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Abstract. We propose a new family of multilevel methods for unconstrained minimization. The resulting
strategies are multilevel extensions of high-order optimization methods based on q-th order Taylor
models (with q ≥ 1) that have been recently proposed in the literature. The use of high-order
models, while decreasing the worst-case complexity bound, makes these methods computationally
more expensive. Hence, to counteract this effect, we propose a multilevel strategy that exploits a
hierarchy of problems of decreasing dimension, still approximating the original one, to reduce the
global cost of the step computation. A theoretical analysis of the family of methods is proposed.
Specifically, local and global convergence results are proved and a worst-case complexity bound to
reach first-order stationary points is also derived. A multilevel version of the well-known adaptive
regularization by cubics (corresponding to q = 2 in our setting) has been implemented, as well as a
multilevel third-order method (q = 3). Numerical experiments clearly highlight the relevance of the
new multilevel approaches leading to considerable computational savings compared to their one-level
counterparts.
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1. Introduction. We propose a new family of high-order multilevel optimization methods
for unconstrained minimization. Exploiting ideas stemming from multilevel methods allows
us to reduce the cost of the step computation, which represents the major cost per iteration
of the standard single level procedures. We have been mainly inspired by two driving ideas:
the use of high-order models in optimization as introduced in [6], and the multilevel recursive
strategy proposed in [21].

When solving unconstrained minimization problems, quadratic models are widely used.
These are usually regularized by a quadratic term. For example, trust-region methods have
been widely studied and used to globalize Newton-like iterations [18, 38]. Lately in the
literature, a different option has received a growing attention: the use of a cubic overestimator
of the objective function as a regularization technique for the computation of the step from one
iterate to the next, giving rise to quadratic models with cubic regularization. This idea first
appeared in [22] and then was reconsidered in [37], where the authors proved that the method
has a better worst-case complexity bound compared to standard trust-region methods. Later,
in [15, 16], an adaptive variant of the method has been proposed, based on a dynamic choice
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of the regularization parameters and on an approximate solution of the subproblems. The
resulting method is known as adaptive method based on cubic regularization (ARC) and is
shown to preserve the attractive global complexity bound established in [37]. In recent years
the method has attracted further interest, see for example [14, 20, 40, 43].

In recent publications also methods of higher order start to gain interest, see for example
[6, 41]. In [6] in particular, it has been observed that the good complexity bound of ARC can
be made even lower, if one is willing to use higher-order derivatives. In specific applications
this computation is indeed feasible, for example when considering partially separable functions
[17]. The authors in [6] present a family of methods based on high-order regularized models,
which are a generalization of the second-order model employed in ARC. Specifically, they are
based on models of order q ≥ 1, regularized by a term of order q + 1. The method based on
cubic regularization belongs to this family and corresponds to the choice q = 2. The authors
in [6] propose a unifying framework to describe the theoretical properties of the approaches
in this class. It is proved that the method based on the q-th order model requires at most

O
(
ε
− q+1

q

)
function evaluations to find a first-order critical point, where ε denotes the absolute

accuracy level.
However, the use of higher-order models comes along with higher computational costs. The

main cost per iteration of the methods described in [6] is represented by the step computation
through the model minimization. This cost is proportional to the dimension of the problem, it
can therefore be significant for large-scale problems. This issue has been faced in the literature
by extending to nonlinear optimization ideas coming from multigrid [25], giving rise to a wide
variety of methods to solve both convex [3, 4, 19, 24, 28, 29, 30, 33, 39] and nonconvex problems
[21, 26, 31, 32, 35, 36, 42].

These methods share with classical multigrid methods the idea of exploiting a hierarchy of
problems (in this case a sequence of nonlinear functions) defined on lower dimensional spaces,
approximating the original objective function f . The simplified expressions of the objective
function are used to build models that are cheaper to minimize, and are used to define the
step. Specifically in [21] the authors present an extension of classical multigrid methods for
nonlinear optimization problems (see [8, 9] or [11, Ch. 3]) to a class of multilevel trust-region
based optimization algorithms.

Multilevel approaches can be used in every situation in which a hierarchy of functions
defined on increasingly lower dimensional spaces is available. This is the typical scenario when
the problem arises from the discretization of an infinite dimensional problem and increasingly
coarser discretizations can be used to define the hierarchy. There are however also examples
of discrete problems that can be provided with a hierarchy built exclusively by algebraic
procedures, see for example [12].

Our contributions. Inspired by the ideas presented in [6, 21] we propose a family of multi-
level optimization methods using high-order regularized models that generalizes the methods
proposed in both papers. The aim is to decrease the computational cost of the methods in
[6] extending the ideas in [21] to higher-order models. We also develop a theoretical analysis
for the resulting family of methods. The main theoretical results are provided in Theorems
4.2, 4.3 and 4.7, respectively. In these theorems we successively prove the global convergence
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property of the methods, evaluate a worst-case complexity bound to reach a first-order critical
point and provide local convergence rates. The global convergence analysis generalizes the
results in [6] and appears as much simpler than that in [21]. Moreover we establish local
convergence results towards second-order stationary points, that are not present neither in [6]
nor in [21]. These results not only generalize those in [44], that are valid only for q = 2, but
also apply to the one level methods in [6]. From a practical point of view, we implemented
the methods of the family corresponding to q = 2 (which represents a multilevel version of
the well-known adaptive regularization by cubics) and to q = 3.

To the best of our knowledge, this is the first time that multilevel optimization strategies,
based on models of generic order q ≥ 1, are proposed, and that a unifying framework is
introduced to study their convergence. In particular, multilevel versions of the adaptive
regularization by cubics have never been analysed nor tested numerically before. Moreover,
this is the first time that local convergence results are proposed for q-th order methods.

Structure. The manuscript is organized as follows. In Section 2, we briefly introduce the
family of optimization methods using high-order regularized models considered in [6]. Section
3 and Section 4 represent our main contribution. We introduce in Section 3 the multilevel
extensions of the methods presented in Section 2, and we provide a theoretical analysis in
Section 4. Specifically, we focus on global convergence in Section 4.1, worst-case complexity
in Section 4.2 and local convergence in Section 4.3. In Section 5 we then present results related
to numerical experiments performed with the multilevel methods corresponding to q = 2, 3.
Finally, conclusions are drawn in Section 6.

Tensor notations. To deal with high-order derivatives we will need to use a tensor notation,
that we introduce here for convenience of the reader, see [6, 7]. We first consider a tensor of
order three, and then extend the definition to a tensor of order p ∈ N.

Definition 1.1. Let T ∈ Rn×n×n, and u, v, w ∈ Rn. Then T [u, v, w] ∈ R, T [u, v] ∈ Rn and

T [u, v, w] =
n∑
i=1

n∑
j=1

n∑
k=1

T (i, j, k)u(i)v(j)w(k),

T [v, w](i) =

n∑
j=1

n∑
k=1

T (i, j, k)v(j)w(k), i = 1, . . . , n.

Definition 1.2. Let p ∈ N and T ∈ Rnp
, and u1, . . . , up ∈ Rn. Then T [u1, . . . , up] ∈ R,

T [u1, . . . , up−1] ∈ Rn and

T [u1, . . . , up] =

n∑
j1=1

· · ·
n∑

jp=1

T (j1, . . . , jp)u1(j1) . . . ui(jp),

T [u1, . . . , up−1](j1) =

n∑
j2=1

· · ·
n∑

jp=1

T (j1, . . . , jp)u1(j2), . . . up−1(jp), j1 = 1, . . . , n.

More generally, for a tensor T of order p, T [u1, . . . , uj ] for j ≤ p is a tensor of order p − j
resulting from the application of T to the vectors u1, . . . , uj .
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In the following we will use the notation T [s]i, which stands for the tensor T applied i
times to the vector s ∈ Rn.

Given a function f : Rn → R we denote by ∇pxf(x) its p-th order derivative tensor

∇pxf(x) =

[
∂pf

∂xi1 . . . ∂xip

]
ij∈{1,...,n}, j=1,...,p

.

For convenience, we will omit the superscript when p = 1.
We will denote by ‖ · ‖ the Euclidean norm and by ‖ · ‖[p] the tensor norm recursively

induced by the Euclidean norm on the space of p-th order tensors, which for a tensor T of
order p is given by

‖T‖[p] := max
‖u1‖=···=‖up‖=1

|T [u1, . . . , up]|.

We will use the same notation for all the spaces we will consider, the space on which the norm
is defined will be clear by the context.

