for λ > 0 and let z(λ) = Q`kw(λ) and p(λ) given by (27a). Then,

−λQT`kp(λ) = TT`kT`kQ
T
`k
mk(p(λ)). (43)

Proof From (27a), (26a) and the definition of w(λ) it follows that

QT`kp(λ) = (TT`kT`k)1/2w(λ) = −(TT`kT`k)1/2[(TT`kT`k)2 + λI]−1(TT`kT`k)1/2QT`kgk.

Then

(TT`kT`k)−1/2[(TT`kT`k)2 + λI](TT`kT`k)−1/2QT`kp(λ) = −QT`kgk
and

TT`kT`kQ
T
`k
p(λ) +QT`kgk = −λ(TT`kT`k)−1QT`kp(λ).
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Multiplying the previous relation by TT`kT`k , we obtain

(TT`kT`k)2QT`kp(λ) + TT`kT`kQ
T
`k
gk = −λQT`kp(λ). (44)

Moreover, multiplying both sides of (5) by TT`kT`kQ
T
`k

,

TT`kT`kQ
T
`k
mk(p(λ)) = TT`kT`kQ

T
`k
Bkp(λ) + TT`kT`kQ

T
`k
gk.

Finally,

TT`kT`kQ
T
`k
mk(p(λ))

(27a)
= TT`kT`kQ

T
`k
BkQ`k(TT`kT`k)1/2QT`kz(λ) + TT`kT`kQ

T
`k
gk

(20)
= (TT`kT`k)2QT`kQ`k(TT`kT`k)1/2QT`kz(λ) + TT`kT`kQ

T
`k
gk

(27b)
= (TT`kT`k)2QT`kp(λ) + TT`kT`kQ

T
`k
gk

(44)
= −λQT`kp(λ).

Remark 6.1 We highlight that the structure of the step is fundamental to prove (43). If we compute wk from
(23) rather than from (25), i.e. if we keep the rank-one perturbation in (24), then the crucial relation (43)
between the step and the model does not hold. Note that, this condition is guaranteed to be satisfied in the
exact case, i.e. when `k = n is taken.

In the following lemma we provide a condition ensuring that the distance between the computed solution
and the true solution decreases from iteration k to iteration k + 1, provided that xk is sufficiently close to
the true solution and ‖Q`kTT`kT`kQ

T
`k
−Q`kQT`kBk‖ is sufficiently small.

Lemma 6.2 Assume that x† is a solution of (1). Let ek = x†− xδk, xδk+1 = xδk + pk with pk = p(λk) defined
in (27b), and mk(p(λ)) defined in (5). Assume that there exists θk > 1 such that the following condition
holds:

‖QT`kmk(ek)‖ ≤ 1

θk
‖QT`kmk(pk)‖, θk > 1. (45)

Then

‖xδk+1 − x†‖2 − ‖xδk − x†‖2 ≤
2

λk

(
1

θk
− 1

)
‖QT`kmk(pk)‖2

+‖QT`kmk(pk)‖‖Q`kTT`kT`kQ
T
`k
−Q`kQT`kBk‖‖x

δ
k − x†‖. (46)

Proof Note that

‖xδk+1 − x†‖2 − ‖xδk − x†‖2 =2〈xδk+1 − xδk, xδk − x†〉+ ‖xδk+1 − xδk‖2

=− 2〈pk, ek〉+ ‖pk‖2. (47)

Remark that from (27b), pk ∈ R(Q`k), so that Q`kQ
T
`k
pk = pk. From this and (43) it holds:

〈pk, ek〉 = 〈Q`kQT`kpk, ek〉 = 〈QT`kpk, Q
T
`k
ek〉 = − 1

λk
〈QT`kmk(pk), TT`kT`kQ

T
`k
ek〉

= − 1

λk
〈QT`kmk(pk), (TT`kT`kQ

T
`k
−QT`kBk)ek〉 −

1

λk
〈QT`kmk(pk), QT`kBkek〉. (48)

Moreover,

〈QT`kmk(pk), QT`kBkek〉 =〈QT`kmk(pk), QT`k(Bkek + gk)〉 − 〈QT`kmk(pk), QT`k(Bkpk + gk)〉+ 〈QT`kmk(pk), QT`kBkpk〉
=〈QT`kmk(pk), QT`kmk(ek)〉 − 〈QT`kmk(pk), QT`kmk(pk)〉+ 〈QT`kmk(pk), QT`kBkpk〉.

