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Context:

deep neural networks (DNN) are growing fast
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Scaling up

Why? : better performance, more complex tasks ...
... but

> The computational complexity, memory usage and
energy consumption of deep networks are increasingly
growing, both during training and inference

» Limitation for the deployment on resource-constrained devices
(mobile, embedded systems) where energy is often a limited
resource

» High environmental impact

» Limitation for real-time applications
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The computational bottlenecks

Trained DNN model

New input data
X

Computations
Data movement
+ move input data & model from memory
to compute units
« send partial results back to memory

vector/matrix manipulations
« done on CPU, GPU, DSP, or

custom accelerators (e.g.
FPGA, ASIC)
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Data movement .
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Improve performance and power efficiency
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Various ways to achieve this:
Sparseness Compilation
prune model parameters/activations, determine how to compile DNN
while keeping target accuracy models for efficient HW execution

Optimized DNN model for
_ HW-accelerated execution

Memory <—>
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Outline

Quantization
Generalities
Quantization aware training (QAT)
Post training quantization (PTQ)
Mixed precision quantization

Sparsification
Pruning
Structured sparsification
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Quantization: definition

Quantization is the process of constraining an input from a
continuous or large set of values (such as the real numbers) to a
discrete set (such as the integers).

Example: convert floating-point numbers to lower precision (e.g.,
8-bit integers).

Example: https://www.qualcomm.com/news/onq/2019/03/
heres-why- quantlzatlon matters-ai

24 bits per pixel
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https://www.qualcomm.com/news/onq/2019/03/heres-why-quantization-matters-ai
https://www.qualcomm.com/news/onq/2019/03/heres-why-quantization-matters-ai

Low precision formats
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Benefits of quantization

Quantization effects: the good

Memory usage Power consumption Latency Silicon area
8-bit arithmetic and below

less memory access and simpler
requires less area than larger

energy is significantly reduced for
computations lead to faster runtimes

storage needed for weights and
and activations s proportional to
the bit width used

both computations and memory
accesses and reduced latency bit width FP compute units
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Interesting formats

» 8-bit Integer (INT8)

» INT8 quantization is widely used for model deployment in edge
devices and mobile platforms.

» Intel's Neural Network Processor (NNP) and Google's Edge
TPUs provide dedicated support for INT8 inference, reducing
energy consumption by up to 4x compared to FP32

» 4-bit quantization

P is an emerging trend, focused on ultra-low-power Al
applications.

» 4-bit quantization is still an area of active research, focusing
on improving the trade-off between energy savings and model

accuracy.
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Quantization: the bad

Limited precision

3.1415927410125732421875
/ 32-bit floating-point
T

3.1415926535897...

3.140625
8-bit unsigned fixed-point: x, = [x-27]/2

low precision = low accuracy

Challenge: reduce precision without harming accuracy
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Mixed Precision Quantization

> Mixed precision quantization involves applying different
bitwidths to different parts of the model.

» Example: Weights can be quantized to 8 bits while activations
remain at 16 bits.

» This helps to balance model accuracy with computational
efficiency.

» Particularly useful if not all parameters are equally important
for model expressivity
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Quantization formats

How do we represent reals on a computer? uniform
= two main families of formats: | Ll NEEEEN I
: Integerffixed-point (uniform quantization) [T T T[T TTTT]
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Figure 1
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How to quantize?

Limited (dynamic) range

= value magnitude range

FP32: (107%,10%)

~ 76 orders of magnitude

FP8: (1072,10%)

~ 4 orders of magnitude
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How to quantize?

Want to quantize X to int8

0.97 0.64
0.58 0.84
0.00 0.18
0.57 0.96

We don’t directly quantize it, but rather a scaled version to avoid

overflows.

Example: for int8 range=[—128,127] = [minjng, Max;n:s]

0.74
0.84
0.90
0.80

1.00
0.81
0.28
0.81
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How to quantize?

