A multilevel training method for ANNs Application to PDEs solution

E. Riccietti (IRIT-INP, Toulouse)

Joint work with: H. Calandra (TOTAL)
S. Gratton (IRIT-INP, Toulouse)
X. Vasseur (ISAE-SUPAERO, Toulouse)

MATHIAS 2019
Serris, France - October 14-17, 2019

Context: Numerical solution of PDEs

$$
\begin{aligned}
D(z, u(z)) & =g_{1}(z), \quad z \in \Omega \subseteq \mathbb{R}^{m} ; \\
u(z) & =g_{2}(z), z \in \partial \Omega .
\end{aligned}
$$

Classical approaches

- Finite differences methods

Alternative approach by Artificial Neural Networks

- Natural approach for nonlinear equations,
- Provides analytical expression of the solution,
- Provides approximation of the solution in all the points of the domain,
- Allows to alleviate the effect of the curse of dimensionality

Hot topic

Many recent papers on the use of Artificial Neural Networks to deal with Partial Differential Equations, both direct and inverse problems:

Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow Visualization Data (2018)

The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems (2017)

A proof that deep artificial neural networks overcome the curse of dimensionality in the numerical approximation of Kolmogorov partial differential equations with constant diffusion and nonlinear drift coefficients (2018).

Analysis of the generalization error: Empirical risk minimization over deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations (2018).

Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations (2018).

Solving stochastic differential equations and Kolmogorov equations by means of deep learning (2018).

Deep Neural Networks motivated by Partial Differential Equations (2018).

Drawbacks

- The approximation of highly oscillatory solutions may require a large number of neurons.
- Gradient training methods depend on free parameters, they may be slow and better suited for convex problems

Drawbacks

- The approximation of highly oscillatory solutions may require a large number of neurons.
- Gradient training methods depend on free parameters, they may be slow and better suited for convex problems

New trend in machine learning

- Second order methods

固
Optimization Methods for Large-Scale Machine Learning, L. Bottou, F. E. Curtis, J. Nocedal (2018)
嗇 Second-Order Optimization for Non-Convex Machine Learning: An Empirical Study, P. Xu, F. Roosta-Khorasani, M.W. Mahoney (2018)

Drawbacks

- The approximation of highly oscillatory solutions may require a large number of neurons.
- Gradient training methods depend on free parameters, they may be slow and better suited for convex problems

New trend in machine learning

- Second order methods

圄
Optimization Methods for Large-Scale Machine Learning, L. Bottou, F. E. Curtis, J. Nocedal (2018)
宣
Second-Order Optimization for Non-Convex Machine Learning: An Empirical Study, P. Xu, F. Roosta-Khorasani, M.W. Mahoney (2018)

Our approach

- Use of a ANN to approximate PDEs solution trained by a Multilevel Levenberg-Marquardt method

Our approach: Artificial neural networks (1D case)

$$
D(z, u(z))=g(z), z \in(a, b) \quad u(a)=A, u(b)=B
$$

Our approach: training problem

Training problem:

$$
\begin{aligned}
& \min _{p} \mathcal{L}(\hat{u}(p, z), p ; z), \quad z \in \mathcal{T} \\
& \hat{u}(p, z)=\sum_{i=1}^{r} v_{i} \sigma\left(w_{i} z+b_{i}\right)+d
\end{aligned}
$$

where \mathcal{L} is the loss function, \mathcal{T} training set.

Our approach: training problem

Training problem:

$$
\begin{aligned}
& \min _{p} \mathcal{L}(\hat{u}(p, z), p ; z), \quad z \in \mathcal{T} \\
& \hat{u}(p, z)=\sum_{i=1}^{r} v_{i} \sigma\left(w_{i} z+b_{i}\right)+d
\end{aligned}
$$

where \mathcal{L} is the loss function, \mathcal{T} training set.
We select a training set \mathcal{T} s.t. $|\mathcal{T}|=t$:

$$
z_{T}=\left[z_{1}, \ldots, z_{t}\right]^{T}, \quad a \leq z_{1}<\cdots<z_{t} \leq b
$$

We define

$$
\begin{aligned}
\mathcal{L}(\hat{u}(p, z), p ; z) & =\frac{1}{2 t}\left(\left\|D\left(z_{T}, \hat{u}\left(p, z_{T}\right)\right)-g\left(z_{T}\right)\right\|^{2}\right. \\
& \left.+\lambda_{p}\left(\|\hat{u}(p, a)-A\|^{2}+\|\hat{u}(p, b)-B\|^{2}\right)\right)
\end{aligned}
$$

for $\hat{u}\left(p, z_{T}\right) \in \mathbb{R}^{t}$, where $u(a)=A$ and $u(b)=B$ are the boundary conditions.

