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Introduction

This thesis was carried out in collaboration with the research center “ENEL Ingegneria e Ricerca”
in Pisa, Italy, and deals with the numerical solution of optimization problems arising in energy
districts. An energy district is a complex compound of several machines that can produce, ab-
sorb or store electricity or heat and that is interlaced bidirectionally with the electrical grid, so
that if energy produced within the district is more than that needed by loads it can be sold to the
grid, or, if the quantity produced within the district is not sufficient, it can be bought from the
grid. The aim of the optimization process is to find the asset of the devices providing the best
management of local resources, in terms of costs. The recent news in the energy market, such
as the spread of the non predictable renewable sources inside electric system, as well as the
evident trend towards the involvement of distributed generation, cause management problems
and affect the way the electricity system has to be safely managed. To deal with this problem,
ENEL has developed the ECOS package (Enel Customer Optimization Service), and as part of it
ECOS ES (ECOS Expert System) that by means of embedded algorithms, builds a model of the
energy district and provides an optimized management of local resources. The aim is to provide
the optimal dispatching of local energy resources on day ahead in order to minimize the cost
of energy at customer site. ENEL equipped ECOS ES with a Sequential Linear Programming
(SLP) solver that is shown to converge only to local minima. For this reason ENEL decided
to investigate on methods that guarantee convergence to a global minimum of the problem.
Among different methods available in literature Particle Swarm Optimization (PSO) methods
were chosen. Then, in this thesis we have analyzed such methods, identified the version more
suitable for the specific problem and implemented it in Matlab, providing the new solver as an
alternative to the already implemented SLP. Then, since the SLP method implemented in ECOS
was not theoretically supported, we devised a modification of it exploiting the penalty function
approach. A theoretical analysis of the behaviour of this latter method has been carried out.
We proved that the sequence generated approaches a point satisfying the first order optimality
condition. Moreover the proposed method provides an estimation of Lagrange multipliers and
this enables us to employ a criticality measure and a reliable stopping criterion. An extensive
numerical experimentation has been carried out. Developed algorithms have been tested both
on a benchmark problem usually used to test the performance of genetic algorithms and on op-
timization problems modelling synthetic energy districts. Finally the proposed approaches have
been applied on a real energy district provided by Enel.

How to read this document
In Chapter 1 ECOS package is described. Namely we give motivations for developing such a
package, we show how ECOS ES manages the optimization process, which are the variables
being optimized and the Excel user interface by which the user can model its own energy dis-
trict, entering the district data necessary for the optimization process. Various devices that can
be chosen to be part of the district are also described. Section 1.2 is devoted to the description of
the arising nonlinear programming problem. In the remaining sections the SLP algorithm devel-
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oped by ENEL is outlined and details on how the user can collect the results of the optimization
process from the Excel user interface are given.

In Chapter 2 some theoretical issues needed for the understanding of the subsequent chapters
are introduced. In Section 2.1 a mathematical characterization of the solutions of a constrained
optimization problem is described. Namely the Lagrangian function and KKT conditions are
introduced. In Section 2.2 some basic concepts of the penalty function theory are given and
some theoretical results are quoted.

In the subsequent chapters our original contribution is reported.
In Chapter 3 the SLP algorithm designed and implemented, which is based on a trust region

approach and on penalty function theory, is introduced and studied from a theoretical point of
view. Some implementation issues are also reported, namely the stopping criterion chosen for
the algorithm and the updating strategy for the penalty parameter.

In Chapter 4 PSO methods are introduced and described. A stability analysis of the dy-
namical system constituted by particles of the swarm is performed, our implementation of PSO
method in ECOS is presented and a new variation of PSO algorithm is also proposed.

In Chapter 5 the results of the numerical tests performed on different test cases with the
three developed algorithms are reported.

In Chapter 6 we report on the results of the optimization of a real industrial district in Pisa,
Italy. For this specific test case, we have also performed a robustness analysis, carried out
varying some input parameters, namely the sell price of energy and the thermal load.
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Chapter 1

Enel Customer Optimization Service
(ECOS) package

In this Chapter we describe the reasons for which the research centre "Enel Ingegneria e Ricerca"
in Pisa decided to develop the ECOS package, with the aim of managing the problem of the op-
timization of energy districts, and its functionalities. Namely, we describe, [17], [28]:

• how the user can model its own district,

• how the problem has been formalized in ECOS,

• the arising nonlinear programming problem,

• the algorithm that is in charge of its solution,

• how the results of the optimization process are managed.

The electric system has been experiencing a dramatic evolution in the last years. Many
things have changed from the past: 2020 European targets require massive renewable energy
source use, energy efficiency programs implementation and energy diversification; the high
penetration of distributed, non predictable renewable sources inside electric system as well as
the evident trend towards the involvement of distributed generation are already causing man-
agement problems, affecting the way the electricity system has to be safely managed.

On top of that, the electricity market liberalization and energy efficiency policies, coupled
with macro economic situation in Europe, are fostering the end-users, either residential, com-
mercial or industrial, to increase their attention towards a smarter approach to energy consump-
tion. Choosing among different retailers and energy tariff schemes, planning energy demand
patterns according to the actual prices, evaluating process efficiency, are part of future con-
sumers behaviours.

According to this approach, a new smarter electricity system management is required, evolv-
ing from a paradigm in which energy was generated when required by the loads, to an optimized
one in which also loads that offer a customizable logic can follows energy generation fluctua-
tions, [17].

In order to support such an evolution, new enabling technologies are needed. According
to this scenario, the research centre "Enel Ingegneria e Ricerca" in Pisa decided to develop the
ECOS package, aimed at the optimized management of energy resources for energy districts
and smart communication functionalities. With the term energy district we address any complex
in which there are devices that may produce, store or absorb energy (electricity and/or heat),
and that could be interlaced bidirectionally with an electrical grid, so that any electrical power
generation excess can be sold to grid and likewise the district can buy electrical power from the
grid, if the amount generated within it is less than that required by the users. It is also assumed
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that some of the machines in the district offer a customizable control logic. Also a house could
be considered an energy district, but of course this package is mainly intended for business
customers, because they are characterize by significant installed capacity, flexibility margins
and higher controllable resources in loads and generation capabilities, and are the one expected
to gain more earnings from a smarter management of their resources, [28].

As part of the ECOS package, the ECOS Expert System (ECOS ES) has been developed.
ECOS ES takes as an input:

• the expected load/generation profile of the district,

• the price profile for energy purchase and sell (either fixed by retailer or following the day
ahead market prices),

• the economic incentives to electric energy production by renewable sources,

• the weather forecast that affect the renewable energy,

• the capabilities and constraints of the customer.

Then, ECOS ES, by means of embedded algorithms, builds a model of the energy district and
provides an optimized management of local resources, providing the optimal dispatching of
local energy resources on day ahead, in order to minimize the cost of energy at customer site.

The optimization tool, indeed, generates a plan, for the subsequent day, of the set points of
each device in the district in a way that a number of requirements are fulfilled and the overall
cost of energy is minimized. Set points are dimensionless parameters, which are directly related
to the physical quantities actually under control (e.g. the electrical power produced by co-
generators, that stored by batteries, the thermal power provided by boiler), and are the unknown
quantity the optimization process aims to determine.

Figure 1.0.1 shows an overview of the ECOS ES input/output functional scheme. ECOS ES
package has been developed both in Matlab and in C++.

Figure 1.0.1: ECOS ES input/output functional scheme.

Figure (1.0.2) shows the general architecture of ECOS in its most general configuration:
the Enel Server on the left, a local intelligence with ECOS ES package at the centre, and the
customer assets on the right. In the drawing, the full functionalities of the ECOS concept are
represented, including, for example, advices to the customer like smart actions to lower con-
sumption and bi-directional data exchange. ECOS ES could be installed on a local intelligence,
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1.1. BUILDING THE DISTRICT

like in Figure 1.0.2, or remotely, at retailers centralized premises, taking in charge the optimized
management of all of the customers assets, according to the implemented business model. In
this latter case, these informations are sent directly to the customer facilities, via an appropriate
communication infrastructure that connect them to the Enel server [17].

Figure 1.0.2

In the following Sections we describe in more details the functionalities of ECOS ES and
the embedded optimization algorithm.

1.1 Building the district
In this Section we describe how the model of energy district is built in ECOS ES and the
dedicated embedded Excel interface, [28].

Before starting the optimization process, the user has to specify the outline of the district,
i.e. the devices of which it is compound and how they are connected to each other, choosing
among different predefined thermal configurations for the heat/cold management. Particularly
there are four different types of machines that can be included by ECOS ES as part of an energy
district:

• electrical generators;

• accumulators;

• electrical loads;

• thermal configurations (hot and cold).

To do this the software tool is equipped with an Excel user interface. Each district is defined
in a single Excel workbook and each workbook is composed by several sheets that must be filled
by the user. In particular there is one mandatory sheet that contains all common parameters of
the district environment, namely: the price of the electricity (to sell or to buy), wind speed,
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1.1. BUILDING THE DISTRICT

solar radiation and ambient temperature. Then the user can model the district adding a sheet
for each device, and it is also possible to include different machines of the same type. Those
sheets are to be filled with characteristic parameters (scalar and look-up tables) of the devices
to simulate their real behaviour, and also the set points of the starting district configuration
must be specified. ECOS ES defines the optimal generation, load and energy storage profiles
by calculating the optimal set points for each device. The optimization aims to find the best
configuration for the whole next day, so if the optimization is carried on on day n it will find
optimal set points for all the 24 hours of day n + 1. It was decided to set the time unit to
be τ = 15 minutes, so that the day is divided into N = 24 60

15 = 96 quarters of an hour and
the solver has to find the optimal set point for each device and for each time unit. As a future
improvement ECOS ES will be able to work in real time, i.e. to recalculate set points, according
to unexpected variations in demand/generation profiles or in weather forecast, also for a smaller
time interval, for example the remaining part of the day, and it will possible to choose the time
step. Also for this reason it is important to have an accurate and fast optimization method.

Below we describe in more details every kind of device that can be part of the energy district,
the set points characterizing each specific machine and the constraints that the set points have
to satisfy. Let i be the time index, i = 1 . . . N = 96, k the index of generators and thermal
configurations, k = 1 . . . Ngen, b the index of accumulators, b = 1 . . . Nacc and m the index of
loads,m = 1 . . . Nloads, whereNgen, Nacc, Nloads are respectively the total number of generators
(including hot and cold configurations), accumulators and loads in the district. We also report
some examples of characteristic input parameters for each device. See [6] for a more detailed
description.

Electrical generators

We here consider three different types of generators:

• photovoltaic generators;

• wind turbine generators;

• fuel burning generators.

For k-th generator we denote with αk ∈ RN the set points vector, k = 1 . . . , Ngen. Its compo-
nents αk(i) are the fraction of power at i-th time unit Pk(i) i = 1, . . . , N , with respect to the
rated output PNk, to which the generator has to work:

αk(i) = Pk(i)
PNk

(1.1.1)

The following bound constraints have to be satisfied:

0 ≤ αk(i) ≤ 1; (1.1.2)

where αk(i) = 0 means that the generator is off, αk(i) = 1 means that the generator works
on maximum power. Note that for fuel burning generators there is also a physical constraint
on the number of ignitions NI , namely NI cannot be grater than a fixed number NImax, the
maximum number of ignitions. Notice thatNI is a nonlinear function of αk(i), so this generates
the following nonlinear constraint:

NI(αk) ≤ NImax. (1.1.3)

Characteristic input parameters for this kind of devices are the rated output PN , incentives
for renewable energy sources, fuel type (gas, diesel, biomass) and fuel cost and some tabulated
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1.1. BUILDING THE DISTRICT

values of characteristic curves, for example power changing with wind velocity for wind farms
or characteristic curve of the electrical efficiency for fuel burning generators. We can see in
Figure 1.1.1, an example of Excel input data sheet for wind generators, in which parameters in
green, i.e. scalar physical parameters, initial set points and tabled data, are to be filled to enable
ECOS ES to manage the optimization process.

Figure 1.1.1: Input: set points and scalar parameters for a wind farm.

Electrical accumulators

Electrical accumulators are used in the district to store electricity. Let βb ∈ RN be the set points
vector for the b-th accumulator, b = 1, . . . , Nacc. Its components βb(i) are the optimal set point
at the i-th time unit, i = 1, . . . , N . In this case set points are defined as:

βb(i) =

Ndev∑
k=1

δ(k, b, i)PNk

PBb

, (1.1.4)

where δ(k, b, i) is a function of k, b, i, PNk is the rated output of the k-th device, Ndev is the
total number of devices, PBb is the rated output of the b-th battery, [6]. In this case we have the
following bound constraints:

− 1 ≤ βb(i) ≤ 1, (1.1.5)

where negative values of βb(i) means that the accumulator is providing power, positive values
of βb(i) means that the accumulator is gaining power. For each accumulator and for each time
unit there are also two physical restrictions on the state of charge SOCb(i), that is a nonlinear
function of βk(i). Then, the following nonlinear constraint arises:

SOCbmin ≤ SOCb(i) ≤ SOCbmax. (1.1.6)

In Figure 1.1.2, an example of Excel input data sheet for accumulators.

Electrical loads

We here consider three different types of electrical loads:

• L1 loads, that are mandatory electrical consumptions;

• L2 loads, that are electrical cycles that need to be completed one or more times at no
specific time in the day,
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1.1. BUILDING THE DISTRICT

Figure 1.1.2: Input: initial set point and scalar parameters for an electrical accumulator.

• L3 loads, that are normally on, and can be shut down for a limited amount of time without
compromising the related process operation.

L1 loads are given parameters for each time unit, so these loads do not have set points
associated and are not included in the count of total number of loads that is Nloads = NL2 +NL3
where NL2 and NL3 are total numbers of L2 and L3 loads respectively.

We denote with γm the vector of set points for m-th (L2 or L3) load. In this case set points
are not time dependent. For L2 loads, indeed, set points are scalar variables in (0, 1] related to
the starting times of cycles il, so that γm ∈ RNm , where Nm is the number of cycles that need to
be completed bym-th L2 load. On L2 loads set points we have the following bound constraints:

1
N
≤ γm(l) ≤ 1, l = 1, . . . , Nm, (1.1.7)

and those set points are then used to compute the starting time of l-th cycle:

il = dγm(l)Ne, l = 1, . . . , Nm, (1.1.8)

so that il ∈ {1, 2, . . . , N}.
For m-th L3 load the vector of set points γm ∈ R2NIm , with NIm maximum number of

ignitions. On L3 loads set points we have the following bound constraints:

1
N
≤ γm(j) ≤ 1, j = 1, . . . , 2NIm. (1.1.9)

The odd components of γm are related to switch-off times sl and the even ones to switch-on
times al, for l = 1, 2, . . . , NIm:

sl = dγm(2l − 1)Ne, (1.1.10)
al = dγm(2l)Ne. (1.1.11)

On loads set points there are also some physical nonlinear constraints controlling that, for
L2 loads:

• the time between the starting points of two successive cycles is enough to complete the
first of them;

• the time between the beginning of the last cycle and the end of the day is enough to
complete the cycle;

for L3 loads:

• the shut down of the load precedes the turn on;
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1.2. THE OPTIMIZATION PROBLEM

• the load is not off for more than a given amount of time;

• if a load is shut down and then turned on, a certain amount of time passes until it is turned
down again.

Input parameters in this case are, for example, the number of cycles for L2 loads, maximum
number of daily switching off and rated output for L3 loads. In Figure 1.1.3 an example of
Excel input data sheet for L3 loads.

Figure 1.1.3: Input: set points and scalar parameters for a L3 load.

Thermal configurations

Thermal configurations are predefined configurations that can be found in an energy district for
the heat/cold management, and comprise a number of thermal devices that may generate, store
or absorb heat and are connected to each other in many different ways. An hot configuration is a
typical winter configuration, examples of devices that might be present in an hot configuration
are: CHPs (Combined Heat and Power), boilers, heat pumps, thermal accumulators. A cold
configuration is a typical summer configuration, that might include: CHPs, refrigerating ma-
chines, chillers. As for generators, we denote with αk(i) the set point of the k-th configuration
and at the i-th time unit. The bound constraints are the same of generators, and also some of
these configurations have a process constraint on the maximum number of ignitions. We notice
that in any hot or cold configuration in which both a boiler and a CHP are present, in ECOS ES
only CHP’s set points are optimized and those of the boiler are calculated accordingly. It was
decided to do this in order to restrict the number of variables to be optimized, but as a future
improvement every device in the configuration will have its own set points. A wider description
of each configuration available is postponed in Chapter 5.2.

In Figure 1.1.4 and Figure 1.1.5 an example of Excel input data sheet for a cold configuration
is shown.

1.2 The optimization problem
In this section we describe how the optimization of energy district is formalized in ECOS ES
as a constrained nonlinear programming problem and we outline some of its features in order
to make clear which kind of problem we have to solve and the difficulties related to it. Let
us resume the notation introduced above that we are going to use in this section. We denote
with: Ngen, Nacc, NL2, NL3 ,Nloads the total number of, respectively, generators plus thermal
configurations, accumulators, L2 loads, L3 loads, L2 plus L3 loads; Nm the number of cycles
that need to be completed by the m-th L2 load, NIm the maximum number of ignitions for the
m-th L3 load; N = 24 60

τ
= 96 is the total number of time units.
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1.2. THE OPTIMIZATION PROBLEM

Figure 1.1.4: Input: scalar parameters for a cold configuration composed of a CHP and a chiller.

Figure 1.1.5: Input: thermal load and water temperature for a cold configuration.
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1.2. THE OPTIMIZATION PROBLEM

Once the user has built the district and entered all the necessary informations, the code
is run. Specific (Matlab or C++) functions build the nonlinear cost and constraints functions,
f : Rn → R and g : Rn → Rp, defining a constrained nonlinear optimization problem of the
form:

min
x

f(x), (1.2.1a)

subject to

xmin ≤ x ≤ xmax, (1.2.1b)
g(x) ≤ 0, (1.2.1c)

where x ∈ Rn, with

n = N [Ngen +Nacc] +
NL2∑
m=1

Nm +
NL3∑
m=1

NIm. (1.2.2)

The vector x denotes the stacked vector of all devices set points; xmin ∈ Rn and xmax ∈ Rn

denote the associated bound constraints, from equations (1.1.2), (1.1.5), (1.1.7), (1.1.9), i.e.

x =



α1
...

αNgen

β1
...

βNacc

γ1
...

γNloads



, xmin =



0
...
0
−1

...
−1

1
N
...
1
N



, xmax =



1
...
1
1
...
1
1
...
1



,

in which:

• αk for k = 1, . . . , Ngen is the vector of length N of the set points of the k-th generator or
thermal configuration;

• βb for b = 1, . . . , Nacc is the vector of length N of the set points of the b-th accumulator;

• γm for m = 1, . . . , NL2 is the vector of length Nm of the set points of m-th L2 load and
γm for m = NL2 + 1, . . . , Nloads is the vector of length 2NIm of the set points of m-th L3
load. We recall that the set points corresponding to the L1 loads are not present as they
are known parameters of the problem, but these parameters have to be taken into account
because their presence affects the objective function.

The objective function f represents the overall daily cost of energy obtained as a result
of the difference between purchase costs (fuel and electric energy) and incomings (incentives
and sales revenues). It is calculated as the sum of the overall district cost of each time instant
i = 1, . . . , N :

f(x) =
N∑
i=1

f̄i(x)

where f̄i(x) is the sum of all the partial cost functions of district devices for the i-th time unit:

f̄i(x) =
Ngen∑
k=1

fi,k(x) +
Nacc∑
b=1

fi,b(x) +
Nloads∑
m=1

fi,m(x).

As discussed in Section 1.1, a number of devices have physical constraints in addition to
bound constraints on their set points (see equations (1.1.3), (1.1.6)). Let us define:
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1.2. THE OPTIMIZATION PROBLEM

• gk(αk) the constraint function of the k-th generator or thermal configuration, gk : RN →
R (notice that not all generators have process constraints on their set points so gk(αk)
could be also empty);

• gb(βb) the constraint function for the b-th battery, gb : RN → R2N ;

• gm(γm) the constraint function for the m-th electrical load, gm : RNm → RNm , for L2
loads, gm : R2NIm → R3NIm for L3 loads.