0.58 0.84 0.84 0.81
0.00 0.18 0.90 0.28

0.97 0.64 0.74 1.00
0.57 0.96 0.80 0.81

Compute scaling factor

Max;nrg — MiNjntg . 127 + 128

5 = =255
Xmax — Xmin Xmax — Xmin
Scale
Xs = S(X - Xmin) + minint8
Quantize
round(Xs)
Clip the value

X = clip(round(X;s))
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Outside the representable range: clip function

The basic idea of the clip function is to restrict values to a
predefined range (min_val, max_val).
The clip function is defined as:

min_val if x < min_val
clip(x, min_val, max_val) = < x if min_val < x < max_val

max_val if x > max_val
For example:
clip(5,0,10) =5 (within the range)

clip(—=3,0,10) =0 (clipped to min_val)
clip(15,0,10) = 10 (clipped to max_val)
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Quantization for DNNs

During inference (i.e., for a trained network):

w2l w3l
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« store network parameters in low precision
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Quantization for DNNs

During inference (i.e., for a trained network):

- store network parameters in low precision
« store/compute intermediate signals in low precision
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During training:
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Quantization for DNNs

During inference (i.e., for a trained network):

+ store network parameters in low precis
stol /omp( ntermedite g\ \wp

(e ), (;{ )J,< -

During training:
« store/compute back propagated gradients in low precision
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Types of rounding

» Traditional Rounding: Typically rounds a number to the
nearest integer or a nearby fixed point.

» Round to Nearest: Rounds 1.5 to 2 and 2.4 to 2.
»> Round Down: Always rounds down (e.g., 2.8 becomes 2).
» Round Up: Always rounds up (e.g., 2.1 becomes 3).

» Stochastic Rounding: Rounds based on probability,
depending on the fractional part of the number.

» For example, if a number is 1.7, it might round to 1 with
probability 0.3 and to 2 with probability 0.7.

» Key Difference: Stochastic rounding introduces randomness,
whereas traditional rounding methods are deterministic.

" Stochastic Rounding: Implementation, Error Analysis, and Applications” M. Croci, M. Fasi, N. Higham, T. Mary,
M. Mikaitis, 2021
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Why Stochastic Rounding?

» In standard rounding methods, bias can accumulate, leading
to systematic errors in computations.
» Stochastic rounding introduces randomness, which helps to:

» Reduce bias: Prevents systematic overestimation or
underestimation of values. This randomness in rounding
ensures that the rounding error has an expected value of zero,
leading to less bias.

» Preserve statistical properties: Maintains the expected
value over a series of rounding operations.

» Improve model accuracy: In neural networks, reduces the
impact of rounding errors on training and inference, especially
when working with low-precision formats, where small errors
can propagate and magnify over multiple layers.
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How Stochastic Rounding Works

> Let x = n+ f, where n is the integer part and f is the
fractional part.

P In stochastic rounding:

n with probability 1 — f

Round(x) = _ N
n+ 1 with probability f
T ey
| l |
| |
=] R [2]

Figure 2.1. Stochastic rounding rounds the real number z to the next smaller number [z] in F" or to the next larger
number [z] in F. In this example, RN rounds « to [z], whereas mode 1 SR can round to either |z ] or [z] but is more
likely to round to [z].
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Stochastic Rounding (SR) in Neural Networks

Not a new idea:
Hohfeld M, Fahlman SE. 1992 " Probabilistic rounding in neural network learning with limited precision”
» Useful in NN, especially in low-precision formats like INT8 or
FP16.
» In low-precision arithmetic, rounding errors can significantly
impact model performance due to the limited number of bits
» SR can outperform traditional rounding methods in certain
quantized neural networks:
Gupta S, Agrawal A, Gopalakrishnan K, Narayanan P. 2015 "Deep Learning with Limited Numerical

Precision”

24/75



Limitations of RN for low precision

"On Stochastic Roundoff Errors in Gradient Descent with Low- Precision Computation” Xia, L., Massei, S., Hochstenbach, M. E.,

Koren, B. (2024).
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Fig. 2 Minimizing f(x) = (x — 1024)2 using GD with binary8 (u = 2~3) and RN, where the red area
indicates where stagnation occurs
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SR for neural networks

Gupta S, Agrawal A, Gopalakrishnan K, Narayanan P. 2015 "Deep Learning with Limited Numerical Precision”
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Challenges and Limitations

» Hardware support: Not all hardware accelerators natively
support stochastic rounding, requiring custom
implementations.

