
High-order multilevel optimization strategies and
their application to the training of artificial neural

networks

E. Riccietti (IRIT-INP, Toulouse)

Joint work with: H. Calandra (Total)
S. Gratton (IRIT-INP, Toulouse)

X. Vasseur (ISAE-SUPAERO, Toulouse)

Manchester- 6 November 2018



Multilevel optimization methods

Context

We consider large-scale nonlinear unconstrained optimization
problems:

min
x

f (x)

Classical iterative optimization methods:

f (xk + s) ≃ Tq(xk , s)

with Tq(xk , s) Taylor model of order q. At each iteration we
compute a step sk to update the iterate:

min
s

mk(xk , s) = Tq(xk , s) +
λk
q + 1

∥s∥q+1, λk > 0

2 / 33



Multilevel optimization methods

Context

We consider large-scale nonlinear unconstrained optimization
problems:

min
x

f (x)

Classical iterative optimization methods:

f (xk + s) ≃ Tq(xk , s)

with Tq(xk , s) Taylor model of order q. At each iteration we
compute a step sk to update the iterate:

min
s

mk(xk , s) = Tq(xk , s) +
λk
q + 1

∥s∥q+1, λk > 0

2 / 33



Multilevel optimization methods

Classical choices

Least-squares, f = ∥F ∥2: Levenberg-Marquardt (LM), q = 1,
T1(xk , s) = f (xk) + sT∇f (xk) + 1

2s
TBks,

∇2f (xk) ∼ Bk = J(xk)T J(xk), J Jacobian matrix of F

Adaptive Cubic Regularization method (ARC), q = 2.
T2(xk , s) = f (xk) + sT∇f (xk) + 1

2s
T∇2f (xk)s

C.Cartis, N. Gould, Ph. Toint, Adaptive cubic
regularisation methods for unconstrained optimization,
2009

3 / 33



Multilevel optimization methods

Extension to higher-order methods (q > 2)

Worst-case evaluation complexity for unconstrained nonlinear
optimization using high-order regularized models, E. G. Birgin,
J. L. Gardenghi, J. M. Martnez, S. A. Santos and Ph. L. Toint,
2017

Unifying framework for global convergence and worst-case
complexity is presented.

, better complexity
/ needs higher-order derivatives, model is expensive to minimize

4 / 33



Multilevel optimization methods

Subproblem solution

Solving

min
s

Tq(xk , s) +
λk
q + 1

∥s∥q+1

represents greatest cost per iteration, which depends on the size of
the problem.

⇓

Multilevel trust region method, Gratton, Sartenaer, Toint,
2008

Hierarchy of problems

{fl(xl)}, xl ∈ Dl

∣Dl ∣ < ∣Dl+1∣
fl is cheaper to optimize compared to fl+1

5 / 33



Multilevel optimization methods

Our contributions

E. G. Birgin, J. L. Gardenghi, J. M. Martinez, S. A. Santos
and Ph. L. Toint, 2017

one level methods: non-scalable

Gratton, Sartenaer, Toint, 2008

method for second order models
used just for problems with a geometrical structure

⇓
We propose a family of scalable multilevel methods using

high-order models.

Part I: multilevel extension of iterative high-order optimization
methods
Part II: use of the multilevel methods for the training of
artificial neural network (no underlying geometry)

6 / 33



Multilevel optimization methods

Our contributions

E. G. Birgin, J. L. Gardenghi, J. M. Martinez, S. A. Santos
and Ph. L. Toint, 2017

one level methods: non-scalable

Gratton, Sartenaer, Toint, 2008

method for second order models
used just for problems with a geometrical structure

⇓
We propose a family of scalable multilevel methods using

high-order models.