These process constraint vectors can be stacked together obtaining a single vector of constraints

g : Rn → Rp, with p = Nc + 2NNacc +
NL2∑
m=1

Nm +
NL3∑
m=1

3NIm, where Nc is the number of

generator plus thermal configuration that have a process constraint on the number of ignitions:

g(x) =



g1(x)
...

gNgen(x)
gNgen+1(x)

...
gNgen+Nacc(x)
gNgen+Nacc+1(x)

...
gNgen+Nacc+Nloads

(x)



.

We here report some general characteristics of problem (1.2.1) and some implementation
choices made by Enel Ingegneria e Ricerca to make problem (1.2.1) easier to solve, [28]:

• problem (1.2.1) is a nonlinear programming problem (NLP) because both the objective
function f and the constraints function g are nonlinear functions;

• convexity of functions f and g does not hold in general. Moreover, the problem size is
typically of the order of (at least) several hundred variables (n) and constraints (c+ 2n);

• variables corresponding to L2 and L3 electrical loads, i.e. components of vectors γm
for m = 1, . . . , Nloads, should be restricted to the discrete set of values

{
1
N
, 2
N
, . . . , 1

}
,

because we work with discrete time intervals. This would make (1.2.1) a mixed-integer
nonlinear programming problem (MINLP), and it is well known that large-scale MINLP
are rather difficult to solve. In order to work with continues variables in ECOS ES values
of γm(·) ∈

[
1
N
, 1
]

are rounded internally to the nearest value of corresponding discrete
set in the device calculations, so that all decision variables becomes continuous;

• functions fk for generators and thermal configurations feature discontinuities at the min-
imum set point values,

αmin,k = Pmin,k

PNk

, k = 1, . . . , Ngen, (1.2.3)

where Pmin,k is the minimum value of power for the k-th generator, because these objec-
tive functions depends on the power produced that in turn depends on the devices status,
which is a inherently discontinuous function, being defined as :

θ(αk(i)) =

1 if αk(i) ≥ αmin,k

0 if αk(i) < αmin,k
. (1.2.4)
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1.3. SEQUENTIAL LINEAR PROGRAMMING SOLVER

The same problem affects the constraints functions gk of fuel burning generators and
thermal configurations with CHP, because they have a constraint on the maximum number
of ignitions that involves variation of the state function θ(αk). Being these non-smooth
functions, in the computation of the gradients∇f and∇g, in ECOS ES the state function
is replaced by a continuous and differentiable sigmoid function:

θ̄(αk) = 1
1 + e−a(αk−αk,min) . (1.2.5)

It is easy to see that θ̄(αk) is monotonic increasing, and tends to θ(αk) as the parameter
a increases. Based on numerical experience the value a = 20 has been chosen, [28]. We
remark that both the objective function f and the constraint function g are still evaluated
exactly using (1.2.4).

Once the optimization problem has been formalized, the embedded optimization algorithm
is run in order to solve (1.2.1).

1.3 Sequential linear programming solver
In this section we describe the Sequential Linear Programming solver Enel Ingegneria e Ricerca
equipped ECOS ES with, in order to solve problem (1.2.1).

Sequential Linear Programming (SLP) is an iterative method aimed at finding local optima
for nonlinearly constrained optimization, that generates steps by solving successive linear sub-
problems, [30].

Let us here consider problem (1.2.1) and let Ω = {x| xmin ≤ x ≤ xmax, g(x) ≤ 0} be the
feasible set. A point x ∈ Ω is said to be a feasible point.

The essential idea of SLP is to model (1.2.1) at the current iterate xk by a linear program-
ming subproblem and to use its minimizer to define a new iterate xk+1. The challenge is to
design the linear subproblem so that it yields a good step for the underlying constrained op-
timization problem (1.2.1) and so that the overall SLP algorithm has good convergence prop-
erties and good practical performance. So, to solve a single nonlinear optimization problem,
SLP solves a sequence of linear programming problems approximating (1.2.1), by using the
first order Taylor expansion of the objective function and of each nonlinear constraint function.
The SLP algorithm is usually equipped with a trust region, [11], in order to confine the search
to a region in which the linearised functions appear to be a good approximation of the original
nonlinear ones around the current solution approximation.

Here we describe the SLP algorithm implemented in ECOS ES, [28]. At the generic iteration
k, given the current approximation xk, the first order Taylor expansion of the objective function
at xk is calculated:

mk(x) = f(xk) +∇f(xk)T (x− xk) (1.3.1)

to which we will refer below as the model function and that can be rewritten as follows:

mk(d) = f(xk) +∇f(xk)Td, (1.3.2)

where d = x− xk. Likewise nonlinear constraints functions are linearised:

gi,k(x) = gi(xk) +∇gi(xk)T (x− xk) i = 1, . . . , p; (1.3.3)

or rather
gi,k(d) = gi(xk) +∇gi(xk)Td i = 1, . . . , p. (1.3.4)
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Then, a trust region framework is used, [11]. Trust region methods define a region around
the current iterate within which they trust that the linear programming problem constituted by
(1.3.2) and constraint (1.3.4) is a good model for the nonlinear programming problem (1.2.1).
That is, in addition to constraint (1.3.4) a trust region constraint ‖d‖ ≤ ∆k is considered, where
∆k is the current trust region radius. Then, the search space is the intersection between the trust
region and the feasibility region of linearised constraints. For the trust region constraint any
norm can be chosen, in this case∞-norm was used for convenience. Then, letting dj the j-th
component of vector d, the trust region constraints are linear constraints: −∆k < dj < ∆k,
for j = 1, . . . , n, like constraint (1.3.4), so that the problem structure is not changed. With this
choice the trust region is a hypercube, [11].

The size of the trust region is critical to the effectiveness of each step. If the region is too
small, the algorithm misses an opportunity to take a substantial step that will move it much
closer to the minimizer of the objective function. If it is too large, the minimizer of the model in
the region may be far from the minimizer of the objective function, so we may have to reduce
the size of the region and try again, [30].

Then the following linear programming subproblem is solved, in order to find the optimal
step defining the new solution approximation:

min
d

mk(d), (1.3.5a)

subject to

gi(xk) +∇gi(xk)Td ≤ 0; i = 1, . . . , p, (1.3.5b)
max((xmin − xk)j,−∆k) ≤ dj ≤ min((xmax − xk)j,∆k), j = 1, . . . , n. (1.3.5c)

Note that bound constraints (1.2.1b) have been incorporated in the trust region constraint. We
denote with ∆̄k a n-dimensional vector whose components are all equal to ∆k, in order to write
(1.3.5c) in a more compact form:

max((xmin − xk),−∆̄k) ≤ d ≤ min((xmax − xk), ∆̄k). (1.3.6)

Then, (1.3.5c) is replaced by (1.3.6). Let dk be a solution of problem (1.3.5).
At each iteration it is necessary to decide whether to accept the new iterate xk+1 = xk + dk

or not and to choose the trust region radius for the next iteration. Both this choices are based
on the agreement between the model function mk and the objective function f . Given a step dk,
as standard in trust region approaches [11], the ratio between the actual reduction (numerator),
and the predicted reduction (denominator) is defined:

ρk = f(xk)− f(xk + dk)
mk(0)−mk(dk)

= f(xk)− f(xk + dk)
−∇f(xk)Tdk

. (1.3.7)

Note that since the step dk is obtained by minimizing the model mk over a region that includes
the step d = 0, the predicted reduction will always be nonnegative. Thus if ρk is negative,
the new objective value f(xk + dk) is greater than the current value f(xk), so the step must
be rejected and xk+1 = xk. On the other hand, if ρk > η, where η is a tolerance to be fixed,
typically η ∈ (0, 1

4) [11], the step is accepted. Regarding the trust region radius, if ρk is close
to 1 or greater than 1, there is a good agreement between the model mk and the function f over
this step, so it is safe to expand the trust region for the next iteration. If ρk is positive but not
close to 1, the trust region is left unchanged, while if it is close to zero or negative, the trust
region is shrunk. Note that the radius is increased only if dk actually reaches the boundary of
the trust region. If the step stays strictly inside the region, we infer that the current value of ∆k
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is not interfering with the progress of the algorithm, so its value is left unchanged for the next
iteration, [30].

Working with problem (1.3.5) is attractive because it requires no choice of parameters, but
it has the drawback that the linearised constraints may not be consistent, that is there may be no
value d for which (1.3.5b) holds, or the solution found, dk, might be infeasible for the original
nonlinear problem, i.e. xk + dk /∈ Ω. A possible solution to this, the one implemented in ECOS
ES, is to reject the step if the feasible space is empty or if the provided step is not feasible,
shrink the trust region and solve problem (1.3.5) again, because the smaller the region around
the current solution is, the better the linearised objective function approximate the original one.

The SLP approach specifically implemented for the problem of energy district (1.2.1) is
sketched in the following algorithm. The value of the tolerances used and the strategy followed
to update the trust region radius are chosen according to typical heuristics [30].

Algorithm 1: SLP algorithm with trust region.

1. Set k = 0, specify kmax and x0 such that xmin ≤ x0 ≤ xmax and max g(x0) ≤ 0. Set
ε = 10−8, εf = 10−2, η = 10−3, ρbad = 0.10 and ρgood = 0.75.

2. For k = 0, . . . , kmax perform the following steps.

(a) Evaluate∇f(xk) and ∇gi(xk) for i = 1, . . . , p. Solve the following LP:

min
d

f(xk) +∇f(xk)Td (1.3.8a)

subject to:

gi(xk) +∇gi(xk)Td ≤ 0 i = 1, . . . , p, (1.3.8b)

max((xmin − xk),−∆̄k) ≤ d ≤ min((xmax − xk), ∆̄k), (1.3.8c)

obtaining a candidate step dk. If problem (1.3.8) has no solution, shrink the trust
region:

∆k+1 = 1
2∆k,

and solve (1.3.8) again.

(b) If ‖dk‖∞ ≤ ε, stop.

(c) Check if the step is feasible, i.e. if

max g(xk + dk) ≤ εf , (1.3.9)

holds. If (1.3.9) holds, go to step 2d. If (1.3.9) does not hold, reject the step, shrink
the trust region:

∆k+1 = 1
2∆k,

and go to step 2a.

(d) Compute the step evaluation parameter:

ρk = f(xk)− f(xk + dk)
−∇f(xk)Tdk

. (1.3.10)

Then:

i. If ρk ≤ ρbad reduce the trust-region radius:

∆k+1 = 1
2∆k

and go to step 2e.
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ii. ElseIf ρk ≥ ρgood, and in addition ‖dk‖∞ ≥ 0.8∆k, increase the trust-region
radius

∆k+1 = 2∆k

and go to step 2e.
iii. Else do not alter the trust region:

∆k+1 = ∆k

and go to step 2e.

(e) If ρk > η accept the step dk and calculate the new solution approximation:

xk+1 = xk + dk,

Else reject the step and set
xk+1 = xk.

Go to step 2a.

In ECOS ES it was decided to adopt this strategy in order to future usage in run-time op-
timization. In fact, in this way the procedure can be stopped being sure that the solution is
feasible and without waiting for convergence. Nevertheless this is an heuristic approach, be-
cause we are not aware of theoretical results proving the global convergence of the outlined
approach. We underline also that it may happens that a linear programming problem (1.3.8)
with empty feasible set is produced when reducing the trust region radius in consequence of an
unsuccessful step and further reductions of the trust region radius do not help to obtain a non
empty feasible set. This is particularly evident in case there are also equality constraints, and
can be shown by the following example, [11].

Let h : Rn → Rm and
θk = min

h(xk)+Jh(xk)T d=0
‖d‖2, (1.3.11)

where Jh(x) ∈ Rm×n is the Jacobian matrix of function h. There can be no feasible point for
(1.3.5) if subject also to the equality constraint h(xk) + Jh(xk)Td = 0 whenever ∆k < θk, as it
is shown in Figure 1.3.1, [11].

In the left figure, the trust region radius is sufficiently large for the trust region and the
linearised constraints to intersect. This is not so for the smaller trust region illustrated in the
right figure. Thus, if the model gives a poor prediction of the merit function, we cannot rely
on the usual mechanism of simply reducing the trust region radius to make further progress.
Concerning specific case of problem (1.2.1) in which there are only inequality constraints, to
help avoiding this situation it is necessary to start from a feasible point, otherwise it is likely for
the LP subproblem (1.3.8) not to have a solution. Numerical tests have indeed confirmed that
starting from a non feasible point the procedure may not converge. However, even starting from
a feasible point, convergence of the sequence generated by Algorithm 1 sketched above is not
ensured. Moreover by now it is easy to detect a feasible initial guess, i.e. a vector x ∈ Ω, but
future ECOS ES model improvement requires to add new constraints for which it may be not
so simple to find a feasible starting solution.

At this stage the optimization process is stopped when the norm of the step is smaller than a
fixed tolerance or when a maximum number of iterations is reached. This stopping criterion is
not so satisfactory, because at the end of the optimization process we do not have any optimality
measure of the provided approximate solution, in other words it is not clear at all if we have a
good approximation of a solution of the original problem (1.2.1).
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Figure 1.3.1: The intersection between the linearization of a nonlinear constraint and a spherical trust region.

1.4 Two phase strategy for districts that comprise batteries
In this section we describe a two phase strategy implemented in ECOS ES to overcome failures
due to severe restrictions of the trust region size, [28]. In fact, based on numerical experience,
when the district contains batteries, it is likely that the first SLP iterations exploit energy stored
in the batteries to reduce the overall cost because no costs are associated to that energy. If the
computed step induces SOC (state of charge) constraint violations, then it is rejected, the trust
region size is reduced and this may prevent the solver to take good steps and the achieved point
at the end of the iterative process may be too far from a good approximation of the minimum.
To overcome these problems, the following strategy was chosen.

The SLP iterations are divided into two phases:

1. Phase 1: the b-th accumulator set points are fixed to the following positive value:

β0,b =
ASb

N
τ
60
PNb

EBb
ηc

(1.4.1)

where ASb is the daily auto-discharge, PNb is the rated power, EBb is the battery capac-
ity, ηc is the yield charging. In this way, at each time instant the battery is slightly charged
to compensate the auto-discharge and the battery SOC remains constant at all time in-
stants i = 1, . . . , N , so that SOC constraints are always satisfied. More specifically,
the upper and lower bound for battery set point bound constraints [−1, 1] are modified,
respectively, to the values [β0(b)− 10−4, β0(b) + 10−4].

2. Phase 2: the battery set point bound constraints are set to the actual values [−1, 1]. The
algorithm is run choosing the point achieved in the first phase as a starting point.

For each phase a fixed value for the maximum number of iterations kmax is specified. With this
two phase strategy energy stored in batteries is made available when the objective function has
been already partially optimized. In this way that energy is better exploited and the accumula-
tors model behaviour is more realistic. However as a future improvement it will be tested a one
step strategy with a new term in the cost function, to be defined, associated to energy stored in
batteries.
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1.5 Output
In this section we describe how the results of the optimization process are managed.

After the code’s run, an output Excel workbook is produced, whose sheets are filled with the
results and the details of the optimization, such as optimal set points for each device, electrical
power exchanged with the grid and energy costs for each time unit, and some informations
about the optimization process, regarding both the decrease of the total costs and parameters
specific for the solver, e.g. the trust region radius ∆k and the ratio ρk at each iteration. Some
examples of Excel output data sheets are shown in Figures (1.5.1), (1.5.2), (1.5.3) and (1.5.4).

Figure 1.5.1: Output: optimized set point for a photovoltaic generator

Figure 1.5.2: Output: optimized CHP set points and related physical variables
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Figure 1.5.3: Output: cost of energy and power exchanged with the grid for each time unit

Figure 1.5.4: Output: details of the optimization process related to the solver
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Chapter 2

Optimality conditions and Penalty
functions

In this chapter we introduce some basic definitions of the optimization theory and we derive a
mathematical characterization of the solutions of a constrained optimization problem. Then, we
introduce some basic concepts of the penalty functions theory as we have employed them both
in the PSO and in the SLP algorithm.

2.1 Optimality conditions
Consider the following nonlinear programming problem, subject to m equality constraints and
p inequality constraints:

min
x

f(x), (2.1.1a)

subject to

hi(x) = 0 i ∈ E , (2.1.1b)
gi(x) ≤ 0 i ∈ I. (2.1.1c)

with E = {1, . . . ,m}, I = {1, . . . , p}, and with f : Rn → R, h : Rn → Rm, g : Rn → Rp

smooth, real-valued functions.
We define the feasible set Ω for problem (2.1.1) to be the set of points x that satisfy all the

constraints, that is [30],

Ω = {x|hi(x) = 0, i ∈ E ; gi(x) ≤ 0, i ∈ I}, (2.1.2)

x ∈ Ω is said to be a feasible point.
A vector x∗ is a local solution of problem (2.1.1) if x∗ ∈ Ω and it exists r > 0 such that

f(x) ≥ f(x∗) for all x ∈ Br(x∗)
⋂Ω, with Br(x∗) = {x|‖x − x∗‖2 ≤ r} a neighbourhood of

x∗.
A vector x∗ is a global solution of problem (2.1.1) if x∗ ∈ Ω and f(x) ≥ f(x∗) for all

x ∈ Ω.
For a convex problem, i.e. a problem with convex objective function defined on a convex

set, all local minima are also global minima. We recall that a set C ⊂ Rn is said to be convex if
the straight line segment connecting any two points in C lies entirely inside C. Formally, for all
x, y ∈ C and for all t ∈ [0, 1], tx+ (1− t)y ∈ C. A function defined on a convex set f : C → R,
is said to be convex if for all x, y ∈ C and for all t ∈ [0, 1]:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). (2.1.3)
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At a feasible point x, the inequality constraint i ∈ I is said to be active if gi(x) = 0, and
inactive if the strict inequality gi(x) < 0 is satisfied. The active set A(x) at any feasible x is the
set made of the indices of the active inequality constraints, that is:

A(x) = {i ∈ I| gi(x) = 0}. (2.1.4)

The Lagrangian function for the constrained optimization problem (2.1.1) is defined as

L(x, µ, λ) = f(x)−
∑
i∈E

µihi(x) +
∑
i∈I

λigi(x), (2.1.5)

where µ ∈ Rm, λ ∈ Rp are the Lagrangian multipliers for the equality and inequality con-
straints respectively, [30].

Definition 2.1 (LICQ). Given the point x∗ and the active set A(x∗) defined by (2.1.4), we
say that the linear independence constraint qualification (LICQ) holds if the active constraints
gradients {∇hi(x∗), i ∈ E ;∇gi(x∗), i ∈ A(x∗)} are linearly independent.

This condition allows us to state the following optimality conditions for a general nonlinear
programming problem (2.1.1). These conditions are called first-order conditions because they
concern themselves with properties of the gradients (first-derivative vectors) of the objective
and constraint functions.

Theorem 2.1.1 (First-Order Necessary Conditions.). Suppose that x∗ is a local solution of
(2.1.1) and that the LICQ holds at x∗. Then there exist a Lagrange multiplier vector µ∗ ∈ Rm,
and a Lagrange multiplier vector λ∗ ∈ Rp, such that the following conditions are satisfied at
(x∗, µ∗, λ∗):

∇xL(x∗, µ∗, λ∗) = 0, (2.1.6)
hi(x∗) = 0, i ∈ E , (2.1.7)
gi(x∗) ≤ 0, i ∈ I, (2.1.8)

λ∗i ≥ 0, i ∈ I, (2.1.9)
λ∗i gi(x∗) = 0, i ∈ I. (2.1.10)

Conditions (2.1.6)-(2.1.10) are often known as the Karush–Kuhn–Tucker conditions, or
KKT conditions for short. Since the complementarity condition (2.1.10) implies that the La-
grange multipliers corresponding to inactive inequality constraints are zero, we can omit the
terms for indices i /∈ A(x∗) from (2.1.6) and rewrite this condition as

0 = ∇xL(x∗, µ∗, λ∗) = ∇f(x∗)−
∑
i∈E

µ∗i∇hi(x∗) +
∑

i∈A(x∗)
λ∗i∇gi(x∗). (2.1.11)

For a given problem (2.1.1) and solution point x∗, there may be many vectors µ∗, λ∗ for which
the conditions (2.1.6)-(2.1.10) are satisfied. When the LICQ holds, however, the optimal µ∗, λ∗

are unique, [30]. Notice that this conditions are only necessary, not sufficient. It is indeed easy
to build an example in which conditions (2.1.6)-(2.1.10) are satisfied by a point that is not a
local minimum, [30].

