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Industrial application:
Enlargement of the pumps catalogue for a company.
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Parametric Design of a new pump: key ingredients

Geometry parameterization: choice of n independent
parameters (degrees of freedom) that describe the pump
geometry: p1, p2, . . . , pn.

A pump: P = (p1, p2, . . . , pn).

Design space: individuate range of variation of parameters:
pi min ≤ pi ≤ pi max, i = 1, . . . , n.

Design space: S = [p1min, p1max]× · · · × [pnmin, pnmax],

Performance functions: Individuation of functions to
measure a pump performance (efficiency, flow rate...)

Performance function F = (f1, . . . , fh).

Computation through CFD (Computational Fluid Dynamics)
expensive! → regression meta-model (ANN)
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Single pump design scheme
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Single pump design vs family design

Single pump design:

The redesign starts from a
baseline configuration
geometrically close to the
final one.

The number of parametres
is small (∼ 10)

All the tools are finely
tuned for the specific
application. (e.g. geometry

parameterization, mesh

generation, CFD solver etc.)

All the geometrical
constraints can be a-priori
taken into account.

Family design:

The design starts from
scratch.

Tens of parameters are
necessary (∼ 40), to model
the different pumps
geometries in a family,
resulting in a high
dimensional design space.

The parameters vary in a
wide range.

It is impossible to take
a-priori into account all the
geometrical constraints.
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Single pump design:
⇓

When the design space is
sampled, all the geometries

results to be FEASIBLE: they
correspond to manufacturable
machines and to convergent

CFD computations

Family design:
⇓

The most part (about 70%) of
parameters combinations are

UNFEASIBLE: they correspond
to non manufacturable machines

or to non-convergent CFD
computations
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Drawbacks of the application of single pump design
scheme to the design of a family of pumps
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Proposed approach: classification meta-model

IDEA: We need a cheap tool to identify the feasible parameters
combinations.

⇓
We propose an approach based on coupling CFD computations and

the regression model with a classification meta-model.

Binary classification problem:

class F of feasible geometries: manufacturable machines and
convergent CFD calculations,

class U of unfeasible geometries: non manufacturable
machines or non-convergent CFD calculations.

We used Support Vector Machine as a classifier.
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Main feature of the classification process

We chose Support Vector Machine as a classifier, and we used the
LIBSVM - A Library for Support Vector Machines, implemented by
Chih-Chung Chang and Chih-Jen Lin.

MAIN DIFFICULTY:
SVM has to be trained on an unbalanced dataset!

|U| >> |F|
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Unbalanced Dataset

Two different weights are used for the positive and the
negative features:

min
ω,b

1

2
‖w‖2 + C

l∑
i=1

ξi

⇓

min
ω,b

1

2
‖w‖2 + C+

∑
xi∈F

ξi + C−
∑
xi∈U

ξi

ξi = ξ(ω, b; xi , yi ) = max(1− yi (ω
TΦ(xi ) + b), 0).

C+ > C−: the misinterpretation of feasible features is
penalized with more severity.
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Performance evaluation

TPR true positive rate TPR = TP
TP+FN , fraction of positive

samples correctly classified over all positive samples available
in the test,
FPR false positive rate FPR = FP

TN+FP , fraction of unfeasible
features misinterpreted over all negative samples available in
the test.

P N

TP TN

FP
FN

TPR

FPR

TNR

FNR

Database

Compromise between

finding as much feasible features as possible (TP),

allowing in their set as few false positives as possible (FP).
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Numerical Tests

Performance depends on the free parameters C−, C+.

Different databases were considered with different
unbalancedness levels.

We consider one such that:

n = 44 features,
m = 80000 samples
|U|/|F| = 7/1.

We investigated the best parameter choice, fixing C− = 1 and
varying C+.
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Best parameter choice

Literature: the coefficients corresponding to feasible and
unfeasible features should be inversely proportional to the
ratio of the corresponding features set sizes, [Shin, Cho, 2003]:

C+

C−
w
|U|
|F|

.

Best parameter choice: the ROC (Receiver Operating
Characteristic) curve.
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ROC curve

|U|
|F| = 7

1 →
C+

C−
= 7

7 : 1 C+ = 1 C+ = 2 C+ = 3 C+ = 5 C+ = 7 C+ = 10 C+ = 20

TPR 14.7% 53.5% 66.0% 77.5% 83.0% 86.5% 88.4%
FPR 0.7% 5.9% 9.9% 16.1% 19.8% 23.1% 25.7%
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Conclusions
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2) Almost balanced set 

of optimal solutions. 

Ratio from  7:1----> 1.5:1.
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THANK YOU FOR YOUR ATTENTION!
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Kernel choice

The classification performance is influenced by the choice of the
free parameters, for example the kernel choice.

The radial basis function kernel (RBF) was chosen:

K (x , y) = e−γ‖x−y‖
2
.

γ was set to the average squared distance among training
patterns, [Nanculef R, Frandi E, Sartori C, Allende H. A novel
frank wolfe algorithm, analysis and applications to large-scale
svm training, 2014].
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