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Large scale problems with noisy function and noisy gradient

Let us consider the following nonlinear least squares problem:

1
in f(x) = =||F(x)|?
min £(x) = SIF&)I

where F : R" — RN with N > n, continuously differentiable.

Noisy function and noisy gradients
We are interested in large scale problems for which either:

@ exact values for the function and the gradient are not available,

@ computing exact values is computationally demanding.
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Function approximations

@ We want to rely on cheap approximations f5 to f of known accuracy.

@ We consider an iterative process that employs a sequence of
approximations {fs, } and at each iteration k considers an
approximated problem:

. 1 )
min f5,(x) = S1Fs (I Fo ~ F

@ 0y is the accuracy level of the approximations:

|5 (i) — F(xi)| < Ok

@ We assume that the accuracy level can be improved along the
optimization process: d, \, 0.
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@ 0y is the accuracy level of the approximations:

|5 (i) — F(xi)| < Ok

@ We assume that the accuracy level can be improved along the
optimization process: d, \, 0.

v

@ Js, approximation to the Jacobian matrix J of F,

@ gs5, approximation to the gradient g of f.
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Typical applications

Subsampling techniques

@ Machine learning, Data assimilation.

o Large set of data at disposal: {1,...,N}.
Subsampling: X, C {1,..., N} such that |[Xx| = Kx < N is selected.

o Fj5, :R" — RX« such that (Fs,); = Fj, j € Xk is built.
1
fi () = 31| Fo, ()12
@ approximation can be improved by considering more observations.

Iterative methods

@ f is the result of an iterative process (solution of a nonlinear equation
or an inversion process) that can be stopped when a certain accuracy
level is reached.

@ By varying the stopping criterion we vary the accuracy of the
approximation.
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We propose a Levenberg-Marquardt method.

Algorithm : k-th iteration
© Step computation: define the LM model
min mi(xx + p) = Z || Fs, (xk) + s, (xic)pl|” + 5 Akl Pl
pER” 2 2
and compute the step p,ﬁM.

@ Check the noise level. If noise is too high reduce it.
M
)

M) _ fs, 1 (xi)—fs, (+pk

© Step acceptance is based on pik(p,l; N £ My por L

© Regularization parameter update.
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We propose a Levenberg-Marquardt method.

Algorithm : k-th iteration

© Step computation: define the LM model

. 1 1
min my(xe + p) = 5 |1Fs, () + Js, (x)plI” + S Axllpll,
pER? 2 2

and compute the step p,ﬁM.

@ Check the noise level. If noise is too high reduce it.
s,y ) —Ts, (+pEM)

my (i) —mi (i +pEM)

© Step acceptance based on pi"(pk’v’) =

© Regularization parameter update.
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1) The step

@ The step is the solution of the linearized least squares subproblem:

. 1 1
min my(xk + p) = = || Fs, (<) + Js, ()l + =il pl|%,
peR” 2 2

where A, > 0 is an appropriately chosen regularization parameter.
@ This is equivalent to:

(s, (i) T 5, () + Ml pre = — 85, (k)
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1) The step

@ The step is the solution of the linearized least squares subproblem:

. 1 1
min my(xk + p) = = || Fs, (<) + Js, ()l + =il pl|%,
peR” 2 2

where A, > 0 is an appropriately chosen regularization parameter.
@ This is equivalent to:

(I, (k) T 5, (%) + M) pic = — g3, (xk) + 1.

@ Large scale problems: an inexact step is computed.

e For a residual, ||rk|| < exllgs, || with e, small enough, the step
achieves the Cauchy decrease:

2
mi(xi) — m(xi + p) > |

0 g5, () )
’ |

s (i) 17+ Awc”

which is sufficient to get global convergence.
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2) Noise control

@ It exists K > 0 and d; > 0, such that:

1 1
16,00 = sl = | 31Fs 0001 = FIFGaIP| <

lg(xk) — g5, (k)| < Kék.

@ It is possible to drive J, to zero.

@ The optimization process starts with a given initial noise level § = dp.

@ Noise control: our method relies on a mechanism to control the
noise: at each iteration the noise is measured and reduced if it is
judged to be too large.
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2) Noise control

@ Given the noise level dy, in [Trust region methods, Conn, Gould,
Toint] this condition is used:

Sk < molmi(xi) — mi(xi + pEM)),
with ng appropriately chosen, to ensure a true reduction in the
noise-free objective function f.
o mi(xk) — mi(xk + peM) = OOl 112).
@ Noise control:

Sk < wa ALl oEM 1%,

for suitable constants kg > 0 and a € [%, 1).

@ The noise tends to zero:
lim \e|lpEM|12 = 0.
k—o00
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We propose a Levenberg-Marquardt method.

