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Introduction

Context

Given A ∈ Rm×n, m ≥ n with rank(A) = n, b ∈ Rm and x , c ∈ Rn, solve

A⊺Ax = A⊺b + c (SYS)

or
min
x

∥Ax − b∥2
− x⊺c

Remarks

This is a generalization of the normal equations for least-squares problems
(case c = 0)
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Introduction

Motivating applications (I)

Multilevel Levenberg-Marquardt method

Calandra, H., Gratton, S., Riccietti, E., Vasseur, X., On the approximation of the solution of

partial differential equations by artificial neural networks trained by a multilevel
Levenberg-Marquardt method, arXiv e-print, 2019

min
x∈Rn

f (x) =
1

2
∥F (x)∥2.

We have at disposal an approximation to the objective function:

f H(xH) =
1

2
∥FH

(xH)∥
2, xH ∈ RnH , nH < n

Coarse model:

mH
k (xHk , s

H
) =

1

2
∥FH

(xHk ) + JH(xHk )sH∥
2
+
λk
2

∥sH∥
2
+

(R∇f (xk) − ∇f
H
(xH0 ))

⊺sH ,

with JH(xHk ) the Jacobian matrix of FH at xHk , R a full-rank linear restriction
operator and xH0 = Rxk .
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Introduction

Motivating applications (II)

Penalty function method

Fletcher, R., A class of methods for nonlinear programming: III. Rates of convergence, Numerical

Methods for Nonlinear Optimization, 1973

Estrin, R. and Orban, D. and Saunders, M. A., LNLQ: An iterative method for least-norm

problems with an error minimization property, technical report, 2018

min
x

f (x)

s.t. g(x) = 0,

Penalty function :
Φσ(x) = f (x) − g(x)⊺yσ(x),

where yσ(x) ∈ Rm is defined as the solution of the following minimization
problem:

min
y

∥A(x)⊺y −∇f (x)∥2
+ σg(x)⊺y ,

with A(x) the Jacobian matrix of g(x) at x and σ > 0, a given real-valued
penalty parameter.
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Introduction

Interesting questions

What is the conditioning of A⊺Ax = A⊺b + c?

Standard theory for linear systems do no take into account structured
perturbations and gives underwhelming results
Structured conditioning analysis is necessary. Presence of c results in a
different mapping from data to solution

What is the backward error?

Different set of admissible perturbations on the matrix

How to numerically solve it by an iterative method?

Methods for normal equations such as CGLS cannot be used.
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Theoretical results

THEORETICAL RESULTS
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Theoretical results

Conditioning, case c = 0

Let δx = x − x̂ , x̂ a perturbed solution.

Forward error bound

From standard theory on linear systems:

∥δx∥

∥x∥
≤ κ(A)

2u

For least squares problems:

∥δx∥

∥x∥
≤ γmκLSu, κLS = κ(A)(1 +

∥A†∥∥r∥

∥x∥
) , r = b −Ax

Underwhelming result!

The conditioning of the problem depends on κ(A)2 only if ∥r∥ is large!
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Theoretical results

Conditioning

Definition

If F is a continuously differentiable function

F ∶ X → Y

x z→ F (x),

the absolute condition number of F at x is the scalar ∥F ′(x)∥op. The relative
condition number of F at x is

∥F ′(x)∥op ∥x∥X

∥F (x)∥Y
.

J . R . Rice, A theory of condition, SIAM J . Numer . Anal ., 1966
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Theoretical results

Conditioning, case c = 0

Definition of F

We consider F as the function that maps A,b to the solution x of a least squares
problem:

F ∶ Rm×n
×Rm

→ Rn

(A,b) z→F (A,b) = A†b.

Explicit formula for the conditioning

The absolute condition number of a least-squares problem, with Euclidean norm
on the solution and Frobenius norm on the dataa, is given by

κNE = ∥A†
∥
√

1 + ∥x∥2 + ∥A†∥2∥r∥2

Gratton, S., On the condition number of linear least squares problems in a weighted Frobenius norm,

BIT Numerical Mathematics, 1996

a
∥[A,b]∥2

F ∶= ∥A∥
2
F + ∥b∥2
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Theoretical results

A formula for the condition number, c ≠ 0

Lemma

The absolute condition number of the problem SYS is given by

∥F ′
(A,b, c)∥op = ∥[(r⊺ ⊗ (ATA)

−1
)LT + x⊺ ⊗A†,A†, (ATA)

−1
]∥,

where LT is the linear operator such that vec(A⊺) = LTvec(A) and r = b −Ax .