Part I: multilevel extension of iterative high-order optimization
methods

Part II: use of the multilevel methods for the training of
artificial neural network (no underlying geometry)

6 / 33



Multilevel optimization methods

Our contributions

E. G. Birgin, J. L. Gardenghi, J. M. Martinez, S. A. Santos
and Ph. L. Toint, 2017

one level methods: non-scalable

Gratton, Sartenaer, Toint, 2008

method for second order models
used just for problems with a geometrical structure

⇓
We propose a family of scalable multilevel methods using

high-order models.

Part I: multilevel extension of iterative high-order optimization
methods
Part II: use of the multilevel methods for the training of
artificial neural network (no underlying geometry)

6 / 33



Multilevel optimization methods

High-order multilevel optimization methods

Part I

1 Multilevel extension of iterative high-order optimization
methods

7 / 33



Multilevel optimization methods

High-order multilevel optimization methods

Multilevel setting

At each level l , x ∈ Rnl . lmax finest level, 0 coarsest level.

level lmax Rn x lmax f lmax = f µlmax = f
⋮ ⋮ ⋮ ⋮

level l + 1 Rnl+1 x l+1 f l+1 µl+1

R l+1 ⇓ ⇑ P l+1

level l Rnl x l f l µl

⋮ ⋮ ⋮ ⋮
level 0 Rn0 x0 f 0 µ0

f l represents f on the coarse spaces (it is e.g. the
discretization of f on a coarse space)

The functions µl are modifications of the f l to ensure
inter-level coherence.

8 / 33



Multilevel optimization methods

High-order multilevel optimization methods

Coherence between levels, q = 1

Lower level model:

Let x l−1
0 = Rx lk . Model with first order correction:

µl−1 = T l−1
q (x l−1

0 , s l−1) + (R l∇f l(x lk) −∇f l−1(x l−1
k ))T s l−1

This ensures that

∇µl−1(x l−1
0 ) = R l∇f l(x lk)

→ first-order behaviours of f l and µl−1 are coherent in a
neighbourhood of the current approximation. If s l = P ls l−1

∇f l(x lk)T s l = ∇f l(x lk)TP ls l−1 = ∇µl−1(x l−1
0 )T s l−1.

9 / 33



Multilevel optimization methods

High-order multilevel optimization methods

Coherence between levels

Lower level model: Let x l−1
0 = Rx lk . We define µl−1

q,k as

µl−1
q,k(x l−1

0,k + s l−1) = T l−1
q (x l−1

0,k + s l−1)+
q

∑
i=1

1

i !
[(∇i f l ⊗R ⊗ ⋅ ⋅ ⋅ ⊗ R

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i times

)(x lk) −∇i f l−1(x l−1
0,k )] (s l−1, . . . , s l−1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i times

.

It holds: ∇iµl−1
q,k(x l−1

0,k ) = (∇i f l ⊗R ⊗ ⋅ ⋅ ⋅ ⊗ R
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i times

)(x lk), i = 1, . . . ,q.

→ behaviours of f l and µl−1 are coherent up to order q in a
neighbourhood of the current approximation.

∇i f l(x lk ,

i times
³¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
s l , . . . , s l) = ∇i f l(x lk ,Ps l−1, . . . ,Ps l−1) =

(∇i f l ⊗R ⊗ ⋅ ⋅ ⋅ ⊗ R
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i times

)(x lk , s l−1, . . . , s l−1) = ∇iml−1
q,k (x l−1

0,k , s
l−1, . . . , s l−1).

10 / 33



Multilevel optimization methods

High-order multilevel optimization methods

One level strategy

At level l = 1, let x lk be the current approximation. We look for a
correction s lk to define the new approximation x lk+1 = x lk + s lk .

x lk

x lk+1 = x lk + s lk

T l
q

11 / 33



Multilevel optimization methods

High-order multilevel optimization methods

One level strategy

At level l = 1, let x lk be the current approximation. We look for a
correction s lk to define the new approximation x lk+1 = x lk + s lk .

x lk x lk+1 = x lk + s lk

T l
q

11 / 33



Multilevel optimization methods

High-order multilevel optimization methods

Multilevel strategy

Two choices:

1 minimize regularized Taylor model, get s lk ,

2 choose lower level model µl−1:

x lk

x lk+1 = x lk + s lk

T l
q

12 / 33



Multilevel optimization methods

High-order multilevel optimization methods

Multilevel strategy

Two choices:

1 minimize regularized Taylor model, get s lk ,

2 choose lower level model µl−1:

x lk x lk+1 = x lk + s lk

T l
q

12 / 33



Multilevel optimization methods

High-order multilevel optimization methods

Multilevel strategy

Two choices:

1 minimize regularized Taylor model, get s lk ,

2 choose lower level model µl−1: if ∥R∇f l(x lk)∥ ≥ κ∥∇f l(x lk)∥

x lk

R lx lk ∶= x l−1
0

R l

x l−1∗
µl−1

x lk+1 = x lk + s lk

s lk = P l(x l−1∗ − x l−1
0 )

13 / 33



Multilevel optimization methods

High-order multilevel optimization methods

Multilevel strategy

Two choices:

1 minimize regularized Taylor model, get s lk ,

2 choose lower level model µl−1: if ∥R∇f l(x lk)∥ ≥ κ∥∇f l(x lk)∥

x lk

R lx lk ∶= x l−1
0

R l

x l−1∗
µl−1

x lk+1 = x lk + s lk

s lk = P l(x l−1∗ − x l−1
0 )

13 / 33



Multilevel optimization methods

High-order multilevel optimization methods

Multilevel strategy

Two choices:

1 minimize regularized Taylor model, get s lk ,

2 choose lower level model µl−1: if ∥R∇f l(x lk)∥ ≥ κ∥∇f l(x lk)∥

x lk

R lx lk ∶= x l−1
0

R l

x l−1∗
µl−1

x lk+1 = x lk + s lk

s lk = P l(x l−1∗ − x l−1
0 )

13 / 33



Multilevel optimization methods

High-order multilevel optimization methods

Multilevel strategy

Two choices:

1 minimize regularized Taylor model, get s lk ,

2 choose lower level model µl−1: if ∥R∇f l(x lk)∥ ≥ κ∥∇f l(x lk)∥

x lk

R lx lk ∶= x l−1
0

R l

x l−1∗
µl−1

x lk+1 = x lk + s lk

s lk = P l(x l−1∗ − x l−1
0 )

13 / 33



Multilevel optimization methods

High-order multilevel optimization methods

Multilevel strategy

Two choices:

1 minimize regularized Taylor model, get s lk ,

2 choose lower level model µl−1: if ∥R∇f l(x lk)∥ ≥ κ∥∇f l(x lk)∥

x lk

R lx lk ∶= x l−1
0

R l

x l−1∗
µl−1

x lk+1 = x lk + s lk

s lk = P l(x l−1∗ − x l−1
0 )

The lower level model is cheaper to optimize.

The procedure is recursive: more levels can be used.

14 / 33



Multilevel optimization methods

High-order multilevel optimization methods

Theoretical results: global convergence

Assumption

Let us assume that for all l the q-th derivative tensors of f l are
Lipschitz continuous.

Theorem

Let Assumption hold. Assume that the number of fine steps taken
is not smaller than the number of lower level steps taken. Then,
the sequence of iterates generated by the algorithm converges
globally to a first-order stationary point.

E. G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and
Ph. L. Toint, 2017: generalized to multilevel framework

Gratton, Sartenaer, Toint, 2008: extended to higher-order
models and simplified

15 / 33



Multilevel optimization methods

High-order multilevel optimization methods

Theoretical results: global convergence

Assumption

Let us assume that for all l the q-th derivative tensors of f l are
Lipschitz continuous.

Theorem

Let Assumption hold. Assume that the number of fine steps taken
is not smaller than the number of lower level steps taken. Then,
the sequence of iterates generated by the algorithm converges
globally to a first-order stationary point.