2. High-order iterative optimization methods. Let q ≥ 1 be an integer. Let us consider
a minimization problem of the form:

(2.1) min
x∈Rn

f(x)

with f : Rn → R a bounded below and q-times continuously differentiable function, called the
objective function.

Classical iterative optimization methods for unconstrained minimization are based on the
use of a model to approximate the objective function at each iteration. In this section, we
describe the iterative optimization methods using high-order models presented in [6].

2.1. Model definition and step acceptance. At each iteration k, given the current iterate
xk, the objective function is approximated by the q-th order Taylor series of f

(2.2) Tq,k(xk, s) = f(x) +

q∑
i=1

1

i!
∇ixf(x) [s]i .

A step sk is then found minimizing (possibly approximately) the regularized Taylor model of
order q:

(2.3) mq,k(xk, s;λk) = Tq,k(xk, s) +
λk
q + 1

‖s‖q+1

where λk is a positive value called regularization parameter. The step sk is used to define a
trial point i.e. xk+1 = xk + sk. At each iteration, it has to be decided whether to accept the
step or not. This decision is based on the accordance between the decrease in the function
and in the model. More precisely, at each iteration both the decrease achieved in the model,
that we call predicted reduction, pred = Tq,k(xk, 0) − Tq,k(xk, sk), and that achieved in the
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objective function, that we call actual reduction, ared = f(xk) − f(xk + sk), are computed.
The step acceptance is then based on the ratio:

(2.4) ρk =
ared

pred
=

f(xk)− f(xk + sk)

Tq,k(xk, 0)− Tq,k(xk, sk)
.

If the model is accurate, ρk will be close to one. Then, the step sk is accepted if ρk is larger
than or equal to a chosen threshold η1 ∈ (0, 1) and is rejected otherwise. In the first case, the
step is said to be successful, and otherwise the step is unsuccessful.

After the step acceptance, the regularization parameter is updated for the next iteration.
The update is still based on the ratio (2.4). If the step is successful, the regularization
parameter is decreased, otherwise it is increased. The whole procedure is stopped when
a minimizer of f is reached. Usually, the stopping criterion is based on the norm of the
gradient, i.e. given an absolute accuracy level ε > 0 the iterations are stopped as soon as
‖∇xf(xk)‖ < ε.

2.2. Minimization of the model. The main computational work per iteration in this
kind of methods is represented by the minimization of the regularized model (2.3), whose cost
naturally depends on the dimension of the problem. However, from the convergence theory of
such methods, it is well known that it is not necessary to minimize the model exactly to get
a globally convergent method.

A well-known possibility is to minimize the model until the Cauchy decrease is achieved,
i.e. until a fraction of the decrease provided by the Cauchy step (the step that minimizes
the model in the direction of the negative gradient) is obtained. In [6] the authors consider a
different stopping criterion for the inner iterations:

mq,k(xk, sk;λk) < mq,k(xk, 0;λk), ‖∇smq,k(xk, sk;λk)‖ ≤ θ‖sk‖q,(2.5)

for θ > 0, which has the advantage of allowing for simpler convergence proofs. The whole
procedure is sketched in Algorithm 2.1.

For very large-scale problems however, even an approximate minimization of (2.3) may be
really costly. Then, in the next section we propose multilevel variants of the procedures, that
rely on simplified models of the objective function, cheaper to optimize, allowing to reduce
the global cost of the optimization procedure.

3. Multilevel optimization methods. We describe the multilevel extension of the family
of methods presented in Section 2. The procedures are inspired by the multilevel trust-region
approach presented in [21], where only second-order models with quadratic regularization have
been considered. Here, we generalize this approach by allowing also higher-order models, i.e.
q > 2.

3.1. Preliminaries and notations. In standard optimization methods the minimization
of (2.3) represents the major cost per iteration, which crucially depends on the dimension
n of the problem. When n is large, the solution cost is therefore often significant. We
want to reduce this cost by exploiting the knowledge of alternative simplified expressions of
the objective function. More specifically, we assume that we know a collection of functions
{fl}lmax

l=1 such that each fl is a q-times continuously differentiable function from Rnl → R
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Algorithm 2.1 ARq(x0, λ0, ε) (Adaptive Regularization method of order q)

1: Given 0 < η1 ≤ η2 < 1, 0 < γ2 ≤ γ1 < 1 < γ3, λmin > 0, θ > 0.
2: Input: x0 ∈ Rn, λ0 > λmin, ε > 0.
3: k = 0
4: while ‖∇xf(xk)‖ > ε do
5: • Initialization: Define the model mq,k as in (2.3).
6: • Model minimization: Find a step sk that sufficiently reduces the model mq,k, i.e.

that satisfies (2.5) .

7: • Acceptance of the trial point: Compute ρk =
f(xk)− f(xk + sk)

Tq,k(xk, 0)− Tq,k(xk, sk)
.

8: if ρk ≥ η1 then
9: xk+1 = xk + sk

10: else
11: xk+1 = xk.
12: end if
13: • Regularization parameter update:
14: if ρk ≥ η1 then
15:

λk+1 =

{
max{λmin, γ2λk}, if ρk ≥ η2,
max{λmin, γ1λk}, if ρk < η2,

16: else
17: λk+1 = γ3λk.
18: end if
19: k = k + 1
20: end while

and f lmax(x) = f(x) for all x ∈ Rn. We will also assume that, for each l = 2, . . . , lmax, fl
is more costly to minimize than fl−1. This is the typical scenario when the problem arises
from the discretization of an infinite dimensional problem, the fl’s represent increasingly finer
discretizations and nl ≥ nl−1 for all l. This is of course not the only possible application. For
example, an interesting scenario in which no discretization is involved, arises in the training of
artificial neural networks. In this case a multilevel algorithm can be used for the training and
a hierarchy of networks with less and less neurons can be built (even if there is no underlying
geometrical structure) for example by means of algebraic multigrid strategies [12]. As we do
not assume the hierarchy to come from a discretization process, we do not use the terminology
typically used in the field of multigrid methods, and we use ’levels’ rather than ’grids’.

The methods we propose are recursive procedures, so it suffices to describe the two-level
case. For sake of simplicity from now on we will assume that we have just two approximations
to our objective f at disposal. This amounts to consider lmax = 2. For ease of notation, we
will denote by fh : Rnh → R the approximation at the highest level (fh(x) = f lmax(x) in the
notation previously used) and by fH : RnH → R the other approximation available, that is
cheaper to optimize. The quantities on the highest level will be denoted by a superscript h,
whereas the quantities on the lower level will be denoted by a superscript H. Let xhk denote



MULTILEVEL OPTIMIZATION STRATEGIES 7

the k-th iteration at the highest level.

3.2. Construction of the lower level model. The main idea is to use fH to construct,
in the neighborhood of the current iterate, an alternative model tHq,k to the Taylor model T hq,k
in (2.2) for fh = f [21]. The alternative model tHq,k should be cheaper to optimize than T hq,k,

and will be used, whenever suitable, to define the step. Of course, for fH to be useful at all
in minimizing fh, there should be some relation between the variables of these two functions.
We henceforth assume the following.

Assumption 1. Let us assume that there exist two full-rank linear operators R : Rnh → RnH

and P : RnH → Rnh such that P = αRT , for a fixed scalar α > 0. Let us assume also that it
exists κR > 0 such that max{‖R‖, ‖P‖} ≤ κR, where ‖ · ‖ denotes the matrix norm induced
by the Euclidean norm at the fine level.

In the following, we assume α = 1 without loss of generality, as the problem can be easily
scaled to handle the case α 6= 1.

At each iteration k at highest level we set xH0,k = R xhk , i.e. the initial iterate at the lower

level is set as the projection of the current iterate, and we define the lower level model tHq,k as

a modification of the coarse function fH . Given q, fH is modified adding q correction terms,
to enforce the following relation:

(3.1) ∇istHq,k(xH0,k)
[
sH
]i

= R(∇ixfh(xhk))
[
sH
]i
, i = 1, . . . , q,

where R(∇ixfh(xhk)) is such that for all i = 1, . . . , q and sH1 , . . . , s
H
i ∈ RnH

R(∇ixfh(xhk))[sH1 , . . . , s
H
i ] := ∇ixfh(xhk)[PsH1 , . . . , Ps

H
i ],

〈R(∇ixfh(xhk))[sH1 , . . . , s
H
i−1], sHi 〉 := 〈∇ixfh(xhk)[PsH1 , . . . , Ps

H
i−1], PsHi 〉,(3.2)

where 〈·, ·〉 denotes the scalar product.
For instance, if q = 2, relation (3.1) simply becomes:

∇stHq,k(xH0,k)T sH = (R ∇xfh(xhk))T sH , (sH)T∇2
xt
H
q,k(x

H
0,k)s

H = (sH)TR ∇2
xf

h(xhk) PsH .