Case c = 0

∥F ′
(A,b, c)∥op = ∥[(r⊺ ⊗ (ATA)

−1
)LT + x⊺ ⊗A†,A†

]∥.
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Theoretical results

An explicit formula for the condition number, c ≠ 0

We consider F as the function that maps A,b, c to the solution x of SYS

F ∶Rm×n
×Rm

×Rn
→ Rn

(A,b, c) z→F (A,b, c) = A†b +A†
(A†

)
⊺c .

Theorem

The absolute condition number of problem SYS, with Euclidean norm on the

solution and Frobenius norm on the dataa, is
√

∥M̄∥, with M̄ ∈ Rn×n given by

M̄ = (1 + ∥r∥2
)(A⊺A)

−2
+ (1 + ∥x∥2

)(A⊺A)
−1
− 2 sym(B),

with B = A†rx⊺(ATA)−1, sym(B) = 1
2
(B +B⊺) and x the exact solution of SYS.

a
∥[A,b, c]∥2

F ∶= ∥A∥
2
F + ∥b∥2

+ ∥c∥2

Upper bound for the condition number
√

∥M̄∥ ≤ (1 + ∥r∥ + 2
√

∥c∥∥x∥)∥A†
∥

2
+ (1 + ∥x∥)∥A†

∥.
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Theoretical results

Backward error analysis

Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn and x̃ a perturbed solution to SYS. Find the
smallest perturbation E of A such that the vector x̃ exactly solves

(A + E)
⊺
(A + E)x = (A + E)

⊺b + c ,

i.e. given

G ∶= {E ∈ Rm×n
∶ (A + E)

⊺
(A + E)x̃ = (A + E)

⊺b + c},

we want to compute the quantity:

η(x̃) = min
E∈G

∥E∥F .
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Theoretical results

Set of admissible perturbations on the matrix

Theorem

Let A ∈ Rm×n, b ∈ Rm, c , x̃ ∈ Rn and assume that x̃ ≠ 0. Let r̃ = b −Ax̃ and define
two sets E ,M by

E ={E ∈ Rm×n
∶ (A + E)

⊺
(b − (A + E)x̃) = −c },

M={v (αc⊺ − v †A) + (Im − vv †
)(r̃ x̃†

+ Z(In − x̃ x̃†
)) ∶

v ∈ Rm, Z ∈ Rm×n, α ∈ R, s.t. α∥v∥2
(v †b − αc⊺x̃) = −1}.

Then E =M.

Case c = 0

E ={E ∈ Rm×n
∶ (A + E)

⊺
(b − (A + E)x̃) = 0},

M={−vv †A + (Im − vv †
)(r̃ x̃†

+ Z(In − x̃ x̃†
)) ∶ v ∈ Rm, Z ∈ Rm×n

}.
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Theoretical results

Lower bound on the backward error

Lemma

The set of admissible perturbations E defined in Theorem is such that E ⊆M2,
with

M2 = {v (αc⊺ − v †A) + (Im − vv †
)(r̃ x̃†

+ Z(In − x̃ x̃†
)) ∶

v ∈ Rm, Z ∈ Rm×n, α ∈ R}.

Then,

min
E

∥E∥
2
F ≥ min

M2

∥E∥
2
F =

∥r̃∥2

∥x̃∥2
+min{λ∗,0},

for λ∗ = λmin (A(In − cc⊺)A⊺ −
r̃ r̃⊺

∥x̃∥2
), with λmin(M) denoting the smallest

eigenvalue of the matrix M.

Case c = 0

min
E

∥E∥
2
F =

∥r̃∥2

∥x̃∥2
+min{λ∗,0}, λ∗ = λmin (AA⊺ −

r̃ r̃⊺

∥x̃∥2
) .
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Numerical solution of the system

NUMERICAL SOLUTION OF THE SYSTEM
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Numerical solution of the system

CG vs CGLS for normal equations

Same method in exact arithmetic, different performance in finite precision for
some problems:

in CGLS dk = b −Axk is recurred and rk = A⊺dk .

