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Context

Given Ae R™", m > n with rank(A) = n, be R™ and x, c € R", solve
ATAx=ATb+c (SYS)

or
min | Ax - b|? - x"c
X

Remarks

@ This is a generalization of the normal equations for least-squares problems
(case ¢ =0)




Motivating applications (1)

@ Multilevel Levenberg-Marquardt method

@ Calandra, H., Gratton, S., Riccietti, E., Vasseur, X., On the approximation of the solution of
partial differential equations by artificial neural networks trained by a multilevel
Levenberg-Marquardt method, arXiv e-print, 2019

1
inf(x) = =|F(x)|*
min £(x) = 5 |F(x)]
We have at disposal an approximation to the objective function:

APy = 2 FR (<MY 2, xH eR™ ny<n

]
2
Coarse model:
1 A
mi! (g s™) =S IFH () + 7 O)s! 12 + [P+

(RVf(xi) - VT (x))Ts",

with JH(x[") the Jacobian matrix of F* at x[?, R a full-rank linear restriction
operator and x}' = Rx.



Motivating applications (II)

@ Penalty function method

@ Fletcher, R., A class of methods for nonlinear programming: 1ll. Rates of convergence, Numerical
Methods for Nonlinear Optimization, 1973

@ Estrin, R. and Orban, D. and Saunders, M. A., LNLQ: An iterative method for least-norm
problems with an error minimization property, technical report, 2018

mXin f(x)
s.t. g(x) =0,

Penalty function :
®o(x) = f(x) —g(x) "y (x),

where y,(x) € R™ is defined as the solution of the following minimization
problem:
min [A(x)"y = VF(x) 1>+ 0g(x)"y,

with A(x) the Jacobian matrix of g(x) at x and ¢ > 0, a given real-valued
penalty parameter.



Interesting questions

@ What is the conditioning of ATAx = ATh+ c?

e Standard theory for linear systems do no take into account structured
perturbations and gives underwhelming results

e Structured conditioning analysis is necessary. Presence of ¢ results in a
different mapping from data to solution

@ What is the backward error?
o Different set of admissible perturbations on the matrix

@ How to numerically solve it by an iterative method?

o Methods for normal equations such as CGLS cannot be used.



Theoretical results
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Theoretical results

Conditioning, case ¢ =0

Let 0x = x — X, X a perturbed solution.
Forward error bound

From standard theory on linear systems:

H(SX” < K,(A)2Ll
[ x|

For least squares problems:

) At
Iox] <YmbLsu, ks = K(A) (1+ H ||r|), r=b-Ax
I I

Underwhelming result!

The conditioning of the problem depends on x(A)? only if ||r| is large!




Theoretical results

Conditioning

Definition
If Fis a continuously differentiable function
F:X-=Y
x> F(x),

the absolute condition number of F at x is the scalar | F'(x)|op- The relative
condition number of F at x is

IF" ) lop [Ix] 2
IFCOly

@ J . R . Rice, A theory of condition, SIAM J . Numer . Anal ., 1966



Conditioning, case ¢ =0

Definition of F

We consider F as the function that maps A, b to the solution x of a least squares
problem:

F:R™"xR™ > R"
(A, b) —F (A, b) = Alh.

Explicit formula for the conditioning

The absolute condition number of a least-squares problem, with Euclidean norm
on the solution and Frobenius norm on the data?, is given by

ke = [ATIVL+ [x]2 + |AT2] ]2

@ Gratton, S., On the condition number of linear least squares problems in a weighted Frobenius norm,
BIT Numerical Mathematics, 1996

?I[A, b]I% = [ AlZ + 1]
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Theoretical results

A formula for the condition number, ¢ # 0

Lemma
The absolute condition number of the problem SYS is given by

F'(Ab,c)|op = [[(rT® (ATA) L7 +xT ® AT, AT (AT A) Y]],
P

where Lt is the linear operator such that vec(A") = Lyvec(A) and r = b— Ax.

Case c=0

IF'(A b, c)lop = I[(r" ® (ATA) L7 + x" ® AT, AT]].