Relation (3.1) crucially ensures that the behaviours of fh and tHq,k are coherent up to order q

in a neighbourhood of xhk and xH0,k. To achieve (3.1), we define the lower level model tHq,k as

(3.3) tHq,k(x
H
0,k, s

H) = fH(xH0,k + sH) +

q∑
i=1

1

i!

(
R(∇ixfh(xhk))−∇ixfH(xH0,k)

) [
sH
]i
,

with R(∇ixfh(xhk)) defined in (3.2). When q = 2 this is simply:

tH2,k(x
H
0,k, s

H) =fH(xH0,k + sH) + (R∇xfh(xhk)−∇xfH(xH0,k))
T sH

+
1

2
(sH)T (R∇2

xf
h(xhk)P −∇2

xf
H(xH0,k))s

H .
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3.3. Step computation and step acceptance. At each generic iteration k of our method,
a step shk has to be computed to define the new iterate. Then, one has the choice between the
Taylor model (2.2) and a lower level model (3.3).

Obviously, it is not always possible to use the lower level model. For example, it may
happen that ∇xfh(xhk) lies in the nullspace of R and thus that R∇xfh(xhk) is zero while
∇xfh(xhk) is not. In this case, the current iterate appears to be first-order critical for tHq,k
while it is not for fh. Using the model tHq,k is hence potentially useful only if ‖∇stHq,k(xH0,k)‖ =

‖R∇xfh(xhk)‖ is large enough compared to ‖∇xfh(xhk)‖ [21]. We therefore restrict the use of
the model tHq,k to iterations where

(3.4) ‖R∇xfh(xhk)‖ ≥ κH‖∇xfh(xhk)‖ and ‖R∇xfh(xhk)‖ > εH ,

for some constant κH ∈ (0,min{1, ‖R‖}) and where εH ∈ (0, 1) is a measure of the first-order
criticality for tHq,k that is judged sufficient at level H [21]. Note that, given ∇xfh(xhk) and R,
this condition is easy to check before even attempting to compute a step at a lower level.

If the Taylor model is chosen, then we just compute a step as in standard methods,
minimizing (possibly approximately) the corresponding regularized model

(3.5) mh
q,k(x

h
k , s

h;λk) = T hq,k(x
h
k , s

h) +
λk
q + 1

‖sh‖q+1,

with T hq,k the Taylor series of fh as defined in (2.2). If the lower level model is chosen, we
then minimize (possibly approximately) the following regularized model:

(3.6) mH
q,k(x

H
0,k, s

H ;λk) = tHq,k(x
H
0,k, s

H) +
λk
q + 1

‖sH‖q+1

and obtain a point xH∗,k such that (if the minimization is successful) the value of the regularized

model has been reduced, and a step sHk = xH∗,k−xH0,k (note that the iteration indices always refer
to the highest level, we are not indexing the iterations on the lower level for the minimization
of the lower level model). This step has to be prolongated back on the fine level, i.e. we define
shk = PsHk . The minimization process is stopped as soon as the stopping condition

ml
q,k(x

l, sl;λk) < ml
q,k(x

l, 0;λk) and ‖∇sml
q,k(x

l, sl;λk)‖ ≤ θlk‖sl‖q,(3.7)

(xl, sl) =

{
(xhk , s

h
k) if l = h,

(xH0,k, s
H
k ) if l = H,

is satisfied, for l = h and l = H, respectively, where {θhk , θHk } are bounded from above
sequences such that θhk , θ

H
k ≤ θmax for all k. Note that in [6] a constant θ is considered. In

both cases we are sure that it will exist a point that satisfies (3.7), as when the level is selected,
a standard one-level optimization method is used, and the analysis in [6] applies.

In both cases, after the step is found, we have to decide whether to accept it or not. The
step acceptance is based on the ratio:

ρk =
fh(xhk)− fh(xhk + shk)

thq,k(x
h
k , 0)− thq,k(xhk , shk)

,
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where

(3.8) thq,k(x
h
k , s

h) =

{
T hq,k(x

h
k , s

h) (Taylor model),

tHq,k(Rx
h
k , s

H), sh = PsH (lower level model).

As in the standard form of the methods, the step is accepted if it provides a sufficient
decrease in the function, i.e. if given η1 > 0, ρk ≥ η1. The regularization parameter is also
updated as in Algorithm 2.1. We sketch the whole procedure in Algorithm 3.1.

Some comments are necessary to explain Step 6 in Algorithm 3.1. The generic framework
sketched in Algorithm 3.1 comprises different possible methods. Specifically, one of the flexible
features (inherited by the method in [21]) is that, to ensure convergence, the minimization
at lower levels can be stopped after the first successful iteration, as we will see in the next
section. This therefore opens the possibility to consider both fixed form recursion patterns
and free form ones. A free form pattern is obtained when Algorithm 3.1 is run carrying the
minimization at each level out, until the norm of the gradient becomes small enough. The
actual recursion pattern is then uniquely determined by the progress of minimization at each
level and may be difficult to forecast. By contrast, the fixed form recursion patterns are
obtained by specifying a maximum number of successful iterations at each level, a technique
directly inspired from the definitions of V- and W-cycles in multigrid algorithms [25].

4. Convergence theory. In this section, we provide a theoretical analysis of the proposed
family of multilevel methods. Inspired by the convergence theory reported in [6], we prove
global convergence of the proposed methods to first-order critical points and we provide a
worst-case complexity bound to reach such a point, generalizing the theory proposed in [6, 21].
At the same time the proposed analysis also appears as simpler than that in [21], since the
regularization parameter λk is directly updated, rather than the trust-region radius, and since
we use the stopping criterion (3.7). Moreover, we also propose local convergence results, which
also apply to the methods in [6], and that extend those in [44] to higher-order models.

Note that, as the methods are recursive, we can restrict the analysis to the two-level case.
For the analysis we need the following regularity assumptions as in [6].

Assumption 2. Let fh and fH be q-times continuously differentiable and bounded below
functions. Let us assume that the q-th derivative tensors of fh and fH are Lipschitz contin-
uous, i.e. that there exist constants Lh, LH such that

‖∇qxf l(x)−∇qxf l(y)‖[q] ≤ (q − 1)!Ll ‖x− y‖ for all x, y ∈ Rnl , l = h,H.

We remind three useful relations, following from Taylor’s theorem, see for example relations
(2.3) and (2.4) in [6].

Lemma 4.1. Let g : Rn → R be a q-times continuously differentiable function with Lipschitz
continuous q-th order tensor, with L the corresponding Lipschitz constant. Given its q-th order
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Algorithm 3.1 MARq(l, f l, xl0, λ
l
0, ε

l) (Multilevel Adaptive Regularization method of order
q)

1: Input: l ∈ N (index of the current level, 1 ≤ l ≤ lmax, lmax being the highest level),
f l : Rnl → R function to be optimized (f lmax = f), xl0 ∈ Rnl , λl0 > λmin, εl > 0.

2: Given 0 < η1 ≤ η2 < 1, 0 < γ2 ≤ γ1 < 1 < γ3, λmin > 0.
3: Rl denotes the restriction operator from level l to l−1, Pl the prolongation operator from

level l − 1 to l.
4: k = 0
5: while ‖∇xf l(xlk)‖ > εl do
6: • Model choice: If l > 1 compute Rl∇xf l(xlk) and check (3.4). If l = 1 or (3.4) fails,

go to Step 7. Otherwise, choose to go to Step 7 or to Step 8.
7: • Taylor step computation: Define tlq,k(x

l
k, s

l) = T lq,k(x
l
k, s

l), the q-th order Taylor

series of f l. Find a step slk such that (3.7) holds for ml
q,k(x

l
k, s

l;λk) = tlq,k(x
l
k, s

l) +
λk
q+1‖s

l‖q+1. Go to Step 9.

8: • Recursive step computation: Define xl−1
0,k = Rl x

l
k and

tl−1
q,k (xl−1

0,k , s
l−1) = f l−1(xl−1

0,k + sl−1) +

q∑
i=1

1

i!

(
R(∇ixf l(xlk))−∇ixf l−1(xl−1

0,k )
)

[sl−1]i,

ml−1
q,k (xl−1

0,k , s
l−1) = tl−1

q,k (xl−1
0,k , s

l−1) +
λk
q + 1

‖sl−1‖q+1.