Nonlinear least-squares problem

Our approach: the training method

We consider large-scale nonlinear least-squares problems:

$$
\begin{gathered}
\min _{x} f(x)=\frac{1}{2}\|F(x)\|^{2} \\
\text { with } F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, m \geq n \text { and } x \in \mathcal{D} \subset \mathbb{R}^{n} \text { and } n \text { large. }
\end{gathered}
$$

Our approach: the training method

We consider large-scale nonlinear least-squares problems:

$$
\min _{x} f(x)=\frac{1}{2}\|F(x)\|^{2}
$$

with $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, m \geq n$ and $x \in \mathcal{D} \subset \mathbb{R}^{n}$ and n large.

We propose a Multilevel extension of classical
Levenberg-Marquardt method.

Classical Levenberg-Marquardt

Iterative method for nonlinear least-squares problems:

$$
\min _{x} f(x)=\frac{1}{2}\|F(x)\|^{2}
$$

Classical Levenberg-Marquardt optimization method:

$$
f\left(x_{k}+s\right) \simeq T_{2}\left(x_{k}, s\right)
$$

with $T_{2}\left(x_{k}, s\right)$ Taylor model of order 2 with approximated Hessian matrix. At each iteration we compute a step s_{k} to update the iterate:

$$
\min _{s} m_{k}\left(x_{k}, s\right)=T_{2}\left(x_{k}, s\right)+\frac{\lambda_{k}}{2}\|s\|^{2}, \quad \lambda_{k}>0
$$

Bottelneck: Subproblem solution

Solving

$$
\min _{s} T_{2}\left(x_{k}, s\right)+\frac{\lambda_{k}}{2}\|s\|^{2}
$$

represents greatest cost per iteration, which depends on the size of the problem.

$$
\Downarrow
$$

E S. Gratton, A. Sartenaer, PH. Toint, 'Multilevel trust region method' 2008
\rightarrow IDEA: extend multigrid strategies to nonlinear optimization Hierarchy of problems

- $\left\{f_{l}\left(x_{l}\right)\right\}, x_{l} \in \mathcal{D}_{l}$
- $\left|\mathcal{D}_{l}\right|<\left|\mathcal{D}_{l+1}\right|$
- f_{l} is cheaper to optimize compared to f_{l+1}

Multilevel setting

- At each level $I, x \in \mathbb{R}^{n_{1}}$. $I_{\text {max }}$ finest level, 0 coarsest level.

level $I_{\text {max }}$	\mathbb{R}^{n}	$x^{m_{\text {max }}}$	$f^{\text {max }}=f$	$\mu^{\text {max }}=f$
$\begin{gathered} \vdots \\ \text { level } /+1 \end{gathered}$	$\mathbb{R}^{n_{l+1}}$	\vdots x^{i+1}	\vdots $f^{\prime+1}$	μ^{i+1}
level /	$\begin{gathered} R^{I+1} \underset{\mathbb{R}^{n_{1}}}{\Downarrow} \Uparrow P^{I+1} . \end{gathered}$	x^{\prime}	f^{\prime}	μ^{\prime}
\vdots		0	0	0
level 0	$\mathbb{R}^{n_{0}}$	x^{0}	f^{0}	μ^{0}

- f^{\prime} represents f on the coarse spaces (it is e.g. the discretization of f on a coarse space)
- The functions μ^{\prime} are modifications of the f^{\prime} to ensure inter-level coherence.
- $R^{\prime}=\alpha\left(P^{\prime}\right)^{T}$, for some $\alpha>0$.