Algorithm : k-th iteration
© Step computation: define the LM model

. 1 1
min my(xx + p) = = || Fs, (x) + J5, (i) o112 + = Aellpll?,
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and compute the step p,ﬁM.
@ Check the noise level. If noise is too high reduce it.

sy () —Ts, Catpg)
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3) Step acceptance

Step acceptance based on ratio between actual and predicted reduction:

pék(PﬁM) _ f(‘skfl (Xk) - ﬁsk(Xk + pkM) .
, mye(xk) — mp(xx + PﬁM)

Given 0 < < 1.
QIf pik(p,fM) > 11, accept the step: xk11 = xk + pM,

@ Otherwise reject the step: xxi1 = X«-
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4) Parameter update

The parameter update is inspired by [Bergou, Gratton, Vicente, 2016] and
[Bandeira, Scheinberg, Vicente, 2014].
Given v > 1

@ Successful step:

Mer1 = { min{y Ak, Amax} i [lgs, (x| < m2/ Ak,
" Ak if {| g5, (xic) | = 12/ Ase-
@ Unsuccessful step:
Akl = YAk

We increase the parameter even in case of successful iterations.
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4) Parameter update

The parameter update is inspired by [Bergou, Gratton, Vicente, 2016] and
[Bandeira, Scheinberg, Vicente, 2014].
Given v > 1

@ Successful step:
Mer1 = { min{y Ak, Amax} i [lgs, (x| < m2/ Ak,
" Ak if {| g5, (xic) | = 12/ Ase-

@ Unsuccessful step:
Ak+1 = YAk

We increase the parameter even in case of successful iterations.

leCulll < |1y, ()| < YL with ¢ = O (ﬁ) :

k
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Theoretical results

@ Assumption 1:
Function f is continuously differentiable, and it exists x; > 0 such
that for all k >0 and all x € [xk, xk + pEM], [|Js,(x)|| < Ky .

@ Assumption 2: f has Lipschitz continuous gradient:
lg(x) —gW)Il < Lix — y| for all x,y € R".
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Global Convergence

Let the residual be small enough, i.e. ry satisfies ||rc|| < exl/gs, ||, with

. )6 Ak
€ <min< —, /0
= {Xi‘ \/ QHJak(xuuzm}

where 61 > 0, 65 € (0, %] and o € [%, 1).

The sequences {0k} and {xx} generated by the Algorithm are such that

lim 0, =0, lim ||g(xx)|| = 0.
k—o0 k—o00
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Local convergence

Asymptotic step behaviour

The LM step asymptotically tends to the direction of the negative
perturbed gradient:

0
(pléM)l + )

l 7 =0 for i=1,...
Jim_ 2 )\k(gék(xk)): or i=1,...,n,

where (-); denotes the i-th vector component.

Lemma
Let ppP = —Hii/\kggk(xk) and xx11 = xk + piP. If xp € B.(x*) and g
big enough,

, for all k > k.

© X1 — x*[| < [Ixk — x*

@ ||xx — x*|| tends to zero.
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Complexity analysis

Let assume that the procedure is stopped when ||gs, (xk)|| < e.

@ The number of successful iterations N; is bounded above by:

2 H?j + >\max -2
N1 S f;;ks*l(st) a T = O(e )
@ The number of unsuccessful iterations N3 is bounded above by a
constant independent of e:
)\max
IOg Ao

log v

&
IN

Standard Levenberg-Marquardt methods complexity is preserved:

Nt = 0(6_2),

Elisa Riccietti (IRIT - ENSEEIHT) Manchester, 23 January 2018 18 / 31



Numerical Results

Test problems

We consider two problems of the form

N

1 1 1

1 760 = FIFGIIP + 1P = 3 5 + 5P
J:

with F; : R" — R, for j =1,..., N, N total number of samples.

@ P1: Data assimilation problem

@ P2: Machine learning problem
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Approximations

@ Function approximations are built by means of a random subsampling.
o Js, (x) € RK«*" s the Jacobian matrix of Fs, (x).
@ g5, € R” the gradient of f, .

Linear algebra phase
@ CGLS method.

o [l < exllgs, (xi)ll ex ~ 107
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Performance evaluation criteria

We compare subsampled Levenberg-Marquardt method (SSLM) and full
Levenberg-Marquardt method (FLM) (Kx = N, Vk).

Cost counters

We evaluate savings arising from the employment of the noise control
strategy.

@ costr weighted counter of function evaluations costs
(if [ Xk| = N cost=1, if |Xx| = Kk cost=Ky/N.) — saver savings in
function evaluations.

@ cost, weighted counter of products costs
(if | Xk| = N cost=1, if |Xi| = K cost=K/N.) — save, savings in
products.
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Given the current sample set Xy, s.t. | Xk| = Kk.

Given the step, check the noise: &x < rkgA} | pEM||2?
If not, repeat:

@ Increase the samples set size: |Xiy1| = Ki| Xk
@ Recompute function, Jacobian and gradient.

© Need to check condition again — Need to recompute the step:
(I, (i) T s, (i) + Aicl )k = — 86, (xk) + 1.

— Resulting samples set size: |Xii1| = K| X
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Given the current sample set Xy, s.t. | Xk| = Kk.

Noise update

Given the step, check the noise: §x < kgA¢||pEM |27
If not, repeat:

@ Increase the samples set size: |Xiy1| = Ki| Xk
@ Recompute function, Jacobian and gradient.