Choose εl−1 and call MARq(l−1, ml−1
q,k ,xl−1

0,k , λlk, ε
l−1) yielding an approximate solution

xl−1
∗,k of the minimization of ml−1

q,k according to (3.7). Define slk = Pl (xl−1
∗,k − x

l−1
0,k ) and

tlq,k(x
l
k, s

l) = tl−1
q,k (xl−1

0,k , s
l−1) for all sl = Psl−1.

9: • Acceptance of the trial point: Compute ρlk =
f l(xlk)− f l(xlk + slk)

tlq,k(x
l
k, 0)− tlq,k(xlk, slk)

.

10: if ρlk ≥ η1 then
11: xlk+1 = xlk + slk
12: else
13: xlk+1 = xlk.
14: end if
15: • Regularization parameter update:
16: if ρlk ≥ η1 then
17:

λlk+1 =

{
max{λmin, γ2λ

l
k}, if ρlk ≥ η2,

max{λmin, γ1λ
l
k}, if ρlk < η2

18: else
19: λlk+1 = γ3λ

l
k.

20: end if
21: k = k + 1
22: end while
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Taylor series Tq(x, s), it holds:

g(x+ s) =Tq(x, s) +
1

(q − 1)!

∫ 1

0
(1− ξ)q−1 (∇qxg(x+ ξs)−∇qxg(x)) [s]q dξ,(4.1)

|g(x+ s)− Tq(x, s)| ≤
L

q
‖s‖q+1,(4.2)

‖∇g(x+ s)−∇sTq(x, s)‖ ≤ L‖s‖q.(4.3)

4.1. Global convergence. In this section we prove the global convergence property of
the method. Our analysis proceeds in three steps. First, we bound the quantity |1 − ρk| to
prove that λk must be bounded above. Then, we relate the norm of the step and the norm of
the gradient. Finally, we use these two ingredients to conclude proving that the norm of the
gradient goes to zero.

4.1.1. Upper bound for the regularization parameter λk. At iteration k we either mini-
mize (decrease) the regularized Taylor model (3.5), or the regularized lower level model (3.6).
In both cases, it holds:

(4.4) thq,k(x
h
k , 0)− thq,k(xhk , shk) ≥ λk

q + 1
‖sl‖q+1, sl =

{
shk if l = h,

sHk if l = H.

Let us consider the quantity

(4.5) |1− ρk| =

∣∣∣∣∣1− fh(xhk)− fh(xhk + shk)

thq,k(x
h
k , 0)− thq,k(xhk , shk)

∣∣∣∣∣.
If at step k the Taylor model is chosen, from relation (4.2) applied to fh, (4.4) and (3.8) we
obtain the inequality:

|1− ρk| =

∣∣∣∣∣fh(xhk + shk)− T hq,k(xhk , shk)

T hq,k(x
h
k , 0)− T hq,k(xhk , shk)

∣∣∣∣∣ ≤ Lh(q + 1)

λkq
.

If the lower level model is used, we have from (3.8)

|1− ρk| =

∣∣∣∣∣ tHq,k(xH0,k, 0)− tHq,k(xH0,k, sHk )− (fh(xhk)− fh(xhk + shk))

tHq,k(x
H
0,k, 0)− tHq,k(xH0,k, sHk )

∣∣∣∣∣.
Let us consider the numerator in this expression. From relations (3.3) and (4.1) applied to
fH , using its q-th order Taylor series

THq,k(x
H , sH) = fH(xH) +

q∑
i=1

1

i!
∇ixfH(xH)

[
sH
]i
,
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it follows

tHq,k(x
H
0,k, 0)− tHq,k(xH0,k, sHk )

(3.3)
=

THq,k(x
H
0,k, s

H
k )− fH(xH0,k + sHk )−

q∑
i=1

1

i!
R(∇ixfh(xhk))

[
sHk
]i
,

(4.1)
= − 1

(q − 1)!

∫ 1

0
(1− ξ)q−1

[
∇qxfH(xH0,k + ξsHk )−∇qxfH(xH0,k)

] [
sHk
]q
dξ

−
q∑
i=1

1

i!
R(∇ixfh(xhk))

[
sHk
]i
.(4.6)

Similarly the relation (4.1) applied to fh yields

fh(xhk)− fh(xhk + shk) = fh(xhk)− T hq,k(xhk , shk)

− 1

(q − 1)!

∫ 1

0
(1− ξ)q−1[∇qxfh(xhk + ξshk)−∇qxfh(xhk)]

[
shk

]q
dξ.(4.7)

From relation (3.1) we can rewrite fh(xhk)− T hq,k(xhk , shk) as:

fh(xhk)− T hq,k(xhk , shk) = −
q∑
i=1

1

i!
∇ixfh(xhk)

[
PsHk

]i
= −

q∑
i=1

1

i!
R(∇ixfh(xhk))

[
sHk
]i
.

Then, subtracting (4.7) from (4.6), we obtain

tHq,k(x
H
0,k)− tHq,k(xH0,k, sHk )− (fh(xhk)− fh(xhk + shk)) =

− 1

(q − 1)!

∫ 1

0
(1− ξ)q−1[∇qxfH(xH0,k + ξsHk )−∇qxfH(xH0,k)]

[
sHk
]q
dξ

+
1

(q − 1)!

∫ 1

0
(1− ξ)q−1[∇qxfh(xhk + ξshk)−∇qxfh(xh0,k)]

[
sHk
]q
dξ.

Using Assumption 2, we obtain:

|tHq,k(xH0,k, 0)− tHq,k(xH0,k, sHk )− (fh(xhk)− fh(xhk + shk))|

≤ 1

(q − 1)!

∫ 1

0
(1− ξ)q−1|[∇qxfH(xH0,k + ξsHk )−∇qxfH(xH0,k)]

[
sHk
]q| dξ

+
1

(q − 1)!

∫ 1

0
(1− ξ)q−1|[∇qxfh(xhk + ξshk)−∇qxfh(xhk)]

[
sHk
]q| dξ

≤ 1

q!
‖sHk ‖q max

ξ∈[0,1]
‖∇qxfH(xHk + ξsHk )−∇qxfH(xHk )‖[q]

+
1

q!
‖shk‖q max

ξ∈[0,1]
‖∇qxfh(xhk + ξshk)−∇qxfh(xhk)‖[q] ≤

1

q

(
LH + Lhκ

q+1
R

)
‖sHk ‖q+1.
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From relation (4.4) we finally obtain:

|1− ρk| ≤
(q + 1)

(
LH + Lhκ

q+1
R

)
qλk

.

Then, in both cases (when either a Taylor model or a lower level model is used), it exists a
strictly positive constant K such that the following relation holds:

|1− ρk| ≤
K

λk
, K =


(q + 1)Lh

q
(Taylor model),

(q + 1)
(
LH + Lhκ

q+1
R

)
q

(lower level model).

(4.8)

Using this last relation and the updating rule of the regularization parameter, we deduce
that λk must be bounded above. Indeed, in case of unsuccessful iterations, λk is increased. If
λk is increased, the ratio appearing in the right hand side of (4.8) is progressively decreased,
until it becomes smaller than 1 − η1. In this case, ρk > η1, so a successful step is taken and
λk is decreased. Hence λk cannot be greater than

(4.9) λmax =
K

1− η1
.

4.1.2. Relating the steplength to the norm of the gradient. Our next step is to show
that the steplength cannot be arbitrarily small, compared to the norm of the gradient of the
objective function. If the Taylor model is used, from [6, Lemma 2.3] it follows:

(4.10) ‖∇xfh(xhk + shk)‖ ≤ (Lh + θmax + λmax)‖shk‖q := K1‖shk‖q.

If the lower level model is chosen, we have:

‖R∇xfh(xhk + shk)‖ ≤
∥∥∥R [∇xfh(xhk + shk)−∇sT hq,k(xhk , shk)

] ∥∥∥
+ ‖R∇sT hq,k(xhk , shk)−∇stHq,k(xH0,k, sHk )‖
+ ‖∇stHq,k(xH0,k, sHk ) + λk‖sHk ‖q−1sHk ‖+ λk‖sHk ‖q.

By (4.3), the first term can be bounded by κRLh‖shk‖q. Considering that shk = PsHk and
‖P‖ ≤ κR, we obtain the upper bound κ2

RLh‖sHk ‖q. Regarding the second term, taking into
account that from relations shk = PsHk , R = P T , and (3.2), for all pH ∈ RnH it holds:

〈R(∇ixfh(xhk))
[
sHk
](i−1)

, pH〉 = 〈∇ixfh(xhk)
[
PsHk

](i−1)
, PpH〉

= 〈R∇ixfh(xhk)
[
PsHk

](i−1)
, pH〉,

we can write

R∇sT hq,k(xhk , PsHk ) =

q∑
i=1

1

(i− 1)!
R∇ixfh(xhk)[PsHk ](i−1) =

q∑
i=1

1

(i− 1)!
R(∇ixfh(xhk))

[
sHk
](i−1)

.
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Then, from

∇stHq,k(xH0,k, sHk ) =∇xfH(xH0,k + sHk )

+

q∑
i=1

1

(i− 1)!