2.2 Penalty functions
Methods involving penalty functions seek the solution of a constrained optimization problem by
replacing it by one or a sequence of unconstrained subproblems, [30]. The main idea of penalty
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methods approach is to turn (2.1.1) to an unconstrained problem, incorporating the constraints
in the original objective function, so that the objective function is replaced by a penalty function

Φ(x, ν) = f(x) +H(x, ν) (2.2.1)

that consists of

• the original objective of the constrained optimization problem f , plus

• a penalty term H that depends on a positive penalty term ν and consists of a sum of one
additional term for each constraint, which is positive when the current point x violates that
constraint and zero otherwise, and usually depends on the entity of constraint violation.

Then an unconstrained problem of the following form is obtained:

min
x

Φ(x, ν). (2.2.2)

Various methods differ from each other for the choice of the penalty term H . Given a penalty
function Φ(x, ν), we assume that constraints violations are penalised increasingly by growing
ν.

We can divide penalty methods into two big categories: methods based on exact penalty
functions and the exterior penalty methods, [30].

Definition 2.2 (Exact Penalty Function). A penalty function Φ(x, ν) is said to be exact if there
exists a positive scalar ν∗ such that for any ν ≥ ν∗, any local solution of the nonlinear program-
ming problem (2.1.1) is a local minimizer of Φ(x, ν).

So for all sufficiently large positive values of the penalty parameter ν, one minimization of
unconstrained function Φ(x, ν) yields a solution of the nonlinear programming problem (2.1.1).
It is difficult to determine ν a priori in most practical applications however, usually a starting
value is chosen and then the parameter is adjusted during the course of the computation, ac-
cording to specific rules, [30].

An important example of exact penalty function is the l1 function:

Φ(x, ν) = f(x) + ν
∑
i∈E
|hi(x)|+ ν

∑
i∈I

max(0, gi(x)). (2.2.3)

Notice that l1 penalty function is a non-smooth function.
It is possible to show that the l1 function is an exact penalty function for all ν > ν∗, with

ν∗ = max{|µ∗i |, i ∈ E ; λ∗i , i ∈ I}. (2.2.4)

For exterior penalty methods a single minimization of the penalty function Φ is not suffi-
cient, but a sequence of penalized problems is solved:

min
x

Φ(x, νk) for k = 1, 2, . . . . (2.2.5)

The penalty functions Φ(x, νk) depend on a positive penalty parameter νk that varies with it-
erations. By making this coefficient larger and larger, we penalize constraint violations more
and more severely, thereby forcing the minimizer of the penalty function closer and closer to
the feasible region for the constrained problem. Often, the minimizers of the penalty functions
are infeasible with respect to the original problem, and approach feasibility only in the limit
as the penalty parameter grows increasingly large. The simplest penalty function of this type
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is the quadratic penalty function, in which the penalty terms are the squares of the constraint
violations:

Q(x; ν) = f(x) + 1
2ν
∑
i∈E

h2
i (x) + 1

2ν
∑
i∈I

max(0, gi(x))2 (2.2.6)

where ν > 0 is the penalty parameter. By driving ν to infinite, we penalize the constraint
violations with increasing severity. So a sequence of values {νk} with νk → ∞ as κ → ∞ is
considered, and a approximate minimizer xk of Q(x, νk) is sought, for each k.

A general framework for algorithms based on penalty function (2.2.6) can be specified as
follows, [30].

Algorithm 2: Algorithm for quadratic penalty.

1. Set k = 0, specify the penalty parameter ν0 > 0, the tolerance τ0 > 0, the starting point
xs0.

2. For k = 0, 1, 2, . . .

(a) Find an approximate minimizer xk of Q(·, νk), starting at xsk and terminating when
‖∇Q(x, νk)‖ ≤ τk.

(b) If a final convergence test is satisfied, stop with the approximate solution xk. Other-
wise, go to step 2c.

(c) Choose a new penalty parameter:

νk+1 ≥ νk,

and a new starting point xsk+1 and go to step 2a.

The convergence theory for Algorithm 2, allows wide latitude in the choice of tolerances τk,
it requires only that lim

k→∞
τk = 0, to ensure that the minimization is carried out more and more

accurately.
Notice that when in problem (2.1.1) inequality constraints are present, the quadratic penalty

function is a non-smooth function, while if only equality constraints are present the penalty
function is a smooth function. The following two theorems, [30], describe some convergence
properties of this approach when only equality constraints are present.

Theorem 1.
Suppose that each xk is the exact global minimizer of Q(·, νk) in Algorithm 2 above and that
νk →∞. Then every limit point x∗ of the sequence {xk} is a solution of problem (2.1.1).

Since this result requires to find the global minimizer for each subproblem, its very desirable
property of convergence to the global solution of (2.1.1) may be difficult to realize in practice.
The next result concerns convergence properties of the sequence {xk} when we allow inexact
(but increasingly accurate) minimizations ofQ(·, νk). In contrast to Theorem 1, it shows that the
sequence is attracted to KKT points (that is, points satisfying first-order necessary conditions),
rather than to a global minimizer, [30].

Theorem 2.
If the tolerance τk in Algorithm 2 above satisfies

lim
k→∞

τk = 0 (2.2.7)

and the penalty parameter satisfies νk → ∞, then for all limit points x∗ of the sequence {xk}
generated by Algorithm 2 at which the constraints gradients∇hi(x∗) are linearly independent,
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we have that x∗ is a KKT point for problem (2.1.1). For such points, we have for the infinite
subsequence K such that lim

k∈K
xk = x∗ that

lim
k∈K
−hi(xk)νk = µ∗i , for all i ∈ E , (2.2.8)

where µ∗ is multiplier vector that satisfies the KKT conditions.
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Chapter 3

Sequential Linear Programming with
penalty function

In this chapter we describe the SLP approach we devised in order to increase reliability of the
SLP method originally implemented in ECOS ES and described in Section 1.3. We also provide
theoretical convergence results of such a procedure.

3.1 Outline of the approach
In Section 1.3 we have shown that the SLP approach currently implemented in ECOS ES is not
supported by any theoretical results and has the drawback that constraints of problem (1.3.5)
may be not consistent, or the step provided may generate an infeasible solution approximation.
The approach that is commonly used to deal with possible inconsistency of the constraints is to
incorporate them in the form of a penalty term in the model objective. Following [5] and [19],
we use an SLP trust region approach where the l1 penalty function given in (2.2.3) is employed.

Here we focus on the solution of problem (1.2.1) and therefore we describe the algorithm
and its convergence properties when applied to problems with only inequality constraints and
bound constraints. The general outline of the algorithm we have implemented follows the lines
of Algorithm 1, described in Section 1.3. The main difference concerns the LP subproblems
we have to solve at each iteration. Here it is linearised the merit function Φ given in (2.2.3), as
opposed to the function f . The function Φ in this case reduces to:

Φ(x, ν) = f(x) + ν
∑
i∈I

max(0, gi(x)), (3.1.1)

where we remind that I = {1, . . . , p} is the set of indexes of inequality constraints. Its linear
approximation at the current estimate xk is given by:

lk(d) = f(xk) +∇f(xk)Td+ ν
∑
i∈I

max(0, gi(xk) +∇gi(xk)Td); (3.1.2)

so that, at each iteration, we solve a subproblem of the form:

min
d
lk(d) (3.1.3a)

subject to

max((xmin − xk),−∆̄k) ≤ d ≤ min((xmax − xk), ∆̄k), (3.1.3b)

that has certainly a solution. The solution of problem (3.1.3), dk, is used to compute the new
solution approximation xk+1 = xk+dk. In the SLP approach described in Section 1.3 the step is
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3.1. OUTLINE OF THE APPROACH

accepted only if xk+1 is feasible, here there is not a feasibility check and the step is accepted if it
provides a sufficient decrease of the merit function, according to the rules described in Section
1.3. The ratio between the actual and the predicted reduction used to update the trust region
radius here takes the following form:

ρk = Φ(xk)− Φ(xk + dk)
lk(0)− lk(dk)

= ∆Φk

∆lk
. (3.1.4)

For the practical implementation of this version of the algorithm we have to notice that function
lk is non-differentiable, but problem (3.1.3) can be written as the following equivalent smooth
linear program, introducing the vector of slack variables t, [5]:

min
d,t
∇f(xk)Td+ ν

∑
i∈I

ti; (3.1.5a)

subject to

gi(xk) +∇gi(xk)Td ≤ ti, i ∈ I (3.1.5b)

max((xmin − xk),−∆̄k) ≤ d ≤ min((xmax − xk), ∆̄k), (3.1.5c)
t ≥ 0. (3.1.5d)

We now describe the outline of this version of SLP algorithm we have implemented for
the specific problem (1.2.1) of energy districts. Values of fixed parameters are the same of
Algorithm 1. The following algorithm sketches the k-th iteration of such a procedure.

Algorithm 3: k-th iteration of SLP algorithm with trust region and penalty function.

1. Given xk, ∆k, ∆max, νk.

2. Evaluate∇f(xk) and ∇gi(xk) for i = 1, . . . , p.

3. Solve the following LP:

min
d,t

∇f(xk)Td+ νk
∑
i∈I

ti (3.1.6a)

subject to:

gi(xk) +∇gi(xk)Td ≤ ti, i ∈ I, (3.1.6b)

max((xmin − xk),−∆̄k) ≤ d ≤ min((xmax − xk), ∆̄k), (3.1.6c)
t ≥ 0, (3.1.6d)

obtaining a candidate step dk and multipliers estimates λk of (3.1.6b), πk of (3.1.6c), λ̄k
of (3.1.6d).

4. Update the penalty parameter: if max{‖λk‖∞, ‖λ̄k‖∞} > νk then set νk = max{‖λk‖∞, ‖λ̄k‖∞}.

5. Compute the step evaluation parameter:

ρk = Φ(xk)− Φ(xk + dk)
lk(0)− lk(dk)

. (3.1.7)

Then:
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3.2. THEORETICAL RESULTS

(a) If ρk ≤ ρbad, reduce the trust-region radius:

∆k+1 = 1
2∆k,

and go to step 6.

(b) ElseIf ρk ≥ ρgood, and in addition ‖dk‖∞ ≥ 0.8∆k, increase the trust-region radius

∆k+1 = min(2∆k,∆max).

Go to step 6.

(c) Else set ∆k+1 = ∆k and go to step 6.

6. If ρk > η accept the step and set:

xk+1 = xk + dk.

Otherwise reject the step:
xk+1 = xk.

Go to step 2.

3.2 Theoretical results
Following [19], it is possible to prove two important theoretical properties of this approach.
Namely we can prove:

1. global convergence of the sequence {xk} generated by Algorithm 3 to a KKT point of
Φ(x, ν); we recall that if ν is sufficiently large, a minimizer of Φ is a solution of problem
(1.2.1);

2. convergence of the multiplier estimates of problem (3.1.3) to the multipliers of problem
(1.2.1).

We can express Φ in the following general compact form: Φ(x) = f(x) + H(g(x)), where
H(g(x)) is the penalty term and g : Rn → Rp. The following results are indeed valid not
only for l1 penalty function, but for all polyhedral penalty convex functions H , [19]. More-
over, we prove the results in the most general case in which for the step ‖dk‖ a generic norm is
considered, while, for seek of simplicity, bound constraints are not considered. So, as a conse-
quence of the above assumptions, theoretical results are referred to the following unconstrained
problem:

min
x
f(x) +H(g(x)), (3.2.1)

and subproblem (3.1.3) becomes:

min
d
lk(d) = f(xk) +∇f(xk)Td+H(g(xk) + J(xk)Td) (3.2.2a)

subject to

‖d‖ ≤ ∆k, (3.2.2b)

where J(x) ∈ Rp×n is the Jacobian matrix of g(x). Objective functions of problems (3.2.1) and
(3.2.2) are not differentiable, so if we want to characterize stationary points of those problems
we cannot use the first order necessary conditions introduced in Section 2.1. However it is
possible to generalize the KKT conditions also to problems with non-smooth objective function.
To do this we need the following definitions:
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Definition 3.1. A vector v is a subgradient of a convex function f at x ∈ D, where D is the
domain of function f , if

f(y) ≥ f(x) + vT (y − x) for all y ∈ D. (3.2.3)

Definition 3.2. The subdifferential ∂f(x) of f at x is the set of all subgradients:

∂f(x) = {v : vT (y − x) ≤ f(y)− f(x)} for all y ∈ D. (3.2.4)

First order necessary KKT conditions for x∗ to solve (3.2.1) are that there exists vectors of
multipliers λ∗ ∈ ∂H(g∗) such that, (see Theorem 14.2.1 in [18]):

∇f(x∗) + J(x∗)λ∗ = 0. (3.2.5)

First order conditions for subproblem (3.2.2) are that there exist multipliers λk ∈ ∂H(g(xk)+
J(xk)Tdk), wk ∈ ∂‖dk‖ and πk ≥ 0, ( see Theorem 14.6.1 in [18]), such that:

∇f(xk) + J(xk)Tλk + πkwk = 0, (3.2.6)
πk(‖dk‖ −∆k) = 0. (3.2.7)

The following Lemma is proved in [18] and is useful to prove the convergence theorems.

Lemma 3.2.1. [Lemma 14.2.1 of [18]] Let f : K → R be a convex function, K ⊂ Rn a convex
set. Then

• ∂f(x) is a closed convex set,

• ∂f(x) is bounded for all x ∈ B ⊂
o

K where B is compact and
o

K denotes the interior of
K.

The next two Theorems are proved following the lines of the proofs of Theorem 2.1 and
Theorem 2.2 in [19].

Theorem 3 (Global convergence of Algorithm 3).
Let f and g be C1 functions and let H(g) be a convex function. Let {xk} be the sequence

generated by Algorithm 3. Either there exists an iteration index k̄ such that xk̄ is a KKT point
for Φ(x), or Φ(xk) → −∞ k → ∞, or if the sequence {xk} is bounded, then there exists a
subsequence S of indexes such that {xk}k∈S has an accumulation point x∗ which satisfies the
KKT conditions for Φ(x), that is it exists a vector of multipliers λ∗ such that:

∇f(x∗) + J(x∗)λ∗ = 0. (3.2.8)

Proof.
To prove the Theorem we need only consider the case that {Φk} is bounded below and {xk}
is bounded. Because {xk} is bounded, there exists a subsequence S of iterations such that
{xk}k∈S → x∗. Suppose that:

a) dk does not satisfy ρk > ρbad for any k ∈ S and {∆k}k∈S → 0 and hence {‖dk‖}k∈S → 0.

We define ∆Φk = Φ(xk) − Φ(xk + dk) and ∆lk = lk(0) − lk(dk) = Φ(xk) − lk(dk). A
consequence of C1 continuity of f and g, convexity of H(g) and boundedness of ∂H(g), which
follows from Lemma 3.2.1, and of the use of the first order Taylor expansion, is that:

∆Φk = ∆lk + o(‖dk‖) (3.2.9)

and hence
∆Φk

∆lk
→ 1 k →∞, (3.2.10)

which contradicts the fact that ρk = ∆Φk

∆lk
> ρbad fails for all k ∈ S. Therefore this case is

inconsistent and it certainly exists a subsequence of indexes S such that:
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3.2. THEORETICAL RESULTS

b) dk satisfies ρk > ρbad and lim inf
k∈S

∆k > 0.

In fact, let S ′ be a sequence of indexes of unsuccessful iterations. If S ′ is finite we clearly have
ρk > ρbad for k sufficiently large. Otherwise suppose k0 ∈ S ′. Since {∆k}k∈S′ 9 0, otherwise
we obtain case (a) again, for each k0 ∈ S ′ it exists i such that k0 + i is a successful iteration
with k0 + i /∈ S ′. Therefore xk0+i = xk0 and the subsequence {xk0+i}k0∈S′ → x∗. If we let
S = {k0 + i, k0 ∈ S ′}, {xk}k∈S is the subsequence of case (b). In case (b) it can be assumed
that lim infk∈S ∆k > ∆̄ > 0, as if lim infk∈S ∆k = 0 thus imply lim inf ∆k = 0 and this yields
case (a) that we have proved to be inconsistent. Because Φ1 − Φ∗ ≥ ∑k∈S ∆Φk, it follows that∑
k∈S ∆Φk converges. Then, ρk ≥ ρbad, i.e. ∆Φk ≥ ∆lkρbad, yields the convergence of the

series
∑
k∈S ∆lk, and hence {∆lk} → 0.

Define l∗(d) = f(x∗) +∇f(x∗)d+H(g(x∗) + J(x∗)Td). Let

d̄ = arg min l∗(d) (3.2.11a)

s.t.‖d‖ ≤ ∆̄ (3.2.11b)

and denote x̄ = x∗ + d̄. Then

‖x̄− xk‖ ≤ ‖x̄− x∗‖+ ‖x∗ − xk‖ = ‖d̄‖+ ‖x∗ − xk‖. (3.2.12)

Therefore,
‖x̄− xk‖ ≤ ∆̄ + ‖x∗ − xk‖ ≤ ∆k (3.2.13)

for all k sufficiently large, k ∈ S. Thus x̄ is feasible for problem (3.2.2), so

lk(x̄− xk) ≥ lk(dk) = Φ(xk)−∆lk. (3.2.14)

In the limit, for k ∈ S, ∇f(xk) → ∇f(x∗), g(xk) → g(x∗), J(xk) → J(x∗), x̄− xk → d̄, and
∆lk → 0, so it follows that l∗(d̄) ≥ Φ(x∗) = l∗(0). Thus d = 0 also minimizes l∗(d) subject
to ‖d‖ ≤ ∆̄, and since the latter constraint is not active it follows from (3.2.7) that π∗ = 0 and
from (3.2.6) that it exists λ∗ such that∇f(x∗) + J(x∗)λ∗ = 0, then x∗ is a KKT point. 2

Theorem 3 states the global convergence of Algorithm 3, i.e. in case the objective function
is not unbounded, it states the existence of an accumulation point x∗ of the sequence {xk}
generated by Algorithm 3, regardless of the starting solution approximation, that satisfies KKT
conditions (3.2.8) for Φ(x, ν). In Section 3.3 we will describe the penalty parameter update
strategy we have chosen, which ensures that the penalty parameter ν is large enough to let x∗

be a solution of the original problem (2.1.1).

Theorem 4 (Convergence of multipliers). Let f and g be C1 functions, H(g) a convex function,
πk and λk multipliers of subproblems (3.2.2), defined in equations (3.2.6) and (3.2.7). If the
subsequence S in the statement of Theorem 3 exists, then {πk}k∈S →0. Moreover any accu-
mulation point λ∗ of the multiplier vectors λk, k ∈ S, satisfies λ∗ ∈ Λ∗, where Λ∗ = {λ : λ
satisfies KKT conditions at x∗}, and such an accumulation point exists.

