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The problem

We consider optimization problems arising in the training of artificial
neural networks:

min
p
L(p, z) z ∈ T

where L is the loss function, p is the vector of weights and biases of the
network, z is the problem’s variable and T is the training set.
The optimization problem may be a large-scale problem.

We look for an efficient scalable optimization method to solve the training
problem.
⇓

Can we exploit the structure of the network?
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Network’s architecture
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Outline

Part I: iterative high-order optimization methods and their multilevel
extension

Part II: use of the multilevel methods for the training of artificial
neural network and application to the solution of PDEs
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Part I

1 iterative high-order optimization methods

2 multilevel extension
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High-order optimization methods

We have a nonlinear problem to solve

min
x

f (x)

Classical iterative optimization methods:

f (xk + s) ' Tq(xk , s) = f (xk) + sT∇f (xk) +
1

2
sT∇2f (xk)s + . . .

with Tq(xk , s) Taylor model of order q. At each iteration we compute a
step sk to update the iterate:

min
s

mk(xk , s) = Tq(xk , s) +
λk

q + 1
‖s‖q+1, λk > 0
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Higher-order models

Classical choices:

Least-squares: Levenberg-Marquardt (LM), q = 1,
∇2f (xk) ∼ Bk = J(xk)T J(xk).

Adaptive Cubic Regularization method (ARC), q = 2.

Extension to higher-order methods (q > 2)

Birgin, Gardenghi, Martnez, Santos, and Toint, 2017
extension to order .
Unifying framework for global convergence is presented.

better complexity

model is expensive to minimize
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Subproblem solution

Solving

min
s

Tq(xk , s) +
λk

q + 1
‖s‖q+1

represents greatest cost per iteration, which depends on the size of the
problem.

⇓

Multilevel trust region method, Gratton, Sartenaer, Toint, 2008

Hierarchy of problems

{fl(xl)}, xl ∈ Dl

|Dl | < |Dl+1|
fl is cheaper to optimize compared to fl+1
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Our contribution

Gratton, Sartenaer, Toint, 2008

method for second order models

used just for problems with a geometrical structure

We propose a family of multilevel methods using high-order models that
do not need underlying geometry of the problem
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Multigrid setting

At each level l , x ∈ Rnl . lmax finest level, 0 coarsest level.

level lmax Rn x lmax f lmax = f µlmax = f
...

...
...

...

level l + 1 Rnl+1

x l+1 f l+1 µl+1

R l+1 ⇓ ⇑ P l+1

level l Rnl x l f l µl

...
...

...
...

level 0 Rn0 x0 f 0 µ0

f l represent f on the coarse spaces (it is e.g. the discretization of f
on a coarse space)

The functions µl are modifications of the f l ’s to ensure inter-level
coherence.
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Coherence between levels

Lower level model:

Let x l−10 = Rx lk . Model with first order correction:

µl−1 = T l−1
q (x l−10 , s l−1) + (R l∇f l(x lk)−∇f l−1(x l−1k ))T s l−1

This ensures that
∇µl−1(x l−10 ) = R l∇f l(x lk)

→ first-order behaviours of f l and µl−1 are coherent in a neighbourhood
of the current approximation. If s l = P ls l−1

∇f l(x lk)T s l = ∇f l(x lk)TP ls l−1 =
1

α
∇µl−1(x l−10 )T s l−1.
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One level strategy

At level l = 1, let x lk be the current approximation. We look for a
correction s lk to define the new approximation x lk+1 = x lk + s lk .

x lk

x lk+1 = x lk + s lk

T l
q
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Multilevel strategy

Two choices:

1 minimize regularized Taylor model, get s lk ,

2 choose lower level model µl−1:

x lk

x lk+1 = x lk + s lk

T l
q
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Multilevel strategy

Two choices:

1 minimize regularized Taylor model, get s lk ,

2 choose lower level model µl−1:

x lk

R lx lk := x l−10

R l

x l−1∗
µl−1

x lk+1 = x lk + s lk

s lk = P l(x l−1∗ − x l−10 )
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Multilevel strategy

Two choices:

1 minimize regularized Taylor model, get s lk ,

2 choose lower level model µl−1:

x lk

R lx lk := x l−10

R l

x l−1∗
µl−1

x lk+1 = x lk + s lk

s lk = P l(x l−1∗ − x l−10 )

The lower level model is cheaper to optimize.