[
R(∇ixfh(xhk))−∇ixfH(xH0,k)

] [
sHk
](i−1)

,(4.11)

we obtain

‖R∇sT hq,k(xhk , shk)−∇stHq,k(xH0,k, sHk )‖ =
∥∥∥∇xfH(xH0,k + sHk )−∇sTHq,k(xH0,k, sHk )

∥∥∥,
which represents the Taylor remainder for the approximation of ∇xfH by ∇sTHq,k. Therefore,

by relation (4.3), this quantity can be bounded above by LH‖sHk ‖q. The third term, from
(3.7), is less than θHk ‖sHk ‖q. Then, since λk ≤ λmax and θHk ≤ θmax, we finally obtain

(4.12) ‖R∇xfh(xhk + shk)‖ ≤
(
κ2
RLh + LH + θmax + λmax

)
‖sHk ‖q := K2‖sHk ‖q.

4.1.3. Proof of global convergence. Let us consider the sequence of successful iterations
(ρk ≥ η1). They are divided into two groups, Ks,f the successful iterations at which the
fine model has been employed and Ks,l the ones at which the lower level model has been
employed. Let us define k1 the index of the first successful iteration. We remind that at
successful iterations ρk ≥ η1. Due to the updating rule of the regularization parameter in
Algorithm 3.1 we have λk ≥ λmin. Hence from relations (3.8), (4.4), (4.10) and (4.12), (3.4)
it follows that:

fh(xhk1)− lim inf
k→∞

fh(xhk) ≥
∑
k succ

fh(xhk)− fh(xhk + shk)

(3.8)

≥ η1

∑
Ks,l

(tHq,k(x
H
0,k)− tHq,k(xH0,k, sHk )) + η1

∑
Ks,f

(T hq,k(x
h
k)− T hq,k(xhk , shk))

(4.4)

≥ η1λk
q + 1

∑
Ks,l

‖sHk ‖q+1 +
∑
Ks,f

‖shk‖q+1


(4.10)+(4.12)

≥ η1λmin

q + 1

(
1

K
q+1
q

2

∑
Ks,l

‖R∇xfh(xhk + shk)‖
q+1
q +

1

K
q+1
q

1

∑
Ks,f

‖∇xfh(xhk + shk)‖
q+1
q

)
(3.4)

≥ η1λmin

q + 1

(
1

K
q+1
q

2

∑
Ks,l

κ
q+1
q

H ‖∇xfh(xhk + shk)‖
q+1
q +

1

K
q+1
q

1

∑
Ks,f

‖∇xfh(xhk + shk)‖
q+1
q

)
.(4.13)

Hence we conclude that
∑

Ks,f∪Ks,l
‖∇xfh(xhk + shk)‖ is a bounded series and therefore has

a convergent subsequence. Then, ‖∇xfh(xhk + shk)‖ converges to zero on the subsequence of
successful iterations.

We can then state the global convergence property towards first-order critical points in
the following theorem.

Theorem 4.2. Let Assumptions 1 and 2 hold. Let {xhk} be the sequence of fine level iterates
generated by Algorithm 3.1. Then, {‖∇xfh(xhk)‖} converges to zero on the subsequence of
successful iterations.
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4.2. Worst-case complexity. We now want to evaluate the worst-case complexity of our
methods, to reach a first order stationary point. We assume then that the procedure is stopped
as soon as ‖∇xfh(xhk)‖ ≤ ε for ε > 0. The proof is similar to that of Theorem 2.5 in [6].

To evaluate the complexity of the proposed methods, we have to bound the number of
successful and unsuccessful iterations performed before the stopping condition is met. Let
us then define kf the index of the last iterate for which ‖∇xfh(xhk)‖ > ε, Ks = {0 < j ≤
kf | ρj ≥ η1} the set of successful iterations before iteration kf , and Ku its complementary in
{1, . . . , kf}. We can use the same reasoning as that used to derive (4.13), but considering in
the sum just the successful iterates in Ks. Remind that before termination ‖∇xfh(xhk)‖ > ε
and, in case the lower level model is used, ‖R∇xfH(xhk)‖ > κH‖∇xfH(xhk)‖ > κHε (otherwise
at that iteration the Taylor model would have been used). It then follows:

fh(xhk1)− lim inf
k→∞

fh(xhk) ≥ fh(xhk1)− fh(xhkf+1) =
∑
j∈Ks

fh(xhk)− fh(xhk + shk)

≥ η1λmin

q + 1
min

{κH
K2

,
1

K1

} q+1
q |Ks|ε

q+1
q ,

from which we get the desired bound on the total number of successful iterations. We can
then bound the cardinality of Ku, with respect to the cardinality of Ks. From the updating
rule of the regularization parameter, it holds:

γ1λk ≤ λk+1, k ∈ Ks γ3λk = λk+1, k ∈ Ku.

Then, proceeding inductively, we conclude that:

λ0γ
|Ks|
1 γ

|Ku|
3 ≤ λkf ≤ λmax.

Then,

|Ks| log γ1 + |Ku| log γ3 ≤ log
λmax

λ0
,

and, given that γ1 < 1, we obtain:

|Ku| ≤
1

log γ3
log

λmax

λ0
+ |Ks|

|log γ1|
log γ3

.

We can then state the following result.

Theorem 4.3. Let Assumptions 1 and 2. Let flow denote a lower bound on f and let k1

denote the index of the first successful iteration in Algorithm 3.1. Then, given an absolute
accuracy level ε > 0, Algorithm 3.1 needs at most

K3
(f(xk1)− flow)

ε
q+1
q

(
1 +
|log γ1|
log γ3

)
+

1

log γ3
log

(
λmax

λ0

)
iterations in total to produce an iterate xhk such that ‖∇xf(xk)‖ ≤ ε, where

K3 :=
q + 1

η1λmin
max

{
K1,

K2

κH

}q+1/q
,
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with K1 and K2 defined in (4.10), (4.12), γ1, γ3, λ0, λmin defined in Algorithm 3.1 and λmax

defined in (4.9).

Theorem 4.3 reveals that the use of lower level steps does not deteriorate the complexity of

the method, and that the complexity bound O(ε
− q+1

q ) is preserved. This is a very satisfactory
result, because each iteration of the multilevel methods will be less expensive than one iteration
of the corresponding one-level method, thanks to the use of the cheaper lower level models.
Consequently, if the number of iterations in the multilevel strategy is not increased, we can
expect global computational savings.

4.3. Local convergence. In this section we study the local convergence of the proposed
methods towards second-order stationary points. We assume q ≥ 2 in this section, otherwise
the problem is not well-defined. Thanks to the use of high-order models, our methods are
expected to attain a fast local convergence rate, especially for growing q. The results reported
here are inspired by [44] and extend the analysis proposed therein.

We denote by X the set of second-order critical points of f , i.e. of points x∗ satisfying the
second-order necessary conditions:

∇xf(x∗) = 0, ∇2
xf(x∗) � 0,

i.e. ∇2
xf(x∗) is a symmetric positive semidefinite matrix. We denote by B(x, ρ) = {y s.t. ‖y−

x‖ ≤ ρ} and for all x ∈ Rn, L(f(x)) = {y ∈ Rn | f(y) ≤ f(x)} for f : Rn → R.

Remark 4.4. From the assumption that f is a q times continuously differentiable function,
it follows that its i-th derivative tensor is locally Lipschitz continuous for all i ≤ q − 1.

Following [44], we first prove an intermediate lemma that allows us to relate, at generic
iteration k, the norm of the step and the distance of the current iterate from the space of
second-order stationary points. This lemma holds without need of assuming a stringent non-
degeneracy condition, but rather under a local error bound condition, which is a much weaker
requirement as it can be satisfied also when f has non isolated second-order critical points.

Assumption 3. There exist strictly positive scalars κEB, ρ > 0 such that

(4.14) dist(x,X ) ≤ κEB‖∇xf(x)‖, ∀x ∈ N (X , ρ),

where X is the set of second-order critical points of f , dist(x,X ) denotes the distance of x to
X and N (X , ρ) = {x | dist(x,X ) ≤ ρ}.

