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Part 1

I part: nonlinear optimization






Chapter 1

Prerequisites

Let A be an open set of R™ and let
[ ACR" — R
x=(z1,...,2,)0 — f(x)
An unconstrained optimization problem is a problem of the form
wmin f(2),
x

where f is called the objective function. In the following we will assume f to be a nonlinear
function.

1. If f is differentiable in x (i.e. if there exist all the partial derivatives of f in x), the
gradient of f in x is Vf(x) € R™:

0f(x)
81‘1

Vfx) = :
of (x)
oxy,

2. If f is two times differentiable in x, the Hessian matrix of f in x is H(x) € R™*"

Pix) P (v 0 (x) ) '
0x10x1 0x10x, O0z1

H(x) = Hy(x) = : : = : :
?f(x)  0*f(x) af(x)\"
02,071 0z, 0Ty, (V 0z, )

If f € C%(x) then H(x) is a symmetric matrix.

3. Let us remind the first-order Taylor formula with Lagrange form of the remainder. Let
f e CYA). Let x,x+h € A with h # 0 such that the segment {x +th |t € [0,1]} whose
endpoints are x and x + h is contained in A. Then it exists ¢ € (0,1), depending on x
and h, such that

f(x+h)= f(x)+ Vf(x+th) h. (1.1)

7



8 CHAPTER 1. PREREQUISITES

4. Let us remind the second-order Taylor formula with Lagrange form of the remainder. Let
f € C?*(A). Let x,x +h € A with h # 0 such that the segment {x +th | ¢ € [0,1]} whose
endpoints are x and x + h is contained in A. Then it exists ¢ € (0,1), depending on x
and h, such that

f(x+h)=f(x)+Vfx)T"h+ %hTH(x + th)h. (1.2)

5. fis convex in AifVx,y € A
flx+ (1 =t)y) <tf(x)+ (1 -1)f(y), Vvtel0,1].
6. f is strictly conver in A if Vx,y € A
flx+ (1 =t)y) <tfx)+ 1 -1)f(y), Vte(01).
Definition 1.0.1. Let x* € A.

e X" is a local minimizer or a local minimum point for f if it exists a neighbourhood Q2 of
x* such that
f(x*) < f(x) vx € Q.

f(@*) is a local minimum of f.
e X" is a global minimizer or a global minimum point for f if
Fx) < Fx) Vxe Al
f(z*) is a global minimum of f.

e X" is a stationary point for [ if

VF(x*) = 0.

Definition 1.0.2. Directional derivatives
Let p € R" and f differentiable in a neighbourhood of x. The directional derivative of f in
x with respect to the direction p is defined as

of .\ _ f(x+hp) - f(x)
%(x) = 50 h ’

(1.3)

It holds (see TD1)

of .\ _ T
%(X) = Vf(x)" p.

Definition 1.0.3. Descent directions
A direction p € R™ is a descent direction for f in x if

o) = VP <0
i.e., if the angle ¥ between p and V f(x) is such that ¥ € (g,w} .

If Vf(x) # 0, we can always find a descent direction: that of the antigradient —V f(x).
From (1.3]) it follows that if p is a descent direction, then it exists h > 0 such that

f(x+hp)— f(x) <0 VYhe(0,h).



1.1. NECESSARY AND SUFFICIENT CONDITIONS 9

1.1 Necessary and sufficient conditions

In this section we give necessary and sufficient conditions for a point to be a minimum point.

Theorem 1.1.1. First order necessary condition
Let f € C*(Q) in a neighbourhood Q of x*.

x* is a minimizer for f (in Q) = Vf(x*)=0, i.e. X" is a stationary point for f.
Proof. We prove it by contradiction. Let us assume that V f(x*) # 0. Let
p=-V/f(x")

the antigradient of f in x*, clearly p # 0. The function

g9(x) =Vf(x)"p
is such that

g(x*) = Vf(x)'p=-Vfx)Vf(x*)=—|Vf(x)|* <0.

Then, as f € CI(Q) and so g is continuous in €2, it will remain negative in a neighbourhood of
z*, i.e., it exists T € R,T > 0 such that Vt € [0, 7]

0> g(x* +tp) = Vf(x* +tp)'p. (1.4)
From (LI)), V7 € (0,T), it exists ¢ € (0,1) such that
fx'+rp) = fOO)HVI+ tr, p)Ttp = fO)HTVIE +p)p < f(x).
=1t'e(0,T)
Then x* cannot be a minimum point for f, which leads us to a contradiction. O

This is just a necessary conditions, all minimizers are stationary points but not all stationary
points are minimizers, they may be maximizers or saddle points.

Theorem 1.1.2. Second order necessary condition
Let f € C*(Q) for a neighbourhood Q0 of x*.

X" is a minimum point for f (in Q) = H(X") is positive semidefinite.

Proof. We do the proof by contradiction. Let us assume that H(x*) is not positive semidefinite,
i.e. that it exists p € R™, p # 0 such that p? H(x*)p < 0. Let us define

9(x) :==p"H(x)p,

it holds g(x*) < 0. Then, as f € C*(Q) and so g is continuous in €, it exists T € R, T > 0 such
that V¢ € [0, T)

0> g(x* +tp) = p" H(x* + tp)p. (1.5)
From (1.2), V7 € (0,T), it exists ¢t € (0,1) such that
* * * 1 *
f4rp) = fO)+ V)T rptg(rp)TH( + tT, p)p =
N—— ~~
= 0 from Theorem [L.1.1] = t’G(O,T)

* 1 * *
= f)+5Tp HE +p)p < f(XT).
—_—
< 0 from
Then x* cannot be a minimum point for f, which leads us to a contradiction. O
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In the following theorem we show a sufficient condition: if this condition is satisfied, we are
sure to have a minimum point. This is a second order condition: first order derivatives are not
enough to establish a sufficient condition.

Theorem 1.1.3. Sufficient second-order condition
Let f € C%(Q) for a neighbourhood Q of x*.

{ Vf(x) =0

N\ . . == t .
H(x") is positive definite X" is a minimum point for f

Proof. As H(x") is positive definite, it exists a neighbourhood B = Byp(x™) of x* such that
Vx € B the matrix H(x) remains positive definite. Then for every p € R", V7 € (0,7T) it exists
t € (0,1) such that

1
fx*+7p) = [f)+VIx) ' rp+s(rp)"H(x*+ Ut p)Tp =
-0 :t’E(O,T)

= f(x*)—i-lTQpTH(x*—i—t’p)p > f(x),
——

2
€B
—_—————
>0
ie. f(x*) is the minimum value taken by f in B, so x* is a minimum point for f. O

It is in general expensive to establish if H(x™) is positive definite, as this requires the
computation of the eigenvalues of the matrix. This condition is then usually not employed.

1.2 Convex functions

Let us now focus on a special case: that of convex functions.

Lemma 1.2.1. Minima of convex functions. If f is convex, then every local minimum point
for [ is a global minimum point.

Proof. Let x be a local minimum point for f and let us proceed by contradiction. Assume that
x is not a global minimum, i.e. that it exists y € A such that f(y) < f(x). Then, Vt € [0,1)

flx+ (1 =t)y) <tf(x)+ 1 -0)f(y) <tf(x) + (1 -1)f(x) = f(x).

Then f has lower values in the points of the segment that connects x with y (except the point
x) than in x, so x cannot be a local minimum point for f. O

Lemma 1.2.2. Minima of strictly convexr functions. If f is strictly convex it has just one
minimum point.

Proof. Let x be a minimum point for f and assume, by contradiction, that it exists another

minimum point y. From Lemma all the minima points of f are global minima, so
f(x) = f(y). Then Vt € (0,1)

flx+ (A =t)y) <tfx)+ 1 -1)f(y) =tf(x) + (1 - 1)f(x) = f(%).

Then f has lower values in the points of the segment that connects x with y (except for the
endpoints) than in x. Thus x cannot be a minimum point for f. O
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1.3 Quadratic functions
A quadratic function is a function of the form
qg: R* — R

1
x +— q(x)==-xTAx—blx= 3 Z T — Zbixn

with 4 € R™*" symmetric, b € R".

Remark 1.3.1. We can easily compute the gradient and Hessian for a quadratic function:
e Vg(x)=Ax —b.
e H(x)=A.

Definition 1.3.1. ¢(x) is positive definite if A is positive definite.

Theorem 1.3.1. A quadratic function that is positive definite is a strictly convex function.

Theorem 1.3.2. A positive definite quadratic function q(x) has a unique minimizer x*, that

18 the unique solution of the problem
Ax =b.

Proof. As q(x) is strictly convex, g(x) has at most one minimizer. The Hessain matrix of ¢(x)
is A and it is positive definite, so from Theorem and Theorem it holds

x* is a minimizer of ¢(x) <= x" is a solution of V¢(x) = 0,

ie.
x* is a minimizer of ¢(x) <= x" is a solution of Ax = b.

A is positive definite and therefore invertible, so the problem Ax = b has a unique solution. [
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Chapter 2

Iterative methods

In unconstrained optimization iterative algorithms are usually used to find a minimizer of f,
that is algorithms such that, starting from an initial guess xg € A, builds a sequence {xj }xen of
points of A converging to a stationary point x* € A that satisfies the simple decrease property:

f(xr1) < f(xn)

(or, as it happens in nonmonotone algorithms, that satisfies a condition such as f(Xgim) <
f(xg) for m > 2 fix). In this way x* will surely not be a maximum point, but in unfortunate
cases it may be a saddle point, there is usually no guarantee of convergence to a minimum, as
the sufficient condition is usually not checked.
Usually convergence is proved in the limit for k£ that goes to infinity:

lim xj = x*,

k—o0
but in practice the algorithm is stopped when a suitable stopping criterion is met. The stopping
criterion is usually based on the norm of the gradient. As we want to reach a stationary point,
we will have

Jim [[V7(x0)]) =0, 1)

so, given a positive tolerance € > 0, the method is stopped as soon as |V f(xxk)|| < e. The
magnitude of the tolerance depends on the specific application.

An algorithm is said to be globally convergent, if is guaranteed for any initial guess xg,
independently of the proximity of x¢ to x*. Methods that are convergent just for initial guesses
close enough to a minimum are said locally convergent. For such methods to be effective we
need to have an a-priori information on the minimizers, which is not always available.

However, local methods can be made globally convergent by two different types of strategies:
line-search and trust-region. These two strategies establish how to move from the current point
Xy, to the next one xp41.

Line-search strategy In line-search methods we need to choose a descent direction pi. Then,
the iterative scheme is as follows:

Xk+1 = Xk + QkPk,

a step is taken in the selected direction from the current point x; whose length is ay > 0. We
call axpr the step, pxr the step direction and «j the step length. «j is chosen in a way that

13



14 CHAPTER 2. ITERATIVE METHODS

the following decrease condition is satisfied f(xx + arppr) < f(xx). Ideally, one should choose
ag > 0 that minimizes ¢(a) = f(xr + apk), but to do that a minimization problem in R has
to be solved at each iteration (find the points o such that ¢’(a) = 0). This would make the
algorithm too expensive, except in some exceptional cases, that we will see. Different strategies
are then used to make this choice.

Trust-region strategy The trust-region strategy is based on a quadratic model my(x) that
approximates f(x) in a neighbourhood of the current position xj:

my,(xx, p) = f(xx) + Vf(x)'p + %pTka, p € R",
where By, is H(xy) (the Hessian matrix of f in xj) or an approximation to it.
We look for a step py that minimizes my(xg, p) under the constraint that x; + p lays in a
neighbourhood Ba, (x;) of xj, called trust region, as it is the region in which we trust the
model to be a good approximation to the function. H
We look for a step pg solution of the problem

min mg(Xk, P), 2.2
PER™:|p[|<Ak ( ) 22)
where A > 0 is called trust-region radius.
As p = 0 belongs to the trust region, it holds my(xk, px) < mg(xk,0), but it may not hold
f(xk + pr) < f(xk). If this happens it means that the model is not a good approximation of
f(x) in the current trust region, the trust region is too large: we then chose Ay < Ay and

we solve again problem ((2.2).
Otherwise we accept the step, i.e. we set

Xk+1 = Xk + Pk-

It is possible to show that after a finite number of steps f(x; + pr) < f(xx)-

The two strategies are based on different ideas; in line-search strategy we first choose the
step direction and then we determine its length, in trust-region strategies first we choose the
maximal length of the step (the trust-region radius) and then we determine the direction.

In the following we will use just the line-search strategy.

2.1 Directions for line-search methods

2.1.1 Direction of steepest descent

The steepest descent direction for f in xj is

pr = —Vf(xk).

The direction pr = —V f(xy) is called of steepest descent for f in x; because it is the direction
in which, starting from x;,, the values of f decrease the fastest. Indeed the direction of steepest

1 Most often a ball is used as trust region, but other choices are possible depending on the problem, for
example elliptic or rectangular trust regions (used for example when box constraints are present)



2.1. DIRECTIONS FOR LINE-SEARCH METHODS 15

descent is the one that minimizes the directional derivative of f in xy:

af

x) = Vf(xp)T = Vf(x cos 1Y,
8p< k) =Vf(x) p = IV £ G Il
9 € [0, 7] is the angle

between V f(x) and p
If we assume, without loss of generality, that ||p|| = 1, the direction that maximises the decrease
is the one that minimizes cos, so it must be such that ¢ = 7 and so

or = —Vf(xx)

IV (i)l

An advantage of the steepest descent method (the one that uses this direction) is that it requires
just the computation of the gradient of f at each iteration, and not that of the second order
derivatives. However the convergence is generally really slow (it requires a large number of
iterations to reach a stationary point).

2.1.2 Newton’s direction

Let us consider the quadratic model of f in x;:

m(p) = fxk) + V7 () B+ 5p" Hx0)p,

and let assume H(xy) to be positive definite.
Newton’s direction p3 is the minimizer of my(p), i.e., being my(p) a positive definite quadratic
function, it is the solution of Newton’s system

H(xi)p=—-Vf(xg). (2.3)
The analytic expression of Newton’s direction is then
pr = —H(xx) 'V f(xx)

(note however that in practice H(xy) is never explicitly inverted to compute such a direction,
Newton’s system is rather solved.)

Thanks to the fact that H(xy) is positive definite, we have not only that H(xy) is invertible,
so Newton’s system has one and just one solution, but it also holds that pkN is a descent direction,
as

V) o = V1) (= Hxi) 9 0i)) = =V £ () TH i) VS 1) < 0,

because H(xy)~! is positive definite.

If H(x}) is not positive definite, not only py may not be well-defined (H(x)) may not be
invertible and so may not have a unique solution), but even if pkN is well-defined, pkN may
not be a descent direction.