The procedure is recursive: more levels can be used.
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Part II

1 use of the multilevel methods for the training of artificial neural
networks

2 application to the solution of PDEs
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Exploit multilevel method for training of ANNs

How to build the coarse problem?

The variables to be optimized are the network’s weights:
NO evident geometrical structure to exploit!

⇓
The objective function depends on the output of the network:

min
p
L(p, z) = F(ĝ(p, z)), z ∈ T

ĝ(p, z) =
r∑

i=1

viσ(wiz + bi ) + d

The network possesses a strong hierarchical structure: can we exploit it to
build a hierarchy of problems approximating the original one?
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Exploit multilevel method for training of ANNs
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ĝ(p, z) =

∑
i∈I2 viσ(wiz + bi ) + d

I2 ⊂ I1, |I2| = r2 < r1

R2 ⇓ P2 ⇑

Iz → σ

b3

σ

b1

+

d
w3

w 1

v3

v
1

F3 : R3r3 → R
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Build the coarse problems

How do we select the hierarchy of variables?

Algebraic multigrid

We can take inspiration from algebraic multigrid techniques.
When solving linear systems Ax = b, the structure is discovered through
the matrix A. R and P are built just looking at the entries of the matrix.

Which matrix should we use?
Assume to use a second-order model.

At each iteration we have to solve a linear system of the form:

(Bk + λ̃k I )s = −∇f (xk), λ̃k > 0.

As in AMG for linear systems, we use information contained in matrix Bk .
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Which matrix should we use?

Remark
Variables are coupled!
{wi , bi , vi} Iz → σ
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We do not use the full matrix Bk and we define A as:

Bk =

fv ,v .. ..
.. fw ,w ..
.. .. fb,b

→ A =
fv ,v
‖fv ,v‖∞

+
fw ,w
‖fw ,w‖∞

+
fb,b
‖fb,b‖∞

We define the coarse/fine splitting based on the auxiliary matrix A.
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Preliminary results: solution of PDEs

Approximate the solution u of a PDE:

D(z , u(z)) = g(z), z ∈ (a, b);

u(a) = A, u(b) = B.

We approximate u ∼ û(p, z) for p ∈ Rn and we define

L(p, z) =
1

2t
(‖D(z , u(z))− g(z)‖2 + λp(‖u(a)− A‖2 + ‖u(b)− B‖2))

for z ∈ T training set.

Least-squares problem → multi-level Levenberg-Marquardt method
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Choice of the true solution

D(z , u(z)) = g(z), z ∈ (a, b);

We choose g to have true solution uT (z , ν) depending on ν

Remark

As ν increases the function becomes more oscillatory and it is harder
to approximate.

The size of the problem increases with the number of nodes.

T : equispaced points in (0, 1) with h = 1
3ν (Shannon’s criterion).
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Poisson’s equation 10 runs

1D ν = 20 r = 29 ν = 25 r = 210

Solver iter RMSE save iter RMSE save

LM 869 1.e-4 1439 1.e-3
MLM 507 1.e-4 1.1-2.6-4.3 1325 1.e-3 1.2-1.7-2.8

Table: 1D Poisson’s equation, uT (z , ν) = cos(νz), 10 runs

2D ν = 5 r = 210 ν = 6 r = 211

Solver iter RMSE save iter RMSE save

LM 633 1.e-3 1213 1.e-3
MLM 643 1.e-3 1.1-1.5-2.1 1016 1.e-3 1.2-1.9-2.4

Table: 2D Poisson’s equation, uT (z , ν) = cos(νz), 10 runs

save(min,average,max)=ratio between total number of flops required for
matrix-vector products
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Helmholtz’s equation, 10 runs