One level strategy

At level $I=I_{\text {max }}$, let x_{k}^{\prime} be the current approximation. We look for a correction s_{k}^{\prime} to define the new approximation $x_{k+1}^{\prime}=x_{k}^{\prime}+s_{k}^{\prime}$.

$$
x_{k}^{\prime}
$$

One level strategy

At level $I=I_{\text {max }}$, let x_{k}^{\prime} be the current approximation. We look for a correction s_{k}^{\prime} to define the new approximation $x_{k+1}^{\prime}=x_{k}^{\prime}+s_{k}^{\prime}$.

$$
x_{k}^{\prime} \xrightarrow{T_{2}^{\prime}} x_{k+1}^{\prime}=x_{k}^{\prime}+s_{k}^{\prime}
$$

Multilevel strategy

Two choices:

1. minimize regularized Taylor model, get s_{k}^{\prime},
2. choose lower level model μ_{k}^{I-1} :

$$
x_{k}^{\prime}
$$

Multilevel strategy

Two choices:

1. minimize regularized Taylor model, get s_{k}^{\prime},
2. choose lower level model μ_{k}^{I-1} :

$$
x_{k}^{\prime} \xrightarrow{T_{2}^{\prime}} x_{k+1}^{\prime}=x_{k}^{\prime}+s_{k}^{\prime}
$$

Multilevel strategy

Two choices:

1. minimize regularized Taylor model, get s_{k}^{\prime},
2. choose lower level model μ_{k}^{I-1} :

Multilevel strategy

Two choices:

1. minimize regularized Taylor model, get s_{k}^{\prime},
2. choose lower level model μ_{k}^{I-1} :

$$
x_{k}^{\prime}
$$

Multilevel strategy

Two choices:

1. minimize regularized Taylor model, get s_{k}^{\prime},
2. choose lower level model μ_{k}^{I-1} :

$$
\begin{gathered}
\left.x_{k}^{\prime}\right|^{\prime} \\
R^{\prime} x_{k}^{\prime}:=x_{0, k}^{\prime-1}
\end{gathered}
$$

Multilevel strategy

Two choices:

1. minimize regularized Taylor model, get s_{k}^{\prime},
2. choose lower level model μ_{k}^{I-1} :

$$
\left.R^{\prime}\right|_{R_{k}^{\prime}} ^{x_{k}^{\prime}}:=x_{0, k}^{I-1} \xrightarrow{\mu_{k}^{\prime-1}} x_{*, k}^{I-1}
$$

Multilevel strategy

Two choices:

1. minimize regularized Taylor model, get s_{k}^{\prime},
2. choose lower level model μ_{k}^{I-1} :

$$
R^{\left.x_{k}^{\prime}\right|_{R^{\prime}} ^{\prime}} \begin{gathered}
x_{k+1}^{\prime}= \\
R_{k}^{\prime}:=x_{0, k}^{\prime}+s_{k}^{\prime} \\
\mu_{k}^{I-1} \longrightarrow s_{k}^{\prime}=P^{\prime}\left(x_{*, k}^{\prime-1}-x_{0, k}^{\prime-1}\right) \\
x_{*, k}^{I-1}
\end{gathered}
$$

Multilevel strategy

Two choices:

1. minimize regularized Taylor model, get s_{k}^{\prime},
2. choose lower level model μ_{k}^{I-1} :

$$
\left.R^{R_{k}^{\prime}}\right|_{R^{\prime} x_{k}^{\prime}:=x_{0, k}^{\prime-1} \xrightarrow{\mu_{k}^{\prime-1}} \prod_{k}^{x_{k+1}^{\prime}}=x_{k}^{\prime}+s_{k}^{\prime}} x_{*, k}^{\prime-1}
$$

- The lower level model is cheaper to optimize.
- The procedure is recursive: more levels can be used.

Coherence between levels

Lower level model:

- Let $x_{0, k}^{I-1}=R x_{k}^{\prime}$. Model with first order correction:

$$
\mu_{k}^{I-1}=f^{I-1}\left(x_{0, k}^{I-1}+s^{I-1}\right)+\left(R^{I} \nabla f^{\prime}\left(x_{k}^{I}\right)-\nabla f^{I-1}\left(x_{k}^{I-1}\right)\right)^{T} s^{I-1}
$$

This ensures that

$$
\nabla \mu_{k}^{\prime-1}\left(x_{0, k}^{\prime-1}\right)=R^{\prime} \nabla f^{\prime}\left(x_{k}^{\prime}\right)
$$