(49)

Again from (43), (20) and the fact that pk ∈ R(Q`k),

〈pk, pk〉 =〈Q`kQT`kpk, pk〉 = 〈QT`kpk, Q
T
`k
pk〉 = − 1

λk
〈TT`kT`kQ

T
`k
mk(pk), QT`kpk〉

=− 1

λk
〈QT`kmk(pk), TT`kT`kQ

T
`k
pk〉 = − 1

λk
〈QT`kmk(pk), QT`kBkpk〉. (50)

Putting together (48), (49) and (50), we obtain:

〈pk, ek〉 =− 1

λk
〈QT`kmk(pk), (TT`kT`kQ

T
`k
−QT`kBk)ek〉 −

1

λk
〈QT`kmk(pk), QT`kmk(ek)〉

+
1

λk
〈QT`kmk(pk), QT`kmk(pk)〉+ 〈pk, pk〉.

From (47), using (45), it follows

‖xδk+1 − x†‖2 − ‖xδk − x†‖2 ≤
2

λk
‖QT`kmk(pk)‖‖QT`kmk(ek)‖ − 2

λk
‖QT`kmk(pk)‖2 − ‖pk‖2

+
2

λk
‖QT`kmk(pk)‖‖Q`kTT`kT`kQ

T
`k
−Q`kQT`kBk‖‖ek‖

≤ 2

λk

1

θk
‖QT`kmk(pk)‖2 − 2

λk
‖QT`kmk(pk)‖2 − ‖pk‖2

+
2

λk
‖QT`kmk(pk)‖‖Q`kTT`kT`kQ

T
`k
−Q`kQT`kBk‖‖ek‖

≤ 2

λk

(
1

θk
− 1

)
‖QT`kmk(pk)‖2+

+
2

λk
‖QT`kmk(pk)‖‖Q`kTT`kT`kQ

T
`k
−Q`kQT`kBk‖‖ek‖,

which yields the thesis.
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We now prove that assumption (45) in the previous lemma can be satisfied if the current approximation
is close enough to x†. We first focus on the noise-free case.

Lemma 6.3 Assume that x† is a solution of (1) and that δ = 0. Assume further that there exist ρ > 0,
c > 0 and σ ∈ (0, q) such that Assumption 6.1 holds for any x, x̃ ∈ B2ρ(xk), and that

‖xk − x†‖ < min

{
q − σ
c

, ρ

}
. (51)

Then, it exists θk > 1 such that (45) is satisfied.

Proof Applying Assumption 6.1 with x̃ = x† and x = xk it holds ∇f(x†) = 0 and

‖mk(ek)‖ = ‖gk +Bk(x† − xk)‖ ≤ (c‖ek‖+ σ)‖gk‖.

Then, it holds
‖QT`kmk(ek)‖ ≤ ‖mk(ek)‖ ≤ (c‖ek‖+ σ)‖gk‖.

If we let
θk =

q

(c‖ek‖+ σ)

from the assumption it holds θk > 1 and from the projected q-condition (28) we obtain

‖QT`kmk(ek)‖ ≤ (c‖ek‖+ σ)

q
‖QT`kmk(pk)‖ =

1

θk
‖QT`kmk(pk)‖.

We focus now on the noisy case.