» Higher complexity: The randomness involved in stochastic
rounding can make it more difficult to analyze and debug
models.
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Quantization-Based Methods for
Efficient DNN Inference



Quantization for efficient DNN inference

Post Training Quantization (PTQ) Quantization-Aware Training (QAT)

Training loop

Pretrained
FP32
model

Quantized

Quantized

model model

Quantizer
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+ no need for access to training pipeline - access to training pipeline & labelled data
+ data-free or small calibration set used - longer training times
+ usually fast, with simple API - hyper-parameter tuning needed

- lower accuracy at lower bit widths + higher accuracy in general
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Quantization

Quantization aware training (QAT)
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Training with Quantization

» Quantization-Aware Training (QAT): A technique where
quantization is simulated during training.

» The model is trained with quantized weights and/or
activations to maintain accuracy.

» During training, the gradients are computed as if the model
were full precision.
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QAT: backward path quantization simulation

y Problem: How can we back propagate through quantization layers?
=round-to-nearest does not have meaningful gradients

(i.e., either zero or undefined everywhere)
=gradient-based training seems impossible

Activation

Conv/FC

Input



QAT: backward path quantization simulation
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Quantizer

Activation

Solution: redefine gradient with “straight-through estimator” (STE) [1]
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QAT: backward path quantization simulation

weight W (FP) quantized weight W (INT)

L o
!
R

gradient /0W (FP) gradient 02/0W (FP)

Schematic view of a QAT procedure with STE applied (adapted from [1])

[1] A Survey of Quantization Methods for Efficient Neural Network Inference, Gholami et al., arXiv:2103.13630, 2021
19



Early success of QAT: BinaryConnect

["BinaryConnect: Training Deep Neural Networks with binary weights
during propagations”, M. Courbariaux, Y. Bengio, JP David, 2016]

» BinaryConnect is a method for training neural networks with binary
weights and activations.

» During training, the weights are binarized (approximated to +1 or
-1).

» The activations can also be binarized, reducing the computational
cost of both forward and backward passes.
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How BinaryConnect Works

> Keeps double copy of the weights: binary weights W}, and
continuous weights W

» Train the model using real-valued weights (for gradient
computation), but at each step, constrain the weights to
binary values after the weight update step.

» Reduce memory and computation for inference, while still
benefiting from continuous gradients during training (essential
for SGD to work).
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How BinaryConnect Works

» During forward pass:
» We compute the activations using binary weights
» During backpropagation:
» The gradients are computed as if the network were using

real-valued weights.
» The continous weights are updated based on these gradients.

> The weights are binarized using the sign function:

Whinary = sign(w)
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Algorithm: BinaryConnect

Input:
» Training data x;,y; fori=1,..., N
» Neural network architecture (e.g., layers, activation functions)
» Number of epochs T
P Learning rate n

Output: Trained binary weights W, and biases b (usually in
full-precision)
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Algorithm: BinaryConnect

1. Initialize weights W and biases b with small random values
2. Initialize the binary weights W, = sign(W)
3. Foreachepocht=1,..., T:
3.1 For each training sample (x;, y;)
3.1.1 Perform forward pass: calculate activations using the binary
weights Whin: ai = o(Whinxi + b)
3.1.2 Compute the loss L(xj, yi) (e.g., cross-entropy or mean
squared error)
3.1.3 Perform backward pass (backpropagation): compute the
gradients VL with respect to continuous weights W
3.1.4 Update continuous weights using the continuous gradients
VL: W =clip(W —nVwlL,-1,1), b= b —nV,L
3.1.5 Update binary weights: binarize the continuous weights
Win = sign(W)

4. Return the final binary weights W, and biases b
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Backward pass

Key points:

» compute gradients as if the weights were continuous, even
though they are binary: VL(W) by using the straight-through
estimator (STE) for the sign function.

» Update the weights in full precision and then binarize:

W =W —nVL(W)
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Binarizing the weights

Often it is better to binarize stochastically

+1  with p = clip(w,0,1)
Whin = .
-1 withl—p

instead that
Whin = sign(W)
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Advantages of BinaryConnect

» Extreme reduction of memory requirements: binary weights
take only 1 bit per weight.

» Faster computations: using binary values accelerates inference
and training

» Suitable for embedded systems and mobile devices.

» Often retains near state-of-the-art performance despite the
simplifications.
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Numerical results

Method MNIST CIFAR-10 SVHN
No regularizer 1.30 £ 0.04% 10.64% 2.44%
BinaryConnect (det.) 1294+ 0.08% 9.90% 2.30%
BinaryConnect (stoch.) 1.18 £ 0.04% 8.27% 2.15%
50% Dropout 1.01 £ 0.04%

Maxout Networks [29] 0.94% 11.68% 2.47%
Deep L2-SVM [30] 0.87%

Network in Network [31] 10.41% 2.35%
DropConnect [21] 1.94%
Deeply-Supervised Nets [32] 9.78% 1.92%
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Challenges and Limitations

» Binarizing weights can lead to reduced model expressiveness
and lower performance for complex tasks.