Proof. The definition of lk(d) and the subgradient inequality (3.2.3) yields

∆lk(dk) = −∇f(xk)Tdk +H(g(xk))−H(g(xk) + J(xk)Tdk) (3.2.15)
≥ −∇f(xk)Tdk − λTk J(xk)Tdk. (3.2.16)

It follows from (3.2.6) that
∆lk(dk) ≥ πkw

T
k dk = πk‖dk‖, (3.2.17)
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where the last equality follows from the fact that

wk ∈ ∂‖dk‖ = {λ : λTdk = ‖dk‖}, (3.2.18)

from equation 14.3.7 of [18].
From the proof of Theorem 3 it follows that for the subsequence S, satisfying assumptions

(b), {∆lk}k∈S → 0 and hence {πk‖dk‖}k∈S → 0 from (3.2.17). From this it can be deduced
that {πk}k∈S → 0 as follows. Conversely let πk ≥ β > 0 on some subsequence S ′ ⊂ S. It
follows that {dk}k∈S′ → 0 and also from (3.2.7) that ‖dk‖ = ∆k for k ∈ S ′, but these conditions
contradict ∆k > ∆̄ > 0 in case (b) thus {πk}k∈S → 0. Now consider the sequence {λk}k∈S .
Because {xk}k∈S → x∗ and ∆k ≤ ∆max, it follows that the vectors dk and g(xk)+J(xk)Tdk are
bounded. Existence of an accumulation point of sequence {λk}k∈S is a consequence of Lemma
3.2.1. In fact Lemma 3.2.1 yields that ∂H is compact and {λk}k∈S ∈ ∂H , and a subsequence
in a compact has an accumulation point. Let {λk}k∈S′ → λ∗. In the limit it now follows from
(3.2.6) and {πk}k∈S → 0 that

∇f(x∗) + J(x∗)λ∗ = 0. (3.2.19)

Moreover the subgradient inequality and λk ∈ ∂H(g(xk) + J(xk)Tdk) give that, for all g ∈ Rn

H(g) ≥ H(g(xk) + J(xk)Tdk) + (g − g(xk)− J(xk)Tdk)Tλk (3.2.20)
= H(g(xk))−∆lk −∇f(xk)Tdk + (g − g(xk)− J(xk)Tdk)Tλk (3.2.21)

= H(g(xk))−∆lk − (g − g(xk))Tλk + πk‖dk‖ (3.2.22)
(3.2.23)

using the definition of ∆lk and (3.2.6). In the limit as k →∞, ∆lk → 0, g(xk)→ g(x∗), H(g(xk))→
H(g(x∗)), λk → λ∗ and πk‖dk‖ → 0, so it follows that

H(g) ≥ H(g(x∗)) + (g − g(x∗))Tλ∗ ∀g ∈ Rn, (3.2.24)

that is λ∗ ∈ ∂H(x∗). Together with (3.2.19) we see that λ∗ satisfies KKT conditions at x∗. 2
Theorem 4 states that, if the subsequence S of Theorem 3 exists, than the subsequence of

multipliers of subproblems (3.2.2) approximates multipliers of the original problem. We have
used this important theoretical result for the stopping criterion of Algorithm 3, that we describe
in the following section.

3.3 Implementation issues
In this section we discuss two important features of the algorithm:

• the stopping criterion,

• the updating strategy for the penalty parameter.

As far as the stopping criterion is concerned, our aim is to provide a measure of the closeness
of the current iterate to a KKT point of the original problem. We have followed the approach
suggested in [5], that is we use the following stopping criterion. We stop Algorithm 3 whenever
a pair (xk, λk) satisfies the following conditions:

max{‖∇f(xk) + J(xk)Tλk‖∞, ‖g(xk)Tλk‖∞} < ε(1 + ‖λk‖2); (3.3.1)
max{max

i∈I
(0, gi(xk)),max(0, xmin − xk),max(0, xk − xmax)} < ε(1 + ‖xk‖2) (3.3.2)

with ε a tolerance to be fixed and λk the Lagrange multiplier vector corresponding to the in-
equality constraints (3.1.6b). We can use this criterion as we are supported by Theorem 4,
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that states that the multipliers λk of the LP subproblems (3.1.3) estimate the multipliers of the
original problem. Note that we do not have multipliers of (3.1.3) at disposal, and the only in-
formations we can obtain are the estimates of the multipliers of the smooth subproblems (3.1.6)
we are actually solving at each iteration k.

Comparing KKT conditions of problems (3.1.3) and (3.1.6), we can prove that they are
equivalent. For seek of simplicity, we omit the contribution of bound constraints.

The Lagrangian function for problem (3.1.6) is:

L(x, λk, λ̄k) = ∇f(xk)Td+ νk
∑
i∈I

ti −
∑
i∈I

tiλ̄k,i +
∑
i∈I

(∇gi(xk)td− ti + gi(xk))λk,i+,

+
∑
i∈I

π2k,i(d−∆k)i +
∑
i∈I

π1k,i(−d−∆k)i.

(3.3.3)

We denote with ν̄k a p dimensional vector with all components equals to νk. KKT conditions
for this problem are:

∇f(xk) + J(xk)Tλk + π2k − π1k = 0; (3.3.4)
ν̄k − λk − λ̄k = 0; (3.3.5)

t ≥ 0, (3.3.6)
∇gi(xk)Td− ti + gi(xk) ≤ 0, for i ∈ I, (3.3.7)

−∆k − d ≤ 0 (3.3.8)
d−∆k ≤ 0 (3.3.9)

λk ≥ 0 (3.3.10)
λ̄k ≥ 0 (3.3.11)
π1k ≥ 0 (3.3.12)
π2k ≥ 0 (3.3.13)

(J(xk)Td− t+ g(xk))Tλk = 0, (3.3.14)
tT λ̄k = 0, (3.3.15)

(−∆k − d)Tπ1k = 0 (3.3.16)
(d−∆k)Tπ2k = 0. (3.3.17)

Firsts two conditions can be put together obtaining:

∇f(xk) + J(xk)T (ν̄k − λ̄k) + π2k − π1k = 0. (3.3.18)

Considering that we have chosen∞-norm for trust region constraints, equations (3.3.4)-(3.3.17)
are exactly the KKT conditions (3.2.6), (3.2.7) of problem (3.1.3).

Then, we can use the approximate multipliers of (3.1.6), provided by the function used to
solve the LPs, in (3.3.1), (3.3.2).

The stopping criterion (3.3.1), (3.3.2) gives us a measure of the closeness of the computed
solution to a stationary point of the original problem (1.2.1).

As far as the penalty parameter is concerned, we would like to have penalty function (3.1.1)
to be exact, according to Definition 2.2 and Equation (2.2.4). Then, in Algorithm 3 the following
updating strategy is adopted: if νk < max{‖λk‖∞, ‖λ̄k‖∞} then νk = max{‖λk‖∞, ‖λ̄k‖∞} is
set, where we have used current Lagrange multiplier estimates as an approximation to multipli-
ers of the original problem λ∗, that should be used for the computation of parameter ν∗.
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Chapter 4

Particle swarm optimization

SLP algorithm described in Section 1.3, that Enel equipped ECOS ES with, is shown to con-
verge only to a local minimum, as well as the SLP approach described in Chapter 3. Then,
the research centre Enel Ingegneria e Ricerca decided to study and implement also methods
of different type that provide convergence to a global minimum of an optimization problem,
as opposed to the available solver. Among the various procedures available in the literature,
the Particle Swarm Optimization (PSO) method was chosen. In this chapter we introduce PSO
method and describe its main features. Namely we describe the main ideas characterizing the
approach, how to choose free coefficients in the equations defining the method, various topol-
ogy schemes, some procedures to prevent the swarm to be stuck in local minima. As far as
the ECOS project is concerned, we have devised a specific version of PSO algorithm suitable
for the specific problem of optimization of energy districts (1.2.1). We have implemented it in
Matlab and made it available into the ECOS ES code, as an alternative to the already available
SLP algorithm.

Classical methods as SLP previously described generates sequences converging to a local
minimum of an optimization problem. Moreover the objective function is required to be dif-
ferentiable and its first order derivative must be available. When a global minimizer is needed
and/or the objective function is non smooth or its gradient is not available different approaches
must be used. A wide class of methods have been proposed taking inspiration from several sys-
tems observed in nature, and adapting mechanisms of those natural systems, [23], [31]. These
methods are based on stochastic algorithms, i.e. methods that use random variables as opposed
to deterministic algorithms that, given a particular input, will always produce the same output
because results on each step are completely determined by previous computation. Such algo-
rithms evolve a population of interacting agents that perform a search in the domain space. The
main advantage of using these approaches is that they require only function evaluations and first
order derivative are not needed. These methods indeed are derivative free and use only informa-
tions gained by function evaluations, so that they can be used to deal with optimization problems
with a non-smooth objective function. Although these optimization approaches are not sup-
ported by theoretical results of convergence, their promising results on complex problems, and
overall on problems with strong nonlinearities, offered a boost to research. Research groups at-
tained to refine early variants of these algorithms, introducing a set of efficient approaches under
the general name of Evolutionary Algorithms, that are now considered promising alternatives
in cases where classical approaches were not applicable, [31].

Ones of the most famous among these approaches are the Genetic Algorithms (GA), de-
veloped in the 50-60’s, [20], [23]. These are search heuristic that mimics the process of natural
selection and generate solutions to optimization problems using techniques, such as inheritance,
mutation, selection, and crossover, inspired by natural evolution and to the Darwinian biological
theory. In a genetic algorithm, a population of candidate solutions (called individuals, creatures,
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or phenotypes) to an optimization problem is evolved toward better solutions. Each candidate
solution has a set of properties (its chromosomes or genotype) which can be mutated and al-
tered. The evolution usually starts from a population of randomly generated individuals, and is
an iterative process, with the population in each iteration called a generation. In each genera-
tion, the fitness of every individual in the population is evaluated; the fitness is usually the value
of the objective function in the optimization problem being solved. The more fit individuals are
stochastically selected from the current population, and each individual’s genome is modified
(recombined and possibly randomly mutated) to form a new generation, so only the best indi-
viduals survive while the others are rejected. The new generation of candidate solutions is then
used in the next iteration of the algorithm, [23].

The success recognized by evolutionary approaches sparked off research all over the world.
As a result, in the 90’s a new category of algorithms appeared. This kind of algorithms exploit
a different approach from the GA, instead of modelling evolutionary procedures in microscopic
(DNA) level, these methods model populations in a macroscopic level, i.e. in terms of social
structures and aggregating behaviours. Hierarchically organized societies of simple organisms,
such as ants, bees, and fish, with a very limited range of individual responses, exhibit fascinating
behaviours with identifiable traits of intelligence as a whole. In fact although each agent has
a very limited action space and there is no central control, the aggregated behaviour of the
whole swarm exhibits emergent properties that cannot be described simply by aggregating the
behaviour of each team member, i.e. an ability to react to environmental changes and decision
making capacities. The lack of a central tuning and control mechanism in such systems has
triggered scientific curiosity. Simplified models of these systems were developed and studied
through simulations and a new branch of artificial intelligence emerged, under the name of
Swarm Intelligence, [31]. Swarm intelligence studies the collective behaviour and emergent
properties of complex, self-organized, decentralized systems with social structure.

Particle Swarm Optimization (PSO) is an optimizer for nonlinear functions that was in-
troduced in 1995 by James Kennedy and Russell C. Eberhart, [12]. They took inspiration by
previous works of scientists that have created computer simulations of the movement of organ-
isms in a bird flock or fish school. Notably, Reynolds and Heppner [34] and Grenander [21]
presented simulations of bird flocking. Reynolds was intrigued by the aesthetics of bird flock-
ing choreography, and Heppner, a zoologist, was interested in discovering the underlying rules
that enabled large numbers of birds to flock synchronously, often changing direction suddenly,
scattering and regrouping. Both of these scientists had the insight that local processes might
underlie the unpredictable group dynamics of bird social behaviour, and that something about
the flock dynamic enables members of the flock to capitalize on one another’s knowledge. As
sociobiologist E. 0. Wilson [37] has written, in reference to fish schooling: “in theory at least,
individual members of the school can profit from the discoveries and previous experience of
all other members of the school during the search for food. This advantage can become de-
cisive, outweighing the disadvantages of competition for food items, whenever the resource is
unpredictably distributed in patches”. This statement suggests that social sharing of information
among conspeciates offers an evolutionary advantage: this hypothesis was fundamental to the
development of Particle Swarm Optimization. In fact this approaches enhance a cooperative
attitude among different individuals rather than a competitive one, as in GA, and it does not
practice any selection with the idea that less successful individuals at present time may become
the most successful ones, [27].

Following the natural metaphor, PSO evolves a population of individuals, referred to as
particles, within the search space, that behave according to simple rules but interact to produce
a collective behaviour. Each individual flies through the search space by updating its individual
velocity toward both the best position or location it personally has found (i.e. the personal best),
and toward the globally best position found by the entire swarm (i.e. the global best). Sharing
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the globally personal best position found models the social act of communication.
In optimization problems an individual represents a possible solution of the problem, and a

fitness function is used to evaluate the population so that the best particle is the one that offers
the lowest (for a minimization problem) function value.

In many complex real life problems PSO approach shows to perform better than other Evo-
lutionary Algorithms, such as GA. For a wide overview see [27].

4.1 Outline of the algorithm
PSO can be used to solve optimization problems of the following form:

min
x
f(x) (4.1.1)

where f : Rn → R is a function on which it is not necessary to make regularity assumptions, n
is the dimension of the search space and x ∈ Rn,[31].

Assume to have a swarm constituted by s particles. The i-th particle of the swarm is identi-
fied by three different d-dimensional vectors:

• xi, position vector of the i-th particle;

• vi, velocity vector of the i-th particle;

• pibest, vector of the best position achieved so far by the i-th particle.

There is also another vector necessary for the optimization process, pgbest, that represents the
best position achieved so far by the swarm.

PSO are iterative processes. At first iteration positions of particles are randomly initialized
within the search space. Let us denote by xik ∈ Rn the position of the i-th particle at iteration
k. The initial guess xi0 is set as follows:

xi0 = xmin + r̄i(xmax − xmin) (4.1.2)

for i = 1, . . . , s, where r̄i are d-dimensional vectors of pseudo-random numbers with compo-
nents selected from uniform distribution, r̄i ∼ U(0, 1). Velocities vectors are initialized to zero,
pibest are set to current positions, pgbest is the best of all initial positions.

At current iteration k the swarm is evolved using the following update rules:

vik+1 = wvik + c1r1(pibest,k − xik) + c2r2(pgbest,k − xik); (4.1.3)

xik+1 = xik + vik+1; (4.1.4)

where xik and vik are position and velocity vectors of the i-th particle at k-th iteration, c1 and
c2 are positive weighting factors of cognitive and social components respectively, r1 and r2 are
random variables uniformly distributed within [0, 1], w is the inertia weight.

Referring to equation (4.1.3), it consists of three different parts:

• wvik is the contribution of the previous velocity to the new one;

• c1r1(pibest − xi) is the cognitive contribution, each particle remembers the best position
ever visited and tend to return to it;

• c2r2(pgbest − xi) is the social contribution, each particle knows the best position achieved
by the entire swarm and is attracted by it.
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Figure 4.1.1: Particles velocity updating scheme. Here we denote with xk
i , vk

i and Pbestk
i the position, velocity

and pbest vectors, respectively, of the i-th particle at k-th iteration. Gbestk is pg
best,k, i.e. vector pg

best at k-th
iteration.

The three contributions are depicted in Figure 4.1.1. Setting the three parameters c1, c2, w is
possible to decide how to weight each contribution. This choice is really important because it
affects velocity convergence and PSO’s performance. Is not so easy to choose right parameters,
because of a strong dependence on the specific problem, so a numerical experimentation is
necessary, even if it is possible to follow some general rules that we describe in the following
sections. After the update of the swarm through equations (4.1.3) and (4.1.4), the objective
function is evaluated for each particle and those values are used to update best positions. Thus,
the new best position of xi at iteration k + 1 is defined as follows:

pibest,k+1 =

xik if f(xik) < f(pibest,k)
pibest,k otherwise

(4.1.5)

The global best is updated too. Letting p = arg mini=1...s f(pibest,k+1),

pgbest,k+1 =

p iff(p) < f(pgbest,k)
pgbest,k otherwise

(4.1.6)

We here describe a scheme of the k-th iteration of the basic PSO algorithm:

Algorithm 4: k-th iteration of PSO algorithm.

1. Given c1, c2, w, xik, vik, pibest,k, pgbest,k for i = 1, . . . , s, perform the following steps.

2. Calculate r1, r2 ∼ U(0, 1) and evolve the swarm:

vik+1 = wvik + c1r1(pibest,k − xik) + c2r2(pgbest,k − xik); (4.1.7)

xik+1 = xik + vik+1; (4.1.8)

for i = 1, . . . , s.

3. Evaluate the objective function of each particle of the swarm and update vectors pibest,k+1:

pibest,k+1 =

xik if f(xik) < f(pibest,k)
pibest,k otherwise

(4.1.9)

and pgbest,k+1:

pgbest,k+1 =

p iff(p) < f(pgbest,k)
pgbest,k otherwise

(4.1.10)

where p = arg mini=1...s f(pibest,k+1).
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4.2 Choice of free parameters: stability analysis
In this section we perform a stability analysis of the dynamical system defined by updating
equations (4.1.3), (4.1.4) that is useful for the choices of free parameters.

In order to have the PSO algorithm to perform well, a fine tuning of free parameters is
necessary. There are three parameters to be set: the inertia weight w that weights the effect of
the memory of previous velocity on the new one, c1 and c2 that weight the cognitive and the
social components respectively. Without the last two terms particles will keep on “flying” at the
current speed in the same direction until they hit the boundary. In more details, if c1 > 0 and
c2 = 0 particles don’t communicate among them and perform a local search, while if c1 = 0
and c2 > 0 all the particles are attracted from a single point and the exploring capacity is really
low. On the other hand if the first term is not present the search space statistically shrinks
through the generations and PSO resembles a local search algorithm [15]. The choice of these
coefficients is really important because it affects not only the convergence velocity, but also the
quality of the final solution. There are no general rules for this choice, but the stability analysis
of the dynamic nonlinear system defined by the swarm it is useful to restrict the choice to a
bounded region. Once the stability region is detected, a choice of free parameters inside this
region ensures the swarm to convergence to a single point. Notice that there are no theoretical
results ensuring that this point is the global minimum, PSO is indeed an heuristic algorithm. For
the theoretical analysis of PSO we follows the lines of the procedure described in [36]. For this
purpose the deterministic version of updating equations, obtained by setting random numbers
to their expected values: r1 = r2 = 1

2 , will be considered. The exact relationship between the
random and the deterministic versions of the algorithm is not yet rigorously been established,
but in practise the contribution of random variables seems to enhances the zigzagging tendency
and slows down convergence, thus improving the state space exploration, [36]. The algorithm
description can be reduced for analysis purposes to the one-dimensional case, without loss
of generality, because each dimension is updated independently from the others. For seek of
simplicity we will omit the superscript i and we will denote with xk the position of a particle.
To perform the stability analysis, we write updating equations in the following general form:

vk+1 = avk + b1
1
2(pibest,k − xk) + b2

1
2(pgbest,k − xk); (4.2.1)

xk+1 = cxk + dvk+1. (4.2.2)

We will denote p1,k = pibest,k, p2,k = pgbest,k. Equations (4.2.1) and (4.2.2) could be simplified
using the notation:

b = b1 + b2

2 ; (4.2.3)

pk = b1

b1 + b2
p1,k + b2

b1 + b2
p2,k. (4.2.4)

Thus we obtain:

vk+1 = avk + b(pk − xk); (4.2.5)
xk+1 = cxk + dvk+1. (4.2.6)

The algorithm described by equations (4.2.5) and (4.2.6) contains four tuning parameters a, b, c
and d. It will be now shown that only two of them are truly useful, while the other two can be
fixed arbitrarily without loss of generality, obtaining (4.1.3) and (4.1.4) again. Using equations
(4.2.5) and (4.2.6) the velocity can be eliminated from the description of the algorithm yielding
the following second order recursion formula involving only successive particle positions:

xk+1 + (bd− a− c)xk + acxk−1 = bdpk. (4.2.7)
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Indeed, substituting (4.2.5) in (4.2.6):

xk+1 = cxk + d(avk + b(pk − xk)) = cxk + advk + dbpk − dbxk. (4.2.8)

Then, from (4.2.6) dvk = xk − cxk−1, and substituting it in (4.2.8) ones obtains (4.2.7):

xk+1 = cxk + axk − acxk−1 + dbpk − dbxk = (c+ a− db)xk − acxk−1 + dbpk. (4.2.9)

It appears that individual values of coefficients b and d are not important; the only important
quantity is the product bd. Without any loss of generality, one can always set, for example,
d = 1. In other words, any sequence of particle positions {xk} generated by the PSO algorithm
described by equations (4.2.5) and (4.2.6) can also be generated with d = 1 and a suitably
chosen value of b. The sequence of {vk} will be different, however, but this has no impact on
the optimization algorithm since the objective function only depends on x, with v being just an
auxiliary variable, [36].

