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@ Introduction to iterative regularization methods.

@ Zero residual problems:
o Regularizing Levenberg-Marquardt (LM) methods.
o Regularizing trust-region (TR) approaches.
o Numerical tests: LM versus TR

Small residual problems: Elliptical trust-region methods.

@ Open issues and future developments.
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Discrete Nonlinear ill-posed problems and regularizing methods

lll-posed problems

Let us consider the following inverse problem: given F : R" — R™ with
m > n, nonlinear, continuously differentiable and y € R™, solve

Z|IF(x) =y
min 5 IFC) v
We consider ill-posed problems:

@ no finite bounds on the norm of the inverse of J(x) can be used in
the analysis;

@ the solution does not depend continuously on the data.
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Discrete Nonlinear ill-posed problems and regularizing methods

Noisy case

In realistic situation only noisy data y° are given:
5
ly =y°ll <6,

where § is the noise level.

@ Applications: Data assimilation, geophysics, seismic inversion, fitting
of exponentials, discretization of problems with compact operator

@ Classical methods used for well-posed problems are not suitable in this
contest.

Need for regularization
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Discrete Nonlinear ill-posed problems and regularizing methods

lterative regularization methods

Let x' be a solution of min 1[|F(x) — y|%.

Iterative regularization methods generate a sequence {x,f}. If the process
is stopped at iteration k*(0) the method is supposed to guarantee the
following properties:

° le*((i) is an approximation of x;
° {X/f*(d)} tends to xT if § tends to zero:

e local convergence to x! in the noise-free case.
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Regularizing LM approaches

Regularizing methods for zero residual problems

e Landweber (gradient-type method)[ Hanke, Neubauer, Scherzer,
1995,Kaltenbacher, Neubauer, Scherzer, 2008 |

@ Truncated Newton - Conjugate Gradients [Hanke, 1997, Rieder, 2005]

@ lterative Regularizing Gauss-Newton [Bakushinsky, 1992, Blaschke,
Neubauer, Scherzer, 1997]

e Levenberg-Marquardt [Hanke,1997,2010,Vogel 1990, Kaltenbacher,
Neubauer, Scherzer, 2008]

@ Trust region methods [Wang, Yuan 2002,B., Morini, Riccietti 2016]

Most of these methods are analyzed only under local assumptions.
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Levenberg-Marquardt method

@ Given x? € R" and \x > 0, we denote with J € R™*" the Jacobian
k

matrix of F.The step px € R” is the minimizer of

1 1
miM(p) = SIF() = y° + J)pl? + Sl el

e px = p(Ak) is the solution of
(B + Al )pk = — g«
with B = J(x0)TJ(xQ). gk = J(x) T (F(x0) — v°);
@ The step is then used to compute the new iterate

5 5
X1 = Xie + Pk
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Regularizing LM approaches

Regularizing LM method for zero residual problems

@ The parameter Ay > 0 satisfies:
IF(R) = y* + JeR)pA) | = all FR) = ¥

with g € (0,1);
e With noisy data the process is stopped at iteration k*(§) such that
x,‘f*(é) satisfies the discrepancy principle:

IF () — ¥l < 76 < [IFOE) — ¥

for 0 < k < k*(6) and 7 > 1 suitable parameter.
[Hanke, 1997,2010]
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Regularizing LM approaches

The role of the g-condition

o A sufficiently small step is needed in order to prevent to approach the
solution of the noisy problem and to leave the region around x'

@ The g-condition prevents to take too long steps

| Ip ||

17 -v® — F a0

Ip(A)] and |F — y® + F'(p(A))]| varying X.
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Regularizing LM approaches

Local analysis

Hypothesis for the local analysis:
Given the starting guess xg, it exist positive p and ¢ such that

o the system F(x) =y is solvable in B,(xo);
e for x,X € By,(x0)

IF(x) = F(%) = J)(x = X)|| < ellx = X[[[|F(x) = F(K)]]-
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Regularizing LM approaches

Local analysis

Hypothesis for the local analysis:
Given the starting guess xg, it exist positive p and ¢ such that

o the system F(x) =y is solvable in B,(xo);
e for x,X € By,(x0)

IF(x) = F(%) = J()(x = )| < clix = %[HIF () = FR)]I-
well posed problems: ||F(x) — F(X) — J(x)(x — %)|| < c||x — %]||2.

@ Due to the ill-posedness of the problem it is not possible to assume
that a finite bound on the inverse of the Jacobian matrix exists.

@ The Jacobian may be singular at the solution.
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Regularizing properties of the LM method
Choosing A\ solution of the g-condition
IF(R) = y° + J)p(A) = al F(x) — ¥l
and stopping the process when the discrepancy principle
IFOgs)) = 7l < 76 < IF ) — )
is satisfied, Hanke proves that:

o With exact data (6 = 0): local convergence to x' ,

@ With noisy data (§ > 0): Choosing xg close to x' the discrepancy
principle is satisfied after a finite number of iterations k*(J) and
{x,f*(d)} converges to a solution of F(x) =y if ¢ tends to zero.

Regularizing method.

Stefania Bellavia LM and TR Regularization. Europt2016 1 /11



	Discrete Nonlinear ill-posed problems and regularizing methods
	 Regularizing LM approaches