Methods based on Newton’s direction are usually characterized by fast local convergence (they
require few iterations to converge), but they are expensive as they require not only the com-
putation of H(xy) at each step, but also the solution of the linear system that may be
expensive if the size of the problem is large.



16 CHAPTER 2. ITERATIVE METHODS

2.1.3 Quasi-Newton directions

Let us consider a quadratic model for f:

1
my(p) = f(xx) + Vf(xx)'p + §pTBkP7
where By, =~ H(xy) is a SPD ( symmetric positive definite) matrix.
Quasi-Newton direction py is the minimizer of my(p), i.e. is the solution of quasi-Newton
system

Bip = =V f(xx);

the analytical expression of the quasi-Newton direction is

pe" = —B 'V f(x).

2.2 Rates of convergence

Let {x1 }ren be a sequence of elements of R" converging to x*. The speed at which a convergent
sequence approaches its limit is represented by its order of convergence and by its rate of
convergence. The sequence is said to have order of convergence ¢ > 1 and rate of convergence

wif

_ *
i e =7
k—oo ||z — z*||9

e The sequence is said to converge linearly if it exists r € (0, 1) such that

_ *
lin PR =X
k—+o0 ||X]€ — X*H

e The sequence is said to converge superlinearly (faster than linearly) if

[%kg1 =% _

lim ——— =0.

k—+o0 ka — X*H

e The sequence is said to converge sublinearly (slower than linearly) if

[ e, [

lim =1.

k—+oo ka — X*H
e The convergence is said to be quadratic if it exists M > 0 such that

i PE =X
k—+o0 ||Xk — X*||2
e In general, given p > 1, the sequence is said to converge with order p if it exists M > 0
such that .
i e = X7

< M.
k—+o00 ||Xk - X*Hp

In particular, convergence with order
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— p =1 is called linear convergence,
— p = 2 is called quadratic convergence,

— p = 3 is called cubic convergence.
If the convergence is linear it means that
i1 — x| < e — %7

for all k large enough. This means that (asymptotically) the distance of the solution approxi-
mation from the solution at step k + 1 (||xx4+1 — x*||) is lower than a fraction of the distance
of the solution approximation from the solution at the previous step (r|x; — x*||): at each
iteration this distance is decreased and the rate at which it is decreased depends on r, if r is
close to one the decrease is really slow.

Usually the cost of a method is directly proportional to the speed of convergence: generally
an expensive method (for which a single iteration is expensive to compute) has a higher rate of
convergence and requires less iterations to converge. For example methods based on Newton’s
directions enjoy a quadratic local rate of convergence. Quasi-Newton methods are less expensive
then Newton’s method, but this is paid with a slower superlinear convergence.

2.3 Steepest descent method for quadratic functions

We have seen that when using line-search strategies it is in general too expensive to choose oy
solving the minimization problem

bl

with p(a) = f(zr + apy), given the current iterate xy and a descent direction py. In particular
cases the solution of this minimization problem can be computed analytically, and so the optimal
value can be employed in a cheap way. This is the case when the steepest descent direction is
used for quadratic functions.

Let us consider the positive definite quadratic function

qg: R" — R
1
x +— gqx)= §XTAX —bTx.

We know that x* is a minimizer for ¢(x) if and only if V¢(x*) = 0.
We choose the steepest descent direction

Pr = —Vq(xx) = —(Ax), — b) := —gg,
and we use the line-search method
Xg4+1 = X + AxPr = Xi — Q8-

In this particular case it is possible to choose aj € R that exactly minimizes

1
pla) = qxk+apr) = qxkr—agy) = §(Xk —agy) T A(xy — agy) — (xi — agi) " b.

The minimizer can indeed be analytically computed. Performing the computations and by
remarking that

~—

T T T T AT T
x;, Agr = (x, Agr)” =g, A" Xy, = gk, Axy,
€R A is symmetric
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we obtain that

1 1
pla) = 5ggAgkoz2 —x} Agra + b gra + ingXk —xIb =

1 1
= 5g5Agka2 - g;{gka + §ka.Axk - xfb,
1
i.e., p(«) is a parabola with branches pointing up, since ngAgk > 0, as A is positive definite.

Then the minimizer of p(«a) is a such that

0=¢'(a) =gl Agra — g}, gk,

that is . )
glge _ [Va(x)l
ghAge  Vaxn)lli’

having defined Yy € R™, VA € R™"™ SPD the energy norm |ly||%} = y? Ay. Remark that
ag > 0: that means that we will go along the direction py, and not in the opposite one.

A =

We derive then the following algorithm for the steepest descent method or gradient method.

Algorithm for gradient method (first version)
0. Given xg, 4, b, toll

1. Compute gy = Axo — b

2. For k=0,1,...

nggk
g Agk
. Set Xp+1 = Xk — A8k

1. Compute ay =

[\

3. Compute gry+1 = Axx11 — b

N

. If ||gk+1] < toll return x441 and stop.

At each iteration two matrix-vector products are performed: Agy and Axyy1. The algorithm
can be improved to require just one matrix vector product at each iteration, thanks to the fact
that

8rk+1 = AXpi1 — b = A(xy — argr) — b = Ax), — o Agr, — b = gi, — ar Agy.

We derive then the following optimized version of the algorithm.

Algorithm for gradient method (optimized version)
0. Given xg, 4, b, toll

1. Compute gg = Axg — b

2. For k=0,1,...

1. Compute ri = Agy
gh 8k
g{rk

2. Compute ap =
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3. Set X141 = Xk — k8K
4. Compute grt+1 = gk — il

5. If ||gr+1]] < toll return x;4+1 and stop

This algorithm has then a really low per-iteration cost. The memory consumption is also
low: at each iteration it requires to memorize the vector g, and no matrices.
The convergence is on the contrary slow: we can prove that it holds

X1 —x*[|a _ ka(A) -1
|xp —x*[|la ~ k2(A)+1°

where ko(A) is the condition number of A in the 2-norm. E| The convergence of the method is
then linear.
If a method converges linearly it exists r € (0,1) such that

l[xk+1 — x|

<r
[k — x|

for each k sufficiently large. The more the constant r is close to 0 the faster the method
converges.
kao(A) —

ko(A) +1
is to 1, i.e. if A is well-conditioned.

Methods with linear convergence are in general not well suited for problems in which a high
accuracy (low toll) is required, because they will need a large number of iterations to find the
desired solution approximation.

Figure shows possible sequences of iterations generated by the steepest descent method (or
gradient method) applied to an elliptic quadratic function g(x) = ¢(x1,22) (a quadratic function
that has ellipses as level curves). The convergence depends on the choice of the starting guess
and of the step length. This is particularly evident when the ellipses have the two centers that
are far from each other. If on the contrary the level curves are circles, the minimizer x* is easily
obtained in just one iteration: x; = x*.

In this case, the closer is to 0, the faster the method converges, i.e., the closer ko(A)

2.4 Convergence of Newton’s method

What is usually called the ”pure Newton’s method” is based on the following iterative scheme:

{ Given xq }
Xjt1 = Xp, + Ph

2 ka(A) = ||Al|2]| A7 ||2. Being A SPD, if 6(A) = {\1,...,An} is the spectre of A with 0 < A1 < A2 < ... <

An, it holds k2(A) = i—n Indeed
1

Il = VeATA) = e = \fea)? = N\:/An_

definition A is symmetric An>0

1
The 2-norm of a SPD matrix is equal to its largest eigenvalue, so ||A71||2 = W and then
1

- An
ka(4) = [|All2ll A~ 2 = T
1
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worst initial guess

best initial guess

Figure 2.1: Sequence of iterations generated by the steepest descent method applied to a
quadratic function. The convergence depends on the choice of the starting guess and of the
step length.

As shown in the following theorem it is a locally convergent method, and the local rate of
convergence is quadratic. This is not a globally convergent method and it can be made so by
coupling it with a line-search strategy, as we will see in the next chapter.

Theorem 2.4.1. Local convergence of Newton’s method. Let X* be a minimizer for f, Q be a
neighbourhood of x*, f € C*(Q), H(x*) positive definite and H(x) Lipschitz continuous in Q
with Lipschitz constant L.

It exists p > 0 such that if xg € B,(x") then the sequence {xj} built by Newton’s method is
well—deﬁnedlﬂ converges to x* quadratically and ||V f(xy)|| converges to 0 quadratically.

Proof. By assumption it exists » > 0 such that Vx € B,(x*) H(x) is positive definite (so
invertible) and it holds (see TD2)

1H (x)7H| < 2] H ()71 (2.4)

We can assume B, (x*) C .
If x;, € B, (x") then

Xpp1 — X =X, +ph — X" =%, — X" — H(xp,) 'Vf(xp) = H(xg) ™! (H(xk)(x;€ —x*) — Vf(xk))
=0
= H(x) ™ (H(x00) (00 = %) + TS () =V f3x1) ).
Because

t=1 1
VI) - VHGa) = [Vt i - x))] = /0 H (5 + H(x" — %5))(x" — %) dI,

3 We can build it because H(xy) is positive definite for each k € N.
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we have

1

Xpy1 — X = H(xp) ! (H(xk)(xk —x") + ;

_ H(ka( H (1) (x5 — X°) —

does not depend on t

= H(xp)"! /01 (H(Xk) — H(xp+1t

0

Passing to norms we obtain that

H(xp + t(x* — x))(x* — xx) dt)

H(xp + t(x* — x))(xx — x¥) dt)

(x* — xk))) (x5, — x*) dt.

—x*|| < ||H(xx) ! / t(x* — —x")dt|| <
s =3[ < 1E(x0) ||H Hs 1" =) =) | <
< 2|H(x 1” H/ H(xp + t(x* — Xk))) (x —x*) dtH
< 2lH(x 1||/ HH x) = H(xi + H(x" = )| I = x|

= 2Hx) " x — x| / | H k) = H (e tx" = x0))| at

1
< 20 H ()% —x*||/ Lxe = o0+ 10" = x|
0

1
= 2L[H(x")""| HXk—X*II/ | = t(x" — x| dt
N—— 0

we call this L

1
= 2L|x; —x*|? /tdt =
N
:[ﬁ]lzl
2() 2

We have proved that if x; € B,.(x*) then

1
Let p=min{r, — .
P { 2L }

i = x*|| < Lllxi — x

Let us assume that xo € B,(x*). Because xo € B,(x

I —x| < Llxo-x'IP < Lo

Lilxp — x*||.

*||2

") C B,(x"), it follows
~~—
p<r
< —
> 2p,
p< L

Nl

L
2L

21

(2.5)

1
ie., x1 € B,(x"). Because x; € B,(x") C B,(x"), analogously it holds ||x2 — x*|| < PIL ie.,
~—

p<r
X2 € B,(x"), and so on. Then by induction we have

that

X € B,(x) Vk € N.
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This ensures that the sequence {x;} built by Newton’s method is well-defined because the
matrices H(xy) are all positive definite from (2.4). Moreover, from (2.5)

|xp41 — x*|| < Lijxp —x*|2  VkeN. (2.6)
Then Vk € N
Ik - x| < Elx—x P < Lplxe—x] = Sl =7
p<E—=1Ip<i
i.e.
ks X'l < gl — x| VEeN
and so
Ik — 71| < ey — x°]| < (1) gz — x| < ... < (1) (P p——)
2 2 2 k—+o0

The sequence {xj} converges then to x* and from we have that the convergence is
quadratic.

As z* is a stationary point by assumption, the sequence {||V f(xx)||} converges to 0 by conti-
nuity. We remark that

=0

IVF (i) | = IV F (ersr) = (Hx)pr + V) | = 1V f(xr41) = Vi (x) = H(xi)py |-

Because

t=1 t=1 1
VI i) = 9 F00) = [V -t = xu))] = (Voo o] = [ Ha - tpY )l
= = 0
we have
1 1
9 sl = | [ oo mnt ar— opd | =| [ (60w - o) el ar
0 N——— 0
does not depend on ¢
1 1
< / 1B+ oY) — HellpM dt = o] / | H (xi + tp) — H(xi)| dt
1 1
< el / Llxi +tp) —xilldt = Lip}| / Itpd| dt
N2 ! 1 N |2 1 —1 2
—opf P [ rar = LERNIP = LLIHGe) V]
N
=[5],=14
0
1 1
< SHHG TPV < SEAIHG) IVl
&3

2LIH (x") TPV f (i) |2 o= MV f () |12
Because M does not depend on k, we have proved that it exists M > 0 such that Vk € N
2
IVl =0 < MV FR)II =017,
i.e. the convergence of {||Vf(xx)||} to 0 is quadratic. O



Chapter 3

Line-search methods

In this chapter we will introduce and analyse the line-search methods for nonlinear optimization
problems.

The crucial operation in line-search methods is the computation of the step-length, for which
we have to face a tradeoff. We would like to choose oy to have a substantial reduction of f, but
at the same time we do not want to spend too much time making this choice. In particular, we
will see that the asking the simple decrease of f is not a sufficient condition to get a convergent
method, and that we will require some other conditions on the step-length to avoid too small
or too long steps. Let’s see why these are needed by some examples.

3.1 Armijo and Wolfe conditions

Example 1 (Too long steps)

3

Let us consider f(z) = 22, 29 = 2, p = (—1)FT! (these are descent directions), ay = 2+ SR

The sequence xj, built iteratively starting from xg setting xx4+1 = x + arpi is
& 1
xp = (=1) 1+2—k , k € N.

We can prove this by induction on k.

3 3
x1 =0 + appo = 2+ (2+2> (1) =—5.

If the thesis holds for k,

1 3
Tt = Tk + agp = (—1)" (1 + ) + <2 + 2k+1> (-1 =

1 3 3-2 1
— k+1 _ k+1 _ k+1
= (=1)kF (12k+2+2k+1)(1)+ <12k+1>(1)+ <1+2k+1>.

The simple decrease condition is satisfied because

1 \? 1\°
Fera) = 23, = (1 ; W) < (1 ; 2k> — 22 = flap),

23
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but 2, does not converge to the minimizer of f(x), z* = 0, because

1 1
m2k21+ﬁml’ Ji2k+1=—<1+22k+1>m_L

The simple decrease condition is not sufficient to guarantee a convergence of {zx} to 2* =0
because we have chosen a sequence of aj with too large values.