Notice that pk in (4.2.4) depends on iteration index k, but at equilibrium particles do not find
better positions so p1, p2 and hence pk do not change, so we can assume them to be constant,
and set pk = p, [36]. For optimization purposes it is desired that, in the long run, the population
of particles converges to the optimum location found so far:

lim
k→∞

xk = p. (4.2.10)

In order to have the sequence defined by (4.2.7) to converge it is necessary and sufficient for the
characteristic polynomial associated to (4.2.7)

pc(z) = z2 + (b− a− c)z + ac (4.2.11)

to be a Schur polynomial, i.e. all the roots have magnitude less than 1, [4]. It exists a practi-
cal criterion, the First Schur criterion, that can be used to find conditions on coefficients that
guarantee the desired property. To introduce it, we need the following definitions, [4].

Definition 4.1. Given a polynomial of degree n, ρ(z) =
n∑
i=0

ρiz
n−i, the adjunct polynomial is

defined as: q(z) =
n∑
i=0

ρ̄iz
i, where ρ̄i are the complex conjugates of coefficients ρi.

Definition 4.2. Given a polynomial ρ(z), and his adjunct polynomial q(z), the reduced polyno-
mial is defined as:

ρ(1)(z) = q(0)ρ(z)− ρ(0)q(z)
z

.

Theorem 4.2.1 (First Schur criterion). ρ(z) = ρ0z
n + ρ1z

n−1 + · · ·+ ρn is a Schur polynomial
if and only if the two following conditions hold:

• |ρ0| > |ρn|;

• the reduced polynomial ρ(1)(z) is a Schur polynomial.

The sequence defined by (4.2.7) has an equilibrium point at:

ẑ = bp

1 + b− a− c+ ac
. (4.2.12)

A necessary condition to have p as the equilibrium point is:

b

1 + b− a− c+ ac
= 1, (4.2.13)
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and so
(a− 1)(c− 1) = 0. (4.2.14)

The choices a = 1 or c = 1 are equivalent as far as the sequence of particle positions xk
is concerned because equation (4.2.7) is symmetric with respect to a and c. Usually the case
c = 1 is considered, because the choice c = d = 1 has the nice feature that the variable v can be
interpreted as a true “velocity ”, i.e. the difference between two successive particle positions.
So if we want our sequence to converge to p, i.e. to have p as a stable equilibrium point, we can
now apply the Schur criterion to the polynomial:

pc(z) = z2 + (b− a− 1)z + a. (4.2.15)

The first condition of Theorem 4.2.1 is:

|a| < 1, i.e. − 1 < a < 1. (4.2.16)

To check the second condition we need to compute the adjunct polynomial:

q(z) = az2 + (b− a− 1)z + 1; (4.2.17)

and the reduced polynomial:

ρ(1)(z) = (z2 + (b− a− 1)z + a)− a(az2 + (b− a− 1)z + 1)
z

= (4.2.18)

= (1− a2)z + (1− a)(b− a− 1). (4.2.19)

The reduced polynomial is a first degree polynomial, so we can check if it is a Schur polynomial
by simply computing its root. Note that from (4.2.16) a 6= 1, so root of polynomial (4.2.19) is
z = 1+a−b

1+a . Then, the second condition of Theorem 4.2.1 is:∣∣∣∣∣1 + a− b
1 + a

∣∣∣∣∣ < 1. (4.2.20)

Taking into account that from (4.2.16) 1 + a > 0, (4.2.20) becomes:b > 0 if 1 + a− b ≥ 0
2a− b+ 2 > 0 if 1 + a− b < 0

. (4.2.21)

The stability region is the region in the (a, b) plane in which conditions (4.2.16) and (4.2.21)
hold simultaneously. It is the triangle depicted in Figure 4.2.1.

For any initial position and velocity, the particle will converge to its equilibrium position
if and only if the algorithm parameters are selected inside this triangle. Once the stability
region is detected, the only way to find optimal parameters inside it, is to perform a wide
numerical experimentation. Is important to notice that there not exist an optimal choice for
these parameters that is suitable for all problems, but is important to find the best ones for each
case.

4.3 Weighting inertia factor w
In this section we explain which role plays the inertia weight in updating equations (4.1.3),
(4.1.4) and we show the most common updating strategies for it.
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Figure 4.2.1: Stability region.

The inertia weight was not present in the original PSO formulation, but was introduced by
Shi and Eberhart, [15] in 1998. The updating equations were:

vik+1 = vik + c1r1(pibest − xik) + c2r2(pgbest − xik), (4.3.1)
xik+1 = xik + vik, (4.3.2)

for i = 1, . . . , s. Analysing (4.3.1) we can understand which is the contribution of the previous
velocity to the new velocity. Without it, each particle will be “flying” toward the weighted
centroid of its own best position and the global best position of the population. Under this
condition, the search space statistically shrinks through the generations and PSO resembles
a local search algorithm, [15]. On the other hand, by adding the first part particles have a
tendency to expand the search space and so to explore new areas. So the addiction of the first
part encourage a global search ability. However, both the local search and global search will
benefit solving some kinds of problems, and for different problems there should be different
balances between the local and the global search abilities. Considering of this, an inertia weight
w has been brought into the equation (4.3.1), to play the role of balancing the global search and
local search.

The inertia weight can be a constant either a positive linear or nonlinear function of k. From
numerical tests it is emerged that values of w close to 1 make the PSO more like a global search
method, the swarm is more capable to exploit new areas and the solution is less dependent on
initial population, while for smaller values of w PSO resembles a local search method, [15].

For any optimization search algorithm it is a good idea to have a good exploration ability
especially at the beginning, in order to locate the most promising areas and address the search in
that directions, then near the end of the process the algorithm needs to carefully scan the local
area around the selected region of the search space, in order to refine the solution approximation.
Accordingly, it is convenient to define the inertia weight w as a decreasing function of the
iteration index k instead of a fixed constant. A very common choice is the initialization of w to
a value, wmax, usually close to 1, and then to adopt a linearly decreasing scheme towards zero.
Usually, a strictly positive lower bound on w, wmin, is used to prevent the previous velocity
term from vanishing. In general this linearly decreasing scheme for w is adopted, [15]:

wk = wmax − (wmax − wmin) k

kmax
; (4.3.3)

where kmax is the maximum number of allowed iterations. With this choice convergence veloc-
ity is slowed down and this can be a positive feature because ensures a more accurate exploration
of the search space.
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4.4 The Concept of Neighbourhood
In this section we introduce the concept of neighbourhood of a particle that has been developed
in order to slow down the rate of convergence of the algorithm and provide a better exploration
of the search space.

Performances of the algorithm are deeply influenced by the rate of convergence. Even if
fast convergence seems to be preferable, especially in applications, it could bring the swarm
to collapse too quickly around a non optimal solution, so that particles can perform only local
search around their convergence point. This effect of fast convergence can be mild in simple
optimization problems, especially in convex problems or in problems with just one minimizer,
but it becomes detrimental in high-dimensional, complex environments. So it is necessary to
find the optimal rate of convergence, balancing computational costs and solution quality, [31].

There are mainly two factors that influence convergence velocity:

• the choice of the set of parameters w, c1, c2;

• the choice of communication scheme, i.e. the way in which particles exchange informa-
tions among each others.

In the original PSO version the following global information exchange scheme is proposed.
All the particles are connected and can communicate with each other, so every particle knows
instantly the overall best position at each iteration. Using this scheme, all particles assume new
positions in regions related to the same overall best position, and this can reduce the exploration
capabilities of the swarm.

A possible approach to overcome this problem is the introduction of the concept of neigh-
bourhood. The main idea is the reduction of the global information exchange scheme to a local
one, where information is diffused only in small parts of the swarm at each iteration. More
precisely, a specific criterion of neighbourhood is established so that each particle assumes a set
of other particles to be its neighbours and, at each iteration, it communicates its best position
only to these particles, instead of to the whole swarm. Thus, information regarding the over-
all best position is initially communicated only to the neighbourhood of the best particle, and
successively to all the others through their neighbours, [31].

Let S = {x1 . . . xs} be the set of particles. The neighbourhood of particle xi ∈ S is a
subset NBi = {xi1 . . . xir} ⊆ S. For each particle xi the best position among its neighbours is
identified by calculating:

pg,ibest = arg min
xj∈NBi

f(xj). (4.4.1)

This is used to modify the updating equations:

vik+1 = wvik + c1r1(pibest,k − xik) + c2r2(pg,ibest,k − xik); (4.4.2)

xik+1 = xik + vik+1, (4.4.3)

for i = 1, . . . , s, so that the particle will move towards its own best position as well as the best
position of its neighbourhood, instead of the overall best position. The scheme for determining
the neighbours of each particle is called neighbourhood topology.

The PSO variant that uses the overall best position of the swarm is called the global PSO
variant (often denoted as gbest PSO), and can be considered as a special case of the variant using
neighbours, that is called the local PSO variant (and denoted lbest PSO) to distinguish between
the two approaches. In gbest PSO each neighbourhood is the whole swarm, i.e. NBi = S for
all i = 1, 2, . . . , s. The gbest scheme is also called star topology, and is graphically depicted in
Figure 4.4.1 on the left.
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As far as the choice of a criterion of proximity is concerned, there are few possibilities,
[31]. A common scheme to assign neighbours is based on equipping the search space with a
proper metric. According to this, each particle would be assigned a neighbourhood consisting
of a number of particles that lie closer to its current position. This approach however could
be too expensive, especially when a large number of particles is used, because it requires the
computation of N(N+1)

2 distances between particles at each iteration. Moreover, it exhibits a
general trend of forming particle clusters that can be easily trapped in local minima. For these
reasons, the idea of forming neighbourhoods based on arbitrary criteria was promoted in order
to alleviate the particle clustering effect. The simplest and directly applicable alternative is
the formation of neighbourhoods based on particle indices. According to this, the i-th particle
assumes neighbours with neighbouring indices. Thus, the neighbourhood of xi can be defined
as:

NBi = {xi−r, xi−r+1, . . . , xi−1, xi, xi+1, . . . , xi+r−1, xi+r}, (4.4.4)

where r is a parameter to be set and |NBi| = 2r + 1. This scheme is illustrated in Figure 4.4.1
on the right and it is called ring topology.

Figure 4.4.1: Graphical representation of fully connected (a) and ring (b) topology.

4.5 Velocity clamping
In this section we describe velocity clamping mechanism, introduced to control particles veloc-
ities.

Velocity clamping was introduced by Eberhart and Kennedy [14], in order to prevent par-
ticles from taking too large steps from their current position. More specifically, a user-defined
maximum velocity threshold, vmax > 0, is considered. After determining the new velocity of
each particle with equation (4.1.3), the following restrictions are applied to the velocity vector
prior to the position update with equation (4.1.4):

(vik+1)j =

vmax if (vik)j > vmax

−vmax if (vik)j < −vmax
(4.5.1)

where (vik)j denotes the j-th component of the velocity vector of the i-th particle at k-th iter-
ation, for j = 1, . . . , n and i = 1, . . . , s. Usually different values of vmax are used for each
component of the velocity vectors. So we have a vector of maximum velocities, vmax ∈ Rn.
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vmax components are usually taken as a fraction of the search space size per direction. Thus, if
the search space is defined as

S = [(xmin)1, (xmax)1]× · · · × [(xmin)n, (xmax)n], (4.5.2)

where (xmax)j and (xmin)j for j = 1, . . . , n denote the j-th components of vectors xmax and
xmin respectively, maximum velocity thresholds for the j-th velocity component is usually de-
fined as, [31]:

(vmax)j = λ((xmax)j − (xmin)j) (4.5.3)

for j = 1, . . . , n where λ ∈ (0, 1] is a parameter to be set. Commonly the value λ = 0.5 is used,
but in [25] the value λ = 0.15 is proposed and in [16] it has been empirically verified to work
better.

4.6 Regrouping mechanism to prevent stagnation
In this section we describe some strategies used to prevent the swarm to be stuck during the
search for the global minimum.

There can be two different situations in which the swarm does not make improvements
towards the global minimum.

The first case is due to stagnation, i.e. a state in which the particles are clustered and the
swarm density is really high. During the search, especially for functions to be optimized with
a large number of local minima, the swarm can be trapped in a local minimizer, in this case
progress toward better minima has ceased so that continued activity could only hope to refine
the quality of the solution converged upon. If no particle encounters a better global best over a
period of time, the swarm will continually move closer to the unchanged global best until the
entire swarm has converged to one small region of the search space, and there is no improvement
in the value of the objective function. Even if particles are technically always moving, no global
movement of the swarm is discernible on the large scale, and the whole swarm appears as just
one dot. In this case we say the swarm to stagnate. Many ideas have been proposed in the
literature in order to deal with this problem, [8], [16]. Here we recall the main approaches we
have tested: Random Mutation and Regrouping PSO.

Random Mutation is an occasional with a small probability random alternation of one com-
ponent of pgbest vector, [7]. Let r̄ ∼ U(1, d), we change the r̄-th component of vector pgbest
adding, for example, 10% of the current value, [35]:

(pgbest)r̄ = (pgbest)r̄(1 + 0.1). (4.6.1)

Among the strategies we have tested the most effective appears to be the one proposed by
George I. Evers [16]. He proposes a new PSO variant: the Regrouping PSO (PSOreg) whose
goal is to detect premature convergence and free the particles from their state of stagnation
to enable them to continue the search for the global minimum. When stagnation is detected
particles are regrouped within a new search space large enough to escape from the minimum in
which they have become trapped but small enough to provide an efficient search.

In order to detect premature convergence it is necessary to measure how near particles are
to each other. Van den Bergh’s Maximum Swarm Radius criterion is adopted for this purpose.

At each iteration, k, the swarm radius, δ(k) is taken to be the maximum Euclidean distance,
in n-dimensional space, of any particle from the global best:

δk = max
i=1...s

(
‖xik − p

g
best,k‖

)
. (4.6.2)
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Let Ωr be the hypercube making up the search space at regrouping index r, where r is initialized
to zero and incremented by one with each regrouping so that Ω0 represents the initial search
space. Let rangeΩr be the vector containing the side lengths, or range per dimension, of search
space Ωr:

rangeΩr =
[
(rangeΩr)1, . . . , (rangeΩr)n

]
(4.6.3)

Let diam(Ωr) be:
diam(Ωr) = ‖rangeΩr‖. (4.6.4)

Particles are considered too close to each other and regrouping is triggered when the normalized
swarm radius, δnorm = δk

diam(Ωr) satisfies:

δnorm < ε. (4.6.5)

In [16] the value ε = 1.1× 10−4 is said to work well with the proposed regrouping mechanism.
The dimensions of the new search space are calculated with the following formula:

(rangeΩr)j = min((rangeΩ0)j, ρ max
i∈{1...s}

|(xik)j − (pgbest,k)j|) (4.6.6)

where ρ = 6
5ε , [16]. Each particle is then randomly regrouped in this new search space according

to:
xik+1 = pgbest,k + rirangeΩr − 1

2range
Ωr

(4.6.7)

where ri ∈ Rn, ri ∼ U(0, 1), so that the new search space turns out to be

Ωr = [(xrmin)1, (xrmax)1]× · · · × [(xrmin)n, (xrmax)n] (4.6.8)

where

xrmin = pgbest −
1
2range

Ωr ; (4.6.9)

xrmax = pgbest + 1
2range

Ωr

. (4.6.10)

On the other hand the basic PSO approach typically converges rapidly during the initial
search period and then slows, and it may happens that for many iterations, even if particles are
not clustered, the swarm doesn’t manage to find better positions, in terms of a lower objective
function value.

Rotated Particle Swarm (RPS) is a variant of PSO algorithm introduced in [22]. In this
work the authors study the performance of PSO algorithm applied to various test cases varying
the problem size. It is observed that also when optimizing functions without local minima,
growing the problem size the swarm is often stuck and the decrease of the objective function
is really low. It is conjectured that such slow convergence of traditional PSO algorithm occurs
because the velocity updating by equation (4.1.3) depends only on information of the same
dimension and particles velocity is updated independently for each component of x. So it is
suggested to change the update velocity scheme and to adopt a scheme that uses informations
from all dimensions. Then velocity update equation (4.1.3) may be written in the following
matrix form:

vik+1 = wvik + Φ1(pibest − xik) + Φ2(pgbest − xik) (4.6.11)

for i = 1, . . . , s, where

Φ1 =


(c1r1)1

.
.

(c1r1)n

 , Φ2 =


(c2r2)1

.
.

(c2r2)n

 . (4.6.12)
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Equation (4.6.11) is then replaced by

vik+1 = wvik + A−1Φ1A(pibest − xik) + A−1Φ2A(pgbest − xik) (4.6.13)

where A ∈ Rn×n is a rotation matrix. In this way the coordinate system is rotated and infor-
mation of other dimensions is employed in calculating each component of velocity. Usually
only some selected axis couples are rotated by a fixed angle θ in order to contain computational
costs, so that matrix A is compound of rotation submatrices 2× 2 and most of its elements are
zero. In [22] is suggested to set the angle of rotation θ to π

5 and the number of axes to be rotated
to 40% of number of dimensions.

4.7 Handling constraints
In this section we show how PSO algorithm has been recently modified in order to handle
constraints.

Originally PSO algorithm, and evolutionary methods in general, were used to deal with
nonlinear programming problems with non-smooth objective functions but without constraints,
apart from bound constraints.

When box constraints are present:

xmin ≤ x ≤ xmax (4.7.1)

where xmin, xmax ∈ Rn, and the inequalities are component wise, the search space

S = [(xmin)1, (xmax)1]× · · · × [(xmin)n, (xmax)n] (4.7.2)

is bounded. However, even if particles are initialized within the search space, the application of
the standard PSO update equations does not prevent particles from leaving it. On the other hand,
this kind of constraints are quite easy to handle because it is simple to find feasible solutions and
to repair the infeasible ones, also because it is possible to manage every component separately.
The most common strategy to handle bound constraints is to bring back on the nearest boundary
a particle x that has left the search space, [31]:

xj =

(xmin)j if xj < (xmin)j
(xmax)j if xj > (xmax)j

(4.7.3)

where xj , (xmin)j , (xmax)j for j = 1 . . . n are the j-th component of vectors x, xmin and xmax
respectively. In both cases it is also necessary to change the particle velocity, otherwise on the
next iteration it is likely to have a new violation:

vj = −r3vj; (4.7.4)

where vj is the j-th component of vector v and r3 ∼ U (0, 1). This strategy is depicted in
Figure 4.7.1.

Only in the last few years several approaches have been proposed to extend evolutionary
techniques to general NLP problems by some constraints handling method. First modifications
of the Genetic Algorithms have been introduced in [1], [29] and then also Particle Swarm Opti-
mization algorithms have been considered, [2], [10], [32]. These methods can be grouped into
two main categories:

• methods based on preserving solutions feasibility;
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Figure 4.7.1: Bound constraints handling strategy. Here we denote with x
(t)
ij and v

(t)
ij the j-th component of

position and velocity vectors, respectively, for the i-th particle at the t-th iteration.

• methods based on penalty functions.

According to the first approach, only feasible solutions are generated to maintain feasibility,
and the search process is restricted within only the feasible area. This could be done by simply
rejecting the infeasible individuals, but this has the obvious drawback that for problems with
small feasible space it is impractical. Otherwise specialized operators were introduced to repair
infeasible solutions so that a feasible solution is produced. This kind of approach is usually
used with Genetic Algorithms, but the idea of rejecting individuals or modify them, is not in
agreement with PSO philosophy of collaboration and re-education of bad individuals, so the
second approach seems to be preferable.

The second approach is based on theory presented in Section 2.2. When using this approach,
the constraints are effectively removed, and a penalty term is added to the objective function
value when a violation occurs. Hence, the optimization problem is carried on minimizing the
penalty function. Using this approach one has to face the difficulty of maintaining a balance
between obtaining feasibility whilst finding optimality. Methods based on penalty functions
were previously used with Genetic Algorithms [1], [29], in that case has been noted in [24] that
too high a penalty will force the algorithm to find a feasible solution even if it is not optimal.
Conversely, if the penalty is small, the emphasis on feasibility is thereby reduced, and the system
may never converge.