\rightarrow first-order behaviours of f^{\prime} and μ^{I-1} are coherent in a neighbourhood of the current approximation. If $s^{\prime}=P^{\prime} s^{I-1}$

$$
\nabla f^{\prime}\left(x_{k}^{\prime}\right)^{T} s^{\prime}=\nabla f^{\prime}\left(x_{k}^{\prime}\right)^{T} P^{\prime} s^{I-1}=\nabla \mu_{k}^{I-1}\left(x_{0, k}^{I-1}\right)^{T} s^{I-1}
$$

Theoretical results

Global convergence
The sequence of iterates generated by the algorithm converges globally to a first-order stationary point.

Complexity
The method requires at most $O\left(\epsilon^{-2}\right)$ iterations to achieve an iterate x_{k} such that $\left\|\nabla f\left(x_{k}\right)\right\| \leq \epsilon$.

Theoretical results

Global convergence

The sequence of iterates generated by the algorithm converges globally to a first-order stationary point.

Complexity
The method requires at most $O\left(\epsilon^{-2}\right)$ iterations to achieve an iterate x_{k} such that $\left\|\nabla f\left(x_{k}\right)\right\| \leq \epsilon$.

Contribution:

Generalized convergence theory from single level optimization to multilevel optimization for LM methods, much simpler proofs than for previously proposed trust-region method.

Exploit multilevel method for training of ANNs

Training problem:

$$
\begin{aligned}
& \min _{p} \mathcal{L}(\hat{u}(p, z), p ; z), \quad z \in \mathcal{T} \\
& \hat{u}(p, z)=\sum_{i=1}^{r} v_{i} \sigma\left(w_{i} z+b_{i}\right)+d
\end{aligned}
$$

where \mathcal{L} is the loss function, \mathcal{T} training set.

Exploit multilevel method for training of ANNs

Training problem:

$$
\begin{aligned}
& \min _{p} \mathcal{L}(\hat{u}(p, z), p ; z), \quad z \in \mathcal{T} \\
& \hat{u}(p, z)=\sum_{i=1}^{r} v_{i} \sigma\left(w_{i} z+b_{i}\right)+d
\end{aligned}
$$

where \mathcal{L} is the loss function, \mathcal{T} training set.
Large-scale problem: can we exploit multilevel methods for the training?

- How to build the coarse problem? The variables to be optimized are the network's weights:
NO evident geometrical structure to exploit!

Exploit multilevel method for training of ANNs

Training problem:

$$
\begin{aligned}
& \min _{p} \mathcal{L}(\hat{u}(p, z), p ; z), \quad z \in \mathcal{T} \\
& \hat{u}(p, z)=\sum_{i=1}^{r} v_{i} \sigma\left(w_{i} z+b_{i}\right)+d
\end{aligned}
$$

where \mathcal{L} is the loss function, \mathcal{T} training set.
Large-scale problem: can we exploit multilevel methods for the training?

- How to build the coarse problem? The variables to be optimized are the network's weights:
NO evident geometrical structure to exploit!
- The network possesses a purely algebraic structure: can we exploit it?

Exploit multilevel method for training of ANNs

$$
R_{1} \Downarrow \stackrel{P}{P}_{1} \Uparrow
$$

$$
\begin{aligned}
& \mathcal{F}_{1}: \mathbb{R}^{3 r_{1}} \rightarrow \mathbb{R} \\
& \hat{g}(p, z)=\sum_{i \in l_{1}} v_{i} \sigma\left(w_{i} z+b_{i}\right)+d \\
& \left|\ell_{1}\right|=r_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{F}_{2}: \mathbb{R}^{3 r_{2}} \rightarrow \mathbb{R} \\
& \hat{g}(p, z)=\sum_{i \in I_{2}} v_{i} \sigma\left(w_{i} z+b_{i}\right)+d \\
& I_{2} \subset I_{1},\left|I_{2}\right|=r_{2}<r_{1}
\end{aligned}
$$

$R_{2} \Downarrow P_{2} \Uparrow$

$$
\begin{aligned}
& \mathcal{F}_{3}: \mathbb{R}^{3 r_{3}} \rightarrow \mathbb{R} \\
& \hat{g}(p, z)=\sum_{i \in I_{3}} v_{i} \sigma\left(w_{i} z+b_{i}\right)+d \\
& I_{3} \subset I_{2},\left|I_{3}\right|=r_{3}<r_{2}
\end{aligned}
$$

How do we select the hierarchy of variables?