This condition has been proposed for the first time in [44]. It is different from other error
bound conditions in the literature as, in contrast to them, X is not the set of first-order critical
points, but of second-order-critical points. In addition to being useful for proving convergence,
it is also interesting on its own, as it is shown to be equivalent to a quadratic growth condition
([44, Theorem 1]) under mild assumptions on f .

Lemma 4.5. Let Assumptions 1 and 2 hold. Let {xhk} be the sequence generated by Algo-
rithm 3.1 and x∗k be a projection point of xhk onto X . Assume that it exists a strictly positive
constant ρ such that {xhk} ∈ B(x∗k, ρ) and that ∇2

xf is Lipschitz continuous in B(x∗k, ρ) with
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Lipschitz constant L2. Then, it holds:

(4.15) ‖shk‖ ≤ C dist(xhk ,X ),

with

C =


Cf =

1

2λmax

[
L2 +

√
L2

2 + 4L2λmax

]
, (Taylor model),

κRCc =
κR

2λmax

[
κRL2 +

√
κ2
RL

2
2 + 4L2κRλmax

]
, (lower level model),

with λmax and κR defined respectively in (4.9) and Assumption 1.

The proof of the lemma is reported in the appendix. This lemma can be used to prove that
if it exists an accumulation point of {xhk} that belongs to X , then the full sequence converges
to that point and that the rate of convergence depends on q. First, we can prove that the set
of accumulation points is not empty.

Lemma 4.6. Let Assumptions 1 and 2 hold. Let {xhk} be the sequence of fine level iterates
generated by Algorithm 3.1. If L(f(xhk)) is bounded for some k ≥ 0, then the sequence has an
accumulation point that is a first-order stationary point.

Proof. As {f(xhk)} is a decreasing sequence, and L(f(xhk)) is bounded for some k ≥ 0,
{xhk} is a bounded sequence and it has an accumulation point. From Theorem 4.2, all the
accumulation points are first-order stationary points.

Theorem 4.7. Let Assumptions 1 and 2 hold. Let {xhk} be the sequence of fine level iterates
generated by Algorithm 3.1. Assume that L(f(xhk)) is bounded for some k ≥ 0 and that it
exists an accumulation point x∗ such that x∗ ∈ X . Then, the whole sequence {xhk} converges
to x∗ and it exist strictly positive constants c ∈ R and k̄ ∈ N such that:

(4.16)
‖xhk+1 − x∗‖
‖xhk − x∗‖q

≤ c, ∀k ≥ k̄.

Proof. As x∗ is an accumulation point, we have that lim
k→∞

dist(xhk ,X ) = 0. Then, it exist

ρ and k1 such that xhk ∈ N (X , ρ) for all k ≥ k1. Therefore, from Assumption 3 it holds

(4.17) dist(xhk ,X ) ≤ κEB ‖∇xfh(xhk)‖, ∀k ≥ k1.

Moreover, from Remark 4.4, ∇2
xf is locally Lipschitz continuous, so Lemma 4.5 applies to all

k ≥ k1.
Let us first consider the case in which the Taylor model is employed. It follows from (4.17),

(4.10) and (4.15) that for all k ≥ k1

dist(xhk+1,X ) ≤κEB ‖∇xfh(xhk+1)‖ ≤ κEBK1 ‖shk‖q ≤ κEBK1C
q
f distq(xhk ,X ).

If the lower level model is employed, from (4.17), (3.4), (4.12) and (A.3) it follows that for all
k ≥ k1

dist(xhk+1,X ) ≤κEB ‖∇xfh(xhk+1)‖ ≤ κEB κH ‖R∇xfh(xhk+1)‖
≤κEB κH K2 ‖sHk ‖q ≤ κEB κH K2C

q
c distq(xhk ,X ).
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Then in both cases, it exists C̄ such that

dist(xhk+1,X ) ≤ C̄ distq(xhk ,X ), ∀k ≥ k1,

where

C̄ =

{
κEBK1C

q
f (Taylor model),

κEBκH K2C
q
c (lower level model).

With this result, we can prove the convergence of {xhk} with standard arguments. We repeat
for example the arguments of the proof of [44, Theorem2] for convenience. Let η > 0 be an
arbitrary value. As limk→∞ dist(xhk ,X ) = 0, it exists k2 ≥ 0 such that

dist(xhk ,X ) ≤ min
{ 1

2C̄
,
η

2C

}
, ∀k ≥ k2.

Then,

dist(xhk+1,X ) ≤ C̄distq(xhk ,X ) ≤ 1

2
dist(xhk ,X ), ∀k ≥ k̄ = max{k1, k2}.

From (4.15), it then holds for all k ≥ k̄ and j ≥ 0:

‖xhk+j − xhk‖ ≤
∞∑
i=k

‖xhi+1 − xhi ‖ ≤
∞∑
i=k

Cdist(xhi ,X )

≤ Cdist(xhk ,X )
∞∑
i=0

1

2i
≤ 2Cdist(xhk ,X ) ≤ η,

i.e. that {xhk}k≥k̄ is a Cauchy sequence and so the whole sequence is convergent. Finally we
establish the q-th order rate of convergence of the sequence. For any k ≥ k̄,

(4.18) ‖x∗ − xhk+1‖ = lim
j→∞

‖xhk+j+1 − xhk+1‖ ≤ 2Cdist(xhk+1,X ) ≤ 2CC̄distq(xhk ,X ).

Combining this with dist(xhk ,X ) ≤ ‖xhk−x∗‖, and setting c = 2CC̄ we obtain the thesis (4.16).
Therefore {xhk} converges at least with order q to x∗.

5. Numerical results. In this section, we report on the practical performance of two
methods in the family. We have implemented the methods corresponding to q = 2 and q = 3
in Algorithm 3.1 in Julia [5]. The tests were run on a MacBook Pro 2,4 GHz Intel Core i5 with
4 GB RAM. Note that the method corresponding to q = 2 represents a multilevel extension
of a version of the well-known adaptive regularization by cubics (that corresponding to AR2
in Algorithm 2.1).

Given z ∈ Rd, we consider the following nonlinear problem:{
−∆u(z) + eu(z) = g(z) in Ω,

u(z) = 0 on ∂Ω,
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where g is obtained such that the analytical solution u∗ to this problem is known. We consider
two instances of this problem:

1. d = 1, u∗(z) = cos(2πz(z − 1))− 1, Ω =]0, 1[,
2. d = 2, u∗([z1, z2]) = sin(2πz1(1− z1)) sin(2πz2(1− z2)), Ω =]0, 1[×]0, 1[.

The problem is discretized on a grid of equispaced points zi, i = 1, . . . , ndh. The negative
Laplacian operator is discretized using finite difference, giving a symmetric positive definite
matrix A ∈ Rnd

h×n
d
h , that also takes into account the boundary conditions. The discretized

version of the problem is then a system of the form Au + eu = g, where u, g, eu ∈ Rnd
h , and

their i-th component corresponds to the respective function evaluated in zi, for d = 2 the
lexicographical ordering is used for the grid points.

The following nonlinear minimization problem is then solved:

(5.1) min
u∈Rnd

h

1

2
uTAu+ ‖eu/2‖2 − gTu,

which is equivalent to the system Au + eu = g. The coarse approximations to the objective
function arise from a coarser discretization of the problem. Each coarse grid has a dimension
that is 2d times lower than the dimension of the grid on the corresponding upper level.

The prolongation operators Pl from level l−1 to l are based on the standard interpolation

operator for d = 1 and on the nine-point interpolation scheme defined by the stencil

1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4


for d = 2. The full weighting operators defined by Rl = 1

2d
P Tl are used as restriction operators

[11].
We compare the one-level methods with the proposed multilevel extensions. Parameters

common to both methods are set as: γ1 = 0.85, γ2 = 0.5, γ3 = 2, λ0 = 0.05, η1 = 0.1 and
η2 = 0.75. For the multilevel procedures we set κl = 0.1.

At each iteration we find an approximate minimizer of the q-th order models (at each
level) using a (single level) trust-region approach, as it is done for example in [23, 27], where
the recursive trust region [21] is employed. The trust-region solver is stopped according to
(3.7) with θlk = ‖∇xf l(xk)‖ and the trust-region subproblems are solved by the TRS Julia
function1 [1].

The nonlinear process is stopped as soon as ‖∇f lmax(xlmax
k )‖ < εlmax , where we have chosen

εlmax = 10−5, and εl = εlmax for all l for the multilevel procedures. This stopping criterion is
the one commonly used in optimization, and it is convenient from a theoretical point of view
to prove the global convergence and complexity results for the family of methods. It is however
important to note that the choice of good stopping criterions in multigrid and preconditioned
multigrid methods has been the topic of many published works, and the choice of the residual
may not always be the best one [2, 10, 13], [34, Ch.11].