4.8 Stopping criterion
In this section we show the standard stopping criterion used with evolutionary algorithms.

Choosing a good stopping criterion for a search algorithm is not easy because we have only
informations about the value taken by the objective function and we do not have derivative
informations. Indeed it is not possible to have any optimality measure, i.e. we cannot know
when and if a stationary point has been reached, especially because we have no information
about gradients. Then, standard stopping criteria are the followings, [31]:

• the algorithm is stopped after a maximum number of iterations or function evaluations.
This criterion is usually used when one wants to find a solution in a limited amount of
time. It is clear that choosing the right number of maximum iterations is critical: if that
number is too low the process may be stopped when an optimal solution is not reached,
if it is too high useless function evaluations are performed and the computational cost is
increased.

• the algorithm stops when there are no improvement after a fixed number of iterations.
Usually an improvement is measured by a sufficient decrease in the objective function or
by an update of vector pgbest. Using this criterion we introduce two more parameters to be
set:
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1. the number of iteration within evaluate if there are improvements,

2. the threshold that define when there is an improvement over a step.

• if an exact solution x∗ of the problem is known, than the algorithm is stopped when

f(pgbest) < |f(x∗) + ε| (4.8.1)

where ε is a tolerance to be fixed.

In most applications the first two criterion are used together.

4.9 A new PSO variation
We also developed a further variant of PSO algorithm with the purpose of including in the
velocity update equation (4.1.3) the level of leadership of the i-th particle, and this is done
modifying equation (4.1.3) adding the new term c3r3(pgbest − pibest) so that it becomes:

vik+1 = wvik + c1r1(pibest,k − xik) + c2r2(pgbest,k − xik) + c3r3(pgbest − pibest), (4.9.1)

where c3 is a weighting parameter to be set, r3 ∼ U(0, 1). So in the standard velocity updating
equation it is added a new term that is proportional to the distance of the particle best position
from the global best position. Notice that adding this term do not alter the stability analysis
made in section 4.2, because the characteristic polynomial associated to the second order recur-
sion formula obtained with equation (4.9.1) is the same of (4.2.7). The addition of the new term
indeed modify only the constant term.

Numerical tests have shown that adding this term at each iteration does not provide good
results, but adding it only when the swarm seems to be stuck, i.e. when after two following iter-
ations a better position is not found, helps the swarm to escape from this stalemate, improving
also the rate of convergence.

In the numerical results section, we will address to this version of PSO algorithm with the
term PSOc3.

4.10 Our PSO implementation in ECOS
In this section we describe the PSO algorithm implemented in ECOS. We have tested vari-
ous features of PSO method on different examples of energy districts and we have chosen the
version of the algorithm that is most suitable for solving problem (1.2.1). We had to choose
the swarm size, the free coefficients, the topology scheme, a constraint handling strategy, a
stopping criterion. It is important to underline that optimizing this kind of problem is really
different from optimizing a test function, even a particularly difficult one. First of all we have to
deal with problems with hundreds of variables, with an objective function that has not a simple
analytic form and that is expensive to evaluate, and we have also to deal with nonlinear con-
straints. Moreover the algorithm must return results quickly to be useful in practise. All these
considerations have deeply influenced our choices.

Regarding the number of particles, it is impossible to use wide swarms because each particle
of the swarm requires two function evaluations, the objective and the constraints functions, at
each iteration. We underline that the evaluation of those functions in this case is very expensive,
as opposed to problems in which a simple test function is optimized. Time required for every
function evaluation is quite long, so using a high number of particle becomes prohibitive. On
the other hand using few particles means low exploration capability. After several numerical
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tests, we have chosen to use 20 particles, as a good compromise between solution quality and
execution time.

After a wide numerical experimentation we set c1 = 1.3 and c2 = 2.8, we adopted the
linearly decreasing scheme (4.3.3) for choosing w, with w0 = 0.6, wmax = 0.1.

Regarding the choice of topology we have preferred the global PSO version that guarantees
a faster convergence, in order to have shorter execution times.

Regarding the constraints handle strategy, for bound constraints we adopted the approach
introduced in Section 4.7, while for nonlinear constraints we have tested many penalty function
approaches, [35], but the most adequate turned out to be the one described in [1] and [29]. We
tested its performance both on some analytical problems and on problem (1.2.1), [35]. Such
approach is called annealing penalties, and it is based on the quadratic penalty function (2.2.6).
For this approach the penalty term τ = 1

ν
is used and it is called temperature. Here we sketch

the k-th iteration of such a procedure:

1. Given τk.

2. Evolve the population using PSO algorithm with the following penalty function:

Φ(x, τk) = f(x) + 1
2τk

∑
i∈I

max(0, gi(x))2. (4.10.1)

3. Decrease temperature τk: choose τk+1 < τk.

After several numerical tests we decided to change the penalty parameter τk at each iteration,
instead of solving more subproblems with fixed decreasing penalty parameters, as it is done in
[1] and shown in the above scheme. With this choice the swarm appears more free to explore the
search space, while in the other case it was difficult to have a good balance between obtaining
a good solution and a feasible solution, the swarm was more likely stuck in local feasible point
and the obtained value of the objective function was too high.

Regarding the choice of a mechanism to prevent the swarm to be stuck in local minima, we
have tested all the strategies described in Section 4.6 but no one of them seemed to improve
PSO performance significantly. Among them we decided to adopt the regrouping mechanism
even if its contribution is not so considerable.

As far as the velocity clamping is concerned, we have tested its effect on the algorithm
performance using different values of λ, but in this case it does not seem to be effective, so it
was not used.

Regarding the stopping criterion we adopted both the approaches described in Section 4.8,
i.e we stop PSO algorithm when a maximum number of iterations kmax is performed or when
there are no improvements over a fixed number of iterations κ. We measure an improvement
in terms of a decrease of the objective function, and we judge that the decrease is not sufficient
when the following condition is satisfied for κ consecutive iterations:

|f(xk−2)− f(xk)|
|f(xk−2)| < ε (4.10.2)

where ε is a tolerance to be fixed.
On problem 1.2.1 we have tested also the new version of PSO algorithm we have introduced

in Section 4.9. As it will be shown in Chapter 5, from numerical tests it has emerged that PSOc3
has a good performance especially at the beginning of the optimization process. The addition
of the new term in the velocity updating equation indeed improves the convergence rate and
provides a quicker decrease of the objective function. Nevertheless the swarm is easier trapped
in local minima, so it is not advisable to use this scheme at the end of the optimization process.
Considering of this, we decided to use an hybrid PSO version, i.e. to use PSOc3 in the first
half of iterations and basic PSO in the last ones.
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Chapter 5

Numerical tests and results

In this chapter we show the results of the application of the PSO and SLP algorithms we have
developed to some test cases, and we evaluate their performance. First we have optimized
the Rastrigin function, [33], a famous benchmark problem widely used in the literature to test
the performance of Evolutionary Algorithms. The numerical experimentation has been carried
out on a PC equipped with a Intel(R) Core(TM)2 DUO CPU P8400 @ 2.26 GHz, 4.00 GB
RAM, Windows Vista SP2 32 bit and using Matlab R2012a. Then we have dealt with a real
life problem, the optimization of energy districts, that we have introduced in Chapter 1. The
numerical experimentation has been carried out on a PC equipped with a Intel(R) Core(TM) i5-
2400 CPU 3.10 GHz, 4.00 GB RAM, Windows 7 Professional 32 bit and using Matlab R2012b.

For all the test cases we report results that are the average of those obtained over 10 runs.
In fact, PSO is a stochastic algorithm and each run yields a different solution. Moreover also
the starting swarm is different because particles are initialized randomly. As far as the results
obtained with SLP algorithm are concerned, since it is a deterministic algorithm, we report the
average of the results obtained over ten runs, where in each run the starting point is changed
randomly. For the optimization of energy district the starting point has been chosen such that
all the constraints (1.2.1b), (1.2.1c) hold, otherwise the SLP approach described in Section 1.3,
to which we will refer below with the name SLP1, may not converge. On each run the starting
point is the same for SLP1 and for the SLP approach based on penalty function theory, to which
we will refer below with the name SLP2, so that we can compare their performance regardless of
the initial guess. The results are reported in several tables in which the headings of the columns
have the following meaning:

• solver is the name of the solver used for the optimization process;

• f̄ is the arithmetic mean of the values f i, for i = 1, . . . , 10, where f i is the objective

function value obtained at the i-th run: f̄ = 1
10

10∑
i=1

f i;

• σf is the standard deviation of values f i: σf =

√√√√ 10∑
i=1

(f i−f̄)2

10 ;

• max f is the maximum among the values of the objective function obtained over the 10
runs: max f = max

i∈{1,...,10}
f i;

• min f is the minimum among the values of the objective function obtained over the 10
runs: min f = min

i∈{1,...,10}
f i;

• k̄ is the arithmetic mean of the values ki for i = 1, . . . , 10, where ki is the number of

iteration required by the i-th run: k̄ = 1
10

10∑
i=1

ki;

50



• σk is the standard deviation of values ki: σk =

√√√√ 10∑
i=1

(ki−k̄)2

10 ;

• max k is the maximum among the number of iterations required by the optimization
process over the 10 runs: max k = max

i∈{1,...,10}
ki;

• min k is the minimum among the number of iterations required by the optimization pro-
cess over the 10 runs: min k = min

i∈{1,...,10}
ki;

• ‖x‖2 is the 2-norm of the solution, obtained as an average of those of the 10 solutions
found. This column is present only in the tables in Section 5.1 because when optimizing
the Rastrigin function this parameter is useful to have a measure of the distance of the
solution found from the global minimum that is x = 0;

• time/iter(·) is the time required for an iteration of the optimization process, the value in
brackets is the unit of measurement, namely s are seconds and m are minutes;

• time(·) is the total time required for the optimization process, the value in brackets is the
unit of measurement, namely s is seconds and m is minutes.

As far as the stopping criterion is concerned, all of the following results are obtained:

• stopping the PSO algorithm when the following condition:

|f(xk−2)− f(xk)|
|f(xk−2)| < 10−3 (5.0.1)

is satisfied for 100 consecutive iterations for the Rastrigin function, for 40 consecutive
iterations for the optimization of energy district. For the Rastrigin function we allowed
100 iterations instead of 40 because the problem has a very high number of local minima
and it has been observed that it is more likely for the swarm to be stuck in one of them so
that the objective function doesn’t decrease for some iterations but then decreases again;

• stopping SLP1 when the following condition is satisfied:

‖dk‖ < 10−8 (5.0.2)

where dk is the current step;

• stopping SLP2 when the following conditions are satisfied:

max{‖∇f(xk) + J(xk)Tλk‖∞, ‖g(xk)Tλk‖∞} < ε(1 + ‖λk‖2); (5.0.3)
max{max

i∈I
(0, gi(xk)),max(0, xmin − xk),max(0, xk − xmax)} < ε(1 + ‖xk‖2);(5.0.4)

where xk and λk are current solution and multipliers vector approximations respectively
and where we have set ε = 10−3.

Besides these stopping criterion, the execution is stopped whether a maximum number of it-
erations, kmax is reached. For evolutionary methods, and especially in the last iterations, the
objective function decreases really slowly and sometimes during an iteration it does not de-
crease at all. So the maximum number of iterations should be reasonably high. Case to case
one can chose the most appropriate value, considering the available time and the desired solu-
tion quality.
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For the 2-dimensional Rastrigin function we have set kmax = 500 for PSO algorithm and
kmax = 50 for SLP algorithm; for the 30-dimensional Rastrigin function we have set kmax =
1200 for PSO algorithm and kmax = 50 for SLP algorithm; for the problem of energy district,
for PSO algorithm we have set kmax = 1000 for the first phase, cf. Section 1.4, and kmax = 500
for the second phase, for SLP algorithm we have set kmax = 30 for the first phase and kmax = 70
for the second phase.

Notice that SLP2 applied to the Rastrigin function test case reduces to SLP1 because there
are not nonlinear constraints, the only difference lays in the stopping criterion. At the same time
in PSO method the penalty function (4.10.1) reduces to the objective function f .

5.1 Early PSO application: the Rastrigin function
In this section we show the results of the optimization of the Rastrigin function by SLP and
PSO algorithms. We have mainly focused to test various features of PSO algorithm, such as
swarm size, neighbourhood topology, various choices of coefficients.

The Rastrigin function, see Figures 5.1.1, 5.1.2, is a typical example of nonlinear, nonconvex
function, usually used as a performance test problem for optimization algorithms, especially for
search algorithms. It was first proposed by Rastrigin as a 2-dimensional function [33] and has
been generalized by Mühlenbein [3] to larger dimensions. Finding the global minimum of this
function is a fairly difficult problem, due to its large search space and its large number of local
minima. It is defined by:

f(x) = 10n+
n∑
i=1

[x2
i − 10 cos(2πxi)]; (5.1.1)

where n is problem dimension and x ∈ [−5.12, 5.12]n. It has a global minimum at x = 0 where
f(x) = 0.

Figure 5.1.1: Rastrigin function.

Among optimization problems, some are regarded as more difficult than others, for example
problems with many local minima are considered more difficult than others. Clerc in [9] gives
the following formal definition: difficulty of an optimization problem in a given search space is
the probability of not finding a solution by choosing a random position according to a uniform
distribution. It is thus the probability of failure at the first attempt.
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Figure 5.1.2: Contour plots of the Rastrigin function.

When high precision to find a global minimum is required, the probability of failure is very
high and to take it directly as a measure of difficulty is not very practical. Thus Clerc, to
practically compute the difficulty of a problem, suggests to the following formula:

difficulty = − log(1− failure probability) = − log(success probability) (5.1.2)

The success probability can be estimated in various ways, according to the form of the
objective function, [9], by direct calculation in simple analytical cases or it can be numerically
approximated, through Montecarlo approaches.

Minimizing Rastrigin function is an optimization problem of the form:

min
x
f(x) (5.1.3a)

subject to

−5.12 ≤ xi ≤ 5.12, i = 1, . . . , n. (5.1.3b)

Optimizing this function becomes more and more difficult as the problem size grows.
We have solved (5.1.3) using both PSO and SLP starting with the two dimensional case,

the easiest one, which is particularly interesting because allows us to graphically represent the
evolution of the swarm during its search of the global minimum. Then we have set n = 30 to
test the effect of problem size to the optimization process.

5.1.1 2-dimensional Rastrigin function
In this section we compare the results obtained by PSO algorithm using 10 particles, a star
topology and the following standard set of parameters typically used in the literature when
optimizing the Rastrigin function or other famous benchmark functions, [14], [16]:

• c1 = c2 = 1.4961;

• w = 0.72;

and those obtained by the two versions of SLP algorithm, varying randomly the starting solu-
tion.

As we can see from Table 5.1.1, while for PSO algorithm the Rastrigin problem is a fairly
easy problem to solve and the algorithm never misses the goal, regardless of the initial positions
of particles, the SLP algorithm is not so reliable. On 10 runs SLP never reaches the goal,
but it stops on local solution far enough from the global minimum. We can also notice that
even if PSO performs more iterations the execution time is really low. The results obtained
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Solver f̄ σf max f min f k̄ σk max k min k ‖x‖2 time(s)
PSO 10−7 3× 10−7 10−6 10−13 273 30 332 220 10−5 2
SLP1 26.1 11.7 49.7 3.9 31 4 38 27 4.9 1
SLP2 25.1 12.2 38.9 4.9 3 1 5 3 4.6 0.2

Table 5.1.1: Comparison between SLP and PSO on 2-dimensional Rastrigin function.

by SLP algorithm are strongly dependent on the starting point: the final solution is the local
minimum nearest to the starting point, as it is expected by a method designed to converge to a
local minimum. On the other hand from these results PSO algorithm capability to converge to
the global minimum appears clearly. These considerations are evident from Figures 5.1.3 and
5.1.4. In Figure 5.1.3 are depicted the contour levels of Rastrigin function and in blue the 10
particles of the swarm. The four figures refer to different stages of evolution and to a single run:
in them are depicted the position of particles at the beginning of the optimization process, after
50 and 100 iteration and at the end of the process. We can see that at the beginning particles
are uniformly distributed within the search space, then they begin to approach zero until they
converge to it. On the other hand, in Figure 5.1.4 we show in different colours ten different runs
of SLP1 algorithm. In the four figures we can see the evolution of those solutions to the varying
of iterations, in the first are depicted the initial solutions and in the others the solutions after 5
and 10 iterations and at the end of the optimization process, approximately after 35 iterations.
In this case it is evident the difference between the local convergence of SLP and the global one
of PSO.

Figure 5.1.3: Evolution of the swarm during the optimization process, PSO solver, star topology.

We can also compare the evolution of the swarm gained using both a star topology and a
ring topology, which is depicted in Figure 5.1.5. We can see that using this second topology the
swarm tends to cover a larger part of the search space and to converge later.
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Figure 5.1.4: Evolution of ten different solution, SLP solver.

Figure 5.1.5: Evolution of the swarm during the optimization process, PSO solver, ring topology.
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Swarm size f̄ σf max f min f k̄ σk max k min k ‖x‖2 time(s)
30 63.8 15.2 99.4 39.7 752 98 926 604 8.2 4
60 60.3 14.2 79.5 27.8 676 62 809 604 7.7 7

120 43.0 11.2 68.6 16.9 645 63 791 597 6.3 14

Table 5.1.2: PSO with different swarm sizes.

5.1.2 30-dimensional Rastrigin function
In this section we have used this more difficult benchmark problem to test many different fea-
tures of the PSO algorithm, such as:

• different choices of swarm size;

• different choices of the inertia weight; namely we have compared PSO with a fixed value
of w with PSO using w linearly decreasing with iterations;

• different choices of neighbourhood; namely we have compared PSO with star and ring
topology;

• velocity clamping;

• regrouping mechanism.

All the results reported in the following sections are obtained with the standard set of parameters
c1 = c2 = 1.4961. In the following sections we will show the obtained results, all of them
have been obtained repeating 10 runs of the algorithm. It is important to notice that compared
with the 2-dimensional problem, this problem is really more difficult to solve and even PSO
algorithm does not manage to find the global minimum.

Number of particles

In order to test the effect of different swarm sizes on the algorithm’s performance, we have cho-
sen w = 0.72, a star topology, and we have compared the results obtained with three different
swarm sizes: 30, 60, 120.

We can see from Table 5.1.2 that increasing the swarm size ensures a better exploration of
the search space providing a lower mean value for the objective function and also a smaller
standard deviation. On the other hand it is important to notice that increasing the swarm size
imply more function evaluations ( about 22500 for s = 30, 40500 for s = 60 and 77400 for s =
120) and so higher computational costs and execution times. So, in choosing the swarm size, it is
crucial to make a good compromise, balancing computational costs and solution approximation
quality, in connection with the available time. Notice that also growing the swarm size the
global minimum isn’t reached.

Choice of the inertia weight and of the Neighbourhood topology

In this and in the following sections, according to the above remarks, for the numerical tests we
have chosen swarm size s = 60. In this section we show the numerical results of the application
of PSO algorithm with two different choices for the inertia weight w:

• w linearly decreasing with iterations;
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w f̄ σf max f min f k̄ σk max k min k time(s)
variable 52.8 10.2 77.1 34.8 892 66 1011 767 8.4

fixed 60.3 14.2 79.5 27.8 676 62 809 604 6.5

Table 5.1.3: Comparisons between fixed w and linearly decreasing scheme, fully connected topology.

• w set to a constant value;

and with two different choices of neighbourhood topology:

• the fully connected topology;

• the ring topology.

