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Abstract Direct Multisearch (DMS) is a well-established class of algorithms, suited for multiobjective
derivative-free optimization. In this work, we analyze the worst-case complexity of this class of methods
in its most general formulation. Considering nonconvex smooth functions, we will show that the DMS
algorithm takes at mostO(ε−2m) iterations for driving a criticality measure below ε > 0 (herem represents
the number of components of the objective function). We then focus on a particular instance of DMS,
which considers a more strict criterion for accepting new nondominated points. In this case, we can
establish a better worst-case complexity bound of O(ε−2) for driving the same criticality measure below
ε > 0.

Keywords: Derivative-free methods Directional direct-search Worst-case complexity Nonconvex
smooth optimization

1 Introduction

In this work, we consider the following multiobjective derivative-free optimization problem

min F (x) ≡ (f1(x), . . . , fm(x))
>

s.t. x ∈ Rn,
(1)

where m ≥ 2, and each fi : Rn → R ∪ {+∞}, i ∈ I = {1, . . . ,m} is a continuously differentiable function
with Lipschitz continuous gradient. We assume that function derivatives are not available for use, neither
can be numerically approximated.
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We are interested in establishing worst-case complexity (WCC) bounds for directional direct-search
methods, when used for solving problem (1). Each iteration of this class of algorithms can be divided in
a search and a poll step, being the former optional. In fact, the convergence properties of these methods
rely on the procedure implemented in the poll step [1]. The objective function is evaluated at a finite set
of points, corresponding to directions with good geometrical properties, scaled by a stepsize parameter.
The decision of accepting or rejecting a new evaluated point is solely based on the objective function
value and in the concept of Pareto dominance [1]. No model is built for the objective function, neither
any attempt of estimating derivatives is considered.

In the last decades, there has been a growing interest in evaluating the performance of optimization
algorithms in the worst-case scenario (see for instance [2–10]). Usually, the performance of an algorithm
is measured by the number of iterations/function evaluations required to drive either some criticality
measure below a given positive threshold or the function value below the threshold distance to the
optimal function value.

In single objective nonconvex smooth unconstrained optimization, Nesterov [9] derived a WCC bound
of O

(
ε−2
)

for gradient descent algorithms. A similar bound has been achieved for trust-region [11] and
line-search [12] methods. Nesterov and Polyak [13] investigated the use of cubic regularization techniques
and then Cartis et al [14] proposed a generalization to an adaptive regularized framework using cu-
bics. For the latter class of methods, by considering second order algorithmic variants, this bound was
improved to O

(
ε−3/2

)
, including a derivative-free approach where derivatives are approximated by finite-

differences [2]. In the context of derivative-free optimization, directional direct-search was the first class
of algorithms for which worst-case complexity bounds were established [10]. The author considered the
broad class of directional direct-search methods which use sufficient decrease as globalization strategy
and established that this class of algorithms shares the worst-case complexity bound of steepest descent
for the unconstrained minimization of a smooth function. The complexity of directional direct-search
methods for the optimization of convex functions as been addressed in [3]. The bound of O

(
ε−2
)

has

been improved to O
(
ε−1
)
, which is identical to the one of steepest descent, under convexity. Complex-

ity results have also been established for the nonsmooth case. In [5] a class of smoothing direct-search
methods for the unconstrained optimization of nonsmooth functions was proposed and it was shown that
the worst-case complexity of this procedure is roughly one order of magnitude worse than the one for
directional direct-search or the steepest descent method, when applied to smooth functions. Other types
of direct-search methods have been analyzed in the literature. A probabilistic direct-search along with
a worst-case complexity bound of O

(
ε−2
)

has been established in [7]. A restricted version of directional
direct-search methods, where no stepsize increase is allowed, along with a worst-case complexity analy-
sis has also been studied in [8]. In [15], parallelization allows to establish WCC bounds independent of
problem dimension.