Example 2 (Too short steps)

1
Let us consider f(z) = 2%, xg = 2, pr, = —1 (these are descent directions), oy, = SR The
sequence xj built iteratively starting from zq setting 11 = xp + aipg is
1
=1+ 277 ke N.
We can prove it by induction on k:
1 1
X1 21‘0+(Jé0p0:2—|—7(—1) =1+ -.
2 2
If the thesis holds for k,
1 1 1 2—-1 1
CUkJrl:xk+akpk:1"‘@“1‘@(_1):14-2?—%:14'@:14'%-

The simple decrease condition is satisfied as

1’ 1)°
f@prn) =af = (1 + 2k+1> < (1 + Qk) = zj, = f(an),
but xj, does not converge to x* = 0 minimizer of f(z) because

1 k— 400
—_—

The simple decrease condition is not sufficient to guarantee a convergence of {zx} to z* = 0
because we have chosen a sequence of oy with too small values.
We need then additional conditions.

Armijo rule

Armijo rule (A) requires that
fxi +arpr) < fxx) + arer V() o, e € (0,1), (A)

usually ¢; = 107%. (A) is stronger than just asking the simple decrease f(xgpi1) < f(xx)
because V f(x;) pr < 0.
Let

p(a) = f(xx + apy),
O(a) = f(xx) + ac1V f(xi) P,
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| ¢i’(z}=ﬂxk+u p)

- I(o)

—
acceptable : acceptable

Figure 3.1: Parameters a that satisfy (A)

Armijo rule requires p(a) to be below the line ¢(«), i.e., that () < £(a).

o

The slope of @(a) is ¢'(a) = Vf(xx + api)? Pk, for g, = 0 this is Vf(x,) pr < 0. The
slope of £(a) is 1V f(x1) pr, = c1¢/(0) < 0. Because ¢; < 1 and the two terms are negative, it
follows

aVfe) pr > V(xk) pr,
that is the line £(«) lies above the graph of ¢ for small positive values of ().
Choosing ay, according to (A) avoids choosing ay, too large, as in Example 1. However, this

condition alone is not sufficient to ensure the algorithm to make reasonable progress, because
too small steps may be taken. We then introduce also the following condition, to rule out
unacceptably small steps.

‘Wolfe rule

Wolfe rule requires that

V(% + arpr) Pr > 2V Fxp) pr 2 € (c1,1) (W)
The first term Vf(xy + appr)’ Pr = ¢’ () is the slope of p(a). The condition requires

this slope to be greater than the negative slope ¢V f(x))T pi that in Figure is labelled as
the desired slope. If the slope of ¢'(ay) is strongly negative, it means that we can reduce f

significantly by moving further along the chosen direction. On the other hand, if the slope is
only slightly negative we cannot expect much more decrease in f in this direction and we can
terminate the line-search. Usually co = 0.9, for example when py, is the Newton or quasi-Newton
direction.

Because ¢; < 3 < 1 and Vf(xk)Tpk is negative it holds

a1V f(xk) pr > 2V f(xp) pr > VI (xx) pr,
i.e. the desired slope is between those of () and p(«).

Choosing «y, satisfying (W) avoids choosing ay too small, as it happens in Example 2.
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b dlo)=fix,+op,)

. | "~ /
\ A\ X I IIII |I
\ ( desired

/
|I ."f
—_ —— slope | ,r"l
VTN |
angent | N N |
'\_ o . —

acceptable

acceptable

Figure 3.2: Parameters « that satisfy (W)
Lemma 3.1.1. Wolfe’s Lemma
Let f : R™ = R continuously differentiable and bounded below in {xy + apy | « > 0}, with
Pr a descent direction for f in X, and let c1,c0: 0 < ¢ < cg < 1.
It exists I C (0,+00) non empty such that every o € I satisfies (4) + (W).
Proof. Let g(a) = p(a) — (a). (A) requires that

g(a) <0.
Because

and

g'(0) = ¢'(0) = £'(0) = Vf(x1) P — 1 V.f (xi) 'Pr = (1 = 1) Vf (xi) " <0,

>0 <0

it means ¢(0) = 0 and then decreases. As g € C° because f € C, it exists a right neighbourhood
of 0 where g(a)) < 0. Let @ be the smallest positive zero ofg(a)ﬂ It holds g(a) < 0, Va € [0, @],
that is all the o € [0,@] satisfy (A). In particular, in @ (A) is satisfied and it is an equality.

Indeed g(@) =0, i.e., p(@) = (@), that is f(x; +apr) = f(xx) + c1aV f(xx)" pr. Then
fxw +apy) — f(xi) = ciaVf(x) o (1)

For the mean value theorem applied to ¢'() in [0, @], E| it exists & € (0, @) such that

p(@) —p(0) = ay'(a),

1 By assumption f is lower bounded in {xr +apk | @ >0}, ie., p(a) = f(xk + apk) is lower bounded; then
(see also Figure [3.2)) it exists a > 0, point in which ¢(c) intersect the line (). So g(c) surely has a positive
Z€ero.

2 By assumption f € C in {x} 4+ apy | @ > 0}, i.e., p(a) € C1([0, +00)), so ¢’ () is continuous in [0, +00),
and we can apply the mean value theorem to ¢’(a) in [0, @].
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that is

av f(xk +apr) pr = f(xx +apr) — f(x)

(1) <0 0<ci<ecz
Deleting @ we obtain

Vf(xk +apr) pr > 2V f(xk) pr,

= EVf(Xk)Tpk > CQ@Vf(Xk)Tpk.

27

that is & satisfies (W) without equality, so it exists a neighbourhood Iy of & where (W) is

satisfied. Given that & < @, in Iy N[0,@] # & both criterion (A) e (W) are satisfied.

[ ¢{u):f{xk+upk)

I -
1 - = . .
\ s Te-e / \ line of sufficient
I". S S=a I; ~—— > decrease /
. e S Ifoe)
\ 'F ~ A | | T /
n \ |~ desired J | T~ i.f
. N | ~ -
—?-H\\“-"' slope I -
~ | I
~ II'. /o o
- -
\'\_.
acceptable acceptable

Figure 3.3: Parameters « that satisfy (A) e (W)

3.2 Convergence of line-search methods
Theorem 3.2.1. Zoutendijk’s theorem

Let Q = {x € R" | f(x) < f(x0)}, f € CH(Q) and lower bounded on 2, py, a descent direc-
tion for f, and assume that oy, satisfies (A) and (W) and that V f(x) is Lipschitz continuous
in .

Let 9y be the angle between —V f(xy) and py, i.e. the angle such that

Vi) Pr
cos(Vx) = IV f(xe)llllpxll”

The numerical series
+oo
> cos® (9| V £(x;)I?
=0

18 convergent.

Proof. Adding —V f(xx)” pi to both members of (W) we obtain

V(x4 arpr) Pr — VI(xK) Pr > 2VF(xe) pr — V(xe) P

O
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that is

(c2 = )V f(x) P (Vf(xx + arpr) — Vf(xk))TPk <V f(xk + arpr) — VI (xe) ||| P

Ll(xx + axpr) = xilllpell = Llowpelllpell = Loallpe]?,

IA A

which gives
_ T
oy > €2~ VIO
Llipll

which is a positive amount of flow because ¢ — 1 < 0 and Vf(xk)Tpk < 0.
Note that

(3.1)

(c2 = D)es (VF (xi)"pr)?

T
Forern) = fOw) tavaViba) e < flx)+——F THE
(A) <0
(Vf(xk) k) 2 2 2
= f(xk) = IVf(xe)lI® = f(xk) = ccos™ ()| V f (%)l
NNICOIEE
-1

where ¢ = —% > 0. This holds for each o; that satisfies the assumptions, so it holds
Vi < k:

F(xj41) < f(x5) = ccos® () [V £ (x;)|1°- (3.2)

We can then use it recursively

flen) S T0oe) —ecot (@G VS| - ecost(00)[V TG00 <
Withj:k_l

< f(xo0) — CZCOS DIV FIP
with j=0
We then have
J(Xe41) < fxo0) — CZCOS DINZIE]
7=0

that is

f(x0) = f (1)

c

ZCOS DV <
It holds

f(x0) = f(Xk+1)

c

Zcos DV F(x)|? = hm Zcos DV F(x)]? < kEI—iI-loc

For the simple decrease condition (which is implied by (A)) and from the definition of € it
holds xj, € Q Vk € N. This together with the assumption that f is lower bounded in €, implies
that klir+n f(Xg41) # —o0, then

)

(k%)  # 4o00.
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“+oo
This implies that Zcos2 (9)|IVf(x;)||* is not divergent. As the series has positive terms it

7=0
must converge. O
+o00o
The fact that the series Z cos?(9;)||V f(x;)||* converges implies that
j=0

lim _cos™(¥x) |V f (xx)I* = 0.
k—+o00

This can happen for two reasons (both or just one of them):
i) 1 =0
() Jim V) =0,

i) 1 9%) = 0.
(ii) m cos()
(i) In this case every accumulation point of {x;} (if it exists) is a stationary point. Indeed,

let X be an accumulation point of {x}, i.e., let X be the limit point of a subsequence
{xx,} of {x¢}. Then

VIR = (i ) = Vi) 0
limg_, + oo V£ (x4)=0
N , . Vixe) pe
(ii) In this case, being cos(Vy) = ———=———, it holds
IV f(xx)[l[[Px]]
. T o
Jm YV f(xe)"pe =0,

that is Vf(x;) and py, tend to be orthogonal. Formally Vf(xx)? py is negative, and py
remains a descent direction, but actually for k large V f (xk)Tpk is close to 0, i.e. along the
direction pj the values of f are almost constant. This is a situation that can be avoided,
choosing a descent direction py such that cos(dy) > M for some M > 0.

With the steepest descent method, as pr = —V f(x}), we have

cos(iy) = VIixe)pr VIRV )

CIVFGllieel IV IV Gl

Then, under the assumptions of Zoutendijk’s Theorem, it holds klim Vf(xr) = 0, as the
—+00

possibility (ii) is excluded.
With Newton’s and quasi-Newton methods, because py = — By 'V f(x},) (with By, = H(xy) in
Newton’s method or By = H(x}) for quasi-Newton method) it holds

cos(y) = —-JIOw)PE V£ (xx)T By V£ ()
IV.f () [Pl VG | 1B~ 7 (xo)l
—

S UBL NV S (x|

V(xk)" B, 'V f(xk)
T V) 2B

To bound this we need the following definition.
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Definition 3.2.1. The Rayleigh quotient. Given A € R™ "™ a symmetric matriz and v € R"
we call Rayleigh quotient associated to them the scalar

vT Av
ralv) =R

Notably, it holds that Vv € R"
)\min(A> S TA(V) S )\max(A)-

‘We then have that

cos(dy) = TB,;l(Vf(Xk))m = TBgl(Vf(Xk))m = 75 (V£ (56)) Anin (B
> Amin(By ) Amin(Br) - = ?%@’3 B kz(;k).

Then, if it exists M such that ko(By) < M, we have cos(¥)) > 1/M and under the assumptions
of Zoutendijk’s Theorem, it holds i hr—sI—l Vf(xx) = 0, being again excluded the situation (ii).
— 00

3.3 Backtracking

The algorithm for a generic line-search method can be sketched as follows:

0. Given xg, f,toll

1. For k=0,1,...

1. Choose py, descent direction (may be the steepest descent direction, New-
ton’s direction or quasi-Newton’s direction)
2. Find «y, that satisfies (A) and (W)

3. Set Xp4+1 = Xk + Pk

4. If |V f(xk41)]| < toll return xj41 (approximation of x*) and stop

This algorithm is well-defined because the sequence V f(xj) converges to 0 for Zoutendijk’s
Theorem and because from Wolfe’s Lemma it exists oy, that satisfies (A) and (W), as required
at step 2. The question is how to compute such an a;? We can use the backtracking technique.
Even if we have seen that both (A) and (W) conditions are necessary for the convergence, this
technique just checks the (A) condition, we will see later why.

The backtracking strategy is described in the following algorithm:
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0. Given Xy, &g, Pk, bmax, c1 € (0,1),v € (0,1)
1. ap = g
2. For b:O717--~7bHIaX

1. If f(xp + arpr) < f(xk) + arer V(x) T pi, iee. if oy satisfies (A), then
set IND = 1 and stop,
otherwise set ay = yayg

3. Set IND = —1

This can be used at each iteration of the line-search algorithm (at step 2).

The backtracking algorithm works as follows: if ap = ap does not satisfy (A), we reduce
oy by multiplication with « and this is repeated until the new «y satisfies (A) (the name
backtracking is due to the fact that «y if progressively reduced). In the proof of Wolfe’s
Lemma we have seen that it exists @ > 0 such that each « € [0, @] satisfies (A). Then we check
if ap = ag < @, if not we reduce « by multiplication with v until the new oy < @. After a
finite number of reductions we will obtain a «y in [0,@], so the backtracking technique never
fails. However in the algorithm we decide to do at most b, backtracking steps. If after byax
iterations aj < @ has not been found, it means that @ is too small, so that we will have to do
really small steps in the line-search, which will lead to a really slow convergence.

It is then clear why in the algorithm we check just (A) and not (W): if @ is large, we get
an ay of the same order because while looking for a; we go inside [0,@] from above. If we
have refused ay because it does not satisfy (A) it means that the step is too long, than if yay
is accepted it cannot be too small (it is a factor 4 smaller than ay). If @ is small, after byax
backtracking steps we will not find a < @. It never happens to have a too small aj and it
would therefore be redundant to check (W).

The backtracking algorithm has the flag IND in output: if IND = 0 it means that an oy that
satisfies both (A) and (W) has been found, otherwise if IND = —1 it means that after byax
backtracking steps oy has not been found and so the backtracking has failed.

Each iteration of backtracking algorithm costs a function evaluation, so the algorithm costs
at most by ax function evaluations.

In the backtracking algorithm one of the inputs is ag, which can be chosen in various
ways, depending on which directions are used in the line-search algorithm within which the
backtracking is used.

If in the line-search the steepest descent direction is chosen, a popular choice is to choose «q
by assuming that the first-order change in the function at iteration k will be the same as that
obtained at the previous iteration. We then impose aoV f(xx) pr = ap_1Vf(xp—1) pr_1 so
that
Vf(xr-1)"pea

Vf(xk) T

(ag—1 is the value used at the previous iteration). Another popular choice is the Barzilai-
Borwein (BB) choice

ap = -1

T
Sk—15k—1

T : Sk—1 =Xk — Xk—1, Yk-1=Vf(Xx)—Vf(Xk-1),
Sp_1Yk—1

Qo =
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that takes inspiration from the quasi-Newton methods, as we will see.

If in the line-search the Newton’s or quasi-Newton’s direction is chosen, we choose g = 1 (com-
puting a Newton’s step is expensive, we try to use it, if possible, to benefit from the quadratic
convergence of pure Newton method).

