Levenberg-Marquardt method for nonlinear least-squares problems with noisy function and gradient

Elisa Riccietti

Institut de Recherche en Informatique de Toulouse (IRIT)

Joint work with: Stefania Bellavia (Università di Firenze), Serge Gratton (INPT-ENSEEIHT, Toulouse)

Manchester, 23 January 2018

Large scale problems with noisy function and noisy gradient

Let us consider the following nonlinear least squares problem:

$$\min_{x\in\mathbb{R}^n}f(x)=\frac{1}{2}\|F(x)\|^2$$

where $F : \mathbb{R}^n \to \mathbb{R}^N$ with $N \ge n$, continuously differentiable.

Noisy function and noisy gradients

We are interested in large scale problems for which either:

- exact values for the function and the gradient are not available,
- computing exact values is computationally demanding.

Function approximations

- We want to rely on cheap approximations f_{δ} to f of known accuracy.
- We consider an iterative process that employs a sequence of approximations {f_{δk}} and at each iteration k considers an approximated problem:

$$\min_{x\in\mathbb{R}^n} f_{\delta_k}(x) = rac{1}{2} \|F_{\delta_k}(x)\|^2, \ \ F_{\delta_k}\sim F$$

• δ_k is the accuracy level of the approximations:

$$|f_{\delta_k}(x_k)-f(x_k)|\leq \delta_k.$$

We assume that the accuracy level can be improved along the optimization process: δ_k ↘ 0.

Function approximations

- We want to rely on cheap approximations f_{δ} to f of known accuracy.
- We consider an iterative process that employs a sequence of approximations {f_{δk}} and at each iteration k considers an approximated problem:

$$\min_{x\in\mathbb{R}^n} f_{\delta_k}(x) = rac{1}{2} \|F_{\delta_k}(x)\|^2, \ \ F_{\delta_k}\sim F$$

• δ_k is the accuracy level of the approximations:

$$|f_{\delta_k}(x_k)-f(x_k)|\leq \delta_k.$$

We assume that the accuracy level can be improved along the optimization process: δ_k ↘ 0.

Notations

- J_{δ_k} approximation to the Jacobian matrix J of F,
- g_{δ_k} approximation to the gradient g of f.

Elisa Riccietti (IRIT - ENSEEIHT)

Typical applications

Subsampling techniques

- Machine learning, Data assimilation.
- Large set of data at disposal: $\{1, \ldots, N\}$. Subsampling: $X_k \subseteq \{1, \ldots, N\}$ such that $|X_k| = K_k \le N$ is selected.
- $F_{\delta_k} : \mathbb{R}^n \to \mathbb{R}^{K_k}$ such that $(F_{\delta_k})_i = F_j$, $j \in X_k$ is built.

•
$$f_{\delta_k}(x) = \frac{1}{2} \|F_{\delta_k}(x)\|^2$$

approximation can be improved by considering more observations.

Iterative methods

- *f* is the result of an iterative process (solution of a nonlinear equation or an inversion process) that can be stopped when a certain accuracy level is reached.
- By varying the stopping criterion we vary the accuracy of the approximation.

Algorithm : *k*-th iteration

Step computation: define the LM model

$$\min_{m{p}\in\mathbb{R}^n}m_k(x_k+m{p}) = rac{1}{2}\|\mathcal{F}_{\delta_k}(x_k)+J_{\delta_k}(x_k)m{p}\|^2 + rac{1}{2}\lambda_k\|m{p}\|^2,$$

and compute the step p_k^{LM} .

- One Check the noise level. If noise is too high reduce it.
- Step acceptance is based on $\rho_k^{\delta_k}(p_k^{LM}) = \frac{f_{\delta_{k-1}}(x_k) f_{\delta_k}(x_k + p_k^{LM})}{m_k(x_k) m_k(x_k + p_k^{LM})}.$
- Regularization parameter update.