Algebraic multigrid: C/F splitting

Ruge and Stueben C / F splitting for $A x=b$

- Two variables i, j are said to be coupled if $a_{i, j} \neq 0$.
- We say that a variable i is strongly coupled to another variable j, if $-a_{i, j} \geq \epsilon \max _{a_{i, k}<0}\left|a_{i, k}\right|$ for a fixed $0<\epsilon<1$, usually $\epsilon=0.25$.

Prolongation-Restriction operators
$P=[I ; \Delta], R=P^{T}$.

Which matrix should we use?

We use a second-order model:

$$
m\left(x_{k}, s\right)=f\left(x_{k}\right)+s^{T} \nabla f\left(x_{k}\right)+\frac{1}{2} s^{T} B_{k} s+\frac{\lambda_{k}}{2}\|s\|^{2}
$$

where $B_{k}=J\left(x_{k}\right)^{\top} J\left(x_{k}\right)$. At each iteration we have to solve a linear system of the form:

$$
\left(B_{k}+\lambda_{k} I\right) s=-\nabla f\left(x_{k}\right), \quad \lambda_{k}>0
$$

As in AMG for linear systems, we use information contained in matrix B_{k}.

Which matrix should we use?

Remark
Variables are
coupled!
$\left\{w_{i}, b_{i}, v_{i}\right\}$

We do not use the full matrix B_{k} and we define A as:

$$
B_{k}=\left[\begin{array}{ccc}
f_{v, v} & . . & . . \\
. . & f_{w, w} & . . \\
. . & . . & f_{b, b}
\end{array}\right] \rightarrow A=\frac{f_{v, v}}{\left\|f_{v, v}\right\|_{\infty}}+\frac{f_{w, w}}{\left\|f_{w, w}\right\|_{\infty}}+\frac{f_{b, b}}{\left\|f_{b, b}\right\|_{\infty}}
$$

We define the coarse/fine splitting based on the auxiliary matrix A.

Numerical tests: Choice of the true solution

$$
\begin{aligned}
D(z, u(z)) & =g(z), \quad z \in \Omega \subset \mathbb{R}^{n}, n=1,2 \\
u(z) & =g_{2}(z) z \in \partial \Omega
\end{aligned}
$$

- We choose g to have true solution $u_{T}(z, \nu)$ depending on ν

Remark

- As ν increases the function becomes more oscillatory and it is harder to approximate.
- The size of the problem increases with the number of nodes.
- \mathcal{T} : equispaced points in $(0,1)$ with $h=\frac{1}{3 \nu}$ (Shannon's criterion).

Preliminary results: Poisson's equation 10 runs

1 D		$\nu=20$	$r=2^{9}$		$\nu=25$	$r=2^{10}$
Solver	iter	RMSE	save	iter	RMSE	save
LM	869	$1 . e-4$		1439	$1 . e-3$	
MLM	507	$1 . e-4$	$1.1-2.6-4.3$	1325	1.e-3	$1.2-1.7-2.8$

Table: 1D Poisson's equation, $u_{T}(z, \nu)=\cos (\nu z), 10$ runs

2D		$\nu=5$	$r=2^{10}$		$\nu=6$	$r=2^{11}$
Solver	iter	RMSE	save	iter	RMSE	save
LM	633	$1 . e-3$		1213	$1 . e-3$	
MLM	643	$1 . e-3$	$1.1-1.5-2.1$	1016	1.e-3	$1.2-1.9-2.4$

Table: 2D Poisson's equation, $u_{T}(z, \nu)=\cos (\nu z), 10$ runs
save $(\min$, average, $\max)=$ ratio between total number of flops required for matrix-vector products

Helmholtz's and nonlinear equations, 10 runs

		$\nu=5$	$r=2^{10}$
Solver	iter	RMSE	save
LM	1159	$1 . e-3$	
MLM	1250	$1 . e-3$	$1.2-1.9-3.1$