We deduce then the algorithm for a line-search with backtracking technique:

0. Given XOafa kmaxvtouvbmaxacl € (07 1)a’7 S (07 1)
1. For k=0,1,..., knax

1. Choose py, descent direction for f in xj
2. Use the backtracking algorithm to find «y

3. If in the backtracking algorithm IND = 0 then set x;4+1 = X + @Dk,
otherwise stop and set IND = —1 (failure)

4. If |V f(xg41)]] < toll then stop, return xx4q and IND =1

2. Set IND = —2 (failure)

We could put the last xi + aipr and f(xy + axpy) in output of the backtracking algorithm,
to save a function evaluation.
Assume that the line-search algorithm has been equipped with a proper stopping criterion
(based on a tolerance toll and on a maximum number of iterations kpa.x). The line-search
algorithm outputs the flag IND:

e IND =1 an approximation has been computed with the desired accuracy;
e IND = —1 the backtracking technique failed;

e IND = —2 the stopping criterion was not satisfied within the maximum number of itera-
tions (failure of line-search method)

3.4 Newton’s method

With the expression ”Newton’s method” we usually refer to the Newton’s method (described
in Section plus a line-search procedure to select the step length. The resulting method is
globally convergent thanks to the line-search, and in a neighbourhood of x* has a quadratic
rate of convergence for the following reason: thanks to the global convergence property, the
sequence ||V f(xy)| converges to zero. Then all the accumulation points of {x;} are stationary
points for f. If it exists an accumulation point z* of {x;} which is a minimizer for f, then
it exists k > 0 such that for each k > k, xj, enters in the ball B,(x*), region in which we
have the quadratic convergence of Newton’s method. We can also prove that it exists k such
that aj = 1 satisfies Armijo’s condition (A) for each k > k; i.e., starting from the iterate k,
Newton’s method with line-search corresponds to pure Newton’s method and it then inherits
its local quadratic convergence.
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Quasi-Newton method

Quasi-Newton methods are based on the same model of Newton’s method but instead of the
exact Hessian H(x) we use an SPD approximation By. These can be built in various ways and
each choice corresponds to a different sequence of quasi-Newton directions and so to a different
quasi-Newton method.

A generic quasi-Newton method is based on the following iterative scheme:

Given xg

Xk+1 = Xk + Pr; |’
where py, is such that Bxpr = —V f(xy), for some approximation By SPD of the Hessian ma-
trix. It is a locally convergent method that can be coupled with a line-search to become a

globally convergent method and has a superlinear local rate of convergence (this is the price to
be paid to avoid computation of second order derivatives).

How to compute By? We could approximate the Hessian of f

TT_(x) TT_ ()
0x10x1 b O0x10x, g
H(xy) = : :
0% f 0% f
0x,0x1 (e) oo 0%, 0%, (i)
by finite differences, i.e. making this approximation
0% f o (of o 2L (xy, + hey) — 2L (xy) 1 (x4 + hej) — 2L (xy)
(xk) = =— (x) )] = lim == : ~ : :
6a:i8xj 833]‘ 8$i h—0 h h
for each 4,j = 1,...,n. This requires n evaluations of V f(x): indeed, to build the approxima-
tions
82 f ) 2L (% + her) — 2L (xi) 82 f ) 2L (xx + hey) — 2L (xx)
Xy ) &~ . X ) ~
Ox1021 k h ’ " 0z,011 k h
it is necessary to evaluate V f(x) in xj + hej, to build the approximations
82 f x) ~ 2L (x1 + hen) — 2L (xx) 82 f x0) ~ L (xi + hen) — 2L (xi)
0x10x,, R h T 9,0z, k)= h

33
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it is necessary to evaluate V f(x) in xj + he,,.

Then, if we build By, at each iteration with finite differences we need n evaluations of V f(x)
for each iteration.

It is then too expensive to build a new By, at each iteration: we need to exploit the informations
obtained in the previous iterations. Assuming to have finished iteration & and to have computed
By and xp41, the idea of quasi-Newton methods is to avoid building an approximation By, 1
ex-novo and to rather obtain Bjy41 from an update of By which preserves the symmetry and
the positive definiteness.

The most famous quasi-Newton method is the BFGS method.

4.1 BFGS method

Let us assume to be at the end of iteration k, i.e. to have computed xg, By, ar, pPx =
—B,;1Vf(xk), Xk4+1 = Xk +aiPr. We need to compute By11. Let us built the quadratic model

of f
Mi41(P) = f(Xk41) + Vf(xp1)" P + %pTBk+1P~
We remark that (being Vmy11(p) = Br+1P+ Vf(Xk+1)) in 0 the model has the same gradient
of f:
! Vmp41(0) = V f(Xp41)-
We also ask that
Vi1 (—arpr) = V f(x)

i.e., that
Vg1 (X — Xp1) = Vf(xk);
or
Bii1(xk — Xp41) + VI (xp41) = V(%)
If we define

Sk = Xg4+1 — Xk, Y = Vf(xk+1) - Vf(xk)7

we obtain the so-called secant equation

Brt1Sk = Yk

Anyway this equation only gives n conditions, which are not sufficient to univocally determine

(n—-1)
2

n
the n? coefficients of Bj1 (actually Bjyi is symmetric, so it has just degrees of

freedom, because the coefficients of the upper triangular part are equal to those of the lower
triangular part). We need to impose other conditions: we ask that By, is SPD.

Remark 1
If it exists By SPD that satisfies the secant equation
Bit1sk = vk,

than the curvature condition is also satisfied

y{s;C > 0.



4.1. BFGS METHOD 35

Proof. By contradiction, let ykTsk < 0, then

T T T pT T
0 > yisk = (Bit+1Sk) sk =  spByyisk = sp Brtasy,
~—
Yr=Br+t1sk
which is impossible because By is positive definite by assumption. O]

The curvature condition is not always satisfied for nonconvex functions, but it can be en-
forced imposing restrictions on the line-search, for example this is implied by the Wolfe condi-
tion:

Remark 2

If oy, satisfies Wolfe condition
Vf(xn + apr) P > 2V f(xx) " pr
for some ¢y € (0,1), then the curvature condition y; sz > 0 is satisfied.

Proof. The proof is given in TD3. O

From Remark 1, if the curvature condition is not satisfied, then it cannot exist By SPD
that satisfies the secant equation. In the algorithm is then advisable to verify if the curvature
condition is verified. From Remark 2, we could check this condition by verifying that (W) is
satisfied. However in line-search algorithm with backtrackinging technique (W) is not checked
so usually we directly check the curvature condition.

These conditions are still not enough: asking that Bj11 is SPD imposes n additional inequalities
(all principal minors must be positive); there are still some degrees of freedom left.

To determine By univocally, we choose By as the matrix, among all the symmetric matrices
that satisfy the secant equation, closer (in some sense) to By: we ask that

Byj41 = argmin{||B — Bi|| | B = BT Bs;, = Y&}

where we know that Bj, is SPD and that the curvature condition ygs;C > 0 is satisfied.

To solve this problem we can choose various matrix norms, and each of them leads to a different
quasi-Newton method. The norm that makes the solution easier is the weighted Frobenius
nornﬂ with weight W SPD such that Wy = s. For example we can choose, assuming H (z)

I Let A € R™*™. The Frobenius norm of A is defined as

n
IAle = | 3 a2
ij=1

A1
W =0TAO for some O € R™*™ orthogonal, A = s AMyeaayAn >0,
An

Given W € R™*™ SPD, we know that

and so we can define
VA1
\/W:OT\/KO, \/7: )
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to be positive definite in [z, 2k + pi],
W =G,
where G, is the average Hessian matrix

1
G = / H(xy + tagpy) dt. (4.1)
0

W is such that Wy, = s; because G‘;lyk = Sp as

ye = Vi) -Vfxe) = {Vf(xk + H(Xp+1 — Xi)) :(1) =
1 1 _
= /0 H(xp + t(Xp+1 — X)) (Xpr1 — xg) At = /0 H(xy +tagpr) dt s, = GiSp.
With this choice, the unique solution of the problem is
Biy1 = (I — pryrsi ) Be(I — peskyi) + pryryi » (DFP)
where )
Pk = ykTSk > 0.

We can prove that if By is SPD then also By is SPD.

This formula is called DFP because it was discovered empirically by physician Davidon in 1959,
and in 1963 the mathematicians Fletcher and Powell explained rigorously why this update
technique works: they understood that Bj1 was the solution of this minimum problem.

DFP is an update formula, because it allows to build By41 from By, V f(xx+1) and V f(x): the
basic idea of quasi-Newton methods is indeed that of avoiding building ex-novo a matrix By, 1
to approximate H(xj11), and rather to obtain Bjyy; updating By (preserving the symmetry
and the positive definiteness) by using the informations V f(xy41) and V f(xy).

Because

Bii1 = (I — pryxst ) Br(I — pesiyi) + peyeyr
= By — pryrSt Bi — prBeskyr + piyist Brskyi + peyrYr

is obtained from Bj by adding rank 1 matrices (globally is we obtain Bj4; with a rank 2
modification of By), we can use the Sherman-Morrison-Woodbury formula E| to compute B, +11

and it holds
VWV = 0T VAOOTVAO = OTVAVAO = OTAO = W.
Given W € R™*™ SPD, the weighted Frobenius of A with weight W is defined as

[Alw = IVWAVW||p.

2 Let A € R™ ™ be invertible. Let A a matrix obtained from A by addition of a rank 1 matrix
A=A+ab”

with a,b € R™. If A is invertible, then we can compute A" from A~! and by doing just some matrix-vector
products:
T4t AilabTAfl'
1+bTA-1a
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from B;lz
Bk_lykygBk_l sksf

B 'k yisy

-1 -1
By =B, —
If we build the sequence Bj, starting from a matrix By of which the inverse B 1is known,
then using the prevoius formula, we can compute all the B, ! by performing just matrix-vector
products, and we can also compute pj, by a matrix-vector product py = -5, 'V f(x1) and we
do not need to solve the linear system Bipyr = —V f(xx).

The DFP updating formula is quite effective, but it was soon superseded by the BFGS
formula, which is presently considered to be the most effective of all quasi-Newton updating
formulae. It was proposed by Broyden, Fletcher, Goldfarb, Shanno. The BFGS update formula
instead of approximating the Hessian matrix, imposes analogous conditions on approximations
By, of the inverse of the Hessian matrix.

Let us assume to be at the and of iteration k, we have computed xi, Bk, ok, Pr =
kaVf(xk), Xp+1 = Xk + appr. We need to compute Bk+1. To determine B;H_l univo-
cally, we ask Bk+1 to be, among all the symmetric matrices that satisfy the equation Byk = s,
the closest matrix to Bk:

Bjy1 = argmin{||B — B;|| | B= BT, Hy}, = si.},

where we know that Bk is SPD and the curvature condition ygs;C > 0 holds.

We choose again the Frobenius norm with weight W such that Ws; = yj. Also in this case
we can choose W = G}, (it holds Wsy = yi). With this choice, the unique solution of the
minimization problem is

Bi1 = (I = prseyi)Br(I — pryrsi) + prsisy. (BFGS)

where

1
Pr = > 0.

B yfsk
We can prove that if By is SPD then also Bk+1 is SPD.

We can derive a version of the BFGS algorithm that works with the Hessian approximation
By, rather than its inverse By. The update formula for By is obtained by simply applying the
Sherman-Morrison-Woodbury formula to obtain (BFGS)

Bysist By yryr

Bjs1 = B — (4.2)

T Te °
s;. Brsk Yi Sk

The last question is how to chose By? Unlucky there is not a general formula that works
T
Yo So

yoTYO

having computed an approximation By of H(xg) by finite differences.

Each iteration of quasi-Newton methods can be performed at a cost of O(n2) arithmetic
operations (plus the cost of function and gradient evaluations); there are no O(n®) operations
such as linear system solves or matrix-matrix operations. The algorithm is robust, and its rate
of convergence is superlinear, which is fast enough for most practical purposes. Even though
Newton’s method converges more rapidly (that is, quadratically), its cost per iteration is higher

well in all cases. Usually we choose By = I,, or By = vI, with v = , or By = Bal after
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because it requires the solution of a linear system. A more important advantage for BFGS is,
of course, that it does not require calculation of second derivatives.
We describe the algorithm of the BFGS method.

Given xg, € > 0, inverse Hessian approximation By, set k = 0.

While ||V f(xg)|| > €
1. Compute the search direction pj, = —BV f(xz).

2. Set xp41 = Xg + aipr where oy, is computed from a line search procedure
to satisfy (A)+(W)

3. Define sy = xp+1 — X and yx = Vf(xk11) — Vf(xk)

4. Compute By, by means of 7?

5. Set k=k+1

4.2 Global convergence of the BFGS method

We study the global convergence of BFGS, with a practical line search, when applied to a smooth
convex function from an arbitrary starting point zy and from any initial Hessian approximation
By that is symmetric and positive definite.

We assume the following assumption

Assumption 4.2.1. We assume that
1. The objective function f is twice continuously differentiable.

2. The level set L = {x € R" : f(x) < f(xo0)} is convex, and there exist positive constants

m and M such that
ml|z||” < zTH(x)z < M||z|]? (4.3)

forallz e R™ and x € L.

The second part of this assumption implies that H(x) is positive definite on £ and that f
has a unique minimizer x*. We have seen that y, = Gysk, where Gy, is the average Hessian

defined in (4.1)). From this and (4.3)) we obtain

T T
Sk S Gksk
yé,f =k > m. (4.4)
Sk Sk Sk Sk

From the assumption G} is positive definite, so its square root is well-defined. Therefore, we
have by defining z;, = G,lc/ % that

T T
YiYr _ 2 Grok )y (4.5)
Yi Sk Zy. Zk

We are now ready to present the global convergence result for the BFGS method.

Theorem 4.2.1. Let By be any symmetric positive definite initial matrixz, and let xg be a
starting point for which Assumption is satisfied. Then the sequence {xk} generated by
BFGS Algorithm converges to the minimizer x* of f .
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Proof. Some points of the proof (marked by ”see TD”) are treated in Exercise 3 of TD 4.
Let us define

mg

T T
Yk Sk YiYk

=ZE= My, = =5 (4.6)
S}, Sk Yi Sk

and note from (4.4]) and (4.5)) that
By computing the trace of the BFGS approximation (4.2]), we obtain that (see TD)

_ IBisil? | llyd?

trace(By = trace(By . 4.8
(B) = trace(By) — i =+ Y (4.9
We can also show (see TD) that
y{fsk
det(Byy1) = det(By) =5 . (4.9)
Si Bksk
Let us also define . .
S BkSk Sz BkSk
cos(By) = —k K%k o Dk kSR 4.10
) = T Bessl i (410
so that 6 is the angle between s and Bjsg. We then obtain that
1Brsill® _ [1Beskl*llsl® s Brsk _ ar (4.11)
si Bysy, (st Bisi)? sl cos?(6y,)
In addition, we have from (4.6) that
det(Biy1) = det(B )ygsk Sk _ g t (Bl ) (4.12)
e =de =de —. .
k+1 k+1 sTs. 5T Bsy k+1 o

We now combine the trace and determinant by introducing the following function of a positive
definite matrix B:
¥(B) = trace(B) — In(det(B)) (4.13)

where In(-) denotes the natural logarithm. It is not difficult to show that ¢(B) > 0 (see TD).