We study the effect of the multilevel strategy on the convergence of the method for prob-
lems of fixed dimension nh. We consider the solution of problem (5.1) in case d = 1 for
nh = 256 and nh = 512 (Table 1) and in case d = 2 for nh = 32 and nh = 64 (Table 2), re-
spectively. We allow 4 levels in MARq. We report the results of the average of ten simulations

1https://github.com/oxfordcontrol/TRS.jl

https://github.com/oxfordcontrol/TRS.jl
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Table 1
Solution of the minimization problem (5.1) for d = 2, with the one level AR2 method and a four level

MAR2. The size of the problems is n2
h = 1024 and n2

h = 4096 respectively and the starting guesses are
ū1 = 1 rand(nh, 1), ū2 = 3 rand(nh, 1). The results are the average over ten runs. itT denotes the number of
iterations over ten simulations, itf the number of iterations in which the fine level model has been used, itTR

is the total number of weighted trust-region iterations for the minimization of the model, RMSE the root-mean
square error with respect to the true solution, and save the ratio between the CPU times for AR2 and MAR2.

nh = 32 nh = 64

AR2 MAR2 AR2 MAR2

ū1 itT /itf 11/11 7/2 23/23 15/4
itTR 91 43 207 53
RMSE 10−3 10−3 10−4 10−4

save 2.2 4.1

ū2 itT /itf 27/27 13/4 56/56 22/6
itTR 220 54 483 79
RMSE 10−3 10−3 10−4 10−4

save 3.9 6.1

with different random initial guesses of the form u0 = a rand(nh, 1), for different values of a.
In each simulation the random starting guess is the same for the two considered methods.
All the quantities reported in Tables 1 and 2 are the average of the values obtained over ten
simulations: itT denotes the number of total iterations, itf denotes the number of iterations
in which the Taylor model has been used, itTR is the total weighted number of trust-region
iterations for the minimization of the model (for MARq trust-region iterations performed at
lower levels are weighted by the ratio between the number of variables at the current level
over the number of variables at fine level, to take into account their reduced cost), RMSE is the
root-mean square error with respect to the true solution, save is the ratio between the CPU
times for ARq and MARq, respectively.

The results reported in Tables 1 and 2 confirm the relevance of MARq as compared to
ARq. The numerical experiments highlight that the use of MARq becomes more and more
beneficial as the size of the problem increases. It is especially convenient when the initial guess
is not so close to the true solution and a higher number of iterations are necessary for the
convergence. MARq seems to be much less sensible to the choice of the initial guess than ARq.
In all cases, the new multilevel approaches are found to lead to considerable computational
savings in terms of CPU time compared to the classical one-level strategies.

6. Conclusions. We have introduced a family of multilevel methods of order q ≥ 1 for un-
constrained minimization. These methods represent an extension of the higher-order methods
presented in [6] and of the multilevel trust-region method proposed in [21]. We have proposed
a unifying framework to analyse these methods, which is useful to prove their convergence
properties and evaluate their worst-case complexity to reach first-order stationary points. As
expected, we show that the local rate of convergence and the complexity bound depend on q
and high values of q allow both fast local convergence and lower complexity bounds.

We believe this represents a contribution in the optimization field, as the use of multilevel
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Table 2
Solution of the minimization problem (5.1) for d = 1, with the one level AR3 method and a four level MAR3.

The size of the problems is nh = 256 and nh = 512 respectively and the starting guesses are ū1 = 1 rand(nh, 1),
ū2 = 3 rand(nh, 1). The results are the average over ten runs. itT denotes the number of iterations over ten
simulations, itf the number of iterations in which the fine level model has been used, itTR is the total number of
weighted trust-region iterations for the minimization of the model, RMSE the root-mean square error with respect
to the true solution, and save the ratio between the CPU times for AR3 and MAR3.

nh = 256 nh = 512

AR3 MAR3 AR3 MAR3

ū1 itT /itf 7/7 9/2 18/18 15/2
itTR 75 45 164 50
RMSE 5 · 10−5 5 · 10−5 10−5 10−5

save 2.5 4.3

ū2 itT /itf 23/23 14/1 34/34 20/5
itTR 215 70 294 74
RMSE 5 · 10−5 5 · 10−5 10−5 10−5

save 4.1 4.4

ideas allows to reduce the major cost per iteration of the high-order methods. This gives a
first answer to the question posed in [6] about whether the approach presented there can have
practical implications, in applications for which computing q derivatives is feasible. Moreover,
we have proposed for the first time local convergence results on high-order methods.

We have implemented the multilevel methods corresponding to q = 2, 3 and presented
numerical results that show the considerable benefits of the multilevel strategy in terms of
savings in computational time. Additional numerical results can be found in [12], where the
authors apply the multilevel method in the family corresponding to q = 1 to problems arising
in the training of artificial neural networks for the approximate solution of partial differential
equations. This case is particularly insightful as it allows to show the efficiency of multilevel
methods even for problems without an underlying geometrical structure.

REFERENCES

[1] S. Adachi, S. Iwata, Y. Nakatsukasa, and A. Takeda, Solving the trust-region subproblem by
a generalized eigenvalue problem, SIAM J. Opt., 27 (2017), pp. 269–291, https://doi.org/10.1137/
16M1058200.

[2] M. Arioli, D. Loghin, and A. Wathen, Stopping criteria for iterations in finite element methods,
Numer. Math., 99 (2005), pp. 381–410, https://doi.org/https://doi.org/10.1007/s00211-004-0568-z.

[3] L. Badea and R. Krause, One- and two-level multiplicative Schwarz methods for variational and quasi-
variational inequalities of the second kind, Numer. Math., 120 (2012), p. 573/599, https://doi.org/10.
1007/s00211-011-0423-y.

[4] L. Badea, X. Tai, and J. Wang, Convergence rate analysis of a multiplicative Schwarz method for
variational inequalities, SIAM J. Numer. Anal., 41 (2003), pp. 1052–1073, https://doi.org/10.1137/
S0036142901393607.

[5] J. Bezanson, A. Edelman, S. Karpinski, and V. Shah, Julia: A fresh approach to numerical com-
puting, SIAM Rev., 59 (2017), pp. 65–98, https://doi.org/10.1137/141000671.

[6] E. G. Birgin, J. L. Gardenghi, J. M. Mart́ınez, S. A. Santos, and P. L. Toint, Worst-case

https://doi.org/10.1137/16M1058200
https://doi.org/10.1137/16M1058200
https://doi.org/https://doi.org/10.1007/s00211-004-0568-z
https://doi.org/10.1007/s00211-011-0423-y
https://doi.org/10.1007/s00211-011-0423-y
https://doi.org/10.1137/S0036142901393607
https://doi.org/10.1137/S0036142901393607
https://doi.org/10.1137/141000671


22 H. CALANDRA, S. GRATTON, E. RICCIETTI, X. VASSEUR

evaluation complexity for unconstrained nonlinear optimization using high-order regularized models,
Math. Program., 163 (2017), pp. 359–368, https://doi.org/10.1007/s10107-016-1065-8.

[7] A. Bouaricha, Tensor methods for large, sparse unconstrained optimization, SIAM J. Opt., 7 (1997),
pp. 732–756, https://doi.org/10.1137/S1052623494267723.

[8] A. Brandt, A multi-level adaptative solution to boundary-value problems, Math. Comp., 31 (1977),
pp. 333–390, http://www.jstor.org/stable/2006422.

[9] A. Brandt and O. E. Livne, Multigrid Techniques: 1984 Guide with Applications to Fluid Dynam-
ics, SIAM, Philadelphia, 2011, https://epubs.siam.org/doi/abs/10.1137/1.9781611970753. Revised
Edition.

[10] G. Brethes, O. Allain, and A. Dervieux, A mesh-adaptive metric-based Full-Multigrid for the Poisson
problem, Meth. Fluids, (2014), https://doi.org/https://doi.org/10.1002/fld.4042.

[11] W. Briggs, V. Henson, and S. McCormick, A Multigrid Tutorial, SIAM, Philadelphia, Second ed.,
2000, https://doi.org/10.1137/1.9780898719505.

