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Large scale problems with noisy function and noisy gradient

Let us consider the following nonlinear least squares problem:

min
x∈Rn

f (x) =
1

2
‖F (x)‖2

where F : Rn → RN with N ≥ n, continuously differentiable.

Noisy function and noisy gradients

We are interested in large scale problems for which either:

exact values for the function and the gradient are not available,

computing exact values is computationally demanding.
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Function approximations

We want to rely on cheap approximations fδ to f of known accuracy.

We consider an iterative process that employs a sequence of
approximations {fδk} and at each iteration k considers an
approximated problem:

min
x∈Rn

fδk (x) =
1

2
‖Fδk (x)‖2, Fδk ∼ F

δk is the accuracy level of the approximations:

|fδk (xk)− f (xk)| ≤ δk .

We assume that the accuracy level can be improved along the
optimization process: δk ↘ 0.

Notations

Jδk approximation to the Jacobian matrix J of F ,

gδk approximation to the gradient g of f .
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Typical applications

Subsampling techniques

Machine learning, Data assimilation.

Large set of data at disposal: {1, . . . ,N}.
Subsampling: Xk ⊆ {1, . . . ,N} such that |Xk | = Kk ≤ N is selected.

Fδk : Rn → RKk such that (Fδk )i = Fj , j ∈ Xk is built.

fδk (x) = 1
2‖Fδk (x)‖2

approximation can be improved by considering more observations.

Iterative methods

f is the result of an iterative process (solution of a nonlinear equation
or an inversion process) that can be stopped when a certain accuracy
level is reached.

By varying the stopping criterion we vary the accuracy of the
approximation.
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We propose a Levenberg-Marquardt method.

Algorithm : k-th iteration

1 Step computation: define the LM model

min
p∈Rn

mk(xk + p) =
1

2
‖Fδk (xk) + Jδk (xk)p‖2 +

1

2
λk‖p‖2,

and compute the step pLMk .

2 Check the noise level. If noise is too high reduce it.

3 Step acceptance is based on ρδkk (pLMk ) =
fδk−1

(xk )−fδk (xk+pLMk )

mk (xk )−mk (xk+pLMk )
.

4 Regularization parameter update.
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1) The step

The step is the solution of the linearized least squares subproblem:

min
p∈Rn

mk(xk + p) =
1

2
‖Fδk (xk) + Jδk (xk)p‖2 +

1

2
λk‖p‖2,

where λk > 0 is an appropriately chosen regularization parameter.

This is equivalent to:

(Jδk (xk)T Jδk (xk) + λk I )pk = −gδk (xk)

+rk .

Large scale problems: an inexact step is computed.

For a residual, ‖rk‖ ≤ εk‖gδk‖ with εk small enough, the step
achieves the Cauchy decrease:

mk(xk)−mk(xk + p) ≥ θ

2

‖gδk (xk)‖2

‖Jδk (xk)‖2 + λk
, θ > 0.

which is sufficient to get global convergence.
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2) Noise control

Assumption

1 It exists K̄ > 0 and δk ≥ 0, such that:

|fδk (xk)− f (xk)| =

∣∣∣∣12‖Fδk (xk)‖2 − 1

2
‖F (xk)‖2

∣∣∣∣ ≤ δk ,
‖g(xk)− gδk (xk)‖ ≤ K̄δk .

2 It is possible to drive δk to zero.

The optimization process starts with a given initial noise level δ = δ0.

Noise control: our method relies on a mechanism to control the
noise: at each iteration the noise is measured and reduced if it is
judged to be too large.
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2) Noise control

Given the noise level δk , in [Trust region methods, Conn, Gould,
Toint] this condition is used:

δk ≤ η0[mk(xk)−mk(xk + pLMk )],

with η0 appropriately chosen, to ensure a true reduction in the
noise-free objective function f .

mk(xk)−mk(xk + pLMk ) = O(λk‖pLMk ‖2).

Noise control:
δk ≤ κdλαk ‖pLMk ‖2,

for suitable constants κd > 0 and α ∈
[

1
2 , 1
)
.

The noise tends to zero:

lim
k→∞

λk‖pLMk ‖2 = 0.
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3) Step acceptance

Step acceptance based on ratio between actual and predicted reduction:

ρδkk (pLMk ) =
fδk−1

(xk)− fδk (xk + pLMk )

mk(xk)−mk(xk + pLMk )
.

Given 0 < η1 < 1.