By using (4.6 and (4.8))-(4.13), we have that

dk

Y(Biy1) =¢(Bg) + My, — co2(0n) In(det(By)) — Inmy + In qx
=t(Bk) + (M — In(my,) — 1)
qk qk 2

Now, since the function h(t) =1 — ¢ + In(¢) < 0 is nonpositive for all ¢ > 0 (see TD), the term
inside the square brackets is nonpositive, and thus from (4.7)) and (4.14) we have

k
0 < (Bry1) — ¢(B1) + ck+ Y In(cos®(65)) (4.15)

Jj=1
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where we can assume the constant ¢ = M — In(m) — 1 to be positive, without loss of generality.
We now relate these expressions to the results given in Chapter 3. Note from the form s, =
—ay, B, 'V fi, the quasi-Newton iteration that cos(f) defined by is the angle between
the steepest descent direction and the search direction, which plays a crucial role in the global
convergence theory of Chapter 3. From the result of Zoutendijk’s theorem we know that the
sequence ||V f(xx)|| generated by the line search algorithm is bounded away from zero only if
cosf; — 0. Let us then proceed by contradiction and assume that cosf; — 0. Then there
exists k1 > 0 such that for all j > k1, we have

In(cos?(6;)) < —2¢,

where ¢ is the constant defined above. Using this inequality in (4.15) we find the following
relations to be true for all k > kq:

k1 k
0 < (B1) +ck + Zln(cosQ(Gj)) + Z (—2c)
j=1 j=ki1+1
k1
=(By) + Z In(cos®(6;)) + 2ck; — ck.
j=1

However, the right-hand-side is negative for large k, giving a contradiction. Therefore, there
exists a subsequence of indices {ji} such that {cos(6;,)} > J > 0. By Zoutendijk’s theorem
this limit implies that liminf ||V f(xx)|| — 0. Since the problem is strongly convex, the latter
limit is enough to prove that x; — x*. O



Chapter 5

Nonlinear least-squares problems

5.1 Background: modelling, regression

Nonlinear least-squares problems often arise when we want to fit a model to some data, i.e.,
when we solve a regression problem.
Assume to have some experimental measurements

(t’i7yi)7 Z: 17...7m.

The measurements are some (usually noisy) realisations of a function y : R — R of the variable
t that describes the observed phenomenon. We want to approximate this function by a model
m(x;t), where x = (z1,...,2,)" are some parameters to be determined. We can choose the
value of these parameters to adapt the model to the data at best. E]
The true variables of the model are then the parameters x, the variable ¢ of the original function
will take the measured values.

To find the best parameters we try to minimize the distance of the model from the mea-
surements, i.e., we look for x € R™ that minimizes the amount of flow

2
m(x;t1) — 1

3 s =32 (mtt) —u)”

m(tm7 X) —Ym

—_

This is a nonlinear (if m is nonlinear with respect to x) least-squares problem.

5.2 General concepts
Let
F: R" — R™
x1 Fi(x)
x=|: — F(x) = :
Ty F(x)

lUsually we choose a family of functions to which the model belongs, which is parametrized by some param-
eters. For example we can have an exponential model m(x;t) = z1e%2?, with x = (21, 22)7 or a linear model
m(x;t) = x1 + xat.

41
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and

f: R* — R

x o [0 = 5IFeI? =

CHAPTER 5. NONLINEAR LEAST-SQUARES PROBLEMS

m

;ZF,;(X)?.

i=1

The general form of a nonlinear least-squares problem is

min f(x) = 5 [P0

In the following we will assume, as it is common in applications, that m > n.

Let x € R™. If F is differentiable in x (i.e., if Fy, ..

., Fp, are differentiable in x), the Jacobain

matrix of F in x is J(x) € R™*"
3F1 8F1
VF, (X)T 87.%1 (x) Oixn (%)
J(x) = : =] :
VFm (X)T 8F"rn a}77n
02, (%) oz, (x)

Let x* be a solution of the least-squares problem. The residual is the following amount of
flow:

r= ) = S IFGE)
If it exists a solution for which r = 0 we say that the problem is a zero residual problem.
Remark 5.2.1. It holds
(a) VI(x) = J(x)TF(x),

) HO0 = J607 () + 3 Fio0 i, ).
Proof. (a) Vj=1,....n a
_ i (J(x))ij (F) = Z: <J(X)T)ji (Fex) - (J(X)TF(X)){
(b) Vj,k=1,...,n
(1) , = Gl = -2 = Vf(X))j\(g),
-t i - LA B
= 3 (ow), (10),, + XA (1 00)
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Because
$ (1), (50, - 35 (107 (09),, - (007 09), - (s 0),
it holds

Remark that » = 0 means F(x*) = 0, i.e., x* is the solution of the nonlinear system

F(x) =0.
If r =0, then
H(x*) = JHTJ)+Y FE)Hr(x) = Jx)"I).
i=1 =VO

In many situations the term J(x)?J(x) is a good approximation of the Hessian matrix H(x),
for example when the residuals are small (Fj;(x) =~ 0) or when the model is almost linear
(Hp,(x) = 0). In such cases, for x close to x*, we can use the following approximation:

H(x) = J(x)"J(x)+ ZFi(x)le (x) = J(x)T J(x).

i=1

This is convenient because it allows us to get a reliable approximation to the second order
derivatives by employing just first order derivatives, that can also be used to compute V f(z).

5.3 Linear least-squares problems

In the special case in which each function Fj; is linear, we have F(x) = Ax + b, the Jacobian A
is constant, and we can write

f(x) = gl 4x + b
We also have
V(x) = AT(Ax +b) H(x) = AT A,
The second term in (b) disappears as the function is linear so Hp, = 0 for all 4. Function f

is always convex and any solution must satisfy Vf(z) = AT (Ax 4+ b) = 0, which leads to the
normal equations:

AT Ax = —A"b.
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5.4 Algorithms for nonlinear least-squares problems

5.4.1 Gauss-Newton method

Let us assume that r ~ 0, that J(xx) € R™*" with m > n, and that J(xy) is a full rank matrix,
i.e., rk(J(x;)) = n. The Gauss-Newton direction p$” is the quasi-Newton direction obtained
choosing

Bk = J(Xk>TJ(Xk),

ie., as Vf(xg) = J(xx)TF(xz), p$Y is the solution of the quasi-Newton system
J(xx) T J(x1)p = —J (x1) T F(xz). (5.1)

The matrix J(xz)” J(xx) is SPD when J(x;) has full rank (all the eigenvalues are nonzero).
Indeed Vv e R™", v # 0

VTJ(Xk)TJ(Xk)V = (J(xk)v)TJ(xk)v = HJ(xk)vH2 > 0.

kaN is a descent direction for f in xj because

V700 BEY = (J06) B G)) "B = (- Jxu) TGN ) oY
= - Ix) I (x0)PEY = |1 (xk)PP NV 1? <0,

where this last inequality follows from the fact that J(x;)? J(x},) is positive definite.
If J(xz) is not full rank, then J(x;)” J(x},) is still symmetric but it is just positive semidefinite.
In this case a possibility is to choose By = J(xk)TJ(xk) + el,, with € > 0 small, so that By
is SP]jﬂ and it approximates well J(x;)7 J(x;) (because ¢ is small). We will discuss this in
Section 77.

The Gauss-Newton method can be also derived by approximating the objective function ¥
by a linear model at each iteration: F(xj + p) ~ F(xi) + J(x)p. Using as a model for f
the squared norm of the linear model of F', we obtain a quadratic approximation to f with
approximated Hessian:

N (p) = SIFGxw) + TGe)pl” = 3 IF G| + T 0e0) F i) + 5pT T (x6) (i)

= ) + V£ Gs) B+ 3B7 T0x0) T x6) -

To get the step at each iteration we minimize the model, which amounts to solve a linear least-
squares problem, whose normal equations are exactly (5.1). By using the SVD decomposition
of J(xx) = USVT, we can write (see TD 5) the solution of this problem as

n

. u/F
X = V.
Z o
i=1 ¢

2 If A € R™*"™ is positive semidefinite, then Ve > 0 A + eI, is positive definite.
Indeed, let A1,..., An be the eigenvalues of A and vy, ..., v, the relative eigenvectors. Vi =1,...,n

(A+eln)vi = Av; +ev; = Xiv; +evi = (A +e)vy,

i.e., v; is an eigenvector of A+ e, with eigenvalue \; 4. Then the eigenvalues of A+e¢l,, are A1 +¢,...,A\n+¢,
which are all positive because \1,...,An, > 0 as A is positive semidefinite.
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Gauss-Newton method is then based on the following iterative scheme:

Given xg
Xpt1 =X +Pg " [
The convergence of the method clearly depends on how important is the term we have dis-

carded in the Hessian approximation. As shown in the following theorem, the method is locally
convergent with quadratic local convergence in case of zero residual. If the residual is nonzero,

m

if H ZFl (x*)Hp, (x*)” is small with respect to the smallest eigenvalue of J(z*)”J(z*), then
i=1

the convergence is linear. Otherwise, there is no guarantee of convergence for the method.

1
Theorem 5.4.1. Let F : R" — R™ and let f(x) = §||F(X)”2 be twice continuously differ-

entiable in an open convex set D C R™. Assume that J(x) is Lipschitz continuous in D with
Lipschitz constant v and that ||J(x)|| < a for all x € D. Assume that there exists x* € D such
that J(x*)TF(x*) = 0. Let \ be the smallest eigenvalue of J(x*)T J(x*) and assume that

(7 (x) = (") TF (x| < olx — x|

for some constant o > 0 and for all x € D. If o < X then for any ¢ € (1,\/o) there exists
€ > 0 such that for all xg € B.(x*) the sequence {x;} generated by the Gauss-Newton method
is well-defined, converges to x* and obeys
co ca
R P A P
co+ A
2\

Corollary 5.4.1. Let the assumptions of Theorem hold. If F(x*) = 0, then there exists
€ > 0 such that for all xg € B.(x*) the sequence {xi} generated by the Gauss-Newton method
is well-defined and converges quadratically to x*.

%1 = x| < [l — x| < fler = x"|].

Theorem [5.4.1] shows that Gauss-Newton method may not be quickly locally convergent
and that (when S(x*) is too large) it may not be convergent at all. The constant o plays a
crucial role in the convergence. It may be seen as an absolute combined measure of linearity
and residual size of the problem because it holds:

(J(x) = J(x")TF(x") > S(x")(x — x.),

o
if F is linear or F(x*) = 0 then o = 0. For the convergence we must look at the ratio —, which

must be less than 1. This can be interpreted as a relative combined measure of linearity and
residual size of the problem.

Gauss-Newton method with line-search consists of choosing the Gauss-Newton direction in
the line-search algorithm. In this way the method becomes globally convergent and close to x*
it has quadratic convergence in case r = 0.

5.5 Levenberg-Marquardt method

The Levenberg-Marquardt method is a modification of Gauss-Newton method that avoids one
of the weaknesses of Gauss-Newton, namely, its behavior when the Jacobian is rank-deficient,
or nearly so.
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The Levenberg-Marquardt method is derived by modifying the Gauss-Newton model, by
adding a regularization term that depends on a strictly positive regularization parameter \y:

m™ (p) = L7 (x6)p — Fxi)|> + 2 o] (52)

The minimizer of this model satisfies a modification of the normal equations:
(J(Xk)TJ(Xk) + )\kf)p = —J(Xk)TF(Xk).

These are indeed the normal equations of the following linear least-squares problem:

min1 Txi) p— Fx)
p 2 vV )\kI 0 ’
which is equivalent to
minmEM (p) (5.3)
P

where mEM is defined in (5.2). The term that is added ensures that J(x;)7J(x) is positive
definite. By using the SVD of J(xx), we can write the solution of this problem as

. u/'F
X = Z oy +)\sz

i=1

Remark that when A\, — 0, x* tends to the solution of the Gauss-Newton system. The
Levenberg-Marquardt model is then

1 1 A
mEY (p) = SIFGeL) |12 + T (i) TR Ge)p + 5p7 7 ()T ()b + S g

In the original version of the Levenberg-Marquardt method the parameter )\ is updated at
each iteration, similarly to the trust-region radius in trust-region methods. It is increased or
decreased by a certain factor according to whether or not the previous trial step was effective
in decreasing f (opposed to the trust-region radius Ay is decreased if the step is successful).
The Levenberg-Marquardt method can indeed be derived from Gauss-Newton method by using
a trust-region strategy. Recall that the Gauss-Newton method is like Newton?s method with
line search, except that we use the convenient and often effective approximation J(x)7.J(x)
for the Hessian. By replacing the line search strategy with a trust-region strategy we obtain
the Levenberg-Marquardt method. The second-order Hessian component in (b) is still ignored,
however, so the local convergence properties of the two methods are similar.
The following lemma indeed holds.

Lemma 5.5.1. The solution pﬁM of the minimization of (5.2)) is a solution of the trust-region
subproblem

mpin%HJ(xk)p —F(x3)||? subject to ||p|| < A
for some Ay, > 0 if and only if there is a scalar A\, > 0 such that
(J(xk)" T (k) + M) = —=J (1) "F (1),
Me(Ar = [lpr™M]) = 0.
This lemma tells us that when the solution kaN of the Gauss-Newton equations lies
strictly inside the trust region (that is, |[p$™|| < Ax), then this step also solves the subproblem

(5.3). Otherwise, there is a Ay, > 0 such that the solution pﬁM lays on the boundary of the
trust-region because as A, > 0 it must hold Ay = ||pE|].



Chapter 6

Constrained optimization

We are interested in the minimizer x* of
f: R — R
x +— f(x)
subject to some constraints on the variables, that is we assume that for some
h: R — RP g: R — R™
x +— h(x), x — gx)’
it holds
h(x)=0, g(x)>o0[]
that is we have p equality constraints and m inequality constraints.

We look for a solution x* of the problem

min f(x)
h(x) =0,
g(x) > 0.