Algorithm 1 CG for A⊺Ax = A⊺b

Input: A, b, x0.
Define r0 = A⊺(b − Ax0), p1 = r0.
for k = 1, 2, . . . do

αk =
r⊺k−1rk−1

∥Apk∥2
,

xk = xk−1 +αkpk ,
rk = rk−1 −αkA

⊺
(Apk),

βk =
r⊺k rk

r⊺
k−1

rk−1

,

pk+1 = rk + βkpk .
end for

Algorithm 2 CGLS for A⊺Ax = A⊺b

Input: A, b, x0.
Define d0 = b − Ax0, r0 = A⊺d0, p1 = r0.
for k = 1, 2, . . . do

tk = Apk ,

αk =
r⊺k−1rk−1

∥tk∥2
,

xk = xk−1 +αkpk ,
dk = dk−1 −αk tk ,
rk = A⊺dk ,

βk =
r⊺k rk

r⊺
k−1

rk−1

,

pk+1 = rk + βkpk .
end for

Paige, C. C. and Saunders, M. A., LSQR: An Algorithm for Sparse Linear Equations and Sparse Least

Squares, ACM Trans. Math. Softw., 1982

Björck, A. and Elfving, T. and Strakos, Z. , Stability of conjugate gradient and Lanczos methods for

linear least squares problems, SIMAX, 1998
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Numerical solution of the system

CG for ATAx = ATb + c

Initial rounding error due to the product r0 = ATb + c −ATAx0:

∥δx∥ ≤ κ(A)
2u (

∥b∥

∥A∥
+

∥c∥

∥A∥2
) .

This initial error cannot be canceled, and the best error bound we can hope for
will include the term given above.
Optimal bound:

∥δx∥ ≤
√

∥M̄∥∥[A,b, c]∥Fu

If

∥b∥∥A∥ + ∥c∥ >> [1 + ∥r∥ + 2
√

∥c∥∥x∥ +
1 + ∥x∥

∥A†∥
]

√

∥A∥2
F + ∥b∥2 + ∥c∥2

CG can be expected to produce less than optimal accuracy.
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Numerical solution of the system

IDEA to design a stable method

Extend the successful algorithmic procedures to the case c ≠ 0

Need to factorize matrix A in both the left and right hand sides

AT
(AT x − b)

Two solution methods

We propose two iterative methods based on two different reformulations of the
problem
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Numerical solution of the system

Proposed methods (I) CGLSε

Given ε > 0, let us then define

Aε = [
A
εc⊺

] , bε = [
b

1/ε
] .

We then consider the following linear least squares problem:

min
x

∥Aεx − bε∥
2,

with normal equations
(A⊺A + ε2cc⊺)x = A⊺b + c . (SYSε)

CGLSε solves SYSε with CGLS method

Lemma

Let xε be the solution of SYSε and x be the solution of SYS. Then, lim
ε→0

xε = x and

the relative norm of the error satisfies

∥xε − x∥

∥x∥
≤ ε2 ∥c∥∥w∥

1 + ε2c⊺w
, w = (A⊺A)

−1c .
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Numerical solution of the system

Remarks (I)

Will a really small ε may cause large errors in finite arithmetic?

A perturbed solution x̃ε = xε + δxε will be such that:

(A⊺εAε)(δxε) = δ(A
⊺
εbε). ∣δ(A⊺εbε)∣ ≤ γm+1∣A

⊺
ε ∣∣bε∣

This overestimates the error!

fl(A⊺εbε) = fl(A⊺b) + fl(εc
1

ε
) + δs ,

with δs error due to the summation.

If ε = 2i for i ∈ Z, then fl (ε c 1
ε
) = c . Then,

fl (A⊺εbε) = A⊺b + c + δp + δs , with ∣δs ∣ ≤ u∣fl(A⊺b) + c ∣, ∣δp ∣ ≤ γm∣A∣∣b∣,

and the bound does not depend on ε.
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Numerical solution of the system

Remarks (II)

What about the conditioning of the problem?

Due to the presence of small ε in the right-hand side the residual will
generally be really large.