» While STE works well in practice for many cases, it is still an
approximation: the learning process may be less efficient or
may converge to suboptimal solutions in some scenarios.

> Not all types of neural network architectures are suitable for
binary weights (CNN, GANs, transformers..)

» BinaryConnect may require more epochs or larger learning
rates to achieve comparable performance to networks with
continuous weights.

» The optimization landscape may also be more noisy or less
smooth due to the discretization of the weights
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Post-Training Quantization

» Post-Training Quantization (PTQ) refers to the process of
quantizing a pre-trained model without retraining.

» Typically applied after training a high-precision model (e.g.,
32-bit floating point) for deployment on resource-constrained
devices.

» It involves converting the model's weights and/or activations
to lower bitwidth (e.g., 8-bit integers).
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Methods for Post-Training Quantization

» Quantizing Weights: Weights can be quantized after
training to reduce the model’s size.

» Quantizing Activations: Activations are also quantized
during inference to further reduce computational costs.

» Calibration: Calibration is used to select optimal scaling
factors for quantization. It typically involves running a small
dataset through the model to estimate the range of
activations.
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Calibration Process

» Calibration helps to determine the scaling factors that best
preserve the model’s accuracy after quantization.
» Common calibration techniques include:

» Min-Max Calibration: Finds the minimum and maximum
values of activations and weights to determine the
quantization range.

» Histogram-based Calibration: Uses a histogram of
activation values to set more precise scaling factors.

» Calibration is especially important when quantizing activations
to prevent a significant accuracy drop.
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Challenges in Post-Training Quantization

> Calibration Sensitivity: The accuracy of the calibration
process is critical, and improper calibration can lead to
significant performance drops.

> Automated Calibration Methods: Advances in machine
learning-based calibration techniques that do not require
manual tuning.

» Non-Uniform Distributions: Some models have highly
non-uniform weight distributions, making it harder to quantize
efficiently.
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Limitations of classical quantization schemes

» Traditional quantization methods usually focus on reducing
bit-width uniformly across layers or channels.

» Limitations: Such methods can lead to significant accuracy
loss because they ignore how sensitive to quantization the
parameters in the different layers are.

» Solution: Use second-order information (i.e., the Hessian
matrix) to guide the quantization process.

» Hessian Matrix: Captures the sensitivity of the model’s loss
function with respect to the parameters, providing richer
information for quantization decisions.
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Origins of Hessian aware quantization - 1994

Optimal Brain Damage

Yann Le Cun, John S. Denker and Sara A. Solla
AT&T Bell Laboratories, Holmdel, N. J. 07733

Idea: Taylor development

f(x)— (X))~ V(X)) T (x — %)+

Aim: predict the effect of a

parameter x; on f(

computing f(

1

X1

Xn

X1
) without

Xn

) for all i

SO = R)TH(R)(x - %)

We want to find parameters x; that make f(x) — f(X) small to

suppress them.
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OBD pruning

Simplifying assumptions:

» At convergence: Vf(X)~ 0

%(X — >"<)TH(>"<)(X —X) = %Z, H,-7,'X,-2 + % Zi# H; jxix;

>
> We neglect the last term to reduce cost
>

%Zi H,-,,-x,-2 can be efficiently computed by backpropagation
with cost similar to that of the gradient

Saliency of a parameter: s; = H,-,;xi2/2
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OBD procedure

Procedure:

AR

Choose a reasonable network architecture

Train the network until a reasonable solution is obtained
Compute the second derivatives for each parameter
Compute the saliencies for each parameter

Sort the parameters by saliency and delete some low-saliency
parameters

Iterate to step 2
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Numerical results
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Figure 1: (a) Objective function (in dB) versus number of parameters for OBD
(lower curve) and magnitude-based parameter deletion (upper curve). (b) Predicted
and actual objective function versus number of parameters. The predicted value
(lower curve) is the sum of the saliencies of the deleted parameters.
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HAWQ: Hessian AWare Quantization

HAWQ: Hessian AWare Quantization of Neural Networks with Mixed-Precision, Z. Dong, Z. Yao, A. Gholami, M

Mahoney, K. Keutzer, 2019

> HAWQ leverages the Hessian matrix of the loss function to
guide the quantization of weights.