The set
Q={xeR"|h(x)=0, g(x) >0}

is called feasible set for the problem. We can then state the problem as

min f (x).
We say that an inequality constraint ¢ € {1,...,m} is active in x if g;(x) = 0, and inactive if

gi(x) > 0. We denote
Ax)={ie{1,...,m} | gi(x) =0}
the set of active constraints in x.
Moreover,

e x* € ) is a local minimizer for f if it exists a neighbourhood N of x* such that
F(x*) < f(x) Vx e QNN.

e x* is an isolated minimizer for f if it exists a neighbourhood N of x* such that x* is the
only minimizer in Q NN

1Forv7w6]RN,vameansvi2wi Vi=1,...,N.

47
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6.1 One equality constraint

Let us consider the problem

min x1 + o
x€ER?

2— a7 —a3 =0,

i.e., we look for the minimizer of f(x) on the boundary of the circle centred at (0,0) and of radius
V2. From Figure in which level curves of f(x) are plotted, it is clear that x* = (—1,—1)7.

We remark that
Vf(x) = G) . Vh(x)=-2 @;) .

Then for each x on the circumference Vh(x) is orthogonal to it and points towards the interior of
the circle.

Starting from a point on the circle it is easy to see how to move to remain on the constraint and
at the same time to decrease the values of f(x). For example, starting from x = (v/2,0)7, we can
move on the circle clockwise, i.e. following the direction that is tangent to the circle and orthogonal
to Vh(x) and that is of descent for f in x, i.e. we have to follow the direction d such that

{ Vh(x)Td =0,
Vf(x)Td <o0.

We remark that at the solution, the gradient of the constraint is parallel to the gradient of the
function, that is Iu* € R s.t.

Vf(x") = @ Vh(x);

1
in particular it holds p* = 3

Let us assume to have just one equality constraint:

Jmin f(x)
h(x) =0

If we are at a feasible point x : h(x) = 0, and we approximate h(x + ad) with the first order
Taylor series, we get:

h(x + ad) ~ h(x) + aVh(x)'d = aVh(x)"d,

and to decrease f(x) it is necessary that d is a descent direction for f in x, Then, at first order,
we have to move along a direction d such that

{ Vh(x)Td =0,

Vfx)Td <o. (EC)

If we are at a feasible point x : h(x) = 0 and it exists a direction d that satisfies (EC), we can
move along that direction and find a point on the constraint in which f has a lower value, then
x is not x*. We can then infer the following necessary condition to have that x is a solution: if
x is a solution, then it cannot exist d € R™ that satisfies (EC).

The only way that d € R™ that satisfies (EC) cannot exist is if V f(x) is parallel to Vh(x). The
necessary condition becomes then:

x" is a solution = Iu* € Rs.t. Vf(x*) = p"Vh(x").
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'r)(,i + %, = conk,

7

Figure 6.1: Problem of the example, showing constraint and function gradients at various
feasible points.

We introduce the Lagrangian function

L(x, 1) = f(x) = ph(x),

where p is called Lagrange multiplier of the equality constraint, and by Vi £L(x,u) = Vf(x) —
uVh(x), the necessary condition becomes

x* is a solution = Ju* € Rs.t. VL L(x",1*) =0. (NC)

This necessary condition is not sufficient. Indeed, in the previous example, if x = (1, 1)T,
Ju € R s.t. Vf(x) = uVh(X), but X is not a solution of the problem (this is a maximizer).
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6.2 One inequality constraint

Let us consider again the previous problem, in which we replace the equality constraint by an
inequality constraint:

min x1 + T2
x€ER?

Q—xf—xgzo

We look for the minimizer of f(x) in the close ball of centre (0,0)7 and radius v/2. From Figure
it is clear that the solution is still x* = (-1, —1)T, point in which the constraint is active, i.e.,

9(x*) = 0. Remark that
v = (1), Ve =-2(2).

then for each x on the circumference of the ball Vg(x) is orthogonal to it and points towards the
inside.
The gradient of f is parallel to the gradient of g in x*, that is IA* € R s.t.

V(") = A" Vg(x);

1
in particular it holds \* = 3

Suppose to have just one inequality constraint:
min f(x)
g(x) > 0.

If x : g(x) > 0, we have to move along a direction d remaining on the constraint and at the
same time decreasing f; using a first order approximation to g, to remain on the constraint is
necessary to have

0 < g(x+ad) ~ g(x) + aVg(x)"d,

and to decrease f(x) it is necessary that d is a descent direction for f in x. Then, at first order,
we have to move along d such that

{ g(x) + Vg(X)Td >0

Vix)Td<0 (IC)

If x : g(x) > 0 and it exists a direction d that satisfies (IC), then we can move along that
direction and find a point on the constraint where f has a lower value, then x is not x*. We
infer then the following necessary condition for x to be a solution: if x is a solution, then it
does not exist d € R™ that satisfies (IC).

e If the constraint is inactive in x, i.e. g(x) > 0, then the first condition in (IC) is always
satisfied, if we choose d of sufficiently small length, so (IC) becomes

Vix)Td <o.

It does not exist d € R™ that satisfies this condition if and only if V f(x) = 0. Then the
necessary condition becomes

x" is a solution = Vf(x*)=0.
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e If the constraint is inactive in x, that is g(x) = 0, then (IC) becomes

Vg(x)Td >0
{ Vix)Td<0

The first of these two conditions defines a closed semispace of R™, while the second one an
open semispace. It does not exist d € R™ that satisfies the condition if and only if such
semispaces have void intersection, i.e., if and only if V f(x) and Vg(x) are parallel and
point towards the same direction (see Figure . Then the necessary condition becomes

Figure 6.2: The light blue region is the open semispace of the vectors d such that Vf7d < 0;
the green region is the closed semispace of the vectors d such that Vg7'd > 0.

x* is a solution = 3IA* > 0s.t. Vf(x") = A" Vg(x").
The global necessary condition becomes
x" is asolution = 3JA* >0s.t. Vf(x")=N"Vg(x"), \gx*)=0.

The condition A\*g(x*) = 0 is called complementarity condition.

If the constraint is inactive in x*, that is g(x*) > 0, then the complementarity condition
requires that \* = 0, and so the necessary condition becomes the one we use in unconstrained
optimization.

If in x* the constraint is inactive, i.e., g(x*) = 0, then the complementarity condition does not
impose a condition on A*.

Introducing the Lagrangian function

L(x,A) = f(x) = Ag(x),
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where ) is called Lagrange multiplier of the inequality constraint, and by V< £L(x,\) = Vf(x)—
AVg(x), the necessary condition becomes

x" is a solution = IAN" > 0s.t. Vi L(x",A*) =0, Ng(x*)=0.

6.3 First order optimality conditions

In general, the Lagrangian function of the problem is defined as

p m
L0, A) = F(x) = > pahi(x) = Y Nigi(x),
i=1 i=1
where p = (p,..., ,up)T is the vector of Lagrange multipliers for equality constraints and
A= (A1,...,Am)7 is the vector of Lagrange multipliers for inequality constraints.
Generalizing what we have seen in the examples, if x : h(x) = 0, g(x) > 0, and we want to
move along a direction d remaining on the constraint, at first order we have to move along a
direction d such that
Vhi(x)'d=0 Vi=1,...,p
Vai(x)"d>0  Vie A(x).
We define

Fi(x)={d eR" | Vhi(x)Td =0 Vi=1,...,p, Vgi(x)"d >0 Viec A(x)}

set of feasible directions in x. Remark that F(x) is a coneﬂ

However, this is just a first order approximation (this is exact only if the constraints are linear):
in general we have to move along an arc. An arc a parametrized by a parameter ¢ > 0 and
such that a(0) = x is said admissible arc in x if

{ hi(a(¥)) =0 Vi=1,...7p}
gi(a(¥)) >0  Vie Ax)

for ¥ small enough (i.e., for ¥ € [0, 9] for some ¥ > 0). The set

T(x)={d € R" | d = &/(0) for some a(¥) admissible arc in x}
of tangent directions to the admissible arcs in x is a cone and it is called tangent cone in x.
Observation 1 T(x) C Fy(x).

Proof. Let d € T(x). From the definition of tangent cone, d = &’(0) for some () admissible
arcin x. It holds Vi=1,...,p

_ a, O~ UhT
0 = (whl(a(ﬁ))} o Vhi(a(0))"a'(0) = Vhi(x)'d
hi(a(9)) = 0 VI€[0,9]
and Vi € A(x)
d
< 1,99 v = i To/ = i Tq.
0 = o] = Va@o)eo) - Yae
gi(a(0)) =0 and
gi(a(9)) 2 0 VI€(0,9]

2C CR"™, C # @is acone if Vd € C it holds ad € C Va >0
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Remark 2 T(x) 2 Fi(x).
Let’s show this with two examples.

(1) Let us counsider the problem

min x1 + To
xER2

(2-2f—23)*=0
Remark that
_ (22— 1’% - x%)(—?zl) _ 2 2y (1
We notice that @ = {x € R?* | (2 — 27 —23)? =0} = {x € R? | 2 — 2% — 23 = 0} is
the boundary of the circle of centre 0 and radius v/2. Let x € Q. It is clear that the
tangent directions and feasible arcs in x are just two, then 7'(x) contains just two elements.
However, because x € €, it holds 2 — 27 — 22 = 0, and then VA(x) = 0. Then
Fi(x) ={d € R?| Vh(x)Td =0} = R%
——

=0
(2) Let us consider the problem

miy f(x)
(x; —1)* 4+ 23 —-1=0,
(x1 +1)2 +25 -1=0.

Vhy(x) = 2 <"””1$; 1) . Vhe(x) =2 <$1 N 1) .

T2

Remark that

The feasible set Q = {x € R? | (z; —1)* + 25 -1 =0, (21 +1)*+2% 1 =0} is the
intersection of two circumferences that pass from 0 but the first one belongs to the right
part of the plane while the second one to the left part of the plane R?, so Q = {0}.

There does not exist any admissible arc in 0, then there does not exist any tangent direction
to an admissible arc in 0 and T(0) = &. On the other hand, because

F1(0) = {d € R? | Vh;(0)Td =0, Vhy(0)"d=0}={decR?|(-2,0)d=0, (2,0)d =0},
it holds d € F1(0) Vd = (0,dy) : da # 0; then F;(0) # @.

Definition 6.3.1. We say that in x the LICQ (Linear Indipendence Constrains Qualification)
holds if the set
(Vhi(x) i=1,...,p,  Vai(x) i € AX)}

1s formed by linearly independent vectors.

Examples In example (1) the LICQ does not hold in x because Vh(x) = 0. In example (2)
the LICQ does not hold in 0 because Vhi(0) || Vhy(0).

Lemma 6.3.1. If LICQ holds in x, then T'(x) = F1(x).
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Example Let us consider the problem
,?;ﬁgi T1 + X2
2 a2 —22>0
xro Z O

Vato=-2(1).  Vabo-(}).

Let x = (0,v2)7. Tt holds A(x) = {1}, Vg;(x) = (0, —2v/2)T. The LICQ holds in x, so

700 = Ao = {d € B | Vou7a > 0) = {(§1) e %2 0.-2v3) (1) = o}

() ew-aanr) - {(3)ewlass)

Let now x = (—v/2,0)T. It holds A(x) = {1,2}, Vg1 (x) = (2v2,0)7, Vga(x) = (0,1)%, then
the LICQ holds in x and

T(x) = F

We know that

={deR?|Vg(x)"d>0, Vga(x)"d >0}

(x)
() i (£)20 (1)
() exa0n=e)

Remark 6.3.1. If in x the LICQ does not hold, we cannot derive a necessary condition of the
form (NC). For example we can analyse the problem

{<d1>eR2‘2fd1>0 d2>0}

min x1 + To
xER2

(2—23 —z3)? =0.
For each x € Q, the LICQ does not hold in x because Vh(x) = 0. This makes it impossible to

proceed as in the case of just one equality constraint to obtain (NC).

Lemma 6.3.2.
x* local minimum point = Ad € T(x*) s.t. Vf(x*)Td < 0

Proof. Let d € T(x"), i.e., d = &/(0) for some () admissible arc in x*. Because a(?) is an
admissible arc in x* and because x* is the constrained minimum point, moving from x* = «(0)
along a(¢) we will find larger values of f:

b= [WL — Vi@O)T@(0) = Vix)Td

Theorem 6.3.1. First order necessary condition

{ x" is a local minimum point —  Ad € Fi(x) s, Vf(x*)Td < 0.

i x* LICQ holds
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The necessary condition is not sufficient. Let’s see this with an example. Let us consider
the problem
min xo
x€R2
x% + x5 > 0.

It holds
Q={xeR? |2y > —23}.

Remark that f is not lower bounded in 2, then the problem does not admit a solution.
Let us consider the point x* = (0,0)”. In x* the LICQ holds because

s =[], - ()0

Because in x* the constraint is active, it holds

Fi(x") = {d e R? | Vg(x*)Td > 0} = {@D € R? ‘ 0 1) (Z;) > 0} - {(Z;) € R? ‘ dy > o}.

Remark that Vd € F;(x*)

but x* is not a solution.

Lemma 6.3.3. Farkas Lemma
Given C € R™*P B € R™M we consider the following cone of R™:

K={Cw+By|weR,ycRM y>o0}
For each g € R" exactly one of the following sentences is true:
(a) g€ K

gfd<0 (b.1)
(b)) AdeR™ s.t. § CTd=0  (b.2)
BTd>0  (b.3)

(a) and (b) are each other opposite: (b) <= —(a).

Theorem 6.3.2. KKT, first order necessary conditions
If x* is a solution in which the LICQ holds, then there exist u* € RP. X" € R™ such that

Vxﬁ(X*’ IJ’*’ )‘*) =0,
h(x") = 0,

g(x*) >0,

A" >0,

X Tg(x*) = 0.

In this case we say that (x*, u*, X*) satisfies the Karush-Kuhn-Tucker conditions, usually called
KKT conditions. The last condition is the complementarity condition.
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Proof. Let x* be a solution in which the LICQ holds.

Let
g = Vf(X*)a
C= (vm(x*) || Vh,,(x*)) € R"*P,
B = (Vgi,(x) | -+ | Vgin (x)) € RVM, 0 fig, o ing} = AX)
and
K={Cw+ By|wecRr,ycRY y>o0}. (6.1)

‘With this notation it holds

Fi(x*) = {deR"|Vh(x*)'d=0Vi=1,...,p, Vgi(x)Td >0 Vic A(x*)}
{deR" | Vhi(x*)"d=0 Vi=1,...,p, Vg;,(x)"'d>0Vj=1,...,M}
= {deR"|(Ce)Td=0Vi=1,...,p, (Be,)’d>0Vj=1,...,M}
{deR"|efCTd=0Vi=1,...,p, ¢ B'd>0Vj=1,...,M}
= {deR"|(CTd);=0Vi=1,...,p, (BTd); >0 VYj=1,...,M}
= {deR"|cTd=0, B'd>o0}.