Lemma 6.4 Assume that x† is a solution of (1) and that δ > 0. Assume further that there exist ρ > 0,
c > 0 and σ ∈ (0, q) such that Assumption 6.1 holds for any x, x̃ ∈ B2ρ(xk), and that

‖xδk − x†‖ < min

{
τ̄(q − σ)− (1 + σ)

(1 + τ̄)c
, ρ

}
, τ̄ >

1 + σ

q − σ
, (52)

with τ̄ defined in (11). Then, it exists θk > 1 such that (45) is satisfied.

Proof Let us remind that gk := ∇fδ(xδk). Applying Assumption 6.1 with x̃ = x† and x = xδk it holds
∇f(x†) = 0 and

‖mk(ek)‖ = ‖gk +Bk(x† − xδk)‖ ≤ ‖∇f(xδk) + J(xδk)T (y − yδ) +Bk(x† − xδk)‖
≤ ‖J(xδk)‖δ + (c‖ek‖+ σ)‖∇f(xδk)‖ ≤ ‖J(xδk)‖δ + (c‖ek‖+ σ)‖gk − J(xδk)T (y − yδ)‖
≤ (1 + c‖ek‖+ σ)‖J(xδk)‖δ + (c‖ek‖+ σ)‖gk‖.

If the discrepancy principle (11) is not satisfied, it follows that

‖mk(ek)‖ ≤
(

(1 + c‖ek‖+ σ)‖J(xδk)‖
τk

+ (c‖ek‖+ σ)

)
‖gk‖ =

(
(1 + c‖ek‖+ σ)

qτ̄
+
c‖ek‖+ σ

q

)
q‖gk‖.

If we let

θk =
τ̄ q

1 + (1 + τ̄)(c‖ek‖+ σ)

from the assumption it holds θk > 1 and from the projected q-condition (28) we obtain

‖QT`kmk(ek)‖ ≤ ‖mk(ek)‖ ≤ 1

θk
‖QT`kmk(pk)‖.

Remark 6.2 The results in Lemmas 6.2, 6.3 and 6.4 allow to establish a relation between the error at two
successive iterations. This allows then to control the distance of the current iterate from the sought solution.
In particular, if ‖Q`kTT`kT`kQ

T
`k
− Q`kQ

T
`k
Bk‖ is small enough, the norm of the error decreases from an

iteration to another. In fact, assuming ‖ek‖ < 1, we can rewrite (46) as

‖xδk+1 − x†‖2 − ‖xδk − x†‖2 ≤ ‖QT`kmk(pk)‖
[

2

λk

(
1

θk
− 1

)
‖QT`kmk(pk)‖+ ‖Q`kTT`kT`kQ

T
`k
−Q`kQT`kBk‖

]
.

Then, recalling that θk > 1, if (45) is satisfied and ‖Q`kTT`kT`kQ
T
`k
−Q`kQT`kBk‖ is sufficiently small, it follows

‖xδk+1 − x†‖2 < ‖xδk − x†‖2. We remark that the quantity ‖Q`kTT`kT`kQ
T
`k
− Q`kQT`kBk‖ could be used as a

measure for the choice of parameters `k in Algorithm 3. For `k = n this term is zero, so if `k = n for any
k’s, we recover the theoretical results in [2].

Remark 6.3 The assumption that the Jacobian matrix has full rank in a neighborhood of the solution can
be relaxed. The method is well defined even if the Jacobian is rank deficient, provided that the matrix
TT`kT`k is invertible for all k’s. Indeed, the results in Section 6 still hold in the rank deficient case as only

the inverse of TT`kT`k is needed. Moreover, all the results in Section 5 still hold if the Jacobian does not

change rank asymptotically, as under this assumptions ςkr > ς for any k and t̃k in Lemma 4 is bounded away
from zero. We outline that in Algorithm GKLB we choose q1 = gk. Then, q1 belongs to the range space of
J(xδk)T and therefore Algorithm GKLB generates all vectors q` in the range space of J(xδk)T (see Step 2.4).
Consequently, if J(xδk) has rank r, after at most r iterations the algorithm meets a null βk+1. If the method
stops at iteration ` < r it is possible to continue the process until ` = r choosing a new vector pk+1 (qk+1)
which is orthogonal to the previous pk’s (qk’s) [9].
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7 Numerical results

In this section we present the results of our numerical experimentation, aimed at showing that the method
presented in this work in practice shares the same regularizing behaviour of the method in [2], and that
employing `k < n it provides a solution approximation in shorter CPU time without compromising the
accuracy of the approximation found.

