Regularizing trust-region and Levenberg-Marquardt approaches for ill-posed nonlinear least squares problems

> Stefania Bellavia Università degli Studi di Firenze Dipartimento di Ingegneria Industriale

Based on works with Benedetta Morini, Elisa Riccietti

OIP2106, Modena, September 19-21 2016.

K ロ ▶ (x @) → (ミ) → (

つくい

- Introduction to iterative regularization methods.
- Zero residual problems:
	- Regularizing Levenberg-Marquardt (LM) methods.
	- Regularizing trust-region (TR) approaches.
	- Numerical tests: LM versus TR
- Small residual problems: Elliptical trust-region methods.
- Open issues and future developments.

 Ω

Ill-posed problems

Let us consider the following inverse problem: given $F: \mathbb{R}^n \to \mathbb{R}^m$ with $m \geq n$, nonlinear, continuously differentiable and $y \in \mathbb{R}^m$, solve

$$
\min_{x \in \mathbb{R}^n} \frac{1}{2} \|F(x) - y\|^2.
$$

We consider ill-posed problems:

- no finite bounds on the norm of the inverse of $J(x)$ can be used in the analysis;
- the solution does not depend continuously on the data.

 Ω

イロト イ押ト イヨト イヨト

Noisy case

In realistic situation only noisy data y^δ are given:

$$
\|y-y^\delta\|\leq \delta,
$$

where δ is the noise level.

- Applications: Data assimilation, geophysics, seismic inversion, fitting of exponentials, discretization of problems with compact operator
- Classical methods used for well-posed problems are not suitable in this contest.

Need for regularization

 QQQ

Iterative regularization methods

Let x^{\dagger} be a solution of min $\frac{1}{2} || F(x) - y ||^2$.

Iterative regularization methods generate a sequence $\{x_k^\delta\}$. If the process is stopped at iteration $k^*(\delta)$ the method is supposed to guarantee the following properties:

- $\mathsf{x}_{\mathsf{k}^*(\delta)}^{\delta}$ is an approximation of $\mathsf{x}^\dagger;$
- $\{x_{k^*(\delta)}^{\delta}\}$ tends to x^\dagger if δ tends to zero;
- local convergence to x^\dagger in the noise-free case.

KOD KARD KED KED E VAN

Regularizing methods for zero residual problems

- Landweber (gradient-type method)[Hanke, Neubauer, Scherzer, 1995,Kaltenbacher, Neubauer, Scherzer, 2008]
- **Truncated Newton Conjugate Gradients [Hanke, 1997, Rieder, 2005]**
- **Iterative Regularizing Gauss-Newton [Bakushinsky, 1992, Blaschke,** Neubauer, Scherzer, 1997]
- Levenberg-Marquardt [Hanke,1997,2010,Vogel 1990, Kaltenbacher, Neubauer, Scherzer, 2008]
- Trust region methods [Wang, Yuan 2002,B., Morini, Riccietti 2016]

Most of these methods are analyzed only under local assumptions.

 QQ

イロト イ押ト イヨト イヨト

Levenberg-Marquardt method

Given $x_k^{\delta} \in \mathbb{R}^n$ and $\lambda_k > 0$, we denote with $J \in \mathbb{R}^{m \times n}$ the Jacobian matrix of F.The step $p_k \in \mathbb{R}^n$ is the minimizer of

$$
m_k^{LM}(p) = \frac{1}{2} ||F(x_k^{\delta}) - y^{\delta} + J(x_k^{\delta})p||^2 + \frac{1}{2}\lambda_k ||p||^2;
$$

• $p_k = p(\lambda_k)$ is the solution of

 $(B_k + \lambda_k I)p_k = -g_k$

with $B_k = J(x_k^{\delta})^T J(x_k^{\delta}), g_k = J(x_k^{\delta})^T (F(x_k^{\delta}) - y^{\delta});$ • The step is then used to compute the new iterate

$$
x_{k+1}^{\delta}=x_k^{\delta}+p_k.
$$

KET KEN KEN (EN 1900)

Regularizing LM method for zero residual problems

• The parameter $\lambda_k > 0$ satisfies:

 $\Vert F(x_k^{\delta}) - y^{\delta} + J(x_k^{\delta})p(\lambda_k) \Vert = q \Vert F(x_k^{\delta}) - y^{\delta} \Vert$

with $q \in (0,1)$;

With noisy data the process is stopped at iteration $k^*(\delta)$ such that $\mathsf{x}_{k^*(\delta)}^{\delta}$ satisfies the discrepancy principle:

$$
\|F(x_{k^*(\delta)}^\delta) - y^\delta\| \leq \tau \delta < \|F(x_k^\delta) - y^\delta\|
$$

for $0 \leq k < k^*(\delta)$ and $\tau > 1$ suitable parameter.

[Hanke, 1997,2010]

KED KAP KED KED E VOOR

The role of the q-condition

- A sufficiently small step is needed in order to prevent to approach the solution of the noisy problem and to leave the region around x^\dagger
- The q-condition prevents to take too long steps

 $\|p(\lambda)\|$ and $\|F - y^{\delta} + F'(p(\lambda))\|$ varying λ .

つひひ

Local analysis

Hypothesis for the local analysis:

Given the starting guess x_0 , it exist positive ρ and c such that

- the system $F(x) = y$ is solvable in $B_0(x_0)$;
- **o** for $x, \tilde{x} \in B_{2\rho}(x_0)$

 $||F(x) - F(\tilde{x}) - J(x)(x - \tilde{x})|| \le c||x - \tilde{x}|| ||F(x) - F(\tilde{x})||.$

 $=$ Ω

イロト イ押ト イヨト イヨト

Local analysis

Hypothesis for the local analysis:

Given the starting guess x_0 , it exist positive ρ and c such that

• the system $F(x) = y$ is solvable in $B_0(x_0)$;

• for $x, \tilde{x} \in B_{2\rho}(x_0)$

 $||F(x) - F(\tilde{x}) - J(x)(x - \tilde{x})|| \le c||x - \tilde{x}|| ||F(x) - F(\tilde{x})||.$

well posed problems: $||F(x) - F(\tilde{x}) - J(x)(x - \tilde{x})|| \le c||x - \tilde{x}||^2$.

- Due to the ill-posedness of the problem it is not possible to assume that a finite bound on the inverse of the Jacobian matrix exists.
- The Jacobian may be singular at the solution.

KOD KARD KED KED E VAN

Regularizing properties of the LM method

Choosing λ_k solution of the q-condition

$$
||F(x_k^{\delta}) - y^{\delta} + J(x_k^{\delta})p(\lambda_k)|| = q||F(x_k^{\delta}) - y^{\delta}||
$$

and stopping the process when the discrepancy principle

$$
\|F(x_{k^*(\delta)}^{\delta}) - y^{\delta}\| \leq \tau \delta < \|F(x_k^{\delta}) - y^{\delta}\|
$$

is satisfied, Hanke proves that:

- With exact data $(\delta=0)$: local convergence to x^\dagger ,
- With noisy data $(\delta>0)$: Choosing x_0 close to x^\dagger the discrepancy principle is satisfied after a finite number of iterations $k^*(\delta)$ and $\{x_{k^*(\delta)}^{\delta}\}$ converges to a solution of $F(x)=y$ if δ tends to zero.

Regularizing method.

Stefania Bellavia **LM LM** and TR Regularization. Europt2016 11 / 11

KOD KARD KED KED E VAN