Standard conditioning analysis of least squares problems is not well-suited in
this case

We can show that the conditioning does not depend on ∥bε −Aεxε∥, that will
be really large, but rather on ∥rε∥ = ∥b −Axε∥, that will be indeed much
smaller
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Numerical solution of the system

Conditioning

Let Fε be the function that maps A,b, c to the solution xε of SYSε

Fε ∶Rm×n
×Rm

×Rn
→ Rn

(A,b, c) z→Fε(A,b, c) = (A⊺εAε)
−1

(A⊺b + c),

and let rε = b −Axε.

The absolute condition number of problem SYSε, with Euclidean norm on the
solution and Frobenius norm on the data, is then given by:

∥F ′
ε(A,b, c)∥op = ∥[(r⊺ε ⊗ (A⊺εAε)

−1
)LT + x⊺ε ⊗ (A⊺εAε)

−1A⊺,

(A⊺εAε)
−1A⊺, (1 − 2εc⊺xε)(A

⊺
εAε)

−1
]∥.

Computable formula:
√

∥M̄ε∥, with

M̄ε =((1 − 2εc⊺xε)
2
+ ∥rε∥

2
)(A⊺εAε)

−2

+(1 + ∥xε∥
2
)(A⊺εAε)

−1A⊺A(A⊺εAε)
−1
− 2 sym(Bε)

with Bε = (A
⊺

εAε)
−1A⊺rεx

⊺

ε (A
⊺

εAε)
−1 and sym(Bε) =

1
2
(Bε +B

⊺

ε ).
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Numerical solution of the system

Proposed method (II) CGLSI

Given Î ∈ R(m+1)×(m+1), we define Â ∈ R(m+1)×n and b̂ ∈ Rm+1 as:

Â = [
A
c⊺

] , Î = [
Im 0
0 0

] , b̂ = [
b
1
] .

We then reformulate SYS as:
Â⊺ Î Âx = Â⊺b̂

Possible to factorize Â⊺ in both the right and the left-hand sides:

no need of recurring the residual r = Â⊺(Î Âx − b̂) (simply update d̂ = Î Âx − b̂
along the iterations and form r by multiplication with Â⊺)
computation of p⊺kA

⊺Apk as ∥Î Âpk∥
2

We can therefore expect the same benefits of CGLS as compared to CG.
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Numerical solution of the system

Algorithm

Algorithm 3 CGLSI for A⊺Ax = A⊺b + c

Input: Â, b̂, x0

Define d̂0 = b̂ − Âx0, r0 = Â⊺(b̂ − Âx0), p1 = r0.
for k = 1,2, . . . do
t̂k = Î Âpk ,

αk =
r⊺k−1rk−1

t̂⊺k t̂k
,

xk = xk−1 + αkpk ,
d̂k = d̂k−1 − αk t̂k ,
rk = Â⊺d̂k ,

βk =
r⊺k rk

r⊺k−1rk−1
,

pk+1 = rk + βkpk .
end for
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Numerical solution of the system

First order approximation for the forward error

First order approximation for the forward error can be obtained as

∥x − x̂∥

∥x∥
∼
κSYS∥[A,b, c]∥F

∥x∥
u, u machine precision

We define the following error estimates:

ÊCGLSI ∶=

√
∥M̄∥∥[A,b, c]∥F

∥x∥
u,

ÊCGLSε ∶= ε
2 ∥c∥∥w∥

1 + ε2c⊺w
+

√
∥M̄ε∥∥[A,b, c]∥F

∥x∥
u∥In −

ε2wc⊺

1 + ε2c⊺w
∥,

u being the machine precision.

CGLSε: the error on the computed solution x̂ε depends on two terms:

∥x − x̂ε∥

∥x∥
≤

∥x − xε∥

∥x∥
+

∥xε − x̂ε∥

∥x∥
=

∥x − xε∥

∥x∥
+

∥xε − x̂ε∥

∥xε∥

∥xε∥

∥x∥
.
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Numerical tests

NUMERICAL TESTS
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Numerical tests

Numerical tests: setting

All the numerical methods have been implemented in Matlab

A ∈ Rm×n , A = UΣV ⊺, where U and V from gallery(’orthog’,m/n,j),
j = 1, . . . ,6.

