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Outline

Introduction to iterative regularization methods.

Zero residual problems:

Regularizing Levenberg-Marquardt (LM) methods.
Regularizing trust-region (TR) approaches.
Numerical tests: LM versus TR

Small residual problems: Elliptical trust-region methods.

Open issues and future developments.
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Discrete Nonlinear ill-posed problems and regularizing methods

Ill-posed problems

Let us consider the following inverse problem: given F : Rn → Rm with
m ≥ n, nonlinear, continuously differentiable and y ∈ Rm, solve

min
x∈Rn

1

2
‖F (x)− y‖2.

We consider ill-posed problems:

no finite bounds on the norm of the inverse of J(x) can be used in
the analysis;

the solution does not depend continuously on the data.
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Discrete Nonlinear ill-posed problems and regularizing methods

Noisy case

In realistic situation only noisy data y δ are given:

‖y − y δ‖ ≤ δ,

where δ is the noise level.

Applications: Data assimilation, geophysics, seismic inversion, fitting
of exponentials, discretization of problems with compact operator

Classical methods used for well-posed problems are not suitable in this
contest.

Need for regularization
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Discrete Nonlinear ill-posed problems and regularizing methods

Iterative regularization methods

Let x† be a solution of min 1
2‖F (x)− y‖2.

Iterative regularization methods generate a sequence {xδk}. If the process
is stopped at iteration k∗(δ) the method is supposed to guarantee the
following properties:

xδk∗(δ) is an approximation of x†;

{xδk∗(δ)} tends to x† if δ tends to zero;

local convergence to x† in the noise-free case.
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Regularizing LM approaches

Regularizing methods for zero residual problems

Landweber (gradient-type method)[ Hanke, Neubauer, Scherzer,
1995,Kaltenbacher, Neubauer, Scherzer, 2008 ]

Truncated Newton - Conjugate Gradients [Hanke,1997, Rieder, 2005]

Iterative Regularizing Gauss-Newton [Bakushinsky, 1992, Blaschke,
Neubauer, Scherzer, 1997]

Levenberg-Marquardt [Hanke,1997,2010,Vogel 1990, Kaltenbacher,
Neubauer, Scherzer, 2008]

Trust region methods [Wang, Yuan 2002,B., Morini, Riccietti 2016]

Most of these methods are analyzed only under local assumptions.
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Regularizing LM approaches

Levenberg-Marquardt method

Given xδk ∈ Rn and λk > 0, we denote with J ∈ Rm×n the Jacobian
matrix of F .The step pk ∈ Rn is the minimizer of

mLM
k (p) =

1

2
‖F (xδk )− y δ + J(xδk )p‖2 +

1

2
λk‖p‖2;

pk = p(λk) is the solution of

(Bk + λk I )pk = −gk

with Bk = J(xδk )T J(xδk ), gk = J(xδk )T (F (xδk )− y δ);

The step is then used to compute the new iterate

xδk+1 = xδk + pk .
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Regularizing LM approaches

Regularizing LM method for zero residual problems

The parameter λk > 0 satisfies:

‖F (xδk )− y δ + J(xδk )p(λk)‖ = q‖F (xδk )− y δ‖

with q ∈ (0, 1);

With noisy data the process is stopped at iteration k∗(δ) such that
xδk∗(δ) satisfies the discrepancy principle:

‖F (xδk∗(δ))− y δ‖ ≤ τδ < ‖F (xδk )− y δ‖

for 0 ≤ k < k∗(δ) and τ > 1 suitable parameter.

[Hanke, 1997,2010]
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Regularizing LM approaches

The role of the q-condition

A sufficiently small step is needed in order to prevent to approach the
solution of the noisy problem and to leave the region around x†

The q-condition prevents to take too long steps

‖p(λ)‖ and ‖F − y δ + F ′(p(λ))‖ varying λ.
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Regularizing LM approaches

Local analysis

Hypothesis for the local analysis:
Given the starting guess x0, it exist positive ρ and c such that

the system F (x) = y is solvable in Bρ(x0);

for x , x̃ ∈ B2ρ(x0)

‖F (x)− F (x̃)− J(x)(x − x̃)‖ ≤ c‖x − x̃‖‖F (x)− F (x̃)‖.

well posed problems: ‖F (x)− F (x̃)− J(x)(x − x̃)‖ ≤ c‖x − x̃‖2.

Due to the ill-posedness of the problem it is not possible to assume
that a finite bound on the inverse of the Jacobian matrix exists.

The Jacobian may be singular at the solution.
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Regularizing LM approaches

Regularizing properties of the LM method

Choosing λk solution of the q-condition

‖F (xδk )− y δ + J(xδk )p(λk)‖ = q‖F (xδk )− y δ‖

and stopping the process when the discrepancy principle

‖F (xδk∗(δ))− y δ‖ ≤ τδ < ‖F (xδk )− y δ‖

is satisfied, Hanke proves that:

With exact data (δ = 0): local convergence to x† ,

With noisy data (δ > 0): Choosing x0 close to x† the discrepancy
principle is satisfied after a finite number of iterations k∗(δ) and
{xδk∗(δ)} converges to a solution of F (x) = y if δ tends to zero.

Regularizing method.

Stefania Bellavia LM and TR Regularization. Europt2016 11 / 11


	Discrete Nonlinear ill-posed problems and regularizing methods
	 Regularizing LM approaches

