Regularizing trust-region and Levenberg-Marquardt approaches for ill-posed nonlinear least squares problems

> Stefania Bellavia Università degli Studi di Firenze Dipartimento di Ingegneria Industriale

Based on works with Benedetta Morini, Elisa Riccietti

OIP2106, Modena, September 19-21 2016.

(日) (部) (注) (注)

Outline

- Introduction to iterative regularization methods.
- Zero residual problems:
 - Regularizing Levenberg-Marquardt (LM) methods.
 - Regularizing trust-region (TR) approaches.
 - Numerical tests: LM versus TR
- Small residual problems: Elliptical trust-region methods.
- Open issues and future developments.

Ill-posed problems

Let us consider the following inverse problem: given $F : \mathbb{R}^n \to \mathbb{R}^m$ with $m \ge n$, nonlinear, continuously differentiable and $y \in \mathbb{R}^m$, solve

$$\min_{x\in\mathbb{R}^n}\frac{1}{2}\|F(x)-y\|^2.$$

We consider ill-posed problems:

- no finite bounds on the norm of the inverse of J(x) can be used in the analysis;
- the solution does not depend continuously on the data.

(日) (同) (三) (三)

Noisy case

In realistic situation only noisy data y^{δ} are given:

$$\|y-y^{\delta}\|\leq \delta,$$

where δ is the noise level.

- Applications: Data assimilation, geophysics, seismic inversion, fitting of exponentials, discretization of problems with compact operator
- Classical methods used for well-posed problems are not suitable in this contest.

Need for regularization

Iterative regularization methods

Let x^{\dagger} be a solution of min $\frac{1}{2} ||F(x) - y||^2$.

Iterative regularization methods generate a sequence $\{x_k^{\delta}\}$. If the process is stopped at iteration $k^*(\delta)$ the method is supposed to guarantee the following properties:

- $x_{k^*(\delta)}^{\delta}$ is an approximation of x^{\dagger} ;
- $\{x_{k^*(\delta)}^{\delta}\}$ tends to x^{\dagger} if δ tends to zero;
- local convergence to x^{\dagger} in the noise-free case.

(日) (周) (三) (三)

Regularizing methods for zero residual problems

- Landweber (gradient-type method)[Hanke, Neubauer, Scherzer, 1995,Kaltenbacher, Neubauer, Scherzer, 2008]
- Truncated Newton Conjugate Gradients [Hanke, 1997, Rieder, 2005]
- Iterative Regularizing Gauss-Newton [Bakushinsky, 1992, Blaschke, Neubauer, Scherzer, 1997]
- Levenberg-Marquardt [Hanke,1997,2010,Vogel 1990, Kaltenbacher, Neubauer, Scherzer, 2008]
- Trust region methods [Wang, Yuan 2002, B., Morini, Riccietti 2016]

Most of these methods are analyzed only under local assumptions.

(日) (周) (三) (三)

Levenberg-Marquardt method

• Given $x_k^{\delta} \in \mathbb{R}^n$ and $\lambda_k > 0$, we denote with $J \in \mathbb{R}^{m \times n}$ the Jacobian matrix of *F*. The step $p_k \in \mathbb{R}^n$ is the minimizer of

$$m_{k}^{LM}(p) = \frac{1}{2} \|F(x_{k}^{\delta}) - y^{\delta} + J(x_{k}^{\delta})p\|^{2} + \frac{1}{2}\lambda_{k}\|p\|^{2}$$

• $p_k = p(\lambda_k)$ is the solution of

 $(B_k + \lambda_k I)p_k = -g_k$

with $B_k = J(x_k^{\delta})^T J(x_k^{\delta})$, $g_k = J(x_k^{\delta})^T (F(x_k^{\delta}) - y^{\delta})$; • The step is then used to compute the new iterate

$$x_{k+1}^{\delta} = x_k^{\delta} + p_k.$$

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ ・

Regularizing LM method for zero residual problems

• The parameter $\lambda_k > 0$ satisfies:

 $\|F(x_k^{\delta}) - y^{\delta} + J(x_k^{\delta})p(\lambda_k)\| = q\|F(x_k^{\delta}) - y^{\delta}\|$

with $q \in (0, 1)$;

• With noisy data the process is stopped at iteration $k^*(\delta)$ such that $x_{k^*(\delta)}^{\delta}$ satisfies the discrepancy principle:

$$\|F(x_{k^*(\delta)}^{\delta}) - y^{\delta}\| \leq \tau \delta < \|F(x_k^{\delta}) - y^{\delta}\|$$

for $0 \le k < k^*(\delta)$ and $\tau > 1$ suitable parameter.

[Hanke, 1997,2010]

(日) (周) (三) (三)

The role of the *q*-condition

- A sufficiently small step is needed in order to prevent to approach the solution of the noisy problem and to leave the region around x^{\dagger}
- The q-condition prevents to take too long steps

 $\|p(\lambda)\|$ and $\|F - y^{\delta} + F'(p(\lambda))\|$ varying λ .

Local analysis

Hypothesis for the local analysis:

Given the starting guess x_0 , it exist positive ρ and c such that

- the system F(x) = y is solvable in $B_{\rho}(x_0)$;
- for $x, \tilde{x} \in B_{2\rho}(x_0)$

 $\|F(x) - F(\tilde{x}) - J(x)(x - \tilde{x})\| \le c \|x - \tilde{x}\| \|F(x) - F(\tilde{x})\|.$

Local analysis

Hypothesis for the local analysis:

Given the starting guess x_0 , it exist positive ρ and c such that

- the system F(x) = y is solvable in $B_{\rho}(x_0)$;
- for $x, \tilde{x} \in B_{2\rho}(x_0)$

 $||F(x) - F(\tilde{x}) - J(x)(x - \tilde{x})|| \le c||x - \tilde{x}|| ||F(x) - F(\tilde{x})||.$

well posed problems: $||F(x) - F(\tilde{x}) - J(x)(x - \tilde{x})|| \le c ||x - \tilde{x}||^2$.

- Due to the ill-posedness of the problem it is not possible to assume that a finite bound on the inverse of the Jacobian matrix exists.
- The Jacobian may be singular at the solution.

Regularizing properties of the LM method

Choosing λ_k solution of the q-condition

$$\|F(x_k^{\delta}) - y^{\delta} + J(x_k^{\delta})p(\lambda_k)\| = q\|F(x_k^{\delta}) - y^{\delta}\|$$

and stopping the process when the discrepancy principle

$$\|F(x_{k^*(\delta)}^\delta) - y^\delta\| \leq au \delta < \|F(x_k^\delta) - y^\delta\|$$

is satisfied, Hanke proves that:

- With exact data ($\delta = 0$): local convergence to x^{\dagger} ,
- With noisy data (δ > 0): Choosing x₀ close to x[†] the discrepancy principle is satisfied after a finite number of iterations k*(δ) and {x_{k*(δ)}^δ} converges to a solution of F(x) = y if δ tends to zero.

Regularizing method.

イロト イポト イヨト イヨト