Table: Helmholtz's equations. $\Delta u(z)+\nu^{2} u(z)=0$,

$$
u_{T}(z, \nu)=\sin (\nu z)+\cos (\nu z)
$$

		$\nu=20$	$r=2^{9}$		$\nu=1$	$r=2^{9}$
Method	iter	RMSE	save	iter	RMSE	save
LM	950	10^{-5}		270	10^{-3}	
MLM	1444	10^{-5}	$0.8-2.9-5.3$	320	10^{-3}	$1.2-1.7-1.8$

Table: Left: $\Delta u+\sin u=g_{1}(1 \mathrm{D}) u_{T}(z, \nu)=0.1 \cos (\nu z)$. Right:
$\Delta u+e^{u}=g_{1}(2 D), u_{T}(z, \nu)=\log \left(\frac{\nu}{z_{1}+z_{2}+10}\right)$

2D Helmholtz's equation

$$
-\Delta u-\left(\frac{2 \pi \nu}{c(z)}\right)^{2} u=g_{1}
$$

		$\nu=1$	$r=2^{9}$		$\nu=2$	$r=2^{9}$
Method	iter	RMSE	save	iter	RMSE	save
LM	200	10^{-3}		200	10^{-2}	
MLM	200	10^{-3}	$1.7-1.8-1.9$	200	10^{-2}	$1.7-1.8-1.9$
		$\nu=2$	$r=2^{9}$		$\nu=2$	$r=2^{9}$
Method	iter	RMSE	save	iter	RMSE	save
LM	200	10^{-2}		200	510^{-3}	
MLM	200	10^{-2}	$1.7-1.8-1.8$	200	510^{-3}	$1.7-1.8-1.9$

Table: In all the tests $g_{1}\left(\left[z_{1}, z_{2}\right]\right)=\left(0.25<z_{1}<0.75\right)\left(0.25<z_{2}<0.75\right)$, and $c(z)$ has been chosen as: $\bar{c}_{1}\left(\left[z_{1}, z_{2}\right]\right)=40$ (up, left); $\bar{c}_{1}\left(\left[z_{1}, z_{2}\right]\right)=20\left(0 \leq z_{1}<0.5\right)+40\left(0.5 \leq z_{1} \leq 1\right)$ (up right); $\bar{c}_{2}\left(\left[z_{1}, z_{2}\right]\right)=20\left(0 \leq z_{1}<0.25\right)+40\left(0.25 \leq z_{2} \leq 0.5\right)+60\left(0.5 \leq z_{3}<\right.$ $0.75)+80\left(0.75 \leq z_{4} \leq 1\right)$ (bottom, left); $\bar{c}_{2}\left(\left[z_{1}, z_{2}\right]\right)=0.1 \sin \left(z_{1}+z_{2}\right)$ (bottom, right).

Difficult domain

2D		$\nu=3$	$r=2^{9}$
Solver	iter	RMSE	save
LM	395	$3 . e-4$	
MLM	110	$2 . e-4$	$1.3-5.6-10.0$

Table: 2D Screened Poisson's equation, $\Delta u-\nu^{2} u=-f$, $u_{T}(x, y, \nu)=\sin (\nu(x+y)), 10$ runs
save(min,average,max)=ratio between total number of flops required for matrix-vector products

Future work

- Design a Hessian-free variant of the method for large scale problems. The method needs to compute and store the Hessian matrix (for step computation and to build transfer operators): too expensive for large-scale problems.
- Extend to deep neural networks
- Tests on more physical/industrial/larger problems (problems in seismology)

Thank you for your attention！
For more details：
圊 H．Calandra，S．Gratton，E．Riccietti X．Vasseur，On the approximation of the solution of partial differential equations by artificial neural networks trained by a multilevel Levenberg－Marquardt method，submitted．

目 H．Calandra，S．Gratton，E．Riccietti X．Vasseur，On high－order multilevel optimization strategies，submitted．

围 H．Calandra，S．Gratton，E．Riccietti X．Vasseur，On the solution of systems of the form $A^{T} A x=A^{T} b+c$ ，submitted．

When to use the lower level model?