As for the worst-case complexity of derivative-based methods for solving multiobjective optimization
problems of type (1), it has been shown in [6] that trust-region methods provide a worst-case complexity
bound of O

(
ε−2
)
. A similar bound has been derived in [4], and improved to O

(
ε−1
)

or O(log ε−1),
assuming convexity or strong convexity of the different components fi, i ∈ I of the objective function.
In [16], complexity bounds have also been derived for p–order regularization methods, this time under a
Hölder continuity assumption on the derivatives of the objective function components.

To the best of our knowledge, no attempt in literature has been made for analyzing the worst-case
complexity of multiobjective derivative-free optimization algorithms. In this work, we first establish a
worst-case complexity bound for the original Direct Multisearch (DMS) [1] class of methods. We will
show that the DMS algorithm takes at most O

(
ε−2m

)
iterations for driving a criticality measure below

ε > 0. We then focus on a particular instance of this class of algorithms, which considers a more restrictive
condition to accept new nondominated points. For that, we resort to the standard min-max formulation of
the multiobjective optimization problem [17], which is widely used in the literature (e.g., see [18] and [6,
§4.2] for multiobjective trust-region methods or [17] for additional references). We are able to establish
that this particular instance of DMS enjoys a worst-case complexity bound of O

(
ε−2
)

for driving the same
criticality measure below ε > 0. This bound is identical to the one derived for multiobjective gradient
descent methods [6,4].
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With regard to the strategy used to establish the WCC of the min-max formulation, we highlight that it
is not equivalent to a straightforward application of the technique used for single objective optimization
to the scalar function obtained by the maximum of the objectives. In particular, the analysis in [10],
which establishes the WCC of directional direct-search for single objective optimization, relies on the
differentiability of the objective function, which does not hold when a min-max formulation is considered.
However, the analysis we propose takes into account the differentiability of the single components.

The remaining of the paper is organized as follows. In Section 2 we recall some known results on
multiobjective optimization, which will be used throughout the paper. The complexity analysis of DMS
in its most general form will be established in Section 3. Section 4 introduces the min-max formulation
and establishes a worst-case complexity bound for it. Some conclusions are drawn in Section 5.

2 Preliminaries

When solving a multiobjective optimization problem of type (1), the goal is to identify a local Pareto
optimum [19], i.e. a point x∗ ∈ Rn such that it does not exist another point x in a neighborhood of x∗

that dominates x∗, meaning that F (x) ⊀F F (x∗) for all x in that neighborhood. In fact, we say that
point x dominates point x∗ when F (x) ≺F F (x∗), i.e., when F (x∗)− F (x) ∈ Rm+ \ {0}.

A necessary condition for x∗ ∈ Rn to be a local Pareto optimum is [19]:

∀d ∈ Rn, ∃id ∈ I : ∇fid(x∗)>d ≥ 0. (2)

A point satisfying (2) is called a Pareto critical point [19]. We are then interested in finding Pareto critical
points. In what comes next, ‖ · ‖ will denote the vector or matrix `2-norm.

Following [19], to characterize Pareto points, we are going to use, for a given x ∈ Rn, the function:

µ(x) ≡ − min
‖d‖≤1

max
i∈I
∇fi(x)>d. (3)

Fliege and Svaiter [19] showed how some properties of µ(x), as reported in the following lemma, relate
to the concept of Pareto critical points. We denote by F(x) the solution set of (3).

Lemma 2.1 [19, Lemma 3] For a given x ∈ Rn, assume that, for all i ∈ I, the function fi is continuously
differentiable at x and let µ(x) be defined as in (3). Then:

1. µ(x) ≥ 0;
2. if x is a Pareto critical point of (1) then 0 ∈ F(x) and µ(x) = 0;
3. if x is not a Pareto critical point of (1) then µ(x) > 0 and for any d ∈ F(x) we have

∇fj(x)>d ≤ max
i∈I
∇fi(x)>d < 0, ∀j ∈ I,

i.e. d is a descent direction of (1);
4. the function x 7→ µ(x) is continuous;
5. if xk converges to x̄, dk ∈ F(xk) and dk converges to d̄, then d̄ ∈ F(x̄).