1 If ρδkk (pLMk ) ≥ η1, accept the step: xk+1 = xk + pLMk ,

2 Otherwise reject the step: xk+1 = xk .
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4) Parameter update

The parameter update is inspired by [Bergou, Gratton, Vicente, 2016] and
[Bandeira, Scheinberg, Vicente, 2014].
Given γ > 1

Successful step:

λk+1 =

{
min{γλk , λmax} if ‖gδk (xk)‖ < η2/λk ,
λk if ‖gδk (xk)‖ ≥ η2/λk .

Unsuccessful step:
λk+1 = γλk .

We increase the parameter even in case of successful iterations.

‖g(xk )‖
(1+ck ) ≤ ‖gδk (xk)‖ ≤ ‖g(xk )‖

(1−ck ) , with ck = O

(
1

λ
1−α/2
k

)
.
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Theoretical results

Assumptions

Assumption 1:
Function f is continuously differentiable, and it exists κJ > 0 such
that for all k ≥ 0 and all x ∈ [xk , xk + pLMk ], ‖Jδk (x)‖ ≤ κJ .

Assumption 2: f has Lipschitz continuous gradient:
‖g(x)− g(y)‖ ≤ L‖x − y‖ for all x , y ∈ Rn.
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Global Convergence

Let the residual be small enough, i.e. rk satisfies ‖rk‖ ≤ εk‖gδk‖, with

εk ≤ min

{
θ1

λαk
,

√
θ2

λk
‖Jδk (xk)‖2 + λk

}

where θ1 > 0, θ2 ∈
(
0, 1

2

]
and α ∈

[
1
2 , 1
)
.

Lemma

The sequences {δk} and {xk} generated by the Algorithm are such that

lim
k→∞

δk = 0, lim
k→∞

‖g(xk)‖ = 0.
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Local convergence

Asymptotic step behaviour

The LM step asymptotically tends to the direction of the negative
perturbed gradient:

lim
k→∞

(pLMk )i +
θ

κ2
J + λk

(gδk (xk))i = 0 for i = 1, . . . , n,

where (·)i denotes the i-th vector component.

Lemma

Let pSDk = − θ
κ2
J+λk

gδk (xk) and xk+1 = xk + pSDk . If xk̄ ∈ Br (x∗) and λk̄
big enough,

‖xk+1 − x∗‖ < ‖xk − x∗‖, for all k ≥ k̄ .

‖xk − x∗‖ tends to zero.
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Complexity analysis

Assumption

Let assume that the procedure is stopped when ‖gδk (xk)‖ ≤ ε.

The number of successful iterations N1 is bounded above by:

N1 ≤ fδks−1
(xks )

2

η1

κ2
J + λmax

θε2
= O(ε−2).

The number of unsuccessful iterations N3 is bounded above by a
constant independent of ε:

N3 ≤
log λmax

λ0

log γ
.

Complexity

Standard Levenberg-Marquardt methods complexity is preserved:

NT = O(ε−2),
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Numerical Results

Test problems

We consider two problems of the form

min
x∈Rn

f (x) =
1

2
‖F (x)‖2 +

1

2
‖x‖2 =

N∑
j=1

Fj(x)2 +
1

2
‖x‖2,

with Fj : Rn → R, for j = 1, . . . ,N, N total number of samples.

P1: Data assimilation problem

P2: Machine learning problem
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Approximations

Function approximations are built by means of a random subsampling.

Jδk (x) ∈ RKk×n is the Jacobian matrix of Fδk (x).

gδk ∈ Rn the gradient of fδk .

Linear algebra phase

CGLS method.

‖rk‖ ≤ εk‖gδk (xk)‖, εk ∼ 10−1.
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Performance evaluation criteria

We compare subsampled Levenberg-Marquardt method (SSLM) and full
Levenberg-Marquardt method (FLM) (Kk = N,∀k).

Cost counters

We evaluate savings arising from the employment of the noise control
strategy.

costf weighted counter of function evaluations costs
(if |Xk | = N cost=1, if |Xk | = Kk cost=Kk/N.) → savef savings in
function evaluations.

costp weighted counter of products costs
(if |Xk | = N cost=1, if |Xk | = Kk cost=Kk/N.) → savep savings in
products.
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Given the current sample set Xk , s.t. |Xk | = Kk .

Noise update

Given the step, check the noise: δk ≤ κdλαk ‖pLMk ‖2?
If not, repeat:

1 Increase the samples set size: |Xk+1| = K∗|Xk |.
2 Recompute function, Jacobian and gradient.

3 Need to check condition again → Need to recompute the step:
(Jδk (xk)T Jδk (xk) + λk I )pk = −gδk (xk) + rk .

→ Resulting samples set size: |Xk+1| = Knk
∗ |Xk |.