Two nonlinear ill-posed least-squares problems have been selected. Problem 6.1 arises from the dis-
cretization of a parameter identification problem, while Problem 6.2 is an image registration problem. In
the following, the Euclidean norm will be denoted by ‖ · ‖.

– Problem 6.1: A 2D parameter identification problem. The problem consists of reconstructing c in
the 2D-elliptic problem

−∆u+ cu = ϕ in Ω (53a)

u = ζ on ∂Ω (53b)

from the knowledge of u in Ω = (0, 1)× (0, 1), ϕ ∈ L2(Ω) and ζ the trace of a function in H2(Ω). This
problem has been widely studied, see for example [25,27].
The discretized version of the arising nonlinear least-squares problem is considered, obtained as described
in [25]. Namely problem (53a)-(53b) was discretized using finite differences choosing as grid points xi =
yi = i−1

N−1 , for i = 1, . . . , N and N = 50, and using lexicographical ordering, denoted by l : {1, . . . , N2} →
{1, . . . , N2}. Let ϕ̄ = [ϕ̄1, . . . , ϕ̄N2 ]T , where ϕ̄l(i,j) = ϕ(xi, yj) and A be the matrix arising from the

discretization of the Laplacian operator. Moreover for c ∈ RN2

let F (c) = (A + diag(c))−1ϕ̄. Then,

F : RN2 → RN2

, and the resulting discrete problem is a nonlinear least-squares problem of size n =
N2 = 2500:

min
c∈RN2

1

2
‖F (c)− ū‖2,

for a given ū ∈ RN2

. For further details see [25]. The tests were conducted choosing c(x, y) = 1.5 sin(4πx) sin(6πy)+
3((x−0.5)2 +(y−0.5)2)+2 as a parameter to be identified. The solution u(x, y) of (53) corresponding to
this choice of c(x, y) is u(x, y) = 16x(1− x)y(y− 1) + 1. Function ϕ in (53) has been defined from (53a).
When the solution u is analytically known, this is a zero residual problem. In order to obtain a nonzero
residual problem the data ū are artificially set as a perturbation of [u1, . . . , uN2 ] with ul(i,j) = u(xi, yj),

to let c† = [c†1, . . . , c
†
N2 ]T , where c†l(i,j) = c(xi, yj), be a stationary point with strictly positive residual.

Specifically ‖J(c†)T (F (c†)− ū)‖ = 0 and ‖F (c†)− ū‖ ' 0.1, for J the Jacobian matrix of F .
For this test problem the exact form of the the Jacobian matrix of F is given by:

J(c) = −(A+ diag(c))−1(diag(F (c))). (54)

– Problem 6.2 Given two images taken, for example, at different times, from different devices or perspec-
tives, the goal is to determine a reasonable transformation, such that a transformed version of the first
image is similar to the second one [20,11,13]. More specifically, given two images T and R, the objective
is to find a geometrical transformation t (such as correction, deformation, displacement, distortion) such
that the transformed image T (t) is similar to R, where similarity is measured by a similarity/distance
measure D. The transformation t is recovered solving the following problem:

min
t
D(T (t), R) + S(t),

with S a regularization term, which is usually added since registration is an ill-posed problem. We will
omit the regularization term and rely on the implicit regularization provided by our method. Different
choices are possible for D. Here, the sum of squared differences (SSD) will be used [20]:

DSSD(T,R) =
1

2

∫
Ω

(T (x)−R(x))2 dx.