By the first order necessary condition, being x* a solution in which the LICQ holds,
Ad € Fi(x*) st. g'd <0,

that is
gfd <0
Ad € R" s.t. cfd=o0
BTd>o0

Condition (b) of Farkas Lemma does not hold, then (a) must hold and

ge K.
Yiy
This means that V f(x*) € K, that is there exist w* € RP y* = e RM y* > 0 such
Yin
that
Vi) = Cw' + By = (Vha(x') | -+ | Vhy(x) )w* + (Vgi, () | -+ | Vgiy, (x7) )"
D M P
=Y Vh(wi +Y Vi, (g =D wiVhi(x) + Y yiVei(x).
i=1 j=1 i=1 1€A(x*)
Set
pr=wr,
Al
A= | A yr ifi e A(x")
o )\:* ’ © 71 0 otherwise
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There exist p* € RP, A" € R™ : A* > 0,\g;(x*) =0 Vi=1,...,m such that

Zuzw +ZW% ),

that is, (because A* > 0 and g(x*) > 0) there exist pu* € RP, A* € R™ : A* > 0, \*T'g(x*) = 0

such that
Z 1EVh( Z AV g (x*) =

Because

VL (X, pt, A Zuzw Z)\ Vgi(x

there exist p* € RP, A" €e R™ : A* > 0, )\*Tg(x ) = 0 such that
VxL(x*, p*, A*) =0.
O

Remark 6.3.2. This necessary condition is not sufficient. Let’s see this with an example. We

consider again the problem
min xo

x€R?
x} 4+ 29 > 0.
We have seen that in x* = (0,0)T the LICQ holds. Because
L(x,\) = f(x) — Ag(x) = x93 — AT — Ao,

vectn = ().

e =(; ).

it holds
VLX) =0 <<= =1,

then (x*, \*) with \* = 1 that satisfies the KKT because in x* the constraint is active. But x*
s not a solution.

Lemma 6.3.4. Let x* be a solution in which the LICQ is satisfied. The first order necessary
condition and the KKT conditions are equivalent:

Ad € Fi(x*) st. Vix)Td<0 < Iu* € RP A € R™ s.t. (x*, u*, \*) satisfies the KKT.

Proof. (=) is the prof of the previous theorem.
(«<=) Because (x*, u*, A*) satisfies KKT conditions it holds

VXE(X*,A*,/,L*) = 07

that is

Z/Wh ZA*VgL ),



58 CHAPTER 6. CONSTRAINED OPTIMIZATION

and then
p m m
V) =D wVhi(x)+ > ANVaE)+ Y Al Vi (x*)
T S

complementary

p m
= wiVhi(x*) + AF Vgi(x*).
i€ A(x*) I%KUT
So Vf(x*) belongs to the cone defined in (6.1) and Farkas Lemma guarantees that there do
not exist directions d € Fy(x*) st. Vf(x*)'d<0. O

6.4 Second order optimality conditions

Let us assume that (x*, p*, A\*) satisfies the KKT conditions. Then Vf(x*)Td > 0 Vd €
Fi(x*). If Vf(x*)Td = 0, with just first order informations we are not able to establish if along
the direction d the values of f increase or decrease: we need second order informations. Then
the directions in the set

{de Fi(x*) | Vf(x")Td =0}

are called critical directions; this set is a cone. If i € A(x"), i.e., g;(x*) = 0, and A\ = 0 then
the i-th inequality constraint is said to be degenerate.
Remark that, given d € F(x¥),

m
Vix)Td = — > AVgix)Td=
i=1
phev. thm,  EAG)
m m
— >N Vax)Td + > A Vgi(x*)Td=0
i—1 \_/" i—1 ~NN—
icAx") =0 icA(x*) >0 >0
i degenerate 4 non degenerate deF (x*)

Vgi(x*)'d =0 Vi € A(x*) : i non degenerate
Vai(x*)Td =0 Vi Ax*): A} > 0.

7

ie.,
{de F(x") | Vi(x")Td =0} = {de Fi(x") | Vai(x*)Td =0 Vi € A(x") : A} > 0}.
This last set is the critical cone in (x*, A*) and we denote it with C(x*, A*).
Theorem 6.4.1. Second order necessary condition
Let x* a solution in which LICQ holds. By the first order necessary condition we know that

there exist p* € RP, A" € R™ such that (x*, u*, X*) satisfies the KKT. Then

AT Hp o (x*, n*,A)d >0 Vd € C(x*,\%),
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i.e., the matriz

oL
8x18x1

(X*7lj/*> }\*)
H[,,X(X*7 /*l'*7 A*) =
oL
8xn6‘x1

(X*7IJ/*> A*)

99

8[’ * * *
8118.’&1(){ M 7A )

oL

0z, 0x,, (7 s A7)

is the Hessian of L(x, g, ) with respect to x in (x*, u*, X*) is semipositive definite with respect

to the vectors of the critical cone C(x*, X*).

Theorem 6.4.2. Second order sufficient condition

Let x* € Q for which there exist p* € RP, X* € R™ such that (x*, u*, X*) satisfies the KKT.

If
dTHp o (x*, 1", A%)d > 0

vd € C(x*, A*),d # 0,

i.e. if Hex (X", u*,X") is positive definite with respect to the vectors of the critical cone

C(x*, \¥), then x* is a solution.

Remark 6.4.1. In the unconstrained case, i.e. in the case in which = R", it holds L = f
and the set of admissible directions and the critical cone both are R™, then these conditions are
equivalent to those we have seen in the first part of the course.

Example 1

Let us consider again problem
min xo
x€R2 .
22+ 29>0

We have seen that in x* = (0,0)” the LICQ holds and that (x*, \*) with \* = 1 satisfies the

KKT. We have also seen that

A(xY) = {(§;>6R2’d220},

C(x*,\%) = {d € Fi(x") | Vg(x*)"d = 0} — {(2) e® [ 20,0 1) (3;) - o}

{(8) o o} {5 <5}

then

We have seen that

_ 72)\.%1
Vi L(x,\) = ( 1\
then
-2\
HL’X(X, )\) = ( 0
and
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Remark that Vd € C(x*, \), that is for each d = <%1> for some d; € R, it holds

T * * -2 0 dl 2
d'H;x(x*,A")d = (d1 0) ( 0 O) (O = (d1 O) (—2d1 0) = =2d < 0,
then the second order necessary condition does not hold, and x* is not a solution.

Example 2

Let us consider problem
. 1 2 2

miy g5l =47+

3+ xi—1>0.
After computing

1
LA = f)-Mx) = -5l —4)" + a5 - Aat+25 - 1),

and

7(1/5)(1‘1 - 4) - 2)\I1
VaL(x, ) = ( 225(1 — A) )

it is easy to solve the KKT system

and to see that the solutions are

1 4
</\ 3 by 0

10
and
4 4/11 n 4/11
X X
<A+>: v/105/121 | , <)\+>= —+/105/121
1 1

Let us consider (x*,\*). Because

1
o)\ — =
Hex(x,\) = 5 0 ),
0 2 —2)\

we have that

0
Hex(x 0= 2 o[,
0 <
5
which is an indefinite matrix. But d” Hg (x*, \*)d > 0, Vd € C(x*,\*) = {d € R?s.t.d; = 0}.
Then, for the second order sufficient condition, x* is a solution.

On the contrary, in (x**, \**) the constraint is inactive, and as the Hessain matrix of the
Lagrangian function in (x**, \**) is indefinite, the point is not a minimum point.
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Chapter 8

Linear programming

A linear programming problem (LP) is a constrained minimization problem with f(x) a linear
function of variables x1,...,Z,:

fx)=cz1+...+cpzy = cx

for some ¢ = [cq,...,cq]T € R™.
Linear programming problems are usually written and analysed in the following form, which
is called the standard form:
min c¢’'x
x€eR”
Ax=Db

x>0

with A € R™*" m < n,tk(A) = m, b € R™. The feasible set of the problem is Q = {x €
R" | Ax = b, XZO}.E
We will analyse just the case m < n for the following reasons.

(-) If m = n, then A € R™*" with rk(A4) = n, then the system Ax = b has a unique solution
x. If x > 0 then Q = {x} and so the solution to the LP is x, otherwise = & and the LP
does not have a solution. In every case the problem is trivial.

(-) If m > n, then the system Ax = b has a solution if and only if b € range(A), but it is very
unluckily that a vector of R™ belongs to a subspace of R™ of dimension n (indeed, if for
example m = 2 and n = 1, it is not luckily that a vector of R? belongs to a given line of
R?). Tt is then highly probable that Q = @.

Because

L(x,p,A) = c'x — i wi(Ax —b); — i AT = i Ty — i ui((Ax)i — bi) — i i
i=1 i=1 i=1 i=1 i=1

n m n
= Zcﬂi - Zui(aﬂﬂ?l + . F ATy — b)) — Z Aiis
i=1 i=1 i=1

1 While studying constrained minimization problems we have called p the number of equality constraints and
m the number of inequality constraints, while in the standard form of LP we have m (independent) equality
constraints and n inequality constraints. The difference between these two notations is due to historical reasons:
for long time the constrained problems and the LPs have been studied separately, then they have been formulated
with different notations.
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we have that Vj =1,...,n

m

a m
(Vxﬁ(x,u)\))j = 5. L A) = ¢ — Y omiag =A== (AT)jipi = X
J i=1

i=1
=Cj — (AT/L)]‘ — /\j = (C — AT[L — )\) R
J
and so
Vi L(x, p,A) =c— AT — X

(x*, ", A*) solves the KKT if and only if

c—ATp* — X =o,
Ax* = b,
x* >0,
A* Z Oa
MTx* = 0.
Because the constraints of the problem are linear, Fj(x) coincide with the tangent cone
T(z), Vz € Q.

In the following theorem we will see that the KKT are both necessary and sufficient for an
LP.

Theorem 8.0.1. KKT for LP
Let x* € Q. x" is a solution to if and only if there exist u* € R™ X* € R"™ such that
(x*, u*, X*) satisfies the KKT.

Proof. We know that (=) is true for every constrained problem, we then need just to prove
(«<=). Remark that

*\ _ T % . T, * *\T % *T * *T % o *T
fx)=c'x* = (Ap"+XN)'x"=p"" AX" + X" x = u"b (8.1)
(KKT 1) (KKT 2,5)

and that Vx € Q holds

F(x) = cTx = (ATp* + A9 Tx = T Ax + ATx \Z/ wTh = f(x").
(KKT 1) x€Q, (KKT 4)
O
Corollary 8.0.1. If (x*, u*, A*) satisfies the KKT of the LP, then
Tx* = bT .
Proof. This follows from . O

8.1 How to rewrite an LP in standard form

It always possible to rewrite an LP in standard form by adding new variables to the problem,
that are called slack variables.



8.1.

HOW TO REWRITE AN LP IN STANDARD FORM

e Example 1. Let us rewrite the following LP in standard form:
min c¢’x
x€eR”
Ax<b
x>0

Setting
s=b—- Ax € R™,

where sq,...,s,, are called slack variables, the problem becomes
min ¢’'x
xER™
Ax+s=Db
s>0
x>0

Setting

the problem becomes

that is in standard form.

e Example 2. We consider now the following LP:
min —x1 — 2xs.
xER2
—2x1 4+ 12 <2
—r14+ 22 <3
T S 3
T Z 0
T2 Z 0

It is an LP of the form
min ¢’'x
x€R?

Ax <b

x>0

with

We can introduce the slack variables

s1 2 -2 1 -
s9 | =s=b-Ax=|3]|-[|-1 1 <1>
S3 3 1 0
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and by the same setting as in (8.2 the problem becomes
min ¢'%
XERS
Ax=Db
x>0

that is
min —x7 — 229,
x€R2,scR3

21+ 20+ 51 =2
71‘1+I2+52:3
X1 + 83 =3

T 2 0

X9 Z 0

S1 Z 0

S9 Z 0

S3 2:0.

e Example 3
min ¢”'x.
xERn?
T2,...,Tp Z 0

Setting

the problem becomes

min ¢’x’
x’eRn

/ "
L1y, L1,X2y.++,Tn 20

because, even setting z/, 2} > 0, the variable z; = 2] — ' remains free. Setting

the problem becomes
min ¢Tx".
x//eRn+l

X”ZO

e Example 4
min ¢’ x.
xERn?
1 2 37

T2,...,Tn > 0
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Setting s; = x1 — 3 and

C1 Z1
C2 Z2
6 = s i =
Cn In
0 S1
the problem becomes
min &’'x.
xeRn+1
x>0

Remark that in each case we have obtained a problem in standard form, but of greater dimension
with respect to the original one.

8.2 Primal and dual problems

Problem -
min ¢’ x

xeR”
Ax=Db
x>0

is often called the primal problem. The dual problem is
bT
e
ATp <ec.
Let Qp = {u € R™ | ATy < ¢} the feasible set for the dual problem.
Theorem 8.2.1. Strong duality for LP

(i) The primal problem has a solution x* if and only if the dual problem has a solution p*.
In such case the values of the objective functions in the respective solutions coincide:

cI'x* =blp*
(i) If ¢'x is not lower bounded in Q, then Qp = @. If b is not upper bounded in Qp,
then Q) = @.

Proof. Let us rewrite the dual problem as an LP in the following way:

min —b”
HER™ K
c—-ATpu>o0

Because (denoting by x the n-dimensional vector of the Lagrange multipliers of the n inequality
constraints of the dual problem)

L(p,x) = —b"p - Z zi(c— ATM)z‘ =- Z bipi — Z zi(ci — (ATM)i)
i=1 i=1 i=1

m n
== bipi — Y wi(ci — arifn = - — Gnifin),
=1 =1
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we have that Vj =1,...,m

(VILE(/J’?X))], = aijﬁ(/"'ax) - 7bj - ixl(aﬂ) =

= b+ ) ajm = —bj + (Ax);,
=1

and so

VuLl(p,x) = Ax —b.

Then, a point (u, x) satisfies the KKT of the dual problem if and only if

Ax—b=0
ATugc

x>0

xT(c— ATp) = 0.

Setting A = ¢ — AT, we obtain the KKT of the primal problem, for a point (x, s, A):

Ax—b=0
ATu+x=c
A>0
x>0
xI'A = 0.

Remark that X is a vector of slack variables: the inequality c—AT pu > 0 becomes c— AT pu4+X = 0
and A > 0. Tt follows that (u*,x*, A*) satisfies the KKT of the dual if and only if (x*, p*, A*)
satisfies the KKT of the primal. Moreover, being the dual an LP, the KKT of the dual are
necessary and sufficient.