1) The step

• The step is the solution of the linearized least squares subproblem:

$$\min_{p \in \mathbb{R}^n} m_k(x_k + p) = \frac{1}{2} \|F_{\delta_k}(x_k) + J_{\delta_k}(x_k)p\|^2 + \frac{1}{2}\lambda_k \|p\|^2,$$

where $\lambda_k > 0$ is an appropriately chosen regularization parameter. • This is equivalent to:

$$(J_{\delta_k}(x_k)^T J_{\delta_k}(x_k) + \lambda_k I)p_k = -g_{\delta_k}(x_k)$$

1) The step

• The step is the solution of the linearized least squares subproblem:

$$\min_{p \in \mathbb{R}^n} m_k(x_k + p) = \frac{1}{2} \|F_{\delta_k}(x_k) + J_{\delta_k}(x_k)p\|^2 + \frac{1}{2}\lambda_k \|p\|^2,$$

where $\lambda_k > 0$ is an appropriately chosen regularization parameter. • This is equivalent to:

$$(J_{\delta_k}(x_k)^T J_{\delta_k}(x_k) + \lambda_k I)p_k = -g_{\delta_k}(x_k) + r_k.$$

• Large scale problems: an inexact step is computed.

1) The step

• The step is the solution of the linearized least squares subproblem:

$$\min_{p \in \mathbb{R}^n} m_k(x_k + p) = \frac{1}{2} \|F_{\delta_k}(x_k) + J_{\delta_k}(x_k)p\|^2 + \frac{1}{2}\lambda_k \|p\|^2,$$

where $\lambda_k > 0$ is an appropriately chosen regularization parameter. • This is equivalent to:

$$(J_{\delta_k}(x_k)^T J_{\delta_k}(x_k) + \lambda_k I)p_k = -g_{\delta_k}(x_k) + r_k.$$

- Large scale problems: an inexact step is computed.
- For a residual, $||r_k|| \le \epsilon_k ||g_{\delta_k}||$ with ϵ_k small enough, the step achieves the Cauchy decrease:

$$m_k(x_k)-m_k(x_k+p)\geq rac{ heta}{2}rac{\|g_{\delta_k}(x_k)\|^2}{\|J_{\delta_k}(x_k)\|^2+\lambda_k}, \qquad heta>0.$$

which is sufficient to get global convergence.

Assumption

• It exists $\bar{K} > 0$ and $\delta_k \ge 0$, such that:

$$\begin{split} |f_{\delta_k}(x_k) - f(x_k)| &= \left| \frac{1}{2} \|F_{\delta_k}(x_k)\|^2 - \frac{1}{2} \|F(x_k)\|^2 \right| \le \delta_k, \\ g(x_k) - g_{\delta_k}(x_k)\| \le \bar{K} \delta_k. \end{split}$$

2 It is possible to drive δ_k to zero.

- The optimization process starts with a given initial noise level $\delta = \delta_0$.
- Noise control: our method relies on a mechanism to control the noise: at each iteration the noise is measured and reduced if it is judged to be too large.

2) Noise control

• Given the noise level δ_k , in [Trust region methods, Conn, Gould, Toint] this condition is used:

$$\delta_k \leq \eta_0[m_k(x_k) - m_k(x_k + p_k^{LM})],$$

with η_0 appropriately chosen, to ensure a true reduction in the noise-free objective function f.

- $m_k(x_k) m_k(x_k + p_k^{LM}) = O(\lambda_k \| p_k^{LM} \|^2).$
- Noise control:

 $\delta_k \leq \kappa_d \lambda_k^\alpha \| \boldsymbol{p}_k^{LM} \|^2,$

for suitable constants $\kappa_d > 0$ and $\alpha \in \left[\frac{1}{2}, 1\right)$.

• The noise tends to zero:

$$\lim_{k\to\infty}\lambda_k\|p_k^{LM}\|^2=0.$$

Step acceptance based on ratio between actual and predicted reduction:

$$ho_k^{\delta_k}(p_k^{LM}) = rac{f_{\delta_{k-1}}(x_k) - f_{\delta_k}(x_k + p_k^{LM})}{m_k(x_k) - m_k(x_k + p_k^{LM})}.$$

Given $0 < \eta_1 < 1$.