A discrete analogue of this distance, proposed in [20, §6], is given by a numerical approximation of the
integral by a midpoint quadrature rule. Assume Ω ⊂ Rd is divided into cells of width h and cell centers
xc and let Th = T (xc), and Rh = R(xc), respectively. The discretized version of the SSD is defined as:

1

2
h‖Th −Rh‖2, h =

d∏
i=1

hi.

To generate this test problem we used the code provided in the FAIR Matlab package1 and we obtain a
nonlinear least-squares problem of n = 8320 unknowns.

In the following, for uniformity of notation, for both tests it is assumed that the minimization problem to
be solved is

min
x

1

2
‖F (x)− yδ‖2

and the true solution will be denoted by x†.
The practical implementation of the method will be now described. All procedures were implemented in

Matlab and run using Matlab 2019a on a MacBook Pro 2,4 GHz Intel Core i5, 4 GB RAM; the machine
precision is εm ∼ 2 · 10−16. The trust-region procedure was implemented according to Algorithm 3.

1 https://github.com/C4IR/FAIR.m



An inexact non stationary Tikhonov procedure for large-scale nonlinear ill-posed problems 13

The major implementation issues are as follows. Lancsoz process in Algorithm 2 is performed to build Q`k
and T`k starting from gk, and these matrices are used to compute the approximation to pk = B

1/2
k zk in (12).

Experiments have shown that to get a good approximation of pk, re-orthogonalization is necessary in the
Lanczos process. Re-orthogonalization also has a strong effect on the value of the quantity ‖Q`kTT`kT`kQ

T
`k
−

Q`kQ
T
`k
Bk‖, which is required to be small to have a monotonic decrease of the error, cf. Lemma 6.2 and

Remark 6.2. We use the partial re-orthogonalization implemented in Lanbpro2 [18], [10, §9.3.4]. The resulting
method will be labelled as LTR (Lanczos trust-region).

The proposed method is going to be compared to its exact counterpart developed in [2], that we will
label RTR (regularizing trust-region). For this, the square root of matrix Bk is computed using the singular
value decomposition of the Jacobian, provided by Matlab function svd.

Regarding the Jacobian matrix of F , the analytical expression was used for all test problems. Specifically,
for Problem 6.1 the Jacobian matrix has the form given in (54) and for Problem 6.2 the analytic Jacobian
is evaluated at each iterate by the FAIR code.

In case of noisy problems, given the error level δ, the exact data y was perturbed by normally distributed
values using the Matlab function randn, in a way that ‖y − yδ‖ = δ.

To compute the KKT point (wk, λk) at Step 4.1 (26b) has to be solved. Since, from Lemma 4.2, the
trust-region is ensured to be active, this can be accomplished solving the following nonlinear scalar equation,
called the secular equation, bv Newton method [5, §7.3]:

ψ(λ) = 0, ψ(λ) =
1

‖w(λ)‖
− 1

∆k
. (55)

Starting from an initial guess greater than the sought solution λk, the sequence generated converges mono-
tonically to λk. Typically, high accuracy in the solution of the above scalar equations is not needed, hence
the Newton process is terminated as soon as the absolute value of function ψ is below 10−2. Each New-
ton iteration applied to ψ(λ) = 0 requires the solution of a linear system with shifted matrix of the form
(TT`kT`k)2 + λI. The linear systems are solved employing the singular value decomposition of T`k .