E. G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and
Ph. L. Toint, 2017: generalized to multilevel framework

Gratton, Sartenaer, Toint, 2008: extended to higher-order
models and simplified

15 / 33



Multilevel optimization methods

High-order multilevel optimization methods

Theoretical results: complexity

Theorem

Let Assumption hold. Let flow be a lower bound on f . Then, the
method requires at most

K3
(f (xk1) − flow)

ε
q+1
q

⎛
⎝

1 + ∣log γ1∣
log γ3

⎞
⎠
+ 1

log γ3
log (λmax

λ0
)

iterations to achieve an iterate xk such that ∥∇f (xk)∥ ≤ ε, where

K3 ∶=
q + 1

η1λmin
max{K 1/q

1 ,K
1/q
2 }.

k = O(ε
q+1
q ) Complexity of standard method is maintained

16 / 33



Multilevel optimization methods

High-order multilevel optimization methods

Theoretical results: complexity

Theorem

Let Assumption hold. Let flow be a lower bound on f . Then, the
method requires at most

K3
(f (xk1) − flow)

ε
q+1
q

⎛
⎝

1 + ∣log γ1∣
log γ3

⎞
⎠
+ 1

log γ3
log (λmax

λ0
)

iterations to achieve an iterate xk such that ∥∇f (xk)∥ ≤ ε, where

K3 ∶=
q + 1

η1λmin
max{K 1/q

1 ,K
1/q
2 }.

k = O(ε
q+1
q ) Complexity of standard method is maintained

16 / 33



Multilevel optimization methods

Artificial neural networks

Part II

1 Use of the multilevel methods for the training of artificial
neural networks

2 Application to the solution of PDEs

17 / 33



Multilevel optimization methods

Artificial neural networks

Artificial neural networks

Iz → σ

b3

σ

b4

σ

b5

σ

b2

σ

b1

+
d

→ ĝ(p, z) = ∑
r
i=1 viσ(wiz + bi) + d

z ∈ R,
p = [v ,w ,b,d]T

ĝ(p, z) ∼ g(z)

Input
layer

Hidden
layer

Output
layer

Activation funct. σ,
sigmoid: σ(z) = ez−1

ez+1 ,

tanh: σ(z) = e2z−1
e2z+1

,

logit: σ(z) = ez

ez+1 , soft-
plus: σ(z) = log(ez+1).

w2

w 1

w3

w
4

w
5

v2

v
1

v3

v4

v 5

18 / 33



Multilevel optimization methods

Artificial neural networks

Exploit multilevel method for training of ANNs

Training problem:

min
p
L(p, z) = F(ĝ(p, z) − g(z)), z ∈ T

ĝ(p, z) =
r

∑
i=1

viσ(wiz + bi) + d

where L is the loss function, T training set.

Large-scale problem: can we exploit multilevel methods for the
training?

How to build the coarse problem? The variables to be
optimized are the network’s weights:
NO evident geometrical structure to exploit!

The network possesses a purely algebraic structure: can we
exploit it?

19 / 33



Multilevel optimization methods

Artificial neural networks

Exploit multilevel method for training of ANNs

Training problem:

min
p
L(p, z) = F(ĝ(p, z) − g(z)), z ∈ T

ĝ(p, z) =
r

∑
i=1

viσ(wiz + bi) + d

where L is the loss function, T training set.

Large-scale problem: can we exploit multilevel methods for the
training?

How to build the coarse problem? The variables to be
optimized are the network’s weights:
NO evident geometrical structure to exploit!

The network possesses a purely algebraic structure: can we
exploit it?

19 / 33



Multilevel optimization methods

Artificial neural networks

Exploit multilevel method for training of ANNs

Training problem:

min
p
L(p, z) = F(ĝ(p, z) − g(z)), z ∈ T

ĝ(p, z) =
r

∑
i=1

viσ(wiz + bi) + d

where L is the loss function, T training set.

Large-scale problem: can we exploit multilevel methods for the
training?