C1 : Σii = a−i , for a > 0,
C2 : Σii = ui , u = linspace(dw ,up,n), with dw,up > 0,

for i = 1, . . . ,n.

Matrix dimensions: m = 40 and n = 20 for the tests and m = 100, n = 50 for
performance profiles

Performance profiles: 40 matrices, with condition number between 1 and

1010. The optimality measure is
∥x − x̂∥

∥x∥
, with x the exact solution

(x = (n − 1 ∶ −1 ∶ 0)). A simulation is considered unsuccessful if the relative
solution accuracy is larger than 10−2.
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Numerical tests

How to choose ε?

ǫ

10
-15

10
-10

10
-5

10
0

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

10
5

ǫ
2 ‖c‖‖w‖
1+ǫ

2cTw

‖c‖‖w‖
cTw

ǫ

10
-15

10
-10

10
-5

10
0

10
6

10
8

10
10

10
12

10
14

10
16

10
18

√

‖Mǫ‖‖[A, b, c]‖/‖xǫ‖
√

‖M‖‖[A, b, c]‖/‖x‖
κ(Aǫ)

2

∥x − x̂ε∥

∥x∥
≤

∥x − xε∥

∥x∥
+

∥xε − x̂ε∥

∥x∥
=

∥x − xε∥

∥x∥
+

∥xε − x̂ε∥

∥xε∥

∥xε∥

∥x∥
.
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Numerical tests
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Figure: Left: right hand side of small norm, Right: right hand side of large norm
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Numerical tests

Comparison with CG

Figure: Left: κ(A) = 105, κ(Â) = 105. Right: κ(A) = 107, κ(Â) = 1010.
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Performance of CGLSI and CGLSε is
comparable but

CGLSI is parameter free

CGLSI is less sensible to the right
hand side

Much better performance than CG
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Numerical tests

Validation of error bounds

Problem κ(A)2u ECGLSI ÊCGLSI ECGLSε ÊCGLSε

a = 2.0 10−10 10−11 10−8 10−9 10−9

a = 2.5 10−2 10−9 10−6 10−9 10−6

a = 1.5 10−10 10−13 10−11 10−13 10−11

a = 1.3 10−12 10−13 10−13 10−14 10−13

a = 1.1 10−14 10−14 10−13 10−14 10−14

a = 0.7 10−10 10−12 10−12 10−12 10−12

up = 1 10−2 10−9 10−7 10−8 10−8

up = 1 10−2 10−8 10−4 10−4 10−6

a = 1.5 10−10 10−13 10−12 10−10 10−10

Better performance that standard CG, both in terms of accuracy and of rate
of convergence.

The error bounds much better predict forward errors than classical bounds.
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Numerical tests

Comparison with QR method

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

QR

CGLSI

Propose method
can compare with
direct methods in
terms of solution
accuracy
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Numerical tests

THANK YOU FOR YOUR ATTENTION

Calandra, H., Gratton, S., Riccietti, E., Vasseur, X., On the solution of

systems of the form ATAx = ATb + c, In preparation
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Numerical tests

Effect of large right-hand sides

Let us assume to apply CG to SYS and CGLS to SYSε. We would respectively
compute:

α1 =
∥r0∥

2

p⊺1A
⊺Ap1

=
∥A⊺b + c∥2

∥A(A⊺b + c)∥2
, x1 = α1(A

⊺b + c) = α1p1,

and

α1(ε) =
∥A⊺b + c∥2

∥A(A⊺b + c)∥2 + ε∥c⊺(A⊺b + c)∥
, x1(ε) = α1(ε)p1(ε) = α1(ε)p1.

Notice that if ε tends to zero, so does the term ε∥c⊺(A⊺b + c)∥ in the
denominator of α1(ε). Consequently α1(ε) tends toward α1 and x1(ε) tends
toward x1. If ε has to be fixed, its value should be small enough to let
ε∥c⊺(A⊺b + c)∥ be small compared to ∥A(A⊺b + c)∥2, otherwise the found
approximation will be close to a solution of SYSε rather than to one of SYS. This
choice is then particularly difficult when ∥A⊺b + c∥ is large.
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