Algorithm 3 is run setting η = 10−1. In Step 3 the trust-region radius is updated as follows

∆0 = µ0‖s̃0‖ µ0 = 10−1

∆k+1 = µk+1‖s̃k+1‖, µk+1 =


1

6
µk, if qk < q or ρk < η2,

2µk, if qk > νq and ρk > η2,

µk, otherwise,

with s̃k defined in (22) and qk =
‖QT` (Bkpk+gk)‖

‖gk‖ , ν = 1.1 and η2 = 0.25, as in [2]. We remark that ‖QT` (Bkpk+

gk)‖ is computed as ‖TT` T`QT` pk + ‖gk‖e1‖, with e1 first vector of the canonical basis, so that matrix Bk
does not need to be computed. The maximum and minimum values for ∆k were set to ∆max = 104 and
∆min = 10−12 and the maximum value for µk was set to 105. This updating strategy is inherited from [2] and
is based on the following considerations. ∆k given by the procedure described above preserves the property
of converging to zero in case of exact data, as ‖s̃k‖ tends to zero. Further, ∆k is adjusted taking into account
the projected q-condition by monitoring the value qk, as it is satisfied whenever qk ≥ q. Therefore, if the
projected q-condition was not satisfied at the last computed iterate xδk, it is reasonable to take a smaller
radius than in the case where it was fulfilled. As was already observed in [2], this updating strategy turns
out to be efficient in practice.

The free parameter q was set equal to 0.8, but the behaviour of the procedure does not seem to be deeply
affected by the value of q.

The scalar τ̄ in the discrepancy principle (11) cannot be chosen as required in Lemma 6.4, as in practice
σ is not known. We have chosen τ̄ = 0.1 for Problem 6.1 and τ̄ = 10 for Problem 6.2. We used two
different values in order to take into account that the unknown quantity σ depends on the size of the
problem, numerical tests provide an evidence of the effectiveness of this stopping rule. As τk depends on k,
the stopping rule changes at each iteration. However, τk varies only slightly along the iterations as ‖J(xδk)‖
is almost constant. Values of τk (computed at first iteration), are as follows:

– Problem 6.1: τk ' 1.3e− 3,
– Problem 6.2: τk ' 1.8e2.

7.1 Results on Problem 6.1

In this section we focus on Problem 6.1. We study the behaviour of the method depending on the choice of
parameter `k. In particular, we considered constant values of `k, i.e `k = `, for each k, for different values of
`, and an increasing choice of `k along the iterations. We measure the inexactness introduced by the use of
Lanczos process in the approximation of the trust-region subproblem through (25) and in the computation
of pk via (27b).

We denote with x† the exact solution of the problem, and we remind that xδk(δ) denotes the last computed
iterate.

In Tables 1-2 we report for n = 2500 and δ = 3.1e− 2:

– the relative error in the computation of B
1/2
k gk: errr =

‖s̃k−B1/2
k gk‖

‖B1/2
k gk‖

where B
1/2
k gk is computed by the

SVD of J(xδk) and s̃k is defined in (22);

2 https://github.com/epfl-lts2/unlocbox/blob/master/test bench/private/lanbpro.m
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` = 5 ` = 10 ` = 20 ` = 40 ` = 100 ` = 3 + dk/2e

errr =
‖s̃k−B

1/2
k

gk‖

‖B1/2
k

gk‖
6.e-5 7.e-6 6.e-7 4.e-8 1.e-9 8.e-5

errp =
‖pk−pex‖
‖pex‖

7.e-14 9.e-14 3.e-13 2.e-13 2.e-13 1.e-14

Table 1 Problem 6.1, n = 2500, δ = 3.0e − 2, pk is the inexact step computed at Step 4.2 of Algorithm 3, and pex is the
exact step arising from the solution of the trust-region problem (6).

RTR LTR
` = 5 ` = 10 ` = 20 ` = 40 ` = 100 `k = 3 + dk/2e

it 67 67 67 67 67 67 67
‖F (xδ

k(δ)
)− yδ‖ 4.1e-2 4.1e-2 4.2e-2 4.2e-2 4.2e-2 4.2e-2 4.1e-2

it inner 145 147 145 145 145 145 145
err 7.6e-1 7.8e-1 7.9e-1 7.9e-1 7.9e-1 7.9e-1 7.6e-1

time(s) 2266 1138 1142 1186 1225 1282 1141
time(ratio) 1 1.99 1.98 1.91 1.85 1.77 1.99

Table 2 Problem 6.1, n = 2500, δ = 3.0e− 2.