» The Hessian matrix provides second-order information about
the importance of each weight for the model's performance.

» The idea behind HAWQ is to reduce the precision (bit-width)
of the weights that have low sensitivity to the loss, while
preserving precision in important weights.

» This method helps minimize accuracy degradation during
quantization, while achieving substantial compression.
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How to measure sensitivity?

» Compute the eigenvalues of the Hessian of each block in the
network.

» Important: it is not possible to explicitly form the Hessian
since the size of a block can be quite large.

» Solution: compute the Hessian eigenvalues without explicitly
forming it, using a matrix-free power iteration algorithm
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Why the eigenvalues of the Hessian?

U ——— Jur————

N ks
Fig. 1: Top e, lue of each individual block of pre-trained ResNet20 on Cifar-10 (Left), and Inception-V3 on ImageNet
(Right). Note that the itudes of ei, lues of diffe blocks varies by orders of magnitude. See Figure (6 and[7] in
appendix for the 3D loss landscape of other blocks.
g —18T BLOCK X = 1.9 8 —6TH BLOCK Ag =85
2ND BLOCK )\ = 7.0 7TH BLOCK )\ = 8. 4
7 3RD BLOCK )\ 7 8TH BLOCK )\; =
—4TH BLOCK )\) = —9TH BLOCK Ay = 19. 0
6 —5TH BLOCK Ay = 6] —10TH BLOCK A = 13.2
T 5 7 5 —11TH BLOCK \g = 0.2
84 84
3 ; 3
2 2
1 1
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Fig. 2: 1-D loss landscape for different blocks of ResNet20 on Cifar-10. The landscape is plotted by perturbing model weights
along the top Hessian eigenvector of each block, with a magnitude of € (i.e., ¢ = 0 corresponds to no perturbation).
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Hessian-Aware Quantization (HAWQ) Overview

1 Train the model with full precision (e.g., FP32).

2 Compute the sensitivity measure based on the Hessian
eigenvalues

3 Apply adaptive quantization based on the sensitivity of the
weights.

4 Fine-tune the model with quantized weights to minimize
accuracy loss (quantization-aware multi-stage re-training)
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Algorithm 2: Hessian AWare Quantization
Input: Block-wise Hessian eigenvalues A; (computed
from Algorithm 1)), and block size n; for
t=1,---,b.
fori=1,2,...,bdo // compute Quantization Precision
‘ Szz)\i/n, // See Eq.
Order S; in descending order and to determine relative
quantization precision for each block.
Compute AW; based on Eq.

fori=1,2,...,bdo // Fine-Tuning Order
‘ Q, = )\,,HAWZHZ // See Eq. IEI
Order §2; in descending order and perform block-wise
fine-tuning

AW, = QW) — W,

Fine tuning intuition : first fine-tune layers that have high

curvature, which cause more perturbations after quantization:
55 /75



Table VI: Block seperation and final block precision of ResNet20 on Cifar-10. Here we abbreviate convolutional layer as

“Cony,” fully connected layer as “FC.”

Block Layer(s) Layer Type Parameter Size Weight bit  Activation bit
Block 0 Layer 0 Conv 4.32¢2 8 8
Block 1 Layer 1-2 Conv 4.61e3 6 4
Block 2 Layer 3-4 Conv 4.61e3 6 4
Block 3 Layer 5-6 Conv 4.61e3 8 4
Block 4 Layer 7-8 Conv 1.38e4 3 4
Block 5 Layer 9-10 Conv 1.84e4 3 4
Block 6  Layer 11-12 Conv 1.84e4 3 4
Block 7 Layer 13-14 Conv 5.53e4 2 4
Block 8  Layer 15-16 Conv 7.37e4 2 4
Block 9  Layer 17-18 Conv 7.37e4 2 4
Block 10 Layer 19 FC 6.40e2 3 8
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Pruning

Definition: Select some neurons and/or weights and suppress
them (set to zero)

before pruning after pruning

pruning
synapses

-->

pruning .
neurons

How to choose?
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Magnitude pruning

> Many of the learned weights have small magnitudes and
contribute little to the network's performance.

» Magnitude pruning removes weights that have small
magnitudes, reducing the complexity of the model.