How to build the coarse problem? The variables to be
optimized are the network’s weights:
NO evident geometrical structure to exploit!

The network possesses a purely algebraic structure: can we
exploit it?

19 / 33



Multilevel optimization methods

Artificial neural networks

Exploit multilevel method for training of ANNs

Training problem:

min
p
L(p, z) = F(ĝ(p, z) − g(z)), z ∈ T

ĝ(p, z) =
r

∑
i=1

viσ(wiz + bi) + d

where L is the loss function, T training set.

Large-scale problem: can we exploit multilevel methods for the
training?

How to build the coarse problem? The variables to be
optimized are the network’s weights:
NO evident geometrical structure to exploit!

The network possesses a purely algebraic structure: can we
exploit it?

19 / 33



Multilevel optimization methods

Artificial neural networks

Exploit multilevel method for training of ANNs

Iz → σ

b3

σ

b4

σ

b5

σ

b2

σ

b1

+
dw2

w 1

w3

w
4

w
5

v2

v
1

v3

v4
v 5

F1 ∶ R3r1 → R
ĝ(p, z) = ∑i∈I1 viσ(wiz + bi) + d
∣I1∣ = r1

R1 ⇓ P1 ⇑

Iz → σ

b3

σ

b4

σ

b1

+
d

w 1

w3

w
4

v
1

v3

v4

F2 ∶ R3r2 → R
ĝ(p, z) = ∑i∈I2 viσ(wiz + bi) + d
I2 ⊂ I1, ∣I2∣ = r2 < r1

R2 ⇓ P2 ⇑

Iz → σ

b3

σ

b1

+
d

w3

w 1

v3

v
1

F3 ∶ R3r3 → R
ĝ(p, z) = ∑i∈I3 viσ(wiz + bi) + d
I3 ⊂ I2, ∣I3∣ = r3 < r2

20 / 33



Multilevel optimization methods

Artificial neural networks

How do we select the hierarchy of variables?

Algebraic multigrid: C/F splitting

Ruge and Stueben C/F splitting for Ax = b

Two variables i , j are said to be coupled if ai ,j ≠ 0.

We say that a variable i is strongly coupled to another
variable j , if −ai ,j ≥ εmaxai,k<0∣ai ,k ∣ for a fixed 0 < ε < 1,
usually ε = 0.25.

Prolongation-Restriction operators

P = [I ; ∆], R = PT .

21 / 33



Multilevel optimization methods

Artificial neural networks

Which matrix should we use?

Assume to use a second-order model.
At each iteration we have to solve a linear system of the form:

(Bk + λ̃k I )s = −∇f (xk), λ̃k > 0.

As in AMG for linear systems, we use information contained in
matrix Bk .

22 / 33



Multilevel optimization methods

Artificial neural networks

Which matrix should we use?

Remark
Variables are
coupled!
{wi ,bi , vi}

Iz → σ

b3

σ

b4

σ

b5

σ

b2

σ

b1

+
dw2

w 1

w
4

w
5

v2

v3

v4

v 5

We do not use the full matrix Bk and we define A as:

Bk =
⎡⎢⎢⎢⎢⎢⎣

fv ,v .. ..
.. fw ,w ..
.. .. fb,b

⎤⎥⎥⎥⎥⎥⎦
→ A = fv ,v

∥fv ,v∥∞
+ fw ,w

∥fw ,w∥∞
+ fb,b

∥fb,b∥∞

We define the coarse/fine splitting based on the auxiliary matrix A.

23 / 33



Multilevel optimization methods

Artificial neural networks

Application: solution of PDEs

Approximate the solution u(z) of a PDE:

D(z ,u(z)) = g(z), z ∈ (a,b);

u(a) = A, u(b) = B.