Theoretical results

An explicit formula for the condition number, ¢ # 0

We consider F as the function that maps A, b, ¢ to the solution x of SYS

F:R™"xR™xR" > R"
(A, b,c) —F(A,b,c) = Alb+ AT(AT)Tc.

Theorem

The absolute condition number of problem SYS, with Euclidean norm on the
solution and Frobenius norm on the data?, is \/| M|, with M € R™" given by

M= (1+|r[*)(ATA)? + (1+ |x|*)(ATA) ™" - 2 sym(B),

with B = Afrx™(ATA)™, sym(B) = 2(B + BT) and x the exact solution of SYS.

?I[A, b, clliz := [ A7 + 1612 + llc]?

Upper bound for the condition number

VM < @+ e+ 23/ lellxDIAT + 2+ [x]) AT,




Theoretical results

Backward error analysis

Let Ae R™" beR™, ceR" and X a perturbed solution to SYS. Find the
smallest perturbation E of A such that the vector X exactly solves

(A+E)Y'(A+E)x=(A+E)"b+c,
i.e. given
G={EecR™": (A+E)(A+E)%x=(A+E) b+c},
we want to compute the quantity:

(%) =min [E|F.



Set of admissible perturbations on the matrix

Theorem
Let Ac R™" beR™, ¢,X€R" and assume that X # 0. Let 7= b— AX and define
two sets £, M by
E={EeR™": (A+E) (b-(A+E)X) =-c},
M ={v (ac” = vIA) + (In - wh)(F&T + Z(1, - 2%1))
veR™ ZeR™" aeR,s.t. a|v|?(vib-ac™k) = -1}.

Then £ = M.

Case c=0

E={EeR™": (A+E)"(b-(A+E)X) =0},
M ={-wlA+ (I, - w7+ Z(1, - %1)) :veR™, Z e R™"}.
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Theoretical results

Lower bound on the backward error

Lemma
The set of admissible perturbations £ defined in Theorem is such that £ ¢ My,
with
Mo ={v(ac” - vTA) + (g = wh(F&T + Z(1, - %%1)) -
veR™ ZeR™" «eR}.

Then, ,
min |E[2 > min |EJ2 = 1 1 mingA., 03,
£ M, %2
FFT
for A = Amin (A(/,, —ccAT - |)~<|2) with Amin (M) denoting the smallest

eigenvalue of the matrix M.

Case c=0

- |71
min HEH2 =
£ e

, LR
+min{\,,0}, A =Amin| AAT - )

I%[?
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Numerical solution of the system

NUMERICAL SOLUTION OF THE SYSTEM
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Numerical solution of the system

CG vs CGLS for normal equations

Same method in exact arithmetic, different performance in finite precision for

some problems:
o in CGLS dy = b— Axy is recurred and ri, = A" d,.

Algorithm 2 CGLS for ATAx = ATh

Algorithm 1 CG for ATAx=A"b

Input: A, b, xp.
Input: A, b, x. Define dy = b— Axo, ro = A" dp, p1 = ro.
Define ry = A" (b - Axo), p1 = fo- for k=1,2,... do
for k=1,2,... do te = Apk,
o = rtll’k—l o = M1 k-1
[ Apk ]2’ [l
Xk = Xk-1 + QU Pk, Xk = Xk—-1 + Qi Pk,
re = re1 — o AT (Apx), dy = di—1 — aty,
e ri re = A dy,
Bk = —= ' Iy ri
Me-1Tk-1 Bk = — ,
Pk+1 = rk + Bkpk- Me_1k—1
end for Pk+1 = rk + Bkpk-
end for

@ Paige, C. C. and Saunders, M. A., LSQR: An Algorithm for Sparse Linear Equations and Sparse Least
Squares, ACM Trans. Math. Softw., 1982

@ Bjorck, A. and Elfving, T. and Strakos, Z. , Stability of conjugate gradient and Lanczos methods for
linear least squares problems, SIMAX, 1998 16



Numerical solution of the system

CG for ATAx=ATb+c

Initial rounding error due to the product rp = ATb+c - AT Axp:

16l el
|ox| SH(A)2U(+ .
[Al 1A]2

This initial error cannot be canceled, and the best error bound we can hope for
will include the term given above.