• If $\rho_k^{\delta_k}(p_k^{LM}) \geq \eta_1$, accept the step: $x_{k+1} = x_k + p_k^{LM}$,

2 Otherwise reject the step: $x_{k+1} = x_k$.

3

Algorithm : k-th iteration

Step computation: define the LM model

$$\min_{m{p}\in\mathbb{R}^n}m_k(x_k+m{p}) = rac{1}{2}\|\mathcal{F}_{\delta_k}(x_k)+J_{\delta_k}(x_k)m{p}\|^2 + rac{1}{2}\lambda_k\|m{p}\|^2,$$

and compute the step p_k^{LM} .

- 2 Check the noise level. If noise is too high reduce it.
- Step acceptance based on $\rho_k^{\delta_k}(p_k^{LM}) = \frac{f_{\delta_{k-1}}(x_k) f_{\delta_k}(x_k + \rho_k^{LM})}{m_k(x_k) m_k(x_k + \rho_k^{LM})}$.
- Regularization parameter update.

The parameter update is inspired by [Bergou, Gratton, Vicente, 2016] and [Bandeira, Scheinberg, Vicente, 2014]. Given $\gamma>1$

• Successful step:

$$\lambda_{k+1} = \begin{cases} \min\{\gamma\lambda_k, \lambda_{\max}\} & \text{if } \|g_{\delta_k}(x_k)\| < \eta_2/\lambda_k, \\ \lambda_k & \text{if } \|g_{\delta_k}(x_k)\| \ge \eta_2/\lambda_k. \end{cases}$$

• Unsuccessful step:

$$\lambda_{k+1} = \gamma \lambda_k.$$

We increase the parameter even in case of successful iterations.

The parameter update is inspired by [Bergou, Gratton, Vicente, 2016] and [Bandeira, Scheinberg, Vicente, 2014]. Given $\gamma > 1$

• Successful step:

$$\lambda_{k+1} = \begin{cases} \min\{\gamma\lambda_k, \lambda_{\max}\} & \text{if } \|g_{\delta_k}(x_k)\| < \eta_2/\lambda_k, \\ \lambda_k & \text{if } \|g_{\delta_k}(x_k)\| \ge \eta_2/\lambda_k. \end{cases}$$

• Unsuccessful step:

$$\lambda_{k+1} = \gamma \lambda_k.$$

We increase the parameter even in case of successful iterations. $\frac{\|g(x_k)\|}{(1+c_k)} \le \|g_{\delta_k}(x_k)\| \le \frac{\|g(x_k)\|}{(1-c_k)}, \text{ with } c_k = O\left(\frac{1}{\lambda_k^{1-\alpha/2}}\right).$

Assumptions

• Assumption 1:

Function f is continuously differentiable, and it exists $\kappa_J > 0$ such that for all $k \ge 0$ and all $x \in [x_k, x_k + p_k^{LM}]$, $\|J_{\delta_k}(x)\| \le \kappa_J$.

• Assumption 2: f has Lipschitz continuous gradient: $\|g(x) - g(y)\| \le L \|x - y\|$ for all $x, y \in \mathbb{R}^n$. Let the residual be small enough, i.e. r_k satisfies $||r_k|| \le \epsilon_k ||g_{\delta_k}||$, with

$$\epsilon_k \leq \min\left\{\frac{\theta_1}{\lambda_k^{\alpha}}, \sqrt{\theta_2 \frac{\lambda_k}{\|J_{\delta_k}(x_k)\|^2 + \lambda_k}}\right\}$$

where $\theta_1 > 0$, $\theta_2 \in (0, \frac{1}{2}]$ and $\alpha \in [\frac{1}{2}, 1)$.