Function µ can then be used to provide information about Pareto criticality of a given point and plays a
role similar to the one of the norm of the gradient in single objective optimization.

The following lemma describes the relationship between function µ and the norm of the gradient of
the components of F .

Lemma 2.2 For a given x ∈ Rn and ε > 0, assume that, for all i ∈ I, ∇fi(x) is well defined. If µ(x) > ε,
then ‖∇fi(x)‖ > ε, for all i ∈ I.
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Proof If µ(x) > ε, then
min
‖d‖≤1

max
i∈I
∇fi(x)>d < −ε.

As a consequence, it exists d̄ such that ‖d̄‖ ≤ 1 and

max
i∈I
∇fi(x)>d̄ < −ε,

that is, for all i ∈ I, we have
−∇fi(x)>d̄ > ε.

Hence, as −∇fi(x)>d̄ ≤ ‖∇fi(x)‖‖d̄‖ ≤ ‖∇fi(x)‖, the thesis follows.

In the following, we set µk = µ(xk), for all k ≥ 0.

3 Direct Multisearch

Direct Multisearch (DMS) was proposed in [1] and generalizes directional direct-search to multiobjective
derivative-free optimization. It is a general class of methods, that can encompass many algorithmic
variants, depending for instance on the globalization strategy considered. In this work, we will require
sufficient decrease for accepting new points, and for that a forcing function ρ : (0,+∞) −→ (0,+∞) will
be required. Following [20], ρ is a continuous nondecreasing function, satisfying ρ(t)/t → 0 when t ↓ 0.
We consider the typical forcing function ρ(t) = ctp, with p > 1, and c > 0.

DMS makes use of the strict partial order induced by the cone Rm+ . Let D(L) ⊂ Rm be the image of
the set of points dominated by a list of evaluated points L and let D(L; a) be the set of points whose
distance in the `∞ norm to D(L) is no larger than a > 0. Algorithm 1 corresponds to an instance of the
original DMS [1] method, using a globalization strategy based on imposing a sufficient decrease condition.

Algorithm 1: DMS using sufficient decrease as globalization strategy.
Initialization

Choose x0 ∈ Rn with fi(x0) < +∞,∀i ∈ I, α0 > 0 an initial stepsize, 0 < β1 ≤ β2 < 1 the coefficients for stepsize
contraction and γ ≥ 1 the coefficient for stepsize expansion. Let D be a set of positive spanning sets. Initialize the list
of nondominated points and corresponding stepsize parameters L0 = {(x0;α0)}.

For k = 0, 1, 2, . . .

1. Selection of an iterate point: Order the list Lk according to some criteria and select the first item (x;α) ∈ Lk

as the current iterate and stepsize parameter (thus setting (xk;αk) = (x;α)).

2. Search step: Compute a finite set of points {zs}s∈S and evaluate F at each point in S. Compute Ltrial by
removing all dominated points, using sufficient decrease, from Lk ∪ {(zs;αk) : s ∈ S} and selecting a subset of the
remaining nondominated points. If Ltrial 6= Lk declare the iteration (and the search step) successful, set
Lk+1 = Ltrial, and skip the poll step.

3. Poll step: Choose a positive spanning set Dk from the set D. Evaluate F at the poll points belonging to
{xk + αkd : d ∈ Dk}. Compute Ltrial by removing all dominated points, using sufficient decrease, from
Lk ∪ {(xk + αkd;αk) : d ∈ Dk} and selecting a subset of the remaining nondominated points. If Ltrial 6= Lk

declare the iteration (and the poll step) successful and set Lk+1 = Ltrial. Otherwise, declare the iteration (and
the poll step) unsuccessful and set Lk+1 = Lk.