» Pruning criterion: given a weight w;, prune if
’W," <T

with 7 chosen pruning threshold.
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Pruning Process

e

Train the full Model
Compute Magnitudes of the weights
Sort weights based on their absolute magnitudes.

Set threshold 7 (Top-k pruning, Percentage pruning, Global
threshold)

Prune the weights that are below the threshold (set them to
zero)

Retrain the model (fine-tune) for a few more epochs with the
found mask. This allows the model to adjust to the new
sparsity pattern and recover any lost performance.
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Magnitude pruning

Advantage: pruning small weights can also act as a form of
regularization, helping the model generalize better by reducing
overfitting.

Variants:
> Layer-wise pruning
» Structured Pruning (removes entire neurons, filters (in CNNs),
or channels in the network). This leads to a more structured

sparsity pattern and can take advantage of hardware
optimizations for matrix or tensor operations.

P lterative Pruning: prune the network iteratively, pruning a
small fraction of weights at each step and retraining the
model after each pruning phase. This helps in minimizing
performance degradation.
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Other pruning criteria

» Gradient pruning: reducing the number of parameters that are
updated in each iteration by setting to zero small gradients —
limitation: saturation (vanishing gradients), better Hessian
pruning

» [ regularization — limitation: tuning of A

regloss = loss + A||w/||1
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Lottery tickets

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, J.Frankle, M. Carbin, 2019

Objective: Find a subnetwork of a large network, such that, if
trained starting from the same wy maintains the same performance
as the large network

Random Training to Prune Low Rewind Weights
Initialization Convergence Magnitude Weights to Initialization

YO
|

i
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Lottery ticket algorithm

» Choose wy random

v

Train the full network starting from wy and get w*

» Prune the network based on the magnitude of w*: select a
mask m (binary matrix 0/1) and set w, = w - m

> Reset w, = wp-m

» Train sub network with just weights w,

What do we expect from the subnetwork?
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Validation Loss

020

018

0.16

0.14

012

0.10

008

Overfitting

[ foo 5000

Trainina time

7500

10000
Taining iterations

12500

15000

17500

20000




Definition of the training time

\First iteration at which it reaches minimum validation loss \
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Definition of the training time
Training time #Iter(M,/) of model M with initialization /

‘First iteration at which it reaches minimum validation loss ‘
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Definition of the training time
Training time #Iter(M, /) of model M with initialization / given
(D, A, H, L) (datasets, learning algorithm, hyperparameters, loss)

‘First iteration at which it reaches minimum validation loss ‘

Overfitting

Validation Loss
o

0 00 5000 7500 loo00 12500 15000 17500 20000
TFaining iterations
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Definition of the training time

(M, 1) is said to learn faster than (M’,1") on (D, A, H, L) if

#ter(M, 1) < #Iter(M, I')
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Definition of the training time

(M, 1) is said to learn faster than (M’,1") on (D, A, H, L) if

#ter(M, 1) < #Iter(M, I')

Remark 1: If the cost of one iteration of (D, A, H, L) for (M’, ') is much
cheaper than for (M, 1), then the actual training time on a machine for M’
could be smaller than the one for M. For instance if M is a smaller model
than M, then an iteration for M’ is likely to be cheaper than for M: be
cautious if #Iter(M, ) < #Iter(M',I").

Remark 2: Doing gradient-descent, if M’ is a subnet of M and if it is
trained by computing all the gradients of M and then zeroing the ones not
in M’, then an iteration for M’ should have the same cost as for M.
Remark 1 does not apply in this case.



Notations

Notations: s € [0, 1] = level of sparsity, Ms = subnet of M of sparsity s



Average random sparse subnets learn slower and are less
accurate (empirical)
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Figure: Dashed lines show the average training time for random subnets with
random initializations of given sparsity of a fixed original model.

#Iter(original model) < #Iter(random Ms)



Average random sparse subnets learn slower and are less
accurate (empirical)

—+— Conv-4 <}~ random  —f— Conv-2 <<} random

1000 o

g € 0.5 -

£ <0

g- 0.975 A ?,9’

@ >

) E

5 0.950 .LE

g <

P

g 0.925 :

: g

< \

0.900 - T T T T T T T
100 41.1 169 7.0 29 12 05 02 100 412 170 7.1 3.0 1.3
Percent of Weights Remaining Percent of Weights Remaining

Figure: Dashed lines show the average top 1 accuracy for random subnets with
random initializations of given sparsity of a fixed original model.