Lemma

The sequences $\{\delta_k\}$ and $\{x_k\}$ generated by the Algorithm are such that

$$\lim_{k\to\infty}\delta_k=0, \qquad \qquad \lim_{k\to\infty}\|g(x_k)\|=0.$$

Asymptotic step behaviour

The LM step asymptotically tends to the direction of the negative perturbed gradient:

$$\lim_{k\to\infty}(p_k^{LM})_i+\frac{\theta}{\kappa_j^2+\lambda_k}(g_{\delta_k}(x_k))_i=0 \quad \text{for} \quad i=1,\ldots,n,$$

where $(\cdot)_i$ denotes the *i*-th vector component.

Lemma

Let
$$p_k^{SD} = -\frac{\theta}{\kappa_j^2 + \lambda_k} g_{\delta_k}(x_k)$$
 and $x_{k+1} = x_k + p_k^{SD}$. If $x_{\bar{k}} \in B_r(x^*)$ and $\lambda_{\bar{k}}$ big enough,

•
$$||x_{k+1} - x^*|| < ||x_k - x^*||$$
, for all $k \ge \bar{k}$.

•
$$||x_k - x^*||$$
 tends to zero.

- 4 同 6 4 日 6 4 日 6

э

Complexity analysis

Assumption

Let assume that the procedure is stopped when $||g_{\delta_k}(x_k)|| \leq \epsilon$.

• The number of successful iterations N_1 is bounded above by:

$$\mathsf{N}_1 \leq f_{\delta_{k_s-1}}(\mathsf{x}_{k_s}) \, rac{2}{\eta_1} \, rac{\kappa_J^2 + \lambda_{\mathsf{max}}}{ heta \epsilon^2} \, = \, \mathcal{O}(\epsilon^{-2}).$$

• The number of unsuccessful iterations N_3 is bounded above by a constant independent of ϵ :

$$N_3 \leq rac{\log rac{\lambda_{\max}}{\lambda_0}}{\log \gamma}.$$

Complexity

Standard Levenberg-Marquardt methods complexity is preserved:

$$N_T = O(\epsilon^{-2}),$$

Elisa Riccietti (IRIT - ENSEEIHT)

Test problems

We consider two problems of the form

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} \|F(x)\|^2 + \frac{1}{2} \|x\|^2 = \sum_{j=1}^N F_j(x)^2 + \frac{1}{2} \|x\|^2,$$

with $F_j : \mathbb{R}^n \to \mathbb{R}$, for j = 1, ..., N, N total number of samples.

- P1: Data assimilation problem
- P2: Machine learning problem

Approximations

- Function approximations are built by means of a random subsampling.
- $J_{\delta_k}(x) \in \mathbb{R}^{K_k \times n}$ is the Jacobian matrix of $F_{\delta_k}(x)$.
- $g_{\delta_k} \in \mathbb{R}^n$ the gradient of f_{δ_k} .

Linear algebra phase

CGLS method.

•
$$\|r_k\| \leq \epsilon_k \|g_{\delta_k}(x_k)\|$$
, $\epsilon_k \sim 10^{-1}$.

We compare subsampled Levenberg-Marquardt method **(SSLM)** and full Levenberg-Marquardt method **(FLM)** ($K_k = N, \forall k$).

Cost counters

We evaluate savings arising from the employment of the noise control strategy.

- cost_f weighted counter of function evaluations costs
 (if |X_k| = N cost=1, if |X_k| = K_k cost=K_k/N.) → save_f savings in
 function evaluations.
- $cost_p$ weighted counter of products costs (if $|X_k| = N \text{ cost}=1$, if $|X_k| = K_k \text{ cost}=K_k/N$.) $\rightarrow save_p$ savings in products.

過 ト イヨ ト イヨト

Given the current sample set X_k , s.t. $|X_k| = K_k$.