Optimal bound:
[6x] < \/IMI[[A, b, c]lFu

L+ |x|
[6I1A] + el >> [1 + [l +2vIellix] + TAT] VIAIZ + ]2 + |2

CG can be expected to produce less than optimal accuracy.
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Numerical solution of the system

IDEA to design a stable method

@ Extend the successful algorithmic procedures to the case ¢ # 0
@ Need to factorize matrix A in both the left and right hand sides

AT(ATx - b)

Two solution methods

We propose two iterative methods based on two different reformulations of the
problem




Numerical solution of the system

Proposed methods (1) CGLSe

Given € > 0, let us then define

A b
Ac = [ECT]’ be = [1/6]'

We then consider the following linear least squares problem:
min |Acx — be|?,
with normal equations
(ATA+écc)x=ATh+c. (SYSe)
CGLSe solves SYSe with CGLS method
Lemma
Let x. be the solution of SYSe and x be the solution of SYS. Then, Iing)x6 = x and

the relative norm of the error satisfies

Ixe=x _ 2_l<llwl

_ (AT A)-1
Ix| = 1+ec™w’ w=(AA) e
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Numerical solution of the system

Remarks (1)

o Will a really small ¢ may cause large errors in finite arithmetic?

@ A perturbed solution X, = x. + dx. will be such that:
(AZAE)((sXE) = 5(A2be)~ |5(Azb6)| < 7m+1IAZ||be|
This overestimates the error!

A(ATb,) = A(ATh) + f (ecl) 44,
€

with &s error due to the summation.
o If e=2"forieZ, then fl(e ¢ 1) =c. Then,

Al(Alb)=ATb+c+6,+06s, with [6] < ulfl(ATb)+c|, [d,] < vm|Allb],

and the bound does not depend on e.



Numerical solution of the system

Remarks (11)

@ What about the conditioning of the problem?

@ Due to the presence of small € in the right-hand side the residual will
generally be really large.

@ Standard conditioning analysis of least squares problems is not well-suited in
this case

@ We can show that the conditioning does not depend on ||b. — Acx |, that will
be really large, but rather on |r.| = | b — Ax.||, that will be indeed much
smaller
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Numerical solution of the system

Conditioning

@ Let F. be the function that maps A, b, ¢ to the solution x. of SYSe
F:R™TxR™xR" - R"
(A b,c) —F.(A,b,c) = (ALA) T (ATh+c),
and let r. = b— Ax..

@ The absolute condition number of problem SYSe, with Euclidean norm on the
solution and Frobenius norm on the data, is then given by:

IF!(A, b,c)lop = [[(r] ® (ALA) ™M) L7 +x] ® (ALA) AT,
(ATA) AT, (1 -2ec"x)(ATAD I

, with

o Computable formula: /| M,|

Me =((1- 26CTX€)2 +]re H2)(AZA€)72
+(1+ x| *) (AL A)TTATA(ATA) ! - 2 sym(B;)

with B. = (AIA) " ATrex! (AIA) ™ and sym(Bc) = 3(B. + B!).



Numerical solution of the system

Proposed method (I1) CGLS/

Given [ e R(MDx(m+1) \ye define A e R(MD*1 and e R as:

o Possible to factorize A” in both the right and the left-hand sides:
e no need of recurring the residual r = A"(IAx - b) (simply update d = [Ax - b
along the iterations and form r by multiplication with AAT)
o computation of pf A" Ap as ||[Ap|?

We can therefore expect the same benefits of CGLS as compared to CG.