Topl(trained random Ms) < Topl(trained original model)



Average random sparse subnets learn slower and are less
accurate (empirical)

Average sparse subnets learn slower than the average trained full
model: for M and s considered in the experiments and empirical means
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Average random sparse subnets learn slower and are less
accurate (empirical)

Average sparse subnets learn slower than the average trained full
model: for M and s considered in the experiments and empirical means

E,#Iter(M, I)
max #lter(M, 1)

EMS,[#IteI‘(MS, I)
mir} #Iter(Ms, I) for s not too close from 100%

VAN/AN

Average sparse subnets are less accurate than the average trained

full model: for M and s considered in the experiments and empirical
means:

E;Topl(M
mlin Topl(M

9

) 2 EMS /TOpl(Ms, /)
)=

max Topl(Ms, 1) for s not too close from 100%



Challenge

Is it possible to find early on during training a sparse subnet that trains
faster than the original model without accuracy degradation?



Definition of lottery tickets: (Ms, ) versus (M, 1)

Lottery ticket: Fix (D, A, H,L). Consider a model and an initialization
(M, 1). A lottery ticket is a submodel (Ms, I) of sparsity s of (M, ).
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Definition of lottery tickets: (Ms, ) versus (M, 1)

Lottery ticket: Fix (D, A, H,L). Consider a model and an initialization
(M, 1). A lottery ticket is a submodel (Ms, I) of sparsity s of (M, ).

o Average lottery ticket learns slower than the average full model:

E #Iter(M, 1) < Ep, #1ter(Ms, 1), YM,Vs.

o Average lottery ticket is less accurate than the average trained
full model:

E,Topl(M, 1) > Ep, ;Topl(Ms, 1), VM,Vs.



Definition: Winning tickets

Winning lottery ticket: Fix (D, A, H, L, Topl) with Topl a measure of
accuracy. Consider a model and an initialization (M, /). A lottery ticket is
a submodel (Ms, I) of sparsity s is winning if:

e it learns faster than the original model: #Iter(Ms, ) < #Iter(M, 1)

@ it is more accurate than the original model:
Topl(M, 1) < Topl(Ms, 1)



Algorithm to find winning tickets

Algorithm of Iterative Pruning to find winning tickets:
» Train original model

> Layer-wise, prune p = 20% of the weights with the smallest
magnitude (p/2% for the output layer)

P lterate until desire sparsity is achieved

Novelty: IMP find subnets that can be trained efficiently from the
start for unprecedented small level of sparsity without degradation
of accuracy
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Empirical performance of tickets found by Iterative Pruning

Learns faster! than the original model for 3.6% < s < 100%:
E;#Iter(IMP(M, s), ) < E;#Iter(M, 1)
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Figure: Dashed lines: random M, /. Solid lines: random IMP(M,s), /.

1The training time decreases from s = 100% to s = 21% at which point
early-stopping occurs 38% earlier than for the original model, then it increases



Empirical performance of tickets found by Iterative Pruning

More accurate? than the original model for 3.6% < s < 100%:
E;Topl(IMP(M,s), 1) > E;Topl(M,I)
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Structured sparsification

Aim: replace dense weight matrices with structured ones (e.g.,
sparse, low-rank, Fourier transform).

These methods have not seen widespread adoption:

» in end-to-end training due to unfavorable efficiency-quality
tradeoffs,

» in dense-to-sparse fine-tuning of pretrained models due to lack

of tractable algorithms to approximate a given dense weight
matrix
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Monarch networks

["Monarch: Expressive Structured Matrices for Efficient and Accurate
Training”, T. Dao et all, 2022]

Monarch matrices:

» hardware-efficient (they are parameterized as products of two
block-diagonal matrices for better hardware utilization)

> expressive (they can represent many commonly used transforms).

» The problem of approximating a dense weight matrix with a
Monarch matrix, though nonconvex, has an analytical optimal
solution.
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Monarch matrices

Definition 3.1. Let n = m2. An n x n Monarch matriz has the form:

M=PLP'R,
where L and R are block-diagonal matrices, each with m blocks of size m x m, and P is the permutation
that maps [z1,...,Zn] t0 [T1, Z14ms s Tt (m—1)ms T2s T24ms - - 5
Tog(m-L)ms -+ » Ty Tams -+ Tn)-

(@ sparse E2E Training

g £
g g
El =
g :
A~ ~

—  —
Block Diagonal

Figure 2: Monarch matrices are parametrized as products of two block-diagonal matrices up to permutation,
allowing efficient multiplication algorithm that leverages batch matrix multiply.