4. Stepsize parameter update: If the iteration was successful then maintain or increase the corresponding
stepsize parameters, by considering αk,new ∈ [αk, γαk] and replacing all the new points (xk +αkd;αk) in Lk+1 by
(xk + αkd;αk,new), when success is coming from the poll step, or (zs;αk) in Lk+1 by (zs;αk,new), when success
is coming from the search. Replace also (xk;αk), if in Lk+1, by (xk;αk,new).
Otherwise, decrease the stepsize parameter, by choosing αk,new ∈ [β1αk, β2αk], and replace the poll pair (xk;αk)
in Lk+1 by (xk;αk,new).

DMS declares an iteration as successful when there are modifications in the list of nondominated
points, meaning that a new point x was accepted, such that F (x) /∈ D(L; ρ(α)), where α represents a
stepsize parameter associated with the current iteration.
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For analyzing the worst-case behavior of the algorithms presented in this paper, we will need the
following assumptions with regard to the component functions in (1).

Assumption 3.1 For all i ∈ I, the function fi is continuously differentiable with Lipschitz continuous
gradient with constant Li. Set Lmax = maxi∈I Li.

Assumption 3.2 The functions f1, . . . , fm are lower and upper bounded in a set containing D(L0) =
D({(x0;α0)}), with lower bound fmin

i and upper bound fmax
i for each function fi, i ∈ I. Let Fmin =

min{fmin
1 , . . . , fmin

m } and Fmax = max{fmax
1 , . . . , fmax

m }.

We also assume, as it is done in classical directional direct-search [20], that all positive spanning sets
considered by the algorithm include bounded directions and have cosine measure bounded away from
zero.

Assumption 3.3 All positive spanning sets Dk used for polling satisfy 0 < dmin ≤ ‖d‖ ≤ dmax, for all
d ∈ Dk and cm(Dk) ≥ κ > 0, where

cm(Dk) ≡ min
v 6=0

max
d∈Dk

d>v

‖d‖‖v‖
.

At an unsuccessful iteration of Algorithm 1, none of the components of the objective function is
improved, since no new point is added to the list. However, the use of Pareto dominance to accept
new points implies that successful iterations do not necessarily correspond to points that improve all
components of the objective function. In fact, at some successful iterations, some of these components
could increase the corresponding value. Nevertheless, at every successful iteration, the hypervolume (see
Definition 3.1) corresponding to the current list of nondominated points always increases.

Definition 3.1 [21, Definition 4.2] The hypervolume indicator (or S–metric, from ‘Size of space covered’)
for some (approximation) set A ⊂ Rm and a reference point r ∈ Rm that is dominated by all the points
in A is defined as:

HI(A) ≡ Vol{b ∈ Rm|b ≤ r ∧ ∃a ∈ A : a ≤ b} = Vol

(⋃
a∈A

[a, r]

)
.

The inequalities should be understood componentwise, Vol(·) denotes the Lebesgue measure of a m–
dimensional set of points, and [a, r] denotes the interval box with lower corner a and upper corner r.

In Algorithm 1, for a successful iteration k ≥ 0, we have

HI(Lk+1)−HI(Lk) ≥ (ρ(αk))
m
.

Figure 1 illustrates the situation, where for a biobjective problem, at a successful iteration, the previous
condition is satisfied as an equality. The initial list of nondominated points is formed by the two points
represented by the dots. The point corresponding to the star, in the interior of the shaded region, was
accepted as a new nondominated point, since it satisfies the sufficient decrease condition. Thus, the area
corresponding to the set of nondominated points has increased exactly in ρ(αk)2.

We will make use of the following result, which is a direct consequence of the one presented in [20,22],
that establishes a relationship between the size of the gradient of the objective function and the stepsize
parameter at an unsuccessful iteration of a directional direct-search method.