The lower level model is not always useful, we can use it if

- if $\left\|\nabla \mu_{q, k}^{I-1}\left(x_{0, k}^{I-1}\right)\right\|=\left\|R^{\prime} \nabla f^{\prime}\left(x_{k}^{\prime}\right)\right\| \geq \kappa\left\|\nabla f^{\prime}\left(x_{k}^{\prime}\right)\right\|, \kappa>0$,
- if $\left\|R \nabla f^{\prime}\left(x_{k}^{\prime}\right)\right\|>\epsilon^{\prime}$

Future work 1: Extend the method to multilayer networks.

- Extend the method as it is: use a sparse network.

Future work 1: Extend the method to multilayer networks.

- Extend the method as it is: use a sparse network.
- Change strategy to build coarse problems: compress variables in a layer to exploit the structure of the multilayer network.

Coherence between levels, $q=2$

Lower level model: Let $x_{0, k}^{I-1}=R x_{k}^{\prime}$. We define $\mu_{2, k}^{I-1}$ as
$\mu_{2, k}^{I-1}\left(x_{0, k}^{I-1}+s^{I-1}\right)=f^{I-1}\left(x_{0, k}^{I-1}+s^{I-1}\right)+\left(R^{\prime} \nabla f^{\prime}\left(x_{k}^{\prime}\right)-\nabla f^{I-1}\left(x_{k}^{I-1}\right)\right)^{T} s^{I-1}$
$+\frac{1}{2}\left(s^{\prime-1}\right)^{T}\left(\left(R^{\prime}\right)^{T} \nabla f^{\prime}\left(x_{k}^{\prime}\right) P^{\prime}-\nabla^{2} f^{\prime-1}\left(x_{k}^{\prime-1}\right)\right) s^{\prime-1}$

Prolongation operator

$$
x_{i}^{h}=\left(P x^{H}\right)_{i}=\left\{\begin{array}{lr}
x_{i}^{H} & \text { if } i \in C, \\
\sum_{k \in P_{i}} \delta_{i, k} x_{k}^{H} & \text { if } i \in F,
\end{array}\right.
$$

with
$\delta_{i, k}=\left\{\begin{array}{ll}-\alpha_{i} a_{i, k} / a_{i, i} & \text { if } k \in P_{i}^{-}, \\ -\beta_{i} a_{i, k} / a_{i, i} & \text { if } k \in P_{i}^{+},\end{array} \quad \alpha_{i}=\frac{\sum_{j \in N_{i}} a_{i, j}^{-}}{\sum_{k \in P_{i}} a_{i, k}^{-}}, \quad \beta_{i}=\frac{\sum_{j \in N_{i}} a_{i, j}^{+}}{\sum_{k \in P_{i}} a_{i, k}^{+}}\right.$,
where $a_{i, j}^{+}=\max \left\{a_{i, j}, 0\right\}, a_{i, j}^{-}=\min \left\{a_{i, j}, 0\right\}, N_{i}$ is the set of variables connected to i (i.e. all j such that $a_{i, j} \neq 0$), P_{i} the set of coarse variables strongly connected to i, which is partitioned in P_{i}^{-} (negative couplings) and P_{i}^{+}(positive couplings). The interpolation operator, assuming to have regrouped and ordered the variables to have all those corresponding to indexes in C at the beginning, is then defined as $P=[I ; \Delta]$ where I is the identity matrix of size $|C|$ and Δ is the matrix such that $\Delta_{i, j}=\delta_{i, j}$.

Classical multigrid methods

- Consider a linear elliptic PDE: $D(z, u(z))=f(z) z \in \Omega+$ b.c.
- Discretize on grid h. Get a large-scale linear system $A_{h} x_{h}=b_{h}$.

Consider the discretization of the same PDE problem on a coarser grid: $A_{H} x_{H}=b_{H}, H>h$.

- Relaxation methods fails to eliminate smooth components of the error efficiently.
- Smooth components projected on a coarser grid appear more oscillatory.

Coarse problem construction

Define transfer grid operators: P prolongation and R restriction to project vectors from a grid to another: $x_{H}=R x_{h}, x_{h}=P x_{H}$, such that $R=\alpha P^{T}$.

Geometry exploitation
The geometrical structure of the problem is exploited to build R and P.

Figure 3.2: Interpolation of a vector on coarse grid $\Omega^{2 h}$ to fine grid Ω^{h}.

Figure 3.4: Restriction by full weighting of a fine-grid vector to the coarse grid.