ν = 5 r = 210

Solver iter RMSE save

LM 1159 1.e-3
MLM 1250 1.e-3 1.2-1.9-3.1

Table: Helmholtz’s equations. ∆u(z) + ν2u(z) = 0 , uT (z , ν) = sin(νz) + cos(νz)

save=ratio between total number of flops required for matrix-vector
products
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Conclusions and future work

Theoretical contribution: We have presented a class of multilevel
high-order methods for optimization and proved their global
convergence and complexity.

Practical contribution: We have proposed a AMG strategy to build
coarse representations of the problem to use some methods in the
family for the training of artificial neural networks.

Future work: Preliminary tests show encouraging results. In future
work we will consider more realistic applications.
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Thank you for your attention!

For more details:

On high-order multilevel optimization strategies and their application
to the training of artificial neural networks
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Classical multigrid methods

Consider a linear elliptic PDE: D(z , u(z)) = f (z) z ∈ Ω + b.c.
Discretize on grid h.
Get a large-scale linear system Ahxh = bh.

Multigrid methods

Consider the discretization of the same PDE problem on a coarser grid:
AHxH = bH , H > h.

Relaxation methods fails to eliminate smooth components of the error
efficiently.

Smooth components projected on a coarser grid appear more
oscillatory.

Figure:

E. Riccietti Multilevel training methods MATHIAS 27 / 32



Coarse problem construction

Define transfer grid operators: P prolongation and R restriction to project
vectors from a grid to another: xH = Rxh, xh = PxH , such that R = αPT .

Geometry exploitation

The geometrical structure of the problem is exploited to build R and P.

Remark

This strategy is also available in the nonlinear case (Full Approximation
Scheme (FAS) algorithm).
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Basic iterative optimization algorithm

Until convergence

Define the local model mk of f around xk , depending on λk

Compute a trial point xk + sk that decreases this model

Compute the predicted reduction mk(xk)−mk(xk + sk)

Evaluate change in the objective function f (xk)− f (xk + sk)

If achieved change ∼ predicted reduction then

Accept trial point as new iterate xk+1 = xk + sk
else

Reject the trial point xk+1 = xk
Increase λk
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Multilevel strategy

At level l , let x lk be the current approximation. We look for a correction s lk
to define the new approximation x lk+1 = x lk + s lk . Two choices:

1 minimize regularized Taylor model, get s lk ,

2 choose lower level model µl−1:

x lk

R lx lk := x l−10 x l−1∗

x lk+1 = x lk + s lk

R l

µl−1

s lk = P l(x l−1∗ − x l−10 )
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Recursive multi-scale q-order methods

Until convergence

Choose q ≥ 1. Choose either a Taylor or a (useful) recursive model.

Taylor model: compute a Taylor step satisfying a sufficient decrease
property
Recursive: apply the algorithm recursively

Evaluate change in the objective function

If achieved change ∼ predicted reduction then

Accept trial point as new iterate

else

Reject the trial point
Increase λ

The algorithm is proved globally convergent to first order critical points
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Ruge and Stueben AMG

To build the coarse problem, the variables are divided into two sets, set C
of coarse variables and set F of fine variables.

Ruge and Stueben C/F splitting

Two variables i , j are said to be coupled if ai ,j 6= 0.

We say that a variable i is strongly coupled to another variable j , if

−ai ,j ≥ ε max
ai,k<0

|ai ,k |

for a fixed 0 < ε < 1, usually ε = 0.25.

Each F variable is required to have a minimum number of its strong
couplings be represented in C . The C/F splitting is usually made
choosing some first variable i to become a coarse variable. Then, all
variables strongly coupled to it become F variables. The process is
repeated until all variables have been split.
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