Noise update

Given the step, check the noise: $\delta_k \leq \kappa_d \lambda_k^{\alpha} \|p_k^{LM}\|^2$? If not, repeat:

- **1** Increase the samples set size: $|X_{k+1}| = K_*|X_k|$.
- Recompute function, Jacobian and gradient.
- Need to check condition again \rightarrow Need to recompute the step: $(J_{\delta_k}(x_k)^T J_{\delta_k}(x_k) + \lambda_k I) p_k = -g_{\delta_k}(x_k) + r_k.$
- \rightarrow Resulting samples set size: $|X_{k+1}| = K_*^{n_k} |X_k|$.

Given the current sample set X_k , s.t. $|X_k| = K_k$.

Noise update

Given the step, check the noise: $\delta_k \leq \kappa_d \lambda_k^{\alpha} \| p_k^{LM} \|^2$? If not, repeat:

- **1** Increase the samples set size: $|X_{k+1}| = K_*|X_k|$.
- Recompute function, Jacobian and gradient.
- Need to check condition again \rightarrow Need to recompute the step: $(J_{\delta_k}(x_k)^T J_{\delta_k}(x_k) + \lambda_k I) p_k = -g_{\delta_k}(x_k) + r_k.$
- \rightarrow Resulting samples set size: $|X_{k+1}| = K_*^{n_k} |X_k|$.

Parameters affecting the cost

•
$$\delta_k \leq \kappa_d \lambda_k^{\alpha} \| p_k^{LM} \|^2$$
.

•
$$|X_{k+1}| = \frac{K_*^{n_k}}{|X_k|}.$$

P1: Data assimilation problem

Nonlinear wave equation:

$$\begin{aligned} \frac{\partial^2 u(z,t)}{\partial t^2} &- \frac{\partial^2 u(z,t)}{\partial z^2} + \mu e^{\nu u} = 0, \\ u(0,t) &= u(1,t) = 0, \\ u(z,0) &= u_0(z), \ \frac{\partial u(z,0)}{\partial t} = 0, \\ 0 &\le t \le T, \ 0 \le z \le 1. \end{aligned}$$

- We look for the initial state u₀(z), from the knowledge of observations u(z_i, t_j), t_j > 0.
- We consider a mesh involving n = 360 grid points for the spatial discretization and $N_t = 64$ for the temporal one.
- We assume to have an observation at each grid point: $N = n \times N_t = 23040.$

It is possible to recover $u_0(z)$ solving the following data assimilation problem:

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|x - x_b\|_{B^{-1}}^2 + \frac{1}{2} \sum_{j=0}^{N_t} \|H_j(x(t_j)) - y_j\|_{R_j^{-1}}^2$$

• $||x||_M^2 = x^T M x$ for a symmetric positive definite matrix M,

- $x_b \in \mathbb{R}^n$ is the background vector (a priori estimate)
- $y_j \in \mathbb{R}^{m_j}$ is the vector of observations at time t_j , $m_j \leq n$.
- H_i is the operator modelling the observation process at t_i
- $x(t_i)$ the state vector, solution of the nonlinear model at time t_i .

- Background vector and observations from a chosen initial true state by adding noise $N(0, \sigma_b^2)$ and $N(0, \sigma_o^2)$ with $\sigma_b = 0.2$, $\sigma_o = 0.05$.
- Covariances matrices are diagonal: $B = \sigma_b^2 I_n$ and $R_j = \sigma_o^2 I_{m_i} \forall j$.
- Least-squares problem reformulation:

$$F(x) = \begin{bmatrix} \frac{1}{\sigma_o}(H_0(x(t_0)) - y_0) \\ \vdots \\ \frac{1}{\sigma_o}(H_{N_t}(x(t_{N_t})) - y_{N_t}) \end{bmatrix}$$

where $(H_j(x(t_j)) - y_j) \in \mathbb{R}^{m_j}$ for $j = 1, \dots, N_t$.