Theorem 3.1 Let Assumptions 3.1 and 3.3 hold. Let k be an unsuccessful iteration of Algorithm 1, Dk

be the positive spanning set considered, and αk > 0 be the corresponding stepsize. Then, there is i(k) ∈ I
such that:

‖∇fi(k)(xk)‖ ≤ κ−1
(
Lmax

2
αkdmax +

ρ(αk)

αkdmin

)
. (4)
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f1

f2

ρ(αk)

Fig. 1: Hypervolume increase at a successful iteration.

In the following theorem, we will derive a bound on the number of successful iterations required to
drive µk below a given small positive threshold.

Theorem 3.2 Consider the application of Algorithm 1 to problem (1), with the choice of forcing function
ρ(t) = ctp, p > 1, c > 0. Let Assumptions 3.1, 3.2, and 3.3 hold. Let k0 be the index of the first
unsuccessful iteration. Given any ε ∈ (0, 1), assume that µk0 > ε and let j1 be the first iteration after k0
such that µj1+1 ≤ ε. Then, to achieve µj1+1 ≤ ε starting from k0, Algorithm 1 takes at most |Sj1(k0)| =
O
(
ε−

pm
min(p−1,1)

)
successful iterations.

Proof Let us assume that µk > ε, for k = k0, . . . , j1.
In view of Theorem 3.1, for an unsuccessful iteration k, we have

‖∇fi(k)(xk)‖ ≤ κ−1
(
Lmax

2
αkdmax + d−1mincα

p−1
k

)
, for some i(k) ∈ I. (5)

Hence, by applying Lemma 2.2, we obtain

ε ≤ κ−1
(
Lmax

2
αkdmax + d−1mincα

p−1
k

)
, (6)

which then implies, when αk < 1,

ε ≤ L1α
min(p−1,1)
k ,

where L1 = κ−1
(
Lmax

2 dmax + d−1minc
)
. If αk ≥ 1, then αk ≥ ε. Hence, by combining the two cases (αk ≥ 1

and αk < 1) and having ε < 1, when k is an unsuccessful iteration, we have

αk ≥ L2ε
1

min(p−1,1) , (7)

where L2 = min

(
1,L

− 1
min(p−1,1)

1

)
.

Let k be a successful iteration and Uk0(k) = {k0, k1, . . . , ku} with ku < k be the set of unsuccessful
iterations appearing from k0 to k. From (7), Definition 3.1, and by the choice of forcing function,

HI(Lk)−HI(Lku) ≥ (k − ku − 1)(cαpku+1
)m

≥ |Sk(ku)|(cβp1α
p
ku

)m

≥ |Sk(ku)|
(
cβp1L

p
2ε

p
min(p−1,1)

)m
,
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where Sk(ku) represents the set of successful iterations from ku to k. By a similar reasoning, for 1 ≤ i ≤ u,
we obtain

HI(Lki)−HI(Lki−1
) ≥ |Ski(ki−1)|

(
cβp1L

p
2ε

p
min(p−1,1)

)m
.

Therefore, using the above two inequalities for k = k0, . . . , j1, we obtain

HI(Lj1)−HI(Lk0) ≥ |Sj1(k0)|
(
cβp1L

p
2ε

p
min(p−1,1)

)m
.

Since
(
Fmax − Fmin

)m ≥ HI(Lj1)−HI(Lk0), the proof is completed.

Now, in order to obtain a bound on the total number of iterations for driving µk below a given
threshold, it remains to find a bound on the number of unsuccessful iterations, which is derived in the
next result. The proof is identical to the one of [10, Theorem 3].

Theorem 3.3 Let all the assumptions of Theorem 3.2 hold. Then, to achieve µk ≤ ε starting from k0,
Algorithm 1 takes at most

|Uj1(k0)| ≤

− log(γ)

log(β2)
|Sj1(k0)| − log(αk0)

log(β2)
+

log
(
β1L2ε

1
min(p−1,1)

)
log(β2)

 .
unsuccessful iterations.