As far as the inertia weight w is concerned, when the linearly decreasing scheme is adopted we
set wmax = 0.9, wmin = 0.1 and wk = wmax − (wmax − wmin) k

kmax
, while the fixed value of

w used is w = 0.72. On the other hand, regarding the neighbourhood topology, for the ring
topology we have chosen the size of neighbourhood, referring to Section 4.4, to be r = 2. The
results in Table 4.3.3 are obtained with a star topology. In the first line of Table 4.3.3, w linearly
decreasing is used, in the second line w = 0.72. We can see that using w linearly decreasing
ensures better performance, gaining a reduction of the average value of the objective function
of 15% with respect to the one obtained using a fixed value, and providing a smaller standard
deviation. On the other hand this choice involves higher computational costs because it requires
more iterations to converge, so more function evaluations and higher execution times. Plotting
the values of the objective function obtained during the optimization process it is possible to
understand the reason behind these results. As we can see from Figure 5.1.6 on the right,
the choice of a fixed value of w provide a very quickly decrease especially in the firsts 200
iterations, although it is more likely for the solution to be trapped in a local minimum because
the convergence rate is too high. On the left we compare the decrease of the objective function
gained adopting the linearly decreasing scheme. The objective function decreases really slower,
after 200 iterations its value is still very high while in the other case it was close to the final
value, but at the end a lower value is reached.

Figure 5.1.6: Decrease of the objective function provided by two different choices of w, star topology.

It is also important to notice that the value of fixed w we have used was recommended for
this specific problem and so it is the best choice for this case. Using different values one could
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w f̄ σf max f min f k̄ σk max k min k time(s)
variable 66.1 12.2 85.6 45.8 859 47 1000 834 10

fixed 56.4 14.2 88.8 42.80 841 10 860 826 9

Table 5.1.4: Comparisons between two different choices of w for PSO with ring topology.

obtain worst results, and also dealing with another problem this could not be the best choice to
perform. Also for this reason it should be preferable to choose a linearly decreasing strategy,
because adopting a fixed value for w requires a starting phase for detecting the best value for
the specific problem.

Results in Table 5.1.4 are obtained adopting a ring topology and both using w linearly
decreasing with iterations in the first line and w = 0.72 in the second line.

Comparing results of Tables 5.1.3 and 5.1.4 we can notice that:

• when a fixed value ofw is used, it is preferable to choose a local version of PSO algorithm:
using a less connected topology slows down convergence and provide better performance.
In Figure 5.1.7 we can compare the decrease of the objective function in the two cases,
notice that using the ring topology the decrease is slower.

• using a linearly decreasing strategy for w a global topology seems to provide better re-
sults.

Figure 5.1.7: Comparison between star and ring topology with w = 0.72.

Velocity clamping

In this section we compare basic PSO with PSO with velocity clamping described in Section
4.5. We chose, as suggested in [16], λ = 0.15. Comparing Table 5.1.5 with Table 5.1.2 we
can see that using velocity clamping actually improves the performance of PSO algorithm,
providing solutions nearer to the global minimum, lower values of the objective function and of
the standard deviation.
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swarm size f̄ σf max f min f k̄ σk max k min k time(s)
30 45.7 9.6 59.6 30.8 749 88 940 656 6.5
60 39.5 9.3 56.7 28.8 780 80 930 650 6.1
120 32.3 7.9 48.7 17.9 782 92 922 667 5.6

Table 5.1.5: PSO with various swarm size and velocity clamping.

algorithm f̄ σf max f min f k̄ σk max k min k ‖x‖
basic PSO 32.6 6.6 40.8 20.9 780 80 930 650 6.1

PSOreg 20.4 4.8 28.8 13.9 678 54 960 639 4.8

Table 5.1.6: Comparison between basic PSO and PSO with regrouping mechanism.

PSO with regrouping mechanism

We have seen that growing the problem dimension minimizing the Rastrigin function is a fairly
difficult problem and that the swarm tends to be trapped in one of the many local minima. To
deal with this problem we have tested all the strategies described in Section 4.6. Rotated Parti-
cle Swarm, as it is shown also in [22], doesn’t improve PSO performance on the 30-dimensional
Rastrigin function, but in [22] it is shown to be effective on higher dimensions (n=400). Also
Random Mutation does not seem to improve PSO performance, while the regrouping mecha-
nism proposed by George I.Evers [16] seems to be really effective. In Table 5.1.6 are compared
the results obtained by basic PSO algorithm and the one using the regrouping mechanism. These
results have been obtained setting w = 0.72 and choosing a star topology.

We can observe that using PSO with regrouping mechanism, denoted by PSOreg, we obtain
lower values of the objective function on a lower number of iterations.

In [16] it is suggested to use a fixed value of w in conjunction with the regrouping mech-
anism, because it has been found to be more beneficial to allow the quick convergence of the
static weight and to regroup at premature convergence than to take a considerably longer time
to converge cautiously and to regroup less often. PSO algorithm is stopped with the stopping
criterion (5.0.1) reported at the beginning of this chapter, but while this criterion is suitable for
the basic version of PSO algorithm, to appreciate completely the benefits of the application of
such regrouping mechanism, a wider number of iteration is necessary. In fact, also providing a
higher value for kmax when using basic PSO, if the swarm is stuck in a local minimum it doesn’t
manage to escape from it. On the other hand when using PSOreg allowing an high number of it-
erations the swarm manages to make little progress towards the global solution until it reaches a
local minimum near to it. A stopping criterion that fits better with this version of PSO algorithm
is the following: PSO algorithm is stopped when a maximum number of function evaluations
is performed. Note that the required number of iteration to obtain good results (i.e. a value of
the objective function less than 2) is really high: using 20 particles the maximum number of
function evaluations we used was 1000000, it means 50000 iterations and an execution time
of 3.5 minutes. In Figure 5.1.8 is depicted the decrease of the objective function during the
optimization process: notice that also if for several iterations no better positions are found, then
little progress is made and as the swarm approaches the global minimum, a progressively lower
value of the objective function is obtained.
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Figure 5.1.8: Decrease of the objective function when using PSO reg allowing a wider number of function evalu-
ations.

solver f̄ σf max f min f k̄ σk max k min k ‖x‖ time(s)
basic PSO 41.0 5.7 49.7 33.8 551 42 612 482 6.9 5.2

PSOc3 49.5 9.7 63.6 35.8 460 21 501 429 7.1 4.3
hybrid PSO 40.4 8.4 51.7 27.8 553 26 615 521 6.6 5.3

Table 5.1.7: Comparisons between basic PSO and new variation PSO c3.

PSOc3

In this section we show the results obtained with the new variation of PSO algorithm, PSOc3,
we introduced in Section 4.9. As we have disclosed in Section 4.10, from several numerical
tests it has emerged that PSOc3 shows a good performance at the beginning of the iterative
process, gaining a good convergence rate and a quicker decrease of the objective function, but
is easier trapped in local minima. This behaviour emerges clearly comparing the first two lines
of Table 5.1.7, in which are compared the performance of basic PSO and PSOc3 both with w
linearly decreasing, star topology, velocity clamping, swarm size 60. In Figure 5.1.9 is depicted
the decrease of the objective function provided by both basic PSO and PSOc3, from which it is
evident that the two algorithms have different rates of convergence. As we have disclosed in
Section 4.10, in order to overcome this problem and to get benefits from both the approaches we
tested also an hybrid PSO algorithm, i.e. we used PSOc3 in the first half of iterations and basic
PSO in the last ones, specifying for each algorithm a maximum number of iteration kmax = 500.
In the last line of Table 5.1.7 are reported the result of combination of the two approaches: the
algorithm has a good performance and do not stall too early. Regarding the value of the free
parameter c3, the value c3 = 1 has been used in the numerical experimentation and it proves to
work well.

It is worth noticing that, like in the 2-dimensional case, the time required for the optimization
process by all these versions of PSO algorithm is really low, even if PSO algorithm requires an
high number of iterations to converge.
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Figure 5.1.9: Decrease of the objective function provided by PSOc3 and basic PSO.

solver f̄ σf max f min f k̄ σk max k min k ‖x‖ time(s)
hybrid PSO 40.4 9.7 51.7 27.8 765 67 918 652 6.6 7

SLP1 243.6 50.4 342.9 163.7 40 2 43 38 15.4 2
SLP2 276.4 37.8 369.8 210.4 5 2 11 3 15.7 0.5

Table 5.1.8: Comparisons between SLP and PSO on 30-dimensional Rastrigin function.

SLP application to 30-dimensional Rastrigin function

If in dimension 2 SLP doesn’t give excellent results dealing with this problem, in higher di-
mension the situation is even worst, as it is shown in table Table 5.1.8. SLP indeed in all runs
provides a really high value of the objective function and a solution far from the global mini-
mum. So, when optimizing functions with a lot of local minima, the capacity of the evolutionary
algorithm to search for the global minimum appears clearly and the use of such an algorithm
provides better results.

5.2 Optimization of energy districts
In this section we describe the PSO variation we used for the optimization of energy districts
and the results of the numerical tests made on 13 different realistic models of energy districts,
obtained with PSO and the two versions of SLP algorithm.

The PSO Matlab code we developed was made available in the software tool previously
implemented by Enel Ingegneria e Ricerca and provided as an alternative to the SLP solver
already implemented in the code. The software tool has been equipped with Matlab functions
building up the objective, the constraints functions and evaluating gradients of the objective and
of the constraints functions. When it is possible the analytical expression of gradients is used,
otherwise they are approximated by finite differences. This is a quite heavy calculation and it is
unnecessary when using PSO algorithm. So we needed to modify the existing codes in order to
avoid this calculation when the new solver is used.

The version of PSO algorithm we used is described in Section 4.10. We recall some of its
features:
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• we used an hybrid version of PSO algorithm, consisting of PSOc3 for the first half of
iterations, with c3 = 1, and basic PSO for the last ones;

• the swarm size is 20;

• c1 = 1.3 and c2 = 2.8;

• for w a linearly decreasing scheme is adopted, wk = wmax − (wmax − wmin) k
kmax

, with
wmax = 0.6, wmin = 0.1 and k = 1, . . . , kmax;

• the topology scheme adopted is a star topology;

• the stopping criterion is the one described in Equation (5.0.1) with a fixed tolerance ε =
10−3;

• the constraints handling strategy for bound constraints is the one described in Section
4.7, for nonlinear constraints is the one described in Section 4.10, with τ0 = 0.1 and
τk+1 = (1− 0.01)τk;

• the regrouping mechanism described in Section 4.6 is adopted.

We have tested all the strategies presented in Section 4.6 to deal with the problem of stagnation,
but no one of them appears to be really effective dealing with problem 1.2.1. In Figure 5.2.1
we can compare the decrease of the objective function provided by basic PSO and RPS, both
of them with the basic scheme described above, when applied to an example of energy district,
and we can notice that the two algorithms have almost the same performance. Also Random
Mutation did not provide good results. Then, we decided to adopt the regrouping mechanism
even if, while it improves significantly PSO performance on the Rastrigin function, in this case
it is rarely applied within the maximum number of iterations specified and its contribution is
not so significant. In fact this strategy would require a large number of iterations in order to be
effective, as we have noticed in Section 5.1.2. On the other hand, due to the long time required
by the optimization process, it is not possible to allow an higher number of iterations.

Figure 5.2.1: Decrease of the objective function provided by different versions of PSO algorithm.

From Figure 5.2.1 we can also analyse the behaviour of the new version of PSO algorithm
we introduced in Section 4.9, PSOc3, compared to the one of basic PSO algorithm. As we have
already noticed in the previous section, it has a good performance at the beginning gaining a
good convergence rate and a quicker decrease of the objective function, but is easier trapped in
local minima. Again in Figure 5.2.1 is possible to see the result of the combination of the two
approaches, i.e. the behaviour of the hybrid PSO version we have introduced in Section 4.10:
the algorithm has a good convergence rate and does not stall too early. This is the version of
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Solver f̄ σf max f min f k̄ σk max k min k time/iter(s) time(m)
PSO 16.0 0.2 16.4 15.7 1095 54 1193 1019 0.08 1.5
SLP1 15.9 0.5 17.4 15.7 26 13 41 5 0.1 0.02
SLP2 15.7 0.1 15.9 15.5 9 2 12 5 0.07 0.01

Table 5.2.1: ’Test1 Elettrico’, comparison of solvers.

PSO algorithm we have decided to use for the optimization of energy district, then from now
on with the generic term PSO we will refer to this hybrid version. As for the Rastrigin function,
the value c3 = 1 has been used in the numerical experimentation and it proves to work well.

The three algorithms have been tested to 13 different realistic models of energy districts, in
the following sections we describe each test case and the results of the optimization, comparing
the performances of the algorithms. For each test case we show a table with the results of the
optimization provided by PSO algorithm, and both versions of SLP algorithm, SLP1 and SLP2.
We postpone in Section 5.2.14 some remarks about the results obtained and some comparisons
among the three algorithms.

5.2.1 ’Test1 Elettrico’
This model of energy district includes the following devices:

• a fuel burning generator;

• a wind generator;

• a photovoltaic generator;

• a L1 load;

• a L2 load;

• a L3 load.

The dimension of the search space is 294, i.e. there are 294 variables to be optimized, subject
to 10 physical constraints and 588 bound constraints. This is the simplest example of energy
district because there are no thermal configurations nor accumulators but only electric devices,
few loads, so the dimension of the problem is lower then in other cases.

Table 5.2.1 shows the results of the optimization process for this specific model of energy
district, provided by the three algorithms.

We now present results obtained on more complex districts, with more devices and thermal
configurations.

5.2.2 ’Test2 Termico HOT1’
This model of energy district includes the following devices:

• an accumulator;

• a configuration HOT1;

• a wind generator;

• a photovoltaic generator;
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Solver f̄ σf max f min f k̄ σk max k min k time/iter(s) time(m)
PSO 27.2 0.2 27.6 26.9 1004 84 1205 881 0.5 9
SLP1 27.8 2.6 34.4 26.6 60 4 64 52 1.4 1.4
SLP2 26.9 0.3 27.5 26.6 51 12 73 34 1.4 1.2

Table 5.2.2: Test2 Termico HOT1, comparison of solvers.

• a L1 load;

• 2 L2 loads;

• 2 L3 loads.

In Figure 5.2.2 a scheme of the configuration HOT1 is depicted.

Figure 5.2.2: Configuration HOT1: CHP and boiler.

The dimension of the search space is 398 subject to 213 process constraints and 796 bound
constraints. Table 5.2.2 shows the results of the optimization process for this specific model
of energy district, provided by the three algorithms. In Figure 5.2.3 on the left is depicted the
decrease of the objective function provided by PSO algorithm, at the centre that provided by
SLP1 and on the right that provided by SLP2. Notice that the scale on x axis in not the same in
the three plots. Comparing the first figure with the other two it is evident that the convergence
rate of SLP algorithm is really higher than that of PSO, that is an obvious consequence of the
fact that SLP uses first order informations on f . Comparing the last two figures we can notice
that SLP1 performs more iterations than SLP2, even if in this case the number of iterations
performed by the two algorithms is not prominently different.

5.2.3 ’Test2 Termico HOT2’
This example includes the following devices:

• an accumulator;

• a configuration HOT2;

• a wind generator;

• a photovoltaic generator;

• a L1 load;
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Figure 5.2.3: Test2 Termico HOT1, decrease of the objective function provided by the three solvers.

• 2 L2 loads;

• 2 L3 loads.

In Figure 5.2.4 a scheme of the configuration HOT2 is depicted.

Figure 5.2.4: Configuration HOT2: CHP assisted by boiler, with accumulator.

The dimension of the search space is 398 subject to 213 process constraints and 796 bound
constraints. Table 5.2.3 shows the results of the optimization process for this specific model of
energy district, provided by the three algorithms.

5.2.4 ’Test2 Termico HOT3’
This example includes the following devices:

• an accumulator;

• a configuration HOT3;

• a wind generator;
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Solver f̄ σf max f min f k̄ σk max k min k time/iter(s) time(m)
PSO 28.0 0.2 28.3 27.7 1045 97 1165 836 0.6 10.4
SLP1 28.3 1.3 31.4 27.4 68 7 85 63 1.4 1.6
SLP2 27.8 0.3 28.6 27.7 52 8 65 43 1.4 1.2

Table 5.2.3: Test2 Termico HOT2, comparison of solvers.

Solver f̄ σf max f min f k̄ σk max k min k time/iter(s) time(m)
PSO 27.4 0.4 28.0 26.9 1063 220 1457 587 0.3 5.3
SLP1 28.0 2.6 34.9 26.7 64 3 70 58 0.4 0.4
SLP2 27.2 0.3 27.8 26.8 48 7 60 38 0.4 0.3

Table 5.2.4: Test2 Termico HOT3, comparison of solvers.

• a photovoltaic generator;

• a L1 load;

• 2 L2 loads;

• 2 L3 loads.

In Figure 5.2.5 a scheme of the configuration HOT3 is depicted.

Figure 5.2.5: Configuration HOT3: CHP connected in parallel with boiler and accumulator.

The dimension of the search space is 398 subject to 213 process constraints and 796 bound
constraints. Table 5.2.4 shows the results of the optimization process for this specific model of
energy district, provided by the three algorithms.

5.2.5 ’Test2 Termico HOT4’
This example includes the following devices:

• an accumulator;

• a configuration HOT4;

• a wind generator;
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Solver f̄ σf max f min f k̄ σk max k min k time/iter(s) time(m)
PSO 30.8 1.2 32.3 28.7 1137 277 1642 660 0.4 7.6
SLP1 27.7 0.8 28.9 26.8 70 7 87 64 0.6 0.7
SLP2 27.9 1.2 29.9 26.8 56 11 73 34 0.6 0.6

Table 5.2.5: Test2 Termico HOT4, comparison of solvers.

• a photovoltaic generator;

• a L1 load;

• 2 L2 loads;

• 2 L3 loads.

In Figure 5.2.6 a scheme of the configuration HOT4 is depicted.

Figure 5.2.6: Configuration HOT4: CHP, boiler and heat pump connected in parallel and accumulator.

The dimension of the search space is 494 subject to 213 process constraints and 988 bound
constraints. Table 5.2.5 shows the results of the optimization process for this specific model of
energy district, provided by the three algorithms.

5.2.6 ’Test2 Termico HOT5’
This example includes the following devices:

• an accumulator;

• a configuration HOT5;

• a wind generator;

• a photovoltaic generator;

• a L1 load;

• 2 L2 loads;
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Figure 5.2.7: Configuration HOT5: CHP assisted by electrical resistance and accumulator.

Solver f̄ σf max f min f k̄ σk max k min k time/iter(s) time(m)
PSO 27.6 0.4 28.3 27.1 1055 230 1414 635 0.3 5.3
SLP1 29.7 6.8 47.7 26.8 69 5 80 63 0.4 0.5
SLP2 27.2 0.9 29.8 26.7 53 7 62 39 0.4 0.4

Table 5.2.6: Test2 Termico HOT5, comparison of solvers.

• 2 L3 loads.

In Figure 5.2.7 a scheme of the configuration HOT5 is depicted.
The dimension of the search space is 398 subject to 213 process constraints and 796 bound

constraints. Table 5.2.6 shows the results of the optimization process for this specific model of
energy district, provided by the three algorithms.

5.2.7 ’Test2 Termico HOT6’
This example includes the following devices:

• an accumulator;

• a configuration HOT6;

• a wind generator;

• a photovoltaic generator;

• a L1 load;

• 2 L2 loads;

• 2 L3 loads.

In Figure 5.2.8 a scheme of the configuration HOT6 is depicted.
The dimension of the search space is 398 subject to 212 process constraints and 796 bound

constraints. Table 5.2.7 shows the results of the optimization process for this specific model of
energy district, provided by the three algorithms.
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Figure 5.2.8: Configuration HOT6: boiler assisted by electrical resistance and accumulator.

Solver f̄ σf max f min f k̄ σk max k min k time/iter(s) time(m)
PSO 49.7 0.9 51.8 48.6 998 256 1368 564 0.3 5.0
SLP1 48.5 1.3 51.8 47.6 72 7 86 63 0.3 0.4
SLP2 48.4 0.3 48.7 47.9 52 7 60 40 0.3 0.3

Table 5.2.7: Test2 Termico HOT6, comparison of solvers.

5.2.8 ’Test2 Termico HOT7’
This example includes the following devices:

• an accumulator;

• a configuration HOT7;

• a wind generator;

• a photovoltaic generator;

• a L1 load;

• 2 L2 loads;

• 2 L3 loads.