© Need to check condition again — Need to recompute the step:
(I, (i) T s, (i) + Aicl )k = — 86, (xk) + 1.

— Resulting samples set size: |Xii1| = K| X

Parameters affecting the cost

o bk < kX IpEMIP.
o Xicea] = KI*[Xl.
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P1: Data assimilation problem

Nonlinear wave equation:

H? t) 02 t
u(z,t)  07u(z, )+

ot oz treT=0
u(0,t) = u(1,t) =0,
Ou(z,0
o(z,0) = w(z), 2420 g

0<t<T,0<z< 1.

@ We look for the initial state ug(z), from the knowledge of
observations u(z;, tj), t; > 0.

@ We consider a mesh involving n = 360 grid points for the spatial
discretization and N; = 64 for the temporal one.

@ We assume to have an observation at each grid point:
N = n x Ny = 23040.
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P1: Data assimilation problem

It is possible to recover up(z) solving the following data assimilation
problem:

1 t
2 . ) 12
min 5 2= ol + 5 z_: I1H(x(8)) = Yl
[x]|3, = x" Mx for a symmetric positive definite matrix M,
xp € R" is the background vector (a priori estimate)

y;j € R™ is the vector of observations at time t;, m; < n.

H; is the operator modelling the observation process at t;

x(t;) the state vector, solution of the nonlinear model at time t;.
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P1: Data assimilation problem

@ Background vector and observations from a chosen initial true state
by adding noise N(0,0%) and N(0,02) with o, = 0.2, 0, = 0.05.
@ Covariances matrices are diagonal: B = 012)/,, and R; = oglmj vj.

@ Least-squares problem reformulation:

& (Ho(x(w)) ~ y0)
Fx) = ;
(e (x(t0)) — )

where (H;(x(tj)) —y;) € R™ for j=1,..., N.

Elisa Riccietti (IRIT - ENSEEIHT) Manchester, 23 January 2018 25 /31



P1: Data assimilation problem

@ Background vector and observations from a chosen initial true state
by adding noise N(0,0%) and N(0,02) with o, = 0.2, 0, = 0.05.
@ Covariances matrices are diagonal: B = 012)/,, and R; = oglmj vj.

@ Least-squares problem reformulation:

& (Ho(x(w)) ~ y0)
Fx) = ;
(e (x(t0)) — )

where (H;(x(tj)) —y;) € R™ for j=1,..., N.

o Kept K, = 1.5 fixed, we study the effect of k4.
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ect of Ky

Ko = 2000 | FLM SSLM
K« =15 kg=1 Kkg=10 Kg=100 kg =1000 kg = 10000
it 9 11 12 12 12 11
CG;; 2.4 5.4 4.9 42 4.2 3.9
costy 10 9.7 6.1 3.3 3.2 2.0
costp 67 46.1 26.8 14.9 135 10.3
[Xit| 23040 | 15188 6750 3000 3000 2000
RMSE 1.2e-2 | 3.0e-2 2.8e-2 3.8e-2 4.4e-2 7.8e-2
savef 3% 39% 67% 68% 80%
savep 31% 60% 78% 80% 85%
savings solution accuracy

—=— RMSE

save%
RMSE
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P2: Machine learning problem

Binary classification problem: {(z/,y")} with z/ € R", y/' € {~1, +1}
and i=1,..., N.
Training objective function: logistic loss with /» regularization

1 ; ; 1
F(x) = 55 D log(1 + exp(—y/xT2)) + 5 x|
i=1

Least-squares form:

. (T + exp(—yXT21)
F(x) =

\/Iog —|—exp (—yNxTzN))
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P2: machine learning problem

Approximations to f are built as:

1 1
fo.(x) = 2Ks d " log(1+exp(—y'x"2)) + 27k\|><||2-
ieXy

We consider the CINA dataset [http://www.causality.inf.ethz.ch/data/
(;INA.htmI], for which n =132, N = 16033 for the training set,
N = 10000 for the testing set.

Noise control condition parameters
o Ko =132.

e rg = 10.
@ We study the effect of K.
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FLM SSLM
Ki=11 K.=15 K.=2 K.=25 K.=3 K.=35

it 52 82 43 38 39 34 53
CG;; 5.7 8.5 8.0 7.5 7.3 7.2 5.5
costg 53 19.8 14.1 15.9 21.2 16.5 37.7
cost, 808 671.2 351.3 316.7 400.7 310.4 521.1
RMSE | 6.0e-2 | 1.0e-1 6.6e-2 5.4e-2 4.7e-2 4.1e-2 3.9e-2
saves 63% 74% 70% 60% 69% 29%
savep 17% 56% 61% 50% 62% 35%

N savings K.=1.1

K,=2 K,=;.5

8
s
4
2
0

35 w0 o 10 20 30 a0 50 0

Doeseossedossssd
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For more details:
A Levenberg-Marquardt method for large nonlinear least-squares problems with dynamic
accuracy in functions and gradients, Stefania Bellavia, Serge Gratton, Elisa Riccietti,

under review in Numerische Mathematik
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