Combining Theorems 3.2 and 3.3, it can be seen that Algorithm 1 takes at most O
(
ε−

pm
min(p−1,1)

)
iterations to bring µk < ε for some k ≥ 0. The best complexity bound is then derived by setting p = 2,
which leads to the bound of O

(
ε−2m

)
.

Corollary 3.1 Let all the assumptions of Theorem 3.2 hold. To achieve µk < ε, Algorithm 1 takes at

most O
(
ε−

pm
min(p−1,1)

)
iterations. When p = 2 this bound is O

(
ε−2m

)
.

One can see that the bound for DMS does not conform with the bound O
(
ε−2
)

for the gradient
descent derived in [4] for problem (1). The main reason behind this difference is the fact that DMS
declares an iteration as successful if at least one of the components of the objective function could be
improved sufficiently, whereas in [4] the algorithm, which uses a backtracking approach for determining
the right stepsize parameter, moves to a new point if all the components of the objective function could be
improved sufficiently. It should also be noted that DMS will find a Pareto front, whereas the multiobjective
gradient descent algorithm finds a Pareto critical point.

Indeed, being strict in defining an iteration as a successful one would lead to the same complexity
bound as that of gradient descent. In the next section, we will propose a direct-search framework, which
corresponds to a particular instance of DMS, and presents a worst-case complexity bound of O

(
ε−2
)
.

4 A Min-Max Direct-Search Framework For Multiobjective Optimization

In this section, instead of considering problem (1) directly, we use a min-max formulation:

min f(x)

with
f(x) ≡ max

i∈I
fi(x). (8)

Algorithm 2 considers a Direct-Search (DS) approach with a stricter criterion for accepting new
nondominated points, since the sufficient decrease condition should be satisfied by all components of the
objective function. In this case, rather than a Pareto front, only one Pareto critical point will be computed
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Algorithm 2: Min-max DS for multiobjective optimization.
Initialization

Choose x0 ∈ Rn with fi(x0) < +∞,∀i ∈ I, α0 > 0 an initial stepsize, 0 < β1 ≤ β2 < 1 the coefficients for stepsize
contraction and γ ≥ 1 the coefficient for stepsize expansion. Let D be a set of positive spanning sets and c > 0 a
constant used in the sufficient decrease condition.

For k = 0, 1, 2, . . .

1. Poll step: Choose a positive spanning set Dk from the set D. Evaluate F at the poll points belonging to
{xk + αkd : d ∈ Dk}. If it exists dk ∈ Dk such that

f(xk + αkdk) < f(xk)−
c

2
α2
k,

then declare the iteration as successful and set xk+1 = xk + αkdk. Otherwise, declare the iteration as unsuccessful
and set xk+1 = xk.

2. Stepsize parameter update: If the iteration was successful then maintain or increase the corresponding
stepsize parameter, by considering αk+1 ∈ [αk, γαk].
Otherwise decrease the stepsize parameter, by choosing αk+1 ∈ [β1αk, β2αk].

f1

f2

ρ(αk)

(fk1 , f
k
2 )

Fig. 2: Selecting a new nondominated point in the min-max direct-search framework.

for problem (1). For simplicity, the forcing function ρ(t) = c
2 t

2, with c > 0, has been considered and the
(optional) search step has not been included in the algorithmic description. However, the subsequent
results could be established for a more general setting, such as the one of Algorithm 1, once that the
strict condition for accepting new nondominated points is used.

Algorithm 2 can be regarded as a particular instance of Algorithm 1, where no search step is performed,
the list Lk is a singleton, corresponding to the current iterate and stepsize parameter (xk;αk), with a
particular choice of Ltrial as a subset of the set of computed nondominated points. Figure 2 illustrates the
latter claim for a biobjective optimization problem. Consider F (xk) = (fk1 , f

k
2 ) as the objective function

value at the current iterate and ρ(αk) as the current value of the forcing function. The shaded region
corresponds to the image of the subset of nondominated points, from which a new iterate can be selected.
This set is a subset of the corresponding set in Algorithm 1 (represented by the hatch-lined area). Such
restriction leads to a better worst-case complexity bound, comparing to the general formulation of DMS.