We can interpret P = PT as follows: it reshapes a vector x of size
n as a matrix of size m X m, transposes the matrix, then converts
back into a vector of size n.
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Link with butterfly matrices
> Let B butterfly matrix of size n where n is a power of 4.

» B = Bi...Biog,(n)/2 Biogy(n)/2 - - - Biogy(n)

L R
» R is block-diagonal with m = y/n dense blocks, each block of
size mx m

» [’ is composed of m x m blocks of size m x m, where each
block is a diagonal matrix:

D1 ... Dim
U= 1|... ... ...
Dm1i ... Dpm
» [’ can be written as block-diagonal with the same structure as
R after permuting the rows and columns.
» L =PL'PT: up to permuting rows and columns, L’ is also a
block-diagonal matrix of m dense blocks, each of size m x m.
» B butterly implies B monarch
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Projection algorithm

Special case of matrix factorization algorithm - cf. Cours 10 Sparse
matrix factorization

— Solve a series of block SVDs
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Compression - end-to-end (E2E)

Replacing dense matrices with Monarch matrices in Vision Transformer ViT,
MLP-Mixer (ImageNet), and GPT-2 (WikiText-103) can speed up training by
up to 2x without sacrificing model quality

Table 1: The performance of Monarch matrices and ViT / MLP-Mixer on ImageNet, including the number of

parameters and FLOPs. We measure the Top-1 accuracy and the training time speedup compared to the
corresponding dense model.

Model TmageNet acc. Speedup Params FLODs
Mixer-S/16 74.0 - 18.5M  3.8G
Monarch-Mixer-S/16 73.7 1.7x 7.0M 1.5G
Mixer-B/16 7.7 - 59.9M  12.6G
Monarch-Mixer-B/16 77.8 19x  209M 5.0G
ViT-S/16 79.4 - 48.8M  9.9G
Monarch-ViT-S/16 79.1 1.9x 19.6M  3.9G
ViT-B/16 78.5 - 86.6M 17.6G
Monarch-ViT-B/16 78.9 2.0x 33.0M  5.9G

Table 2: Performance of Monarch matrices and GPT-2-Small/Medium on WikiText-103, including the # of
parameters and FLOPs. Monarch achieves similar perplexity (ppl) but 2.0x faster.

Model PPL Speedup Params FLOPs
GPT-2-Small 20.6 - 124M 106G
Monarch-GPT-2-Small 20.7 1.8x 72M 51G
GPT-2-Medium 20.9 - 355M 361G
Monarch-GPT-2-Medium || 20.3 2.0x 165M 166G
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Compression - Denso-to-sparse

Procedure: BERT pretrained weights, approximate them with
Monarch matrices, and finetune the resulting model on the 9 GLUE
tasks (collection of nine natural language understanding tasks).

Result: Monarch finetuned model with similar quality to the dense

BERT model, but with 1.7x faster finetuning speed.
Table 8: The performance of Monarch matrices in finetuning BERT on GLUE.

Model GLUE (avg) Speedup Params FLOPs
BERT-base 78.6 - 109M 11.2G
Monarch-BERT-base 78.3 1.5 55M 6.2G
BERT-large 80.4 - 335M  39.5G
Monarch-BERT-large 79.6 1.7x 144M 14.6G
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Pixelated butterfly
Pixelated Butterfly: Simple and Efficient Sparse Training for Neural Network Models, Dao et all, 2022
» An approach similar to the previous one, but that uses
butterfly factorizations
» As classical butterfly matrices are not hardware efficient, they
propose variants of butterfly (block and flat) to take
advantage of modern hardware.

Model Schema %ﬂg Pixelated Butterfly Sparse Masks
- ™ e -~ ™
=R
g
8
=
Attention i — Attention Mask
2
B T

o
o | |

\ MLP ) ‘\ Flat Block Butterfly Low-rank / . MLP Mask )

Recent deVelOpment . "Fast inference with Kronecker-sparse matrices” A. Gonon, L. Zheng, P.
carrivain, Q. Le, 2024 (GPU matrix multiplication algorithms specialized for

Kronecker-sparse matrices)
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