Parameters affecting the cost

δk ≤ κdλαk ‖pLMk ‖2.

|Xk+1| = Knk
∗ |Xk |.
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P1: Data assimilation problem

Nonlinear wave equation:

∂2u(z , t)

∂t2
− ∂2u(z , t)

∂z2
+ µeνu = 0,

u(0, t) = u(1, t) = 0,

u(z , 0) = u0(z),
∂u(z , 0)

∂t
= 0,

0 ≤ t ≤ T , 0 ≤ z ≤ 1.

We look for the initial state u0(z), from the knowledge of
observations u(zi , tj), tj > 0.

We consider a mesh involving n = 360 grid points for the spatial
discretization and Nt = 64 for the temporal one.

We assume to have an observation at each grid point:
N = n × Nt = 23040.
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P1: Data assimilation problem

It is possible to recover u0(z) solving the following data assimilation
problem:

min
x∈Rn

1

2
‖x − xb‖2

B−1 +
1

2

Nt∑
j=0

‖Hj(x(tj))− yj‖2
R−1
j

‖x‖2
M = xTMx for a symmetric positive definite matrix M,

xb ∈ Rn is the background vector (a priori estimate)

yj ∈ Rmj is the vector of observations at time tj , mj ≤ n.

Hj is the operator modelling the observation process at tj

x(tj) the state vector, solution of the nonlinear model at time tj .
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P1: Data assimilation problem

Background vector and observations from a chosen initial true state
by adding noise N(0, σ2

b) and N(0, σ2
o) with σb = 0.2, σo = 0.05.

Covariances matrices are diagonal: B = σ2
bIn and Rj = σ2

o Imj ∀j .
Least-squares problem reformulation:

F (x) =


1
σo

(H0(x(t0))− y0)
...

1
σo

(HNt (x(tNt ))− yNt )


where (Hj(x(tj))− yj) ∈ Rmj for j = 1, . . . ,Nt .

Kept K∗ = 1.5 fixed, we study the effect of κd .
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P1: effect of κd

K0 = 2000 FLM SSLM
K∗ = 1.5 κd = 1 κd = 10 κd = 100 κd = 1000 κd = 10000
it 9 11 12 12 12 11
CGit 2.4 5.4 4.9 4.2 4.2 3.9
costf 10 9.7 6.1 3.3 3.2 2.0
costp 67 46.1 26.8 14.9 13.5 10.3
|Xit| 23040 15188 6750 3000 3000 2000
RMSE 1.2e-2 3.0e-2 2.8e-2 3.8e-2 4.4e-2 7.8e-2
savef 3% 39% 67% 68% 80%
savep 31% 60% 78% 80% 85%
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P2: Machine learning problem

Binary classification problem: {(z i , y i )} with z i ∈ Rn, y i ∈ {−1,+1}
and i = 1, . . . ,N.
Training objective function: logistic loss with l2 regularization

f (x) =
1

2N

N∑
i=1

log(1 + exp(−y ixT z i )) +
1

2N
‖x‖2.

Least-squares form:

F (x) =
1

N


√

log(1 + exp(−y1xT z1))
...√

log(1 + exp(−yNxT zN))

 .
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P2: machine learning problem

Approximations to f are built as:

fδk (x) =
1

2Kk

∑
i∈Xk

log(1 + exp(−y ixT z i )) +
1

2Kk
‖x‖2.

We consider the CINA dataset [http://www.causality.inf.ethz.ch/data/
CINA.html], for which n = 132, N = 16033 for the training set,
Ñ = 10000 for the testing set.

Noise control condition parameters

K0 = 132.

κd = 10.

We study the effect of K∗.
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FLM SSLM
K∗ = 1.1 K∗ = 1.5 K∗ = 2 K∗ = 2.5 K∗ = 3 K∗ = 3.5

it 52 82 43 38 39 34 53
CGit 5.7 8.5 8.0 7.5 7.3 7.2 5.5
costf 53 19.8 14.1 15.9 21.2 16.5 37.7
costp 808 671.2 351.3 316.7 400.7 310.4 521.1
RMSE 6.0e-2 1.0e-1 6.6e-2 5.4e-2 4.7e-2 4.1e-2 3.9e-2
savef 63% 74% 70% 60% 69% 29%
savep 17% 56% 61% 50% 62% 35%
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For more details:
A Levenberg-Marquardt method for large nonlinear least-squares problems with dynamic

accuracy in functions and gradients, Stefania Bellavia, Serge Gratton, Elisa Riccietti,

under review in Numerische Mathematik
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