[12] H. Calandra, S. Gratton, E. Riccietti, and X. Vasseur, On a multilevel Levenberg-Marquardt
method for the training of artificial neural networks and its application to the solution of partial
differential equations, eprint arXiv 1904.04685, (2019), https://arxiv.org/abs/1904.04685.
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with

C =


Cf =

1

2λmax

[
L2 +

√
L2

2 + 4L2λmax

]
, (Taylor model),

κRCc =
κR

2λmax

[
κRL2 +

√
κ2
RL

2
2 + 4L2κRλmax

]
, (lower level model),

with λmax and κR defined respectively in (4.9) and Assumption 1.

Proof. The proof is divided into two parts. We first consider the case in which shk has been
obtained from the approximate minimization of the Taylor model, and then the case in which
it has been obtained as prolongation of the step obtained from the approximate minimization
of the coarse model.

Le us then assume that the Taylor model has been employed. Reminding that ∇xfh(x∗) =
0 for each x∗ ∈ X , and definition (3.5) we obtain:

∇smh
q,k(x

h
k , s

h
k ;λk) =−∇xfh(x∗k) +∇xfh(xhk) +∇2

xf
h(xhk)shk

+H(shk) + λk‖shk‖q−1shk ,(A.1)

with

H(shk) =

q∑
i=3

1

(i− 1)!
∇ixfh(xhk)[shk ](i−1).

Some algebraic manipulations (adding ∇2
xf

h(x∗k)(x
h
k+1 − x∗k) to both sides of (A.1) and ex-

pressing (xhk+1 − x∗k) = shk + (xhk − x∗k)) lead to:(
∇2
xf

h(x∗k) + λk‖shk‖q−1
)

(xhk+1 − x∗k) =

∇smh
q,k(x

h
k , s

h
k ;λk) +∇xfh(x∗k)−∇xfh(xhk)−∇2

xf
h(x∗k)(x

∗
k − xhk)

−H(shk) + (∇2
xf

h(x∗k)−∇2
xf

h(xhk))shk − λk‖shk‖q−1(x∗k − xhk).

Using the fact that ∇2
xf

h(x∗k) � 0, the stopping criterion (3.7), and the triangle inequality, it
follows

λk‖shk‖q−1‖xhk+1 − x∗k‖ ≤ θhk‖shk‖q + ‖∇xfh(x∗k)−∇xfh(xhk)−∇2
xf

h(x∗k)(x
∗
k − xhk)‖+

‖H(shk)‖+ ‖∇2
xf

h(x∗k)−∇2
xf

h(xhk)‖‖shk‖+ λk‖shk‖q−1‖x∗k − xhk‖.

Using the Lipschitz continuity of∇2
xf in B(x∗k, ρ), the relation (4.3) with q = 2 and the triangle

inequality ‖xhk+1 − x∗k‖ ≥ ‖xhk+1 − xhk‖ − ‖xhk − x∗k‖ = ‖shk‖ − ‖xhk − x∗k‖, we obtain:

λk‖shk‖q ≤ θhk‖shk‖q + L2‖xhk − x∗k‖2 + ‖H(shk)‖+ L2‖x∗k − xhk‖‖shk‖+ 2λk‖shk‖q−1‖x∗k − xhk‖.

Notice that

θhk‖shk‖q + L2‖xhk − x∗k‖2 + ‖H(shk)‖+ L2‖x∗k − xhk‖‖shk‖+ 2λk‖shk‖q−1‖x∗k − xhk‖
≥ L2‖xhk − x∗k‖2 + L2‖x∗k − xhk‖‖shk‖.
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We can then study when the inequality holds

λk‖shk‖q ≤ L2‖xhk − x∗k‖2 + L2‖x∗k − xhk‖‖shk‖.

The right hand side of the inequality is expressed as a polynomial of ‖shk‖ of order 1 with
positive value in 0, so the inequality will be true if ‖shk‖ is small enough. We can then assume
‖shk‖ < 1, so that ‖shk‖q ≤ ‖shk‖2 if q ≥ 2. Then, we have that

λk‖shk‖q ≤ λk‖shk‖2.

We can then solve

L2‖xhk − x∗k‖2 + L2‖x∗k − xhk‖‖shk‖ − λk‖shk‖2 ≥ 0.

The solution leads to

(A.2) ‖shk‖ ≤ Cf‖xhk − x∗k‖, Cf =
1

2λk

[
L2 +

√
L2

2 + 4L2λk

]
.

Let us now consider the case in which the lower level model is used. The idea is similar
as in the previous case. Reminding (4.11) and that R∇xfh(x∗k) = 0, we have:

∇smH
k (xH0,k, s

H
k ;λk) =∇xfH(xH0,k + sHk )−∇sTHq,k(xH0,k, sHk ) +R∇xfh(x∗k)+

q∑
i=1

1

(i− 1)!
R(∇ixfh(xhk))

[
sHk
](i−1)

+ λk‖sHk ‖q−1sHk .

Algebraic manipulations (adding R∇2
xf

h(x∗k)(x
h
k+1−x∗k) to both sides and expressing (xhk+1−

x∗k) = shk + (xhk − x∗k)) lead to:

R∇2
xf

h(x∗k)(x
h
k+1 − x∗k) = ∇smH

k (xH0,k, s
H
k ;λk)−∇xfH(xH0,k + sHk )

+∇sTHq,k(xH0,k, sHk ) +R∇xfh(x∗k)−R∇xfh(xhk)−R∇2
xf

h(x∗k)(x
∗
k − xhk)

−HH(sHk ) +R(∇2
xf

h(x∗k)−∇2
xf

h(xhk))shk − λk‖sHk ‖q−1sHk ,

where

HH(sHk ) =

q∑
i=3

1

(i− 1)!
R(∇ixfh(xHk ))

[
sHk
](i−1)

.

Further, we can write

R∇2
xf

h(x∗k)(x
h
k+1 − x∗k) =R∇2

xf
h(x∗k)(x

h
k+1 − xhk) +R∇2

xf
h(x∗k)(x

h
k − x∗k)

=R∇2
xf

h(x∗k)Ps
H
k +R∇2

xf
h(x∗k)(x

h
k − x∗k).

Then

(R∇2
xf

h(x∗k)P+λk‖sHk ‖q−1)sHk = ∇smH
q,k(x

H
k , s

H
k ;λk)−∇xfH(xH0,k + sHk )

+∇sTHq,k(xH0,k, sHk ) +R∇xfh(x∗k)−R∇xfh(xhk)−R∇2
xf

h(x∗k)(x
∗
k − xhk)

−HH(sHk ) +R(∇2
xf

h(x∗k)−∇2
xf

h(xhk))PsHk −R∇2
xf

h(x∗k)(x
h
k − x∗k).
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We can again use relation (4.3) (applied to fH , THq,k with constant LH and to f, T h2,k with

constant L2), (3.7), the fact that R∇2
xf

h(x∗k)P is still positive definite, and Assumption 1
together with relation shk = PsHk , to deduce that:

λk‖sHk ‖q ≤ (θHk + LH)‖sHk ‖q + κRL2‖x∗k − xhk‖2 + ‖HH(sHk )‖
+ κ2

RL2‖x∗k − xhk‖‖sHk ‖+ ‖R∇2
xf

h(x∗k)(x
h
k − x∗k)‖.

We remark that

(θHk + LH)‖sHk ‖q + κRL2‖x∗k − xhk‖2 + ‖HH(sHk )‖+ κ2
RL2‖x∗k − xhk‖‖sHk ‖

+‖R∇2
xf

h(x∗k)(x
h
k − x∗k)‖ ≥ κRL2‖x∗k − xhk‖2 + κRL2‖x∗k − xhk‖‖sHk ‖.

As previously, we can solve the following inequality:

λk‖sHk ‖2 ≤ κRL2‖x∗k − xhk‖2 + κ2
RL2‖x∗k − xhk‖‖sHk ‖,

and conclude that:

(A.3) ‖sHk ‖ ≤ Cc‖xhk − x∗k‖, Cc =

[
κRL2 +

√
κ2
RL

2
2 + 4L2κRλk

]
2λk

.

We can then use the fact that λk ≤ λmax for all k and that ‖shk‖ ≤ κR‖sHk ‖ to conclude that
in all cases it exists a constant C such that ‖shk‖ ≤ C‖xhk − x∗k‖.


	Introduction
	High-order iterative optimization methods
	Model definition and step acceptance
	Minimization of the model

	Multilevel optimization methods
	Preliminaries and notations
	Construction of the lower level model
	Step computation and step acceptance

	Convergence theory
	Global convergence
	Upper bound for the regularization parameter k
	Relating the steplength to the norm of the gradient
	Proof of global convergence

	Worst-case complexity
	Local convergence

	Numerical results
	Conclusions
	Appendix A. Proof of Lemma 4.5 