In Figure 5.2.9 a scheme of the configuration HOT7 is depicted.

Figure 5.2.9: Configuration HOT7: heat pump and boiler.

The dimension of the search space is 398 subject to 212 process constraints and 796 bound
constraints. Table 5.2.8 shows the results of the optimization process for this specific model of
energy district, provided by the three algorithms.
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Solver f̄ σf max f min f k̄ σk max k min k time/iter(s) time(m)
PSO 45.7 0.4 46.5 44.9 994 136 1172 736 0.3 4.9
SLP1 44.4 0.5 45.9 44.2 64 7 81 58 0.3 0.3
SLP2 44.7 1.2 47.3 43.8 45 7 54 32 0.3 0.2

Table 5.2.8: Test2 Termico HOT7, comparison of solvers.

Solver f̄ σf max f min f k̄ σk max k min k time/iter(s) time(m)
PSO 45.7 0.4 46.3 45.0 1058 149 1345 855 0.3 5.3
SLP1 44.9 0.8 46.4 44.0 61 3 67 55 0.3 0.3
SLP2 44.4 0.4 44.9 43.7 46 16 69 32 0.3 0.2

Table 5.2.9: Test2 Termico HOT8, comparison of solvers.

5.2.9 ’Test2 Termico HOT8’
This example includes the following devices:

• an accumulator;

• a configuration HOT8;

• a wind generator;

• a photovoltaic generator;

• a L1 load;

• 2 L2 loads;

• 2 L3 loads.

In Figure 5.2.10 a scheme of the configuration HOT8 is depicted.

Figure 5.2.10: Configuration HOT8: heat pump and boiler connected in parallel with accumulator.

The dimension of the search space is 398 subject to 212 process constraints and 796 bound
constraints. Table 5.2.9 shows the results of the optimization process for this specific model of
energy district, provided by the three algorithms.
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Solver f̄ σf max f min f k̄ σk max k min k time/iter(s) time(m)
PSO 25.2 0.2 25.4 25.0 1495 82 1634 1396 0.5 12.4
SLP1 26.0 0.9 28.2 25.5 68 7 78 59 0.9 1.0
SLP2 25.6 0.2 26.0 25.3 53 8 69 44 0.9 0.8

Table 5.2.10: Test2 Termico COLD1, comparison of solvers.

5.2.10 ’Test2 Termico COLD1’
This example includes the following devices:

• an accumulator;

• a configuration COLD1;

• a wind generator;

• a photovoltaic generator;

• a L1 load;

• 2 L2 loads;

• 2 L3 loads.

In Figure 5.2.11 a scheme of the configuration COLD1 is depicted. The dimension of the

Figure 5.2.11: Configuration COLD1: absorption refrigerator assisted by CHP and electric chiller.

search space is 398 subject to 213 process constraints and 796 bound constraints. Table 5.2.10
shows the results of the optimization process for this specific model of energy district, provided
by the three algorithms.

5.2.11 ’Test2 Termico COLD2’
This example includes the following devices:

• an accumulator;

• a configuration COLD2;

• a wind generator;
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Solver f̄ σf max f min f k̄ σk max k min k time/iter(s) time(m)
PSO 25.3 0.1 25.5 25.1 1513 214 1714 1238 0.5 12.6
SLP1 26.2 1.6 30.4 25.3 68 7 82 57 0.9 1.0
SLP2 25.6 0.4 26.4 25.2 35 2 39 33 0.9 0.5

Table 5.2.11: Test2 Termico COLD2, comparison of solvers.

• a photovoltaic generator;

• a L1 load;

• 2 L2 loads;

• 2 L3 loads.

In Figure 5.2.12 a scheme of the configuration COLD2 is depicted.

Figure 5.2.12: Configuration COLD2: absorption refrigerator assisted by CHP, electric chiller and accumulator.

The dimension of the search space is 398 subject to 213 process constraints and 796 bound
constraints. Table 5.2.11 shows the results of the optimization process for this specific model
of energy district, provided by the three algorithms.

5.2.12 ’Test2 Termico COLD3’
This example includes the following devices:

• an accumulator;

• a configuration COLD3;

• a wind generator;

• a photovoltaic generator;

• a L1 load;

• 2 L2 loads;

• 2 L3 loads.
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Figure 5.2.13: Configuration COLD3: adsorption refrigerator assisted by boiler and electric chiller.

Solver f̄ σf max f min f k̄ σk max k min k time/iter(s) time(m)
PSO 30.6 0.1 30.7 30.4 1316 341 1797 956 0.4 8.8
SLP1 30.0 0.3 30.3 29.5 75 10 93 60 0.5 0.6
SLP2 30.0 0.3 30.6 29.4 47 9 60 35 0.5 0.4

Table 5.2.12: Test2 Termico COLD3, comparison of solvers.

In Figure (5.2.13) a scheme of the configuration COLD3 is depicted. The dimension of the
search space is 398 subject to 213 process constraints and 796 bound constraints. Table 5.2.12
shows the results of the optimization process for this specific model of energy district, provided
by the three algorithms.

5.2.13 ’Test2 Termico COLD4’
This example includes the following devices:

• an accumulator;

• a configuration COLD4;

• a wind generator;

• a photovoltaic generator;

• a L1 load;

• 2 L2 loads;

• 2 L3 loads.

In Figure (5.2.14) a scheme of the configuration COLD4 is depicted. The dimension of the
search space is 398 subject to 213 process constraints and 796 bound constraints. Table 5.2.13
shows the results of the optimization process for this specific model of energy district, provided
by the three algorithms.
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Figure 5.2.14: Configuration COLD4: adsorption refrigerator assisted by boiler, electric chiller and accumulator.

Solver f̄ σf max f min f k̄ σk max k min k time/iter(s) time(m)
PSO 31.5 0.3 31.9 31.2 1224 339 1597 642 0.4 8.2
SLP1 30.8 0.1 31 30.6 76 11 94 61 0.6 0.8
SLP2 30.8 0.3 31.5 30.4 50 9 68 40 0.6 0.5

Table 5.2.13: Test2 Termico COLD4, comparison of solvers.

5.2.14 Comments and remarks
Before discussing the obtained results, it is worth making same general comments about the dif-
ferent background of the two algorithms. PSO is a research algorithm and uses only information
got by function evaluations, so we expect that a high number of iterations is necessary for the
optimization process. SLP, on the other hand, uses also first order informations on f , so we can
expect that computational costs required by the calculation of gradients are repaid with a higher
rate of convergence. It is also important to notice that the software tool was designed in order to
be used in conjunction with a SLP solver, so many implementation choices were made in order
to fit well with this specific solver, e.g. the decisions of smoothing the θ function, of treating the
discrete variables as continue ones and rounding them at the end of the optimization process,
of implementing a two phase strategy to overcome problems due to a too severe restriction of
the trust region due to the presence of batteries in the district. PSO solver has to be melt in the
existing code, so the above approximations are made also when using this solver, even if they
are unnecessary and PSO might obtain better results on the original problem. PSO is indeed
capable of dealing with non-smooth functions and there exist variations of the algorithm to deal
with mixed integer problems, [26]. Also the use of a two phase strategy is unnecessary when
using PSO algorithm, but has been maintained to preserve the original structure of the code.

The numerical tests have confirmed our expectations about the number of iterations. The
previous tables indeed shows that PSO algorithm needs more than 1000 iterations to converge,
while SLP converges in less then 100 iterations, even if an iteration of SLP algorithm lasts
longer, as it is shown in the column time/iter(·), because it is not always possible to calculate the
gradient in an analytic way so numerical approximations using finite differences are necessary,
and this is a quite heavy calculation. Nevertheless the execution times for PSO algorithm are
really higher than those for SLP algorithm, so that for real time optimization an SLP approach
is certainly more suitable.

From results shown above we can notice that PSO performance are not influenced by the
initial swarm, in different runs results are not really different from each other and the standard
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deviation on the objective function is really low in most test cases. The choice of the initial
swarm may influence particles trajectories and so the way they reach the solution, but not the
final result.

SLP1 in the most part of the test cases shows an higher standard deviation on the value
of objective function with respect to the other two solvers. It has indeed been observed then
varying the initial guess sometimes the execution stops too early and it provides a solution
with a high value of the objective function, probably because it more likely converges to a non
optimal local minimum when it cannot find a feasible solution.

SLP2, compared to SLP1 has better performance in most test cases, the mean value of the
objective function is lower and also the standard deviation. From the numerical tests it has been
observed that even varying the initial guess SLP2 is less often stuck in non optimal local minima
and reaches solution approximations close to each other. Thanks to the stopping criterion we
used, we can be sure that at the end of the optimization process an approximation of a stationary
point for the original problem is reached.

From the numerical tests it has emerged that the mean number of iteration for SLP2 is
lower than the one of SLP1, this is due to the fact that the stopping criterion for SLP1 is not so
satisfactory. Indeed, apart from the fact that at the end of the optimization process we have not
an optimality measure of the provided solution approximation, in many test cases the execution
could be stopped earlier, in fact in the last iterations no progress are made, as we can see from
Figure 5.2.15. In this case it is particularly evident the different performance provided by the
stopping criteria associated to SLP1 and to SLP2, in terms of iterations required to converge and
of execution times.

Figure 5.2.15: SLP1 and SLP2: comparison of the number of iterations.

Comparing SLP2 and PSO we can observe that in an half of the test cases the two algorithms
show almost the same performance, but in the other half of the test cases SLP2 outperforms
PSO by 3% on average with a peak of 9% in the test case ’Test2 Termico HOT4’. From these
numerical results we can observe that the capacity of the evolutionary algorithm to search for
the global minimum does not emerge in many test cases. We can conjecture that this fact may
be due to the constraints handling strategy, because from the results of Section 5.1 we have seen
that in unconstrained problems this capability emerges clearly. So as a future improvement,
it would be interesting to study if an improvement of the constraints handling strategy would
enhance PSO performance. Another critical aspect is the solution of stagnation problems. In
fact, all the strategies we have tested, especially in highly constrained problems, were not so
efficient, so also this remains an open issue for future developments.
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Chapter 6

Application to a real energy district

The examples shown in Section 5.2 model several synthetic configurations of energy districts,
but no one models a really existing district. In this chapter we show the results of the application
of ECOS ES to a real industrial energy district located in Pisa. For the numerical experimenta-
tion we chose to simulate the winter configuration of the district. The numerical experimenta-
tion has been carried out on a PC equipped with a AMD Phenom(tm)II X4 965 Processor 3.40
GHz, 8.00 GB RAM, Windows 7 Professional 64 bit and using Matlab R2012a. Results shown
in the following tables are the average of those obtained over 5 runs. For the meaning of the
headings of the tables we refer to the introduction of Chapter 5. The PSO version we used is the
hybrid version described in Section 4.10, and also the choices of tolerances and constants are
the same made in Section 5.2: the swarm size is 20, c1 = 1.3, c2 = 2.8, c3 = 1, for w a linearly
decreasing scheme is adopted, wk = wmax− (wmax−wmin) k

kmax
, with wmax = 0.6, wmin = 0.1

and k = 1, . . . , kmax, the topology scheme adopted is a star topology, the stopping criterion is
the one described in Equation (5.0.1) with a fixed tolerance ε = 10−3, the constraints handling
strategy for bound constraints is the one described in Section 4.7, for nonlinear constraints is
the one described in Section 4.10, with τ0 = 0.1 and τk+1 = (1 − 0.01)τk, the regrouping
mechanism described in Section 4.6 is adopted. The stopping criterion for the three algorithm
are the same used in Chapter 5. For SLP algorithm we set kmax = 80 and for PSO algorithm
kmax = 700, where we remind that kmax is the maximum number of iterations.

In this energy district no accumulators are present, so in this case the two phase strategy
described in Section 1.4 is not used.

6.1 Optimization of Pisa district
To deal with this problem we had to build the model of this specific energy district, creating an
Excel workbook with all the district devices. Our district model comprises:

• a configuration HOT2 with a CHP characterized by rated power 25 kWe and rated thermal
power 75 kWt, a gas boiler with rated thermal power 35 kWt, a tank for the storage of hot
water with capacity 9400 kj/ °C;

• a photovoltaic generator with rated power 14 kWe;

• a wind farm with rated power 3 kWe;

• a L1 load related to lighting consumptions;

• a L1 load related to heating consumptions.
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Solver f̄0 f̄ σf max f min f k̄ σk max k min k time/iter(s) time(m)
PSO 89.3 73.5 0.08 73.6 73.4 377 34 410 316 0.4 2.7
SLP1 89.3 74.8 2.8 80.5 73.4 74 5 80 69 3.2 4
SLP2 89.3 74.9 2.8 80.6 73.4 23 9 36 9 2.6 1

Table 6.1.1: Results of the optimization of the energy district of Pisa.

Among all the available hot configurations we chose the HOT2, that is the one that better fits
with the heat management of the district. Then we had to enter the scalar parameters and the
input tables, that have been calibrated on the measured values. The arising optimization problem
has 288 variables, 576 bound constraints and 1 physical constraint on the maximum number of
ignitions for CHP, as described in Equation (1.1.3). For this district we have at our disposal data
referring to an unoptimized management of local resources, so that we can evaluate savings
arising from the optimized management provided by ECOS package. In fact in Table 6.1.1, that
shows the results of the optimization of Pisa district provided by the three algorithms, we report
also the value of the unoptimized objective function f0 that is computed using those data. We
can see that in this case PSO algorithm performs better than SLP algorithm, providing a lower
value of the objective function and also a really smaller standard deviation. This fact appears to
confirm our conjecture presented in Section 5.2.14. In this case there is just one mild nonlinear
constraint so the constraint handling strategy does not have a strong impact on the search process
and the capability of the evolutionary algorithm to search for the global minimum appears as in
an unconstrained test case. On the contrary the test cases presented in Sections 5.2.1 - 5.2.13 are
subject to an higher number of nonlinear constraints, and comprise also loads whose constraints
are particularly difficult to satisfy.

We can also notice that in this case also for PSO algorithm the execution time is quite rea-
sonable, it is even lesser than the execution time of SLP1, because the number of iteration PSO
performs is not large and one iteration of PSO algorithm is less expensive than one iteration of
SLP algorithm. Then, for this test case PSO solver could be used also in real time optimization.

Comparing the unoptimized management of local resources to the optimized one, we can
see that ECOS package provides considerable saving, about 18% daily saving.

6.2 Robustness analysis
On this test case we have performed a robustness analysis of the three algorithms, varying some
input parameters, namely the sell price of energy (the purchase price of energy is fixed for this
specific energy district), and the thermal load Qc for the HOT2 configuration.

As far as the price of energy is concerned, we have obtained the data from the tables of
the PUN (Prezzo Unico Nazionale), choosing values referred to different past days. We have
chosen 11/12/2012, 25/12/2012 that is Christmas day so prices are lesser than other days, and
8/02/2012 when prices were particularly high. The results of the previous section were obtained
with prices on 11/12/2013. In Figures 6.2.1, 6.2.2 and 6.2.3 the prices trends on these days are
compared with the one on 11/12/2013. Note that for PUN prices the time unit is one hour, while
in ECOS ES the time unit is 15 minutes. In the previous test cases it was decided to assume for
4 consecutive time units the same value of the price, for this reason in Figures 6.2.1, 6.2.2, 6.2.3
the prices on 11/12/2013 are represented by a stairs plot, while for the other days we decided to
make an interpolation of the data.

Table 6.2.1 shows the results of the optimization process of the test case of Pisa for the day
11/12/2012, Table 6.2.2 for the day 25/12/2012 and Table 6.2.3 for the day 8/02/2012, for the
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Figure 6.2.1: Prices on 11/12/2012 and 11/12/2013

Figure 6.2.2: Prices on 11/12/2012 and 25/12/2013

Figure 6.2.3: Prices on 11/12/2012 and 8/02/2013
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Solver f̄ σf max f min f k̄ σk max k min k time(m)
PSO 73.6 0.09 73.7 73.5 377 16 395 354 2.8
SLP1 77.0 2.4 80.3 73.6 76 5 80 69 5
SLP2 77.0 2.4 80.3 73.6 34 29 80 9 2

Table 6.2.1: Energy district of Pisa, PUN prices on 11/12/2012, f0 = 89.1.

Solver f̄ σf max f min f k̄ σk max k min k time(m)
PSO 72.3 0.04 72.4 72.3 399 24 435 380 2.9
SLP1 75.7 3.6 82.6 72.3 74 7 80 65 3.4
SLP2 75.7 3.6 82.6 72.3 20 16 45 4 1

Table 6.2.2: Energy district of Pisa, PUN prices on 25/12/2012, f0 = 82.4.

three solvers.
As far as the thermal load is concerned, starting from the trend used for the test case de-

scribed in Section 6.1, to which we will refer with Qc and that is characterized by mean value
26, standard deviation 12, maximum 47.6 and minimum 0.3, we created new trends, enhancing
the deviation from the mean value in order to have more distributed values, with more marked
peaks. An example of such trends is depicted in Figure 6.2.4 on the right and it is compared
to the original thermal load Qc on the left. Tables 6.2.4 and 6.2.5 show the results of the op-
timization of Pisa district varying the parameter Qc. The thermal load used to obtain results
in Table 6.2.4 is characterized by: mean value 26, standard deviation 14, maximum 58.3 and
minimum 0.4, while the thermal load used to obtain results in Table 6.2.5 is characterized by:
mean value 29, standard deviation 16, maximum 64 and minimum 0.3.

6.3 Comments and Remarks
From the results shown in this Section we can observe that all the three algorithms are robust.

SLP1 and SLP2 show the same behaviour, due to the fact that the problem is subject to just
one mild nonlinear constraints so the penalty function approach of SLP2 has not a strong impact
on the optimization process. However SLP1 is more expensive because an higher number of
iterations is required to converge, due to the different stopping criterion adopted.

We can notice that in many runs SLP1, and in few runs also SLP2, stops because the max-
imum number of iterations has been reached, and the stopping criterion (5.0.2) is not satisfied.
We decided not to allow a larger number of iterations because from numerical test it was shown
that the stopping criterion is satisfied after a quite large number of iterations, about 200, but the
progress in terms of decrease of the objective function was really low, so the extra computational
costs did not improve the quality of the solution approximation.

When optimizing this specific district PSO algorithm shows the best performance, providing

Solver f̄ σf max f min f k̄ σk max k min k time(m)
PSO 77.7 0.01 77.7 77.6 376 24 407 344 2.8
SLP1 79.2 2.9 85.0 77.6 73 6 80 67 3.5
SLP2 79.2 2.9 85.0 77.6 52 29 80 4 1

Table 6.2.3: Energy district of Pisa, PUN prices on 8/02/2012, f0 = 106.0.
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Figure 6.2.4: An example of thermal load (right) obtained enhancing the deviation from the mean value of the
original distribution (left).

Solver f̄ σf max f min f k̄ σk max k min k time(m)
PSO 73.6 0.1 73.8 73.5 383 26 416 353 2.8
SLP1 76.3 2.6 80.6 73.5 77 7 80 63 5
SLP2 76.3 2.6 80.6 73.5 22 15 40 14 1

Table 6.2.4: Energy district of Pisa, variation of parameter Qc, f0 = 89.6.

Solver f̄ σf max f min f k̄ σk max k min k time(m)
PSO 73.5 0.05 73.6 73.4 346 35 400 312 2.5
SLP1 76.6 1.7 78.7 74.7 74 7 80 66 4.4
SLP2 76.6 1.7 78.7 74.7 44 29 80 11 1.4

Table 6.2.5: Energy district of Pisa, variation of parameter Qc, f0 = 91.0.
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lower values of the objective function and also a lower standard deviation, outperforming SLP
by 3 − 4%. These tests cases appears to have an higher number of local minima compared to
the ones of Section 5.2, probably due to the fact that the problem is subject to less constraints.
In these cases indeed SLP approaches on more runs find different solution approximations and
the results show an high value of the standard deviation. In fact on each run varying the initial
guess the algorithms, being designed to converge on a local minimum, converges to different
points. PSO on the other hand converges to the same solution approximation, showing clearly
that it has been designed to converge to a global minimum.
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