The following lemma is an auxiliary result for the remaining proofs and establishes a relationship
between the positive spanning set and the gradients of the components of the objective function at a
given iteration.
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Lemma 4.1 Let Dk be a positive spanning set and assume that ∇fi(xk) is well-defined for all i ∈ I.
There exists a direction d̃k ∈ Dk such that

cm(Dk)dmin min
i∈I
‖∇fi(xk)‖ ≤ −max

i∈I
∇fi(xk)>d̃k. (9)

Proof Let
µ̃k ≡ − min

d∈Dk
max
i∈I
∇fi(xk)>d,

and d̃k be its solution, that is d̃k ∈ Dk and

µ̃k = −max
i∈I
∇fi(xk)>d̃k. (10)

By definition of µ̃k, one has

µ̃k = max
d∈Dk

(
−max

i∈I
∇fi(xk)>d

)
≥ −max

i∈I
∇fi(xk)>d, ∀d ∈ Dk. (11)

From the definition of cosine measure of a positive spanning set, cm(Dk), it follows that for all i ∈ I it
exists dik ∈ Dk such that

cm(Dk)‖∇fi(xk)‖‖dik‖ ≤ −∇fi(xk)>dik.

Then

max
i∈I

(
− cm(Dk)‖∇fi(xk)‖‖dik‖

)
≥ max

i∈I
∇fi(xk)>dik,

which is equivalent to

min
i∈I

(
cm(Dk)‖∇fi(xk)‖‖dik‖

)
≤ −max

i∈I
∇fi(xk)>dik.

From (10) and (11), taking into account that dik ∈ Dk, we have:

cm(Dk)dmin min
i∈I
‖∇fi(xk)‖ ≤ −max

i∈I
∇fi(xk)>dik ≤ µ̃k = −max

i∈I
∇fi(xk)>d̃k.

Theorem 3.1 is then adapted in Lemma 4.2 when Algorithm 2 is regarded.

Lemma 4.2 Under Assumptions 3.1 and 3.3, suppose that the k-th iteration of Algorithm 2 is unsuc-
cessful. Then

min
i∈I
‖∇fi(xk)‖ ≤ Lmaxd

2
max + c

2dminκ
αk.

Proof Using Lemma 4.1, there exists a direction d̃k ∈ Dk such that

cm(Dk)dmin min
i∈I
‖∇fi(xk)‖ ≤ −max

i∈I
∇fi(xk)>d̃k. (12)

Moreover, since the k-th iteration is unsuccessful and d̃k ∈ Dk, one has

f(xk + αkd̃k)− f(xk) ≥ − c
2
α2
k.

Hence,

− c
2
α2
k ≤f(xk + αkd̃k)− f(xk) = max

i∈I
fi(xk + αkd̃k)−max

i∈I
fi(xk)

≤max
i∈I

fi(xk) + max
i∈I

∫ 1

0

∇fi(xk + tαkd̃k)>αkd̃k dt−max
i∈I

fi(xk)

= max
i∈I

∫ 1

0

∇fi(xk + tαkd̃k)>αkd̃k dt



10 A. L. Custódio et al.

Adding (12) multiplied by αk to both sides yields:

− c
2
α2
k + αk cm(Dk)dmin min

i∈I
‖∇fi(x)‖ ≤ max

i∈I

∫ 1

0

∇fi(xk + tαkd̃k)>αkd̃k dt

− αk max
i
∇fi(x)>d̃k

≤ αk
∫ 1

0

(∇fj(xk + tαkd̃k)−∇fj(xk))>d̃k dt

≤ α2
k

Lmax

2
d2max,

where j ≡ arg maxi∈I
∫ 1

0

(
∇fi(xk + tαkd̃k)−∇fi(xk)

)>
d̃k dt. Then, the thesis follows.

