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Context: Numerical solution of PDEs

D(z ,u(z)) = g1(z), z ∈ Ω ⊆ Rm;

u(z) = g2(z), z ∈ ∂Ω.

Classical approaches

▸ Finite differences methods

Alternative approach by Artificial Neural Networks

▸ Natural approach for nonlinear equations,

▸ Provides analytical expression of the solution,

▸ Provides approximation of the solution in all the points of the
domain,

▸ Allows to alleviate the effect of the curse of dimensionality
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Hot topic

Many recent papers on the use of Artificial Neural Networks to
deal with Partial Differential Equations, both direct and inverse
problems:

Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework
for Assimilating Flow Visualization Data (2018)

The Deep Ritz method: A deep learning-based numerical algorithm for solving
variational problems (2017)

A proof that deep artificial neural networks overcome the curse of dimensionality
in the numerical approximation of Kolmogorov partial differential equations with
constant diffusion and nonlinear drift coefficients (2018).

Analysis of the generalization error: Empirical risk minimization over deep
artificial neural networks overcomes the curse of dimensionality in the numerical
approximation of Black-Scholes partial differential equations (2018).

Overcoming the curse of dimensionality in the numerical approximation of
semilinear parabolic partial differential equations (2018).

Solving stochastic differential equations and Kolmogorov equations by means of
deep learning (2018).

Deep Neural Networks motivated by Partial Differential Equations (2018).
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Drawbacks

▸ The approximation of highly oscillatory solutions may require
a large number of neurons.

▸ Gradient training methods depend on free parameters, they
may be slow and better suited for convex problems

New trend in machine learning

▸ Second order methods

Optimization Methods for Large-Scale Machine Learning, L. Bottou, F. E.
Curtis, J. Nocedal (2018)

Second-Order Optimization for Non-Convex Machine Learning: An
Empirical Study, P. Xu, F. Roosta-Khorasani, M.W. Mahoney (2018)

Our approach

▸ Use of a ANN to approximate PDEs solution trained by a
Multilevel Levenberg-Marquardt method
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Our approach: Artificial neural networks (1D case)

D(z ,u(z)) = g(z), z ∈ (a,b) u(a) = A, u(b) = B

Iz → σ
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p = [v ,w ,b,d]T

û(p, z) ∼ u(z)
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Our approach: training problem
Training problem:

min
p
L(û(p, z),p; z), z ∈ T

û(p, z) =
r

∑
i=1

viσ(wiz + bi) + d

where L is the loss function, T training set.

We select a training set T s.t. ∣T ∣ = t:

zT = [z1, . . . , zt]T , a ≤ z1 < ⋅ ⋅ ⋅ < zt ≤ b

We define

L(û(p, z),p; z) = 1

2t
(∥D(zT , û(p, zT )) − g(zT )∥2

+λp(∥û(p, a) −A∥2 + ∥û(p,b) −B∥2))
for û(p, zT ) ∈ Rt , where u(a) = A and u(b) = B are the boundary
conditions.

Nonlinear least-squares problem
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L(û(p, z),p; z), z ∈ T
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Our approach: the training method

We consider large-scale nonlinear least-squares problems:

min
x

f (x) = 1

2
∥F (x)∥2

with F ∶ Rn → Rm, m ≥ n and x ∈ D ⊂ Rn and n large.

We propose a Multilevel extension of classical
Levenberg-Marquardt method.
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Classical Levenberg-Marquardt

Iterative method for nonlinear least-squares problems:

min
x

f (x) = 1

2
∥F (x)∥2.

Classical Levenberg-Marquardt optimization method:

f (xk + s) ≃ T2(xk , s)

with T2(xk , s) Taylor model of order 2 with approximated Hessian
matrix. At each iteration we compute a step sk to update the
iterate:

min
s

mk(xk , s) = T2(xk , s) +
λk
2

∥s∥2, λk > 0.
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Bottelneck: Subproblem solution

Solving

min
s

T2(xk , s) +
λk
2

∥s∥2

represents greatest cost per iteration, which depends on the size of
the problem.