- Background vector and observations from a chosen initial true state by adding noise $N(0, \sigma_b^2)$ and $N(0, \sigma_o^2)$ with $\sigma_b = 0.2$, $\sigma_o = 0.05$.
- Covariances matrices are diagonal: $B = \sigma_b^2 I_n$ and $R_j = \sigma_o^2 I_{m_i} \forall j$.
- Least-squares problem reformulation:

$$F(x) = \begin{bmatrix} \frac{1}{\sigma_o} (H_0(x(t_0)) - y_0) \\ \vdots \\ \frac{1}{\sigma_o} (H_{N_t}(x(t_{N_t})) - y_{N_t}) \end{bmatrix}$$

where $(H_j(x(t_j)) - y_j) \in \mathbb{R}^{m_j}$ for $j = 1, \dots, N_t$.

• Kept $K_* = 1.5$ fixed, we study the effect of κ_d .

P1: effect of κ_d

$K_0 = 2000$	FLM			SSLM		
$K_* = 1.5$		$\kappa_d = 1$	$\kappa_d = 10$	$\kappa_d = 100$	$\kappa_d = 1000$	$\kappa_d = 10000$
it	9	11	12	12	12	11
CG _{it}	2.4	5.4	4.9	4.2	4.2	3.9
cost _f	10	9.7	6.1	3.3	3.2	2.0
costp	67	46.1	26.8	14.9	13.5	10.3
X _{it}	23040	15188	6750	3000	3000	2000
RMSE	1.2e-2	3.0e-2	2.8e-2	3.8e-2	4.4e-2	7.8e-2
save _f		3%	39%	67%	68%	80%
savep		31%	60%	78%	80%	85%

Elisa Riccietti (IRIT - ENSEEIHT)

Binary classification problem: $\{(z^i, y^i)\}$ with $z^i \in \mathbb{R}^n$, $y^i \in \{-1, +1\}$ and i = 1, ..., N. Training objective function: logistic loss with l_2 regularization

$$f(x) = \frac{1}{2N} \sum_{i=1}^{N} \log(1 + \exp(-y^{i} x^{T} z^{i})) + \frac{1}{2N} ||x||^{2}$$

Least-squares form:

$$F(x) = \frac{1}{N} \begin{bmatrix} \sqrt{\log(1 + \exp(-y^{1}x^{T}z^{1}))} \\ \vdots \\ \sqrt{\log(1 + \exp(-y^{N}x^{T}z^{N}))} \end{bmatrix}$$

٠

Approximations to f are built as:

$$f_{\delta_k}(x) = rac{1}{2K_k} \sum_{i \in X_k} \log(1 + \exp(-y^i x^T z^i)) + rac{1}{2K_k} \|x\|^2.$$

We consider the **CINA dataset** [http://www.causality.inf.ethz.ch/data/ CINA.html], for which n = 132, N = 16033 for the training set, $\tilde{N} = 10000$ for the testing set.

Noise control condition parameters

• $K_0 = 132$.

- $\kappa_d = 10.$
- We study the effect of K_* .

	FLM			SSLM	SSLM			
		$K_* = 1.1$	$K_* = 1.5$	$K_{*} = 2$	$K_{*} = 2.5$	$K_{*} = 3$	$K_{*} = 3.5$	
it	52	82	43	38	39	34	53	
CG _{it}	5.7	8.5	8.0	7.5	7.3	7.2	5.5	
cost _f	53	19.8	14.1	15.9	21.2	16.5	37.7	
costp	808	671.2	351.3	316.7	400.7	310.4	521.1	
RMSE	6.0e-2	1.0e-1	6.6e-2	5.4e-2	4.7e-2	4.1e-2	3.9e-2	
save _f		63%	74%	70%	60%	69%	29%	
savep		17%	56%	61%	50%	62%	35%	

15

Elisa Riccietti (IRIT - ENSEEIHT)

For more details:

A Levenberg-Marquardt method for large nonlinear least-squares problems with dynamic accuracy in functions and gradients, Stefania Bellavia, Serge Gratton, Elisa Riccietti, under review in Numerische Mathematik

THANK YOU FOR YOUR ATTENTION!