The following lemma states that the sequence
∑∞
k=0 α

2
k (where {αk}k≥0 is generated by Algorithm 2)

is finite.

Lemma 4.3 [7, Lemma 4.1] Under Assumption 3.2, the sequence of {αk}k≥0 generated by Algorithm 2
satisfies

∞∑
k=0

α2
k ≤ Ω ≡

γ2

1− β2
2

(
γ−2α2

0 +
2

c
(f(x0)− Fmin)

)
,

where γ, β2, c are defined in Algorithm 2.

Finally, in the main result of this section, we will prove that Algorithm 2 takes at most O(ε−2)
iterations for driving µk below ε > 0.

Theorem 4.1 Let Assumptions 3.1, 3.2, and 3.3 hold. For ε ∈ (0, 1], let kε be the first iteration index
such that µkε+1 ≤ ε. Then,

kε ≤
2

cα2
0

(
f(x0)− Fmin

)
+
Ω(Lmaxd

2
max + c)2

4κ2d2minβ
2
1

ε−2,

where Ω is defined as in Lemma 4.3.

Proof If kε = 0 the result trivially holds. Therefore, we assume in what follows that kε > 0.
For any unsuccessful iteration of index k ≤ kε, we have from Lemma 4.2 that

α2
k ≥

4κ2d2min

(Lmaxd2max + c)2
min
0≤l≤k

min
i∈I
‖∇fi(xl)‖2. (13)

Since, for all 0 ≤ l ≤ k, µl > ε, Lemma 2.2 implies that ‖∇fi(xl)‖ > ε for all i ∈ I, i.e., mini∈I ‖∇fi(xl)‖ >
ε for all 0 ≤ l ≤ k.

Hence, (13) implies

α2
k ≥

4κ2d2min

(Lmaxd2max + c)2
min
0≤l≤k

min
i∈I
‖∇fi(xl)‖2 ≥

4κ2d2min

(Lmaxd2max + c)2
ε2. (14)

On the other hand, using the updating rules on the stepsize, for any successful iteration of index
kε ≥ k ≥ j1, where j1 is the index of the first unsuccessful iteration, there exists an index of an unsuccessful
iteration j(k) ≤ k (with possibly j(k) = j1) such that αk ≥ β1αj(k). Putting this together with (14) yields:

∀k ∈ S, kε ≥ k ≥ j1, α2
k ≥

4κ2d2minβ
2
1

(Lmaxd2max + c)2
ε2,

where S denotes the set of successful iterations. Using now the result of Lemma 4.3, we have:

Ω ≥
∞∑
k=0

α2
k ≥

kε∑
k=j1+1

α2
k ≥ (kε − j1)

4κ2d2minβ
2
1

(Lmaxd2max + c)2
ε2.
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Thus

kε − j1 ≤
Ω(Lmaxd

2
max + c)2

4κ2d2minβ
2
1

ε−2.

Since j1 is the index of the first unsuccessful iteration, one can trivially show that j1 ≤ 2
cα2

0

(
f(x0)− Fmin

)
.

Then, the thesis follows.

5 Conclusions

In this work, we analyzed the worst-case complexity of derivative-free algorithms for multiobjective non-
convex smooth optimization problems. In the case of Direct Multisearch [1], we derived a complexity
bound of O(ε−2m) for driving a criticality measure below ε > 0. We then proposed a min-max approach
to the multiobjective derivative-free optimization problem, which proved to be a particular instance of Di-
rect Multisearch, but presented a worst-case complexity bound of O(ε−2) for driving the same criticality
measure below ε > 0. This result is identical to the one established in [4] for gradient descent, considering
the same class of problems. For the (strongly) convex case, where all the components of the objective
function are (strongly) convex, it remains as an open question whether similar complexity bounds to
those derived in [4] could be established for the algorithms considered in this paper.
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