– the relative error errp = ‖pk−pex‖
‖pex‖ between pk, the inexact step computed at Step 4.2 of Algorithm 3, and

pex, the exact step arising from the solution of the trust-region problem (6);
– it, the number of nonlinear iterations;
– ‖F (xδk(δ))− y

δ‖, the residual at the computed solution;

– it inner, the number of iterations to solve the secular equation (55) for the minimization of the model;

– RMSE=
√∑n

i=1(x†(i)− xδk(δ)(i))2, root mean squared error between the computed solution and true

solution x†;
– time(s), total CPU time (in seconds) required for the optimization process;
– time(ratio), the ratio between CPU time required by RTR and CPU time required by LTR.

Fig. 1 Problem 6.1, n = 2500, δ = 3.1e− 2. Plot of computed solution by LTR (left) and RTR (right).

From the Tables we remark that the value of ` affects the quality of the approximation of the right hand
side, but it does not have an impact neither on the quality of the computed step nor on the quality of the
final solution approximation, as it is shown for example in Figure 1. Moreover, the CPU times considerably
decreases with ` and for all choices of ` it is significantly lower than the CPU time for the method employing
the SVD decomposition. We considered also the adaptive choice of `k = 3+dk/2e, which allows us to consider
in the Lanczos process subspaces of increasing dimension, thus improving the precision toward the end of
the optimization process, and which is more flexible, having the advantage of not requiring an a-priori choice
for the parameter.

In Figure 2 we report the plot of ‖Q`TT` T`QT` − Q`Q
T
` B1‖ as a function of `. The plot refers to the

first outer iteration of Algorithm 3, but the behaviour is analogous also for the subsequent iterations. We
can notice that even for small values of ` the quantity ‖Q`TT` T`QT` −Q`QT` Bk‖ is really small. Lemma 6.2
ensures that if this quantity is sufficiently small, the error at step k decreases.

We show in Figure 3 that in practice the error is actually monotonically decreasing. The figure refers to
the adaptive choice of `k, `k = 3 + dk/2e but the behavior is the same for the other choices of `k. Then,
in accordance with the theoretical results in the previous sections, we recover the theoretical regularizing
properties of RTR, interestingly even for small ` .

From a practical point of view, there is then no evident benefit in using large values of ` and an adaptive
choice such as `k = 3 + dk/2e seems to be a good option.
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Fig. 2 Problem 6.1, n = 2500, δ = 3.1e− 2. Plot of ‖Q`kT
T
`k
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B1‖ as a function of ` .
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Fig. 3 Problem 6.1, n = 2500, δ = 3.1e− 2. Plot of ‖xδk − x
†‖ as a function of k for `k = 3 + dk/2e.

8 Results on Problem 6.2

In this section we report results on a test case taken from the FAIR library3. We consider two images
of a hand, R the reference image and T the same image, rotated (up left and up center plots in Figure 4
respectively). The aim is to find a rotation to superimpose the two images. The domain is Ω = (0, 20)×(0, 25)
and spline interpolation, SSD distance and elastic regularization are used, cf. [20]. The size of the problem
is n = 8320, and noise is added to image T with δ = 1.0e− 1. The FAIR code implements a non-parametric
image registration problem, solved by a Gauss-Newton (GN) method. We remark that the aim here is not
to find the best method to solve the image registration problem, but rather to compare the performance of
RTR and LTR on this example.