We approximate the solution of the PDE with a neural network:

u(z) ∼ û(p, z), p ∈ Rn

Iz → σ

b3

σ

b4

σ

b5

σ

b2

σ

b1

+
d

→ û(p, z) = ∑r
i=1 viσ(wiz + bi) + d

p = [v ,w ,b,d]T

w2

w 1

w3

w
4

w
5

v2

v
1

v3

v4

v 5

24 / 33



Multilevel optimization methods

Artificial neural networks

Application: solution of PDEs

We select a training set T s.t. ∣T ∣ = t:

z = [z1, . . . , zt]T , a ≤ z1 < ⋅ ⋅ ⋅ < zt ≤ b

We define

L(p, z) = 1

2t
(∥D(z , û(z))−g(z)∥2+λp(∥û(a)−A∥2+∥û(b)−B∥2))

for û(z) ∈ Rt .

Advantages

No need of discretization: we get an analytical expression of
the solution, with good generalization properties (also for
points outside the interval)

We can solve also nonlinear equations, or equations with
highly-nonlinear solution

25 / 33



Multilevel optimization methods

Artificial neural networks

Choice of the true solution

D(z ,u(z)) = g(z), z ∈ (a,b);

We choose g to have true solution uT (z , ν) depending on ν

Remark

As ν increases the function becomes more oscillatory and it is
harder to approximate.

The size of the problem increases with the number of nodes.

T : equispaced points in (0,1) with h = 1
3ν (Shannon’s

criterion).

Least-squares problem → multi-level Levenberg-Marquardt method

26 / 33



Multilevel optimization methods

Artificial neural networks

Preliminary results: Poisson’s equation 10 runs

1D ν = 20 r = 29 ν = 25 r = 210

Solver iter RMSE save iter RMSE save

LM 869 1.e-4 1439 1.e-3
MLM 507 1.e-4 1.1-2.6-4.3 1325 1.e-3 1.2-1.7-2.8

Table: 1D Poisson’s equation, uT (z , ν) = cos(νz), 10 runs

2D ν = 5 r = 210 ν = 6 r = 211

Solver iter RMSE save iter RMSE save

LM 633 1.e-3 1213 1.e-3
MLM 643 1.e-3 1.1-1.5-2.1 1016 1.e-3 1.2-1.9-2.4

Table: 2D Poisson’s equation, uT (z , ν) = cos(νz), 10 runs

save(min,average,max)=ratio between total number of flops required for

matrix-vector products 27 / 33



Multilevel optimization methods

Artificial neural networks

Helmholtz’s equation, 10 runs

ν = 5 r = 210

Solver iter RMSE save

LM 1159 1.e-3
MLM 1250 1.e-3 1.2-1.9-3.1

Table: Helmholtz’s equations. ∆u(z) + ν2u(z) = 0 ,
uT (z , ν) = sin(νz) + cos(νz)

save=ratio between total number of flops required for
matrix-vector products

28 / 33



Multilevel optimization methods

Artificial neural networks

Conclusions

Theoretical contribution: We have presented a class of
multilevel high-order methods for optimization and proved
their global convergence and complexity.

Practical contribution: We have got further insight on the
methods proposing a AMG strategy to build coarse
representations of the problem to use some methods in the
family for the training of artificial neural networks.

29 / 33



Multilevel optimization methods

Artificial neural networks

Future work 1: Extend the method to multilayer
networks.

Extend the method as it is: use a sparse network.

Iz → σ

b3

σ

b4

σ

b5

σ

b2

σ

b1

σ

c3

σ

c4

σ

c5

σ

c2

σ

c1

+
dw2

w 1

w3

w
4

w
5

v2

v
1

v3

v4

v 5

30 / 33



Multilevel optimization methods

Artificial neural networks

Future work 1: Extend the method to multilayer
networks.

Extend the method as it is: use a sparse network.

Change strategy to build coarse problems: compress variables
in a layer to exploit the structure of the multilayer network.