Numerical solution of the system

Algorithm

Algorithm 3 CGLS/ for ATAx=A"b+c

Input: A b, X0

Define do = b — Axg, rp = AT(b Axo) p1=ro.

for k = 1.2, do

tk :/Apk,
4
r, k-1
o = Ml
t ti

Xk = Xk- 1 + Oékpk,
dy = dk 1- akti,

e = dk,

o=
= ,
Me—1Mk-1

Pi+1 = T + BiPr.
end for




Numerical solution of the system

First order approximation for the forward error

First order approximation for the forward error can be obtained as

Ix-%]  rsysl[A b, c]lF , -
~ u, u machine precision
Ix| [ X

We define the following error estimates:

2 cers = VIMIITA by c]lle

Eccrsi = I
Eoope w2 dellwl | VIMIA b clle y, __ctwe’ |
T leedw Ix "I ectwl

u being the machine precision.
@ CGLSe: the error on the computed solution X. depends on two terms:

Ix =Rl Ix=xellfxe=Rell _ Ix=xell | fxe = Xell [ x|
I Ixell ]




Numerical tests

NUMERICAL TESTS
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Numerical tests

Numerical tests: setting

@ All the numerical methods have been implemented in Matlab

@ AcR™" A= UXVT, where U and V from gallery(‘orthog’,m/n,j),
j=1,...,6.

o Cl:%¥;= a_i, for a> 0,

C2 : X = uj, u = linspace(dw, up, n), with dw,up >0,

fori=1,...,n.

@ Matrix dimensions: m =40 and n = 20 for the tests and m = 100, n =50 for
performance profiles

@ Performance profiles: 40 matrices, with condition number between 1 and
Ix =%

10%°. The optimality measure is , with x the exact solution

[x]
(x=(n-1:-1:0)). A simulation is considered unsuccessful if the relative
solution accuracy is larger than 1072.



How to choose €7
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[x = el fIxe = Xell [ x|

<Xl I I Ixel lxl
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Numerical tests

Comparison with CG
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Figure: Left: x(A) = 10°, k(A) = 10°. Right: x(A) = 107, x(A) = 10

— - Performance of CGLS/ and CGLSe is

comparable but

o CGLS/ is parameter free

P @ CGLS/ is less sensible to the right
I ¥ hand side
%gégj Much better performance than CG




Numerical tests

Validation of error bounds

Problem x(A)?u  Ecersi Ecesi  Eceise Ecorse
a=20 100 10T 1078 10°° 1079
a=25 1072 107°° 1076 1079 107
a=15 1071 1078 100 10713 107U
a=13 1072 108® 1008 107 10713
a=1.1 1007 100 1008 107 107™
a=07 1071 107 10?2 107 1071
up=1 102 107° 1077 1078 1078
up=1 102 1078 1074 1074 107
a=15 1071 107 1072 10710 10710

@ Better performance that standard CG, both in terms of accuracy and of rate
of convergence.

@ The error bounds much better predict forward errors than classical bounds.



Comparison with QR method

09 ?—‘2_“ &
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o7t 1 @ Propose method

osf 1 can compare with
osf 1 direct methods in
oar 1 terms of solution
03 f 1 accuracy
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Numerical tests

THANK YOU FOR YOUR ATTENTION

@ Calandra, H., Gratton, S., Riccietti, E., Vasseur, X., On the solution of
systems of the form A" Ax = ATb + ¢, In preparation
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Numerical tests

Effect of large right-hand sides

Let us assume to apply CG to SYS and CGLS to SYSe. We would respectively
compute:
_nl? _ [ATbcl?
PA AP JA(ATb+ )P’

X1 = Oél(ATb-i- C) = Q1p1,

and

IATb + c|?
JA(ATb+¢)|2+¢€||cT(ATh+¢)|

a(e) = k x1(€) = ar(e)pi(e) = a1(e)pr.
Notice that if € tends to zero, so does the term €|c"(ATh + ¢)|| in the
denominator of ay(e). Consequently v (e) tends toward a; and x(e) tends
toward x;. If € has to be fixed, its value should be small enough to let
€||c"(ATh + ¢)| be small compared to |A(ATb+ ¢)|?, otherwise the found
approximation will be close to a solution of SYSe rather than to one of SYS. This
choice is then particularly difficult when ||[ATb + c| is large.
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