Image registration problems are usually really sensible to the choice of the regularization parameters, in
our case the coefficient `k. Common practice is to solve the problem for several values of the parameter and
let specialists in the domain choose the best resulting image [11,13]. In Figures 4-7 we report the reference
image R (up left), image T at the beginning (up center) and at the end (up right) of the optimization
process, the difference between R and T at the beginning (bottom left) and at the end (bottom center) of
the optimization process. In Figure 4 RTR is used, while in Figures 5 and 6 we used LTR with constant
`k = ` at each iteration, with ` = 100, 10 respectively, and in Figure 7 we used LTR with the adaptive choice
`k = 3+dk/2e as in the previous example. We can notice that the quality of the rotated image reconstructed
using the SVD decomposition is not better than that of the image reconstructed by the proposed method. It
is also interesting to notice that increasing ` this quality does not improve, actually lower values of ` provide
the best results, as can be remarked also from the lower values achieved for the residual of the problem, as
reported in Table 3. The use of a smaller projection space seems to improve the regularizing properties of
the method. As for Problem 6.1, an adaptive choice of ` seems to be a good choice to avoid hand-tuning.
Also for this problem we can observe important time savings provided by the proposed Lanczos strategy.
Iterations of LTR are so cheaper than those of RTR that, even if RTR takes far lesser outer and inner
iterations to satisfy the discrepancy principle, the resulting computational time for LTR is much shorter. As
a reference, we display in Figure 8 the reconstructed image for the Gauss-Newton method originally proposed
in the FAIR code. We can see that the lower part of the hand is better reconstructed, but the fingers are
completely misinterpreted.

For this problem the exact solution is not known, so we cannot verify if the error is monotonically
decreasing.

In Figure 9 we plot the norm of the gradient ‖gk‖ (left) and the norm of the residual ‖F (xδk(δ)) − y
δ‖

(right) along the iterations. Just for this run we set τ̄ = 1. We can notice that the norm of the gradient is

3 E9 Hands NPIRmb GN.m
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RTR LTR
` = 10 ` = 50 ` = 100 `k = 3 + dk/2e

it 36 137 262 128 230
‖F (xδ

k(δ)
)− yδ‖ 9.1e2 8.2e2 9.3e2 9.7e2 7.7e2

it inner 162 629 1273 684 1123
time(s) 10730 55 214 243 273

time(ratio) 1 195 50 44 39

Table 3 Problem 6.2, n = 8320, δ = 1.0e− 1.

quite oscillatory and even allowing a higher number of iterations it does not decrease significantly and thus
the stopping criterion (11) is not met and the method is stopped after the maximum number of iterations
is reached. However, we can see that it is not useful to iterate further, as the norm of the objective function
does not change and the quality of the solution approximation is not improved, cf. Figure 10. Therefore, the
value for τ̄ = 10 chosen for all the other runs seems to be a reasonable choice.
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Fig. 4 Problem 6.2, n = 8320, δ = 1.0e− 1. Plot of reconstructed image by method RTR.

R, [ 64 64], =2000

0 10 20

0

10

20

T(0)

0 10 20

0

10

20

|T(xc)-R(xc)|

0 10 20

0

10

20

|T(yc)-R(xc)|

0 10 20

0

10

20

T(128)

0 10 20

0

10

20

Fig. 5 Problem 6.2, n = 8320, δ = 1.0e− 1. Plot of reconstructed image by LTR with `k = 100 for all k.
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Fig. 6 Problem 6.2, n = 8320, δ = 1.0e− 1. Plot of reconstructed image by LTR with `k = 10 for all k.
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Fig. 7 Problem 6.2, n = 8320, δ = 1.0e− 1. Plot of reconstructed image by LTR with `k = 3 + dk/2e.

9 Conclusions

In this work we have proposed an extension of the method proposed in [2], specially designed to handle large
scale problems. The proposed approach is a hybrid Lanczos Tikhonov method, based on an elliptical trust-
region implementation. An inexact solution of the trust-region subproblem is computed thanks to a Lanczos
approach, which allows to considerably decrease the computational time without affecting the quality of the
computed solution, as shown in the numerical tests. The complexity of the method is evaluated and some
regularizing properties are proved in theory and verified in practice.
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