Iz → σ

b3

σ

b4

σ

b5

σ

b2

σ

b1

σ

c3

σ

c4

σ

c5

σ

c2

σ

c1

+
d

Iz → σ

b3

σ

b4

σ

b5

σ

b2

σ

b1

σ +
dw2

w 1

w3

w
4

w
5

w2

w 1

w3

w
4

w
5

v

v2

v
1

v3

v4

v 5

31 / 33



Multilevel optimization methods

Artificial neural networks

Future work 2: Hessian-free method

Make it a competitive training method: method needs to
compute and store the Hessian matrix (for step computation
and to build transfer operators): too expensive for large-scale
problems.

Hessian complete calculation needed just once (first iteration)
to compute R and P.

32 / 33



Multilevel optimization methods

Artificial neural networks

Thank you for your attention!

For more details:

On high-order multilevel optimization strategies and their
application to the training of artificial neural networks

33 / 33



Multilevel optimization methods

Artificial neural networks

Prolongation operator

xhi = (PxH)i =
⎧⎪⎪⎨⎪⎪⎩

xHi if i ∈ C ,
∑k∈Pi

δi ,kx
H
k if i ∈ F ,

with

δi ,k =
⎧⎪⎪⎨⎪⎪⎩

−αiai ,k/ai ,i if k ∈ P−
i ,

−βiai ,k/ai ,i if k ∈ P+
i ,

αi =
∑j∈Ni

a−i ,j
∑k∈Pi

a−i ,k
, βi =

∑j∈Ni
a+i ,j

∑k∈Pi
a+i ,k

,

where a+i ,j = max{ai ,j ,0}, a−i ,j = min{ai ,j ,0}, Ni is the set of
variables connected to i (i.e. all j such that ai ,j ≠ 0), Pi the set of
coarse variables strongly connected to i , which is partitioned in P−

i

(negative couplings) and P+
i (positive couplings). The

interpolation operator, assuming to have regrouped and ordered
the variables to have all those corresponding to indexes in C at the
beginning, is then defined as P = [I ; ∆] where I is the identity
matrix of size ∣C ∣ and ∆ is the matrix such that ∆i ,j = δi ,j .

34 / 33



Multilevel optimization methods

Artificial neural networks

Classical multigrid methods

Consider a linear elliptic PDE: D(z ,u(z)) = f (z) z ∈ Ω + b.c.
Discretize on grid h. Get a large-scale linear system Ahxh = bh.

Consider the discretization of the same PDE problem on a coarser
grid: AHxH = bH , H > h.

Relaxation methods fails to eliminate smooth components of
the error efficiently.

Smooth components projected on a coarser grid appear more
oscillatory.

Figure:

35 / 33



Multilevel optimization methods

Artificial neural networks

Coarse problem construction

Define transfer grid operators: P prolongation and R restriction to
project vectors from a grid to another: xH = Rxh, xh = PxH , such
that R = αPT .

Geometry exploitation

The geometrical structure of the problem is exploited to build R
and P.

36 / 33



Multilevel optimization methods

Artificial neural networks

Basic iterative optimization algorithm

Until convergence

Define the local model mk of f around xk , depending on λk

Compute a trial point xk + sk that decreases this model

Compute the predicted reduction mk(xk) −mk(xk + sk)
Evaluate change in the objective function f (xk) − f (xk + sk)
If achieved change ∼ predicted reduction then

Accept trial point as new iterate xk+1 = xk + sk
else

Reject the trial point xk+1 = xk
Increase λk

37 / 33



Multilevel optimization methods

Artificial neural networks

Recursive multi-scale q-order methods

Until convergence

Choose q ≥ 1. Choose either a Taylor or a (useful) recursive
model.

Taylor model: compute a Taylor step satisfying a sufficient
decrease property
Recursive: apply the algorithm recursively

Evaluate change in the objective function

If achieved change ∼ predicted reduction then

Accept trial point as new iterate

else

Reject the trial point
Increase λ

The algorithm is proved globally convergent to first order critical
points

38 / 33


	High-order multilevel optimization methods
	Artificial neural networks