(i)

Let us assume that the primal problem has a solution x*. This means that there exist
put € R™ A" € R"™ such that (x*, u*, A*) satisfies the KKT. So (u*,x*, \*) satisfies the
KKT of the dual, i.e., u* is a solution of the dual problem.

Vice-versa, let us assume that the dual problem has a solution p*. This means that there
exist x*, A* € R" such that (u*,x*, A\*) satisfies the KKT of the dual. This means that
(x*, ", A*) satisfies the KKT of the primal, so x* is solution off the primal problem.
Moreover, in such case, because (x*, u*, A*) satisfies the KKT of the primal, from Corol-

lary it holds

cI'x* =blpr.

We know that if x* is solution of the primal and p* is solution of the dual, it holds
YV e Qp,Vx € Q
bTp <blp* =cTx* <cTx

If ¢Tx is not lower bounded in €2, than the minimum value of ¢ x in Q is —oo, then the
maximum value of bY p in Qp is —oco, then Qp = @. Vice-versa, if b? p is not upper
bounded in Qp, the maximum value of bY p in Qp is 400, then the maximum value of

c¢Ix in Qis +oo and Q = @.

O
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8.3 Convex and strictly convex problems

The problem
min f(x)

xER™

h(x)=0

g(x)=0
is said convex if both f and € are convex; it is strictly convex if f is strictly convex and € is
convex.

Lemma 8.3.1.

{ Vi=1,...,p hi(x) is linear Qs conver.

Vi=1,...,m g;(x) is concave
Proof. Let x,y € Q and t € [0,1]. We need to prove that tx + (1 — t)y € Q. We remind that
Q={xeR"|hi(x)=0Vi=1,....,p, gi(x) >0 Vi=1,...,m}.
It holds Vi = 1,...,p that

hi(tx + (1 —t)y = th;(x)+(1—1)h; =0
(tx+ (1 —1)y) ~ (0) (1—1) (?

andVi=1,...,m

gt (1-1y) = tgl)r(1-faly) > 0

gi is concave >0 >0 >0
O
Corollary 8.3.1.
f is convex
Vi=1,...,p hiy(x) is linear = the problem is convez.
Vi=1,...,m g¢;(xX) is concave
f is striclty convex
Vi=1,...,p hi(x) is linear =  the problem is striclty conver.
Vi=1,...,m g;(x) is concave
Remark 8.3.1.
f is striclty convex
Vi=1,...,p hi(x) is linear = the KKT are necessary and sufficient.
Vi=1,...,m g;(x) is concave

Proof. We know that for each constrained problem the KKT are necessary, we prove that they
are also sufficient. Let x* € Q for which there exist p* € R™ A" € R" such that (x*, u*, A¥)
satisfies the KKT. Then

p m

He (X5 05 X%) = H(X*) =Yy H,M ZA H, (x*) =

=1 =0, h is linear
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m m
= H(x") =) AN Hy(x") = HX) + (=D A\ H,(x)
—— Py ~—~ ——— —— Py
posit. def. because >0 neg. semidef. posit. def.
f strictly convex because g; concave

posit. semidef.

neg. semidef.

is positive definite. Then, for the second order sufficient condition, x* is a solution.

(£=) For LPs the KKT sare necessary and sufficient, but f(x) = ¢’x is not strictly
convex because it is linear (i.e., convex and concave). O

Remark 8.3.2. LPs are conver (not strictly). Then Q is convez.

Proof. f is convex (because it is linear); Vi=1,...,m
hi(X) = (AX - b)l = (14X)Z —b; =apx1+ ...+ anTy — b;

is linear. AlsoVi=1,...,m
gi(x) = z;

is concave (because it is linear). Then, for the corollary, LP is convex. O

8.4 Geometry of (2

Let us give some preliminary definitions. A half space of R™ is a set of the form

{xlaT’x > b}, a,beR™ a#0.

m m
Given x1,...,Xym € R, and \y,..., A\, €R, x = Z \;X; is a convex combination if Z N=1
i=1 i=1
and \; > 0 for every . The conver hull conv(X) of a finite set of points X is the set of points
which are convex combinations of a finite number of points of X.

A polyhedron is an intersection of finitely many half spaces. We say a polyhedron is bounded
if it does not contain a line or a half-line. A bounded polyhedron is a polytope. A polytope is
then the set of solutions of a system of linear equations and linear inequalities. A polytope can
also be defined as the convex hull of finitely many points, i.e., it is a set of the form conv(X)
for X a finite set. The extreme points of a polytope P are called vertexes and if V is the set
of such vertexes it holds P = conv(V). Then Q = {x € R" | Ax =b, x > 0} is a closed and

convex polytope (from Remark |8.3.2]).

Definition 8.4.1. x € Q is a vertex of 2 if it does not lie on a segment of €2, i.e., if there do
not exist y,z € Q,y,z # x such that x =ty + (1 — t)z for some t € (0,1).

Definition 8.4.2. x € R" is a feasible basic point if x € Q (then x > 0) and the columns of A
in the set {Ae; |i=1,...,n, x; >0} are linearly independent.

Notations
Each point x € Q is such that x > 0, then it is possible to reorder its components in a way
such that

x _
X(XB>, xg €ER",xp >0, xy e R" " xy =0.
N
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For the theory we will always consider this partition and the corresponding partition for A:
A= (B | N), B eR™ ", N g R™*(n-1),

Remark 8.4.1. Let x € Q.

the colums of B, i.e., Beq,..., Be,,

X is a feasible basic point <= are linearly independent.

In such a case, being Beq, ..., Be, vectors of R™, it holds r < m and rk(B) = r. B is called
base matriz. If moreover r = m, B € R™*™ is invertible.

Theorem 8.4.1.
x is a feasible basic point <= x is a vertezr of ).

Proof. Starting from each one of the two assumptions we have x € ), then we can partition x
and A as explained above.

(=) Let us assume by contradiction that x is not a vertex, i.e. that there exist y,z €
Q,y,z # x such that

x=ty+(1—-1t)z (8.3)
for some t € (0,1). We write
y = (yB>7 z = (ZB>7 yBazBERrv vazNeRn_T'
YN ZN

Remark that

then yy =2zny =0, i.e.,

Because x € Q it holds
XB
b= Ax = (B|N) ( ) — Bxp + NO = Bxp,
XN
ie.,
BXB =b.
Similarly, because y,z € €, it holds
ByB = b, BZB =b.
Then yp — xp € ker(B). Because dim(ker(B)) =r —rk(B) =0, yp —xp =0, i.e., yp = Xp.
Then
_(yB\ _ (xB) _
v=(3e) = () =
Similarly we can prove that B(zp —xp) = 0 and zg = xp. Then
() - ()
7 = = = X.
N XN

We have then found a contradiction with the assumption y,z # x.
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(<) We need to prove that the columns of B (Bey,...,Be,), are linearly independent.
Let us assume by contradiction that Be,..., Be, are not independent, i.e., that it exists
Y41
p=| : | # 0 such that
Pr
Y41
0= (Bel)pl +...+ (Ber)pr = (Bel | - | Ber) = Bp. (8-3)
br

Because xp > 0, it exists € > 0 small enough such that

Xp+ep>0 A xp —ep > 0.

_ [(xp+ep _ [XB —€p n
= (257). 5= (707) e

Because p # 0 it holds y, z # x. We remark that y € € because

Ay

0 ~~

(B | N) <XB + Ep) = B(xp +¢ep) = Bxp +¢Bp _=

Q0|

0

y = <X3+Ep> > 0.
0
Similarly z € Q). Remark that

L1 1/xp+ep) 1 /(xp—cep)_ (x5 _
zy+zz—2( o )72 o )7 o)™®

against the assumption that x is a vertex of €. O

- BxB:(B|N) (XB):Ax:b

and

|
Remark 8.4.2. The number of vertexes of € is less than [ [ Ca—
m m!(n —m)!

Theorem 8.4.2. Fundamental theorem of linear programming
(i) If there exist some admissible points, then at least one of them is a feasible basic point.

(ii) If LP has solutions, then at least one of them is a feasible basic point.

Proof. (i) Among all the admissible points we choose the one with the minimum number of
positive components. Let k£ be such number and x be such point:

x _
x:(XB>, XBGRk,XB>O, xy € R k,xN:O;
N

A= (B ‘ N)7 Be R7n><k, N e Rmx(n—k).
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Let us assume by contradiction that x is not a feasible basic point, i.e., because x is

Y41
admissible, that Bey, ..., Bey are not linearly independent, i.e., that it existsp= | : | #
Pk
0 such that
P1
0= (Bey)p1 + ...+ (Bex)pr = (Be1 | - | Bek) : | = Bp. (8-3)
Dk

Because xp > 0, it exists € € R small enough such that
xgp+ep>0 A e {l,...,k} st. (xp+ep); =0.
Let

y = (xB g-ap) € R™.

Remark that y is admissible because

= (01) ()

Bxp = (B | N) (XOB> —Ax=b

B(xp +¢p) = Bxp +¢Bp

and

Then y is admissible and has at most k£ — 1 positive components. This is against the
definition of k.

Among all the solutions of the LP, we choose the one, x*, with the minimum number of
positive components. Let & be such number:

*

x _

x*—(xf), X €RF x5 >0, xy eR"F x3 =0
N

A:(B|N), B eR™F N eRmX(n—k),

Let us assume by contradiction that x* is not a feasible basic point, i.e., because x* is

Y4
admissible, that Bey,..., Bey are not linearly independent, i.e., it exists p= | : | #0
Pk
such that
Y41
0= (Bei)p1+ ...+ (Bep)ppy = (Be1 | --- | Bey) | © | = Bp. (18.3)

Pk
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Because x3 > 0, it exists € > 0 such that Ve € [0, 2]
xp+ep>0 A Xxp—ep>0
and such that

Jie{l,....,k} st. (xp+Ep)i=0 V (xp—2p);=0.

y(e) = (XE§€p> L a(e) = <X7986p> cR".

Remark that Ve € [0,2] y(¢) is admissible because

Let Ve > 0

Ay(e) = (B \ N) (XB gsp) = B(xp +¢p) = Bxp +e¢Bp

:Bxg:(mz\z) (X(%)_Ax*_b

0= (457)2 ) -»

Similarly Ve € [0,2] z(e) is admissible.
x* is solution of LP, i.e., f(x*) < f(x) Vx € Q, then Ve € [0,2]
{ fF(x") < fly(e)

) < f(z(9)).

~—~

g

and

Reminding that Ve € [0, 2], it holds
(e = y(e) = (e 1 &) (¢ °P) = chixi + ep) = cfixi + cchp
= (cg | c%) (XO*B> +eckp =c'x* +eckp = f(x*) + eckp (8.4)
and analogously

f(a(e)) = f(x*) — eckp. (8.5)
This means that Ve € [0, ]

that is Ve € [0, 2]

so that
ckp=0.

Then from ({8.4)) and (8.5) we have that Ve € [0,2]
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Then Ve € [0,2] y(e) and z(e) are solutions of the LP.
We know that

Fe{l,....,k} st. (Xp+Ep)i=0 V (x5—2p);=0.

_ Xy +Zp
v@) = (5 ).
even if it is a solution, it has at most k — 1 positive components; if (x3 — €p); = 0, then

a6 = (%5 ).

even if it is a solution, it has at most k — 1 positive components. In each case we have a
contradiction, with the definition of k.

If (x5 +€p); =0, then

O

8.5 Simplex method

The simplex method is a method that terminates in a finite number of steps that starts from a
vertex of {) and at each steps moves from a vertex to another one. We are going to describe a
step of the simplex method under the following assumptions:

(HP1) suppose to have chosen a starting vertex of Q (we will see how to do that);

(HP2) suppose that the LP is not degenerate, i.e., that each vertex of 2 has exactly m positive
components (we will consider the general case later).

Let

c

X _

XC<XCB>, x5 € R™" x5 >0, xjy e R"™ x5 =0
N

be the current vertex. Because x° € 2,

b= Ax® = (B | N) (’39) = BxS:  x%=DB"'b,

e (B
X = 0 .

—1
f(x%) = cI'xt = (c% | C}C,) (BO b) = ch_lb.

We will write a generic x €  as

then

Remark that

X _
x:(B>7 xg € R™, xy € R"™™,
XN

Remark that Vx € Q

b= Ax = (B | N) (ii) — Bxp + Nxn;  Bxgp=b— Nxu;
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xp = B~'b — B~ 'Nxuy,

ie.,
. B™'b — B 'Nxy
= X :
Remark that Vx € Q

—1p. _ p-1
79 == (e 164) (7770 ) = ekt chatavey + ey
N

= f(x)+(ch —cpBT ' N)xy = f(x°) + Exx, (8.6)

where we have set
~ T/ p—1\T
CnN = CN — N (B ) Cp,

that is a vector of R"™™ that does not depend on x, but only on ¢, B, N. Because of this
dependence on B and on N, and because (as we will see) at the end of the step B and N are
updated, we have a different Cy at each step. €y is called the vector of reduced costs.
If ey > 0, then Vx € Q
x) = f(x°) 4+ ¢k x > x°),
fx) =fx)+ ey xn f(x)
> 0T >0
ie, f(x°) < f(x) Vx € Q, ie., the current vertex x° is solution of LP. Then, if the
optimality test
cy>0

is satisfied, it means we have found a solution of LP: the current vertex x°.

Otherwise, it means that x° is not a solution to LP, then we want to move from x° to another
vertex of ).

If x € Q is such that x = 0, then

<B_1b — B—leN> (B—1b> .
X = = = X ;
XN 0

then, to obtain a vertex x different from x°, it is necessary that xy # 0, i.e. that it exists
i €{1,...,n —m} such that (xy); > 0.
As the optimality test is not satisfied, ¢y < 0, i.e.,

dje{l,...,n—m} st. (cn); <O.
We will choose as new vertex a point

N (B—lb — B—leN)

X =
XN
with
0 0
0 0
xy = | (xn); | = (xn)jey, ej=|1[eRr"™,
0 0
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with (XN)j > 0.
Remark that

0
0
f(XJr)\:,_,f(XC) +ehxN = f(x°) + (€n)1 -+ (€N)n-m) | (xn);
(8-6) 0
0
= f(x)+(en);(xn);, (8.7)
and so
i = ¢ i cN)i(xXN); = —o0. .
LJm ) = )T (@), v (5.9

<0

Remark that x* € Q if and only if
0< B 'b-B 'Nxy=DB"'b— (xn);B 'Nej,

that is
(xn);(B"'Ne;); < (B7'b);  Vi