⇓

S. Gratton, A. Sartenaer, PH. Toint, ’Multilevel trust region
method’ 2008

→ IDEA: extend multigrid strategies to nonlinear optimization

Hierarchy of problems

▸ {fl(xl)}, xl ∈ Dl

▸ ∣Dl ∣ < ∣Dl+1∣
▸ fl is cheaper to optimize compared to fl+1
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Multilevel setting

▸ At each level l , x ∈ Rnl . lmax finest level, 0 coarsest level.

level lmax Rn x lmax f lmax = f µlmax = f
⋮ ⋮ ⋮ ⋮

level l + 1 Rnl+1 x l+1 f l+1 µl+1

R l+1 ⇓ ⇑ P l+1

level l Rnl x l f l µl

⋮ ⋮ ⋮ ⋮
level 0 Rn0 x0 f 0 µ0

▸ f l represents f on the coarse spaces (it is e.g. the
discretization of f on a coarse space)

▸ The functions µl are modifications of the f l to ensure
inter-level coherence.

▸ R l = α(P l)T , for some α > 0.
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One level strategy

At level l = lmax, let x lk be the current approximation. We look for
a correction s lk to define the new approximation x lk+1 = x lk + s lk .

x lk

x lk+1 = x lk + s lk
T l

2
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Multilevel strategy

Two choices:

1. minimize regularized Taylor model, get s lk ,

2. choose lower level model µl−1
k :

x lk

x lk+1 = x lk + s lk
T l

2
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Multilevel strategy

Two choices:

1. minimize regularized Taylor model, get s lk ,

2. choose lower level model µl−1
k :

x lk

R lx lk ∶= x l−1
0,k

R l

x l−1
∗,k

µl−1
k

x lk+1 = x lk + s lk

s lk = P l(x l−1
∗,k − x l−1

0,k )

▸ The lower level model is cheaper to optimize.

▸ The procedure is recursive: more levels can be used.
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Coherence between levels

Lower level model:

▸ Let x l−1
0,k = Rx lk . Model with first order correction:

µl−1
k = f l−1(x l−1

0,k + s l−1) + (R l∇f l(x lk) − ∇f l−1(x l−1
k ))T s l−1

This ensures that

∇µl−1
k (x l−1

0,k ) = R l∇f l(x lk)

→ first-order behaviours of f l and µl−1 are coherent in a
neighbourhood of the current approximation. If s l = P ls l−1

∇f l(x lk)T s l = ∇f l(x lk)TP ls l−1 = ∇µl−1
k (x l−1

0,k )T s l−1.
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Theoretical results

Global convergence

The sequence of iterates generated by the algorithm converges
globally to a first-order stationary point.

Complexity

The method requires at most O(ε−2) iterations to achieve an
iterate xk such that ∥∇f (xk)∥ ≤ ε.

Contribution:
Generalized convergence theory from single level optimization to
multilevel optimization for LM methods, much simpler proofs than
for previously proposed trust-region method.
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Exploit multilevel method for training of ANNs

Training problem:

min
p
L(û(p, z),p; z), z ∈ T

û(p, z) =
r

∑
i=1

viσ(wiz + bi) + d

where L is the loss function, T training set.

Large-scale problem: can we exploit multilevel methods for the
training?

▸ How to build the coarse problem? The variables to be
optimized are the network’s weights:
NO evident geometrical structure to exploit!

▸ The network possesses a purely algebraic structure: can we
exploit it?
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Exploit multilevel method for training of ANNs

Iz → σ
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F1 ∶ R3r1 → R
ĝ(p, z) = ∑i∈I1 viσ(wiz + bi) + d
∣I1∣ = r1

R1 ⇓ P1 ⇑

Iz → σ

b3

σ

b4

σ

b1

+
d

w 1

w3

w
4

v
1

v3

v4

F2 ∶ R3r2 → R
ĝ(p, z) = ∑i∈I2 viσ(wiz + bi) + d
I2 ⊂ I1, ∣I2∣ = r2 < r1

R2 ⇓ P2 ⇑

Iz → σ

b3

σ

b1

+
d

w3

w 1

v3

v
1

F3 ∶ R3r3 → R
ĝ(p, z) = ∑i∈I3 viσ(wiz + bi) + d
I3 ⊂ I2, ∣I3∣ = r3 < r2
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How do we select the hierarchy of variables?

Algebraic multigrid: C/F splitting

Ruge and Stueben C/F splitting for Ax = b

▸ Two variables i , j are said to be coupled if ai ,j ≠ 0.

▸ We say that a variable i is strongly coupled to another
variable j , if −ai ,j ≥ εmaxai,k<0∣ai ,k ∣ for a fixed 0 < ε < 1,
usually ε = 0.25.

Prolongation-Restriction operators

P = [I ; ∆], R = PT .
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Which matrix should we use?

We use a second-order model:

m(xk , s) = f (xk) + sT∇f (xk) +
1

2
sTBks +

λk
2

∥s∥2

where Bk = J(xk)⊺J(xk). At each iteration we have to solve a
linear system of the form:

(Bk + λk I )s = −∇f (xk), λk > 0.

As in AMG for linear systems, we use information contained in
matrix Bk .
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Which matrix should we use?

Remark
Variables are
coupled!
{wi ,bi , vi}

Iz → σ

b3

σ

b4

σ

b5

σ

b2

σ

b1

+
dw2

w 1

w
4

w
5

v2

v3

v4

v 5

We do not use the full matrix Bk and we define A as:

Bk =
⎡⎢⎢⎢⎢⎢⎣

fv ,v .. ..
.. fw ,w ..
.. .. fb,b

⎤⎥⎥⎥⎥⎥⎦
→ A = fv ,v

∥fv ,v∥∞
+ fw ,w

∥fw ,w∥
∞

+ fb,b

∥fb,b∥∞

We define the coarse/fine splitting based on the auxiliary matrix A.
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Numerical tests: Choice of the true solution

D(z ,u(z)) = g(z), z ∈ Ω ⊂ Rn, n = 1,2

u(z) = g2(z) z ∈ ∂Ω

▸ We choose g to have true solution uT (z , ν) depending on ν

Remark

▸ As ν increases the function becomes more oscillatory and it is
harder to approximate.

▸ The size of the problem increases with the number of nodes.

▸ T : equispaced points in (0,1) with h = 1
3ν (Shannon’s

criterion).
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Preliminary results: Poisson’s equation 10 runs

1D ν = 20 r = 29 ν = 25 r = 210

Solver iter RMSE save iter RMSE save

LM 869 1.e-4 1439 1.e-3
MLM 507 1.e-4 1.1-2.6-4.3 1325 1.e-3 1.2-1.7-2.8

Table: 1D Poisson’s equation, uT (z , ν) = cos(νz), 10 runs

2D ν = 5 r = 210 ν = 6 r = 211

Solver iter RMSE save iter RMSE save

LM 633 1.e-3 1213 1.e-3
MLM 643 1.e-3 1.1-1.5-2.1 1016 1.e-3 1.2-1.9-2.4

Table: 2D Poisson’s equation, uT (z , ν) = cos(νz), 10 runs

save(min,average,max)=ratio between total number of flops required for

matrix-vector products
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Helmholtz’s and nonlinear equations, 10 runs

ν = 5 r = 210

Solver iter RMSE save

LM 1159 1.e-3
MLM 1250 1.e-3 1.2-1.9-3.1

Table: Helmholtz’s equations. ∆u(z) + ν2u(z) = 0 ,
uT (z , ν) = sin(νz) + cos(νz)

ν = 20 r = 29 ν = 1 r = 29

Method iter RMSE save iter RMSE save

LM 950 10−5 270 10−3

MLM 1444 10−5 0.8-2.9-5.3 320 10−3 1.2-1.7-1.8

Table: Left: ∆u + sinu = g1 (1D) uT (z , ν) = 0.1 cos(νz). Right:

∆u + eu = g1 (2D), uT (z , ν) = log ( ν
z1+z2+10

)
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2D Helmholtz’s equation

−∆u − ( 2πν

c(z))
2

u = g1

ν = 1 r = 29 ν = 2 r = 29

Method iter RMSE save iter RMSE save

LM 200 10−3 200 10−2

MLM 200 10−3 1.7-1.8-1.9 200 10−2 1.7-1.8-1.9

ν = 2 r = 29 ν = 2 r = 29

Method iter RMSE save iter RMSE save

LM 200 10−2 200 5 10−3

MLM 200 10−2 1.7-1.8-1.8 200 5 10−3 1.7-1.8-1.9

Table: In all the tests g1([z1, z2]) = (0.25 < z1 < 0.75)(0.25 < z2 < 0.75),
and c(z) has been chosen as: c̄1([z1, z2]) = 40 (up, left);
c̄1([z1, z2]) = 20 (0 ≤ z1 < 0.5) + 40 (0.5 ≤ z1 ≤ 1) (up right);
c̄2([z1, z2]) = 20 (0 ≤ z1 < 0.25) + 40 (0.25 ≤ z2 ≤ 0.5) + 60 (0.5 ≤ z3 <
0.75) + 80 (0.75 ≤ z4 ≤ 1) (bottom, left); c̄2([z1, z2]) = 0.1 sin(z1 + z2)
(bottom, right).
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Difficult domain

2D ν = 3 r = 29

Solver iter RMSE save

LM 395 3.e-4
MLM 110 2.e-4 1.3-5.6-10.0

Table: 2D Screened Poisson’s equation, ∆u − ν2u = −f ,
uT (x , y , ν) = sin(ν(x + y)), 10 runs

save(min,average,max)=ratio between total number of flops required for

matrix-vector products
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Future work

▸ Design a Hessian-free variant of the method for large scale
problems. The method needs to compute and store the
Hessian matrix (for step computation and to build transfer
operators): too expensive for large-scale problems.

▸ Extend to deep neural networks

▸ Tests on more physical/industrial/larger problems (problems
in seismology)
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Thank you for your attention!
For more details:

H. Calandra, S. Gratton, E. Riccietti X. Vasseur, On the
approximation of the solution of partial differential equations
by artificial neural networks trained by a multilevel
Levenberg-Marquardt method, submitted.

H. Calandra, S. Gratton, E. Riccietti X. Vasseur, On
high-order multilevel optimization strategies , submitted.

H. Calandra, S. Gratton, E. Riccietti X. Vasseur, On the
solution of systems of the form ATAx = ATb + c , submitted.
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When to use the lower level model?

The lower level model is not always useful, we can use it if

▸ if ∥∇µl−1
q,k(x l−1

0,k )∥ = ∥R l∇f l(x lk)∥ ≥ κ∥∇f l(x lk)∥, κ > 0,

▸ if ∥R∇f l(x lk)∥ > εl
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Future work 1: Extend the method to multilayer networks.

▸ Extend the method as it is: use a sparse network.
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Future work 1: Extend the method to multilayer networks.

▸ Extend the method as it is: use a sparse network.

▸ Change strategy to build coarse problems: compress variables
in a layer to exploit the structure of the multilayer network.
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Coherence between levels, q = 2

Lower level model: Let x l−1
0,k = Rx lk . We define µl−1

2,k as

µl−1
2,k (x l−1

0,k + s l−1) = f l−1(x l−1
0,k + s l−1) + (R l∇f l(x lk) − ∇f l−1(x l−1

k ))T s l−1

+ 1

2
(s l−1)T ((R l)T∇f l(x lk)P l −∇2f l−1(x l−1

k ))s l−1
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Prolongation operator

xhi = (PxH)i =
⎧⎪⎪⎨⎪⎪⎩

xHi if i ∈ C ,
∑k∈Pi

δi ,kx
H
k if i ∈ F ,

with

δi ,k =
⎧⎪⎪⎨⎪⎪⎩

−αiai ,k/ai ,i if k ∈ P−

i ,

−βiai ,k/ai ,i if k ∈ P+

i ,
αi =

∑j∈Ni
a−i ,j

∑k∈Pi
a−i ,k

, βi =
∑j∈Ni

a+i ,j

∑k∈Pi
a+i ,k

,

where a+i ,j = max{ai ,j ,0}, a−i ,j = min{ai ,j ,0}, Ni is the set of
variables connected to i (i.e. all j such that ai ,j ≠ 0), Pi the set of
coarse variables strongly connected to i , which is partitioned in P−

i

(negative couplings) and P+

i (positive couplings). The
interpolation operator, assuming to have regrouped and ordered
the variables to have all those corresponding to indexes in C at the
beginning, is then defined as P = [I ; ∆] where I is the identity
matrix of size ∣C ∣ and ∆ is the matrix such that ∆i ,j = δi ,j .

33 / 28



Classical multigrid methods
▸ Consider a linear elliptic PDE: D(z ,u(z)) = f (z) z ∈ Ω + b.c.
▸ Discretize on grid h. Get a large-scale linear system Ahxh = bh.

Consider the discretization of the same PDE problem on a coarser
grid: AHxH = bH , H > h.

▸ Relaxation methods fails to eliminate smooth components of
the error efficiently.

▸ Smooth components projected on a coarser grid appear more
oscillatory.

Figure:
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Coarse problem construction
Define transfer grid operators: P prolongation and R restriction to
project vectors from a grid to another: xH = Rxh, xh = PxH , such
that R = αPT .

Geometry exploitation

The geometrical structure of the problem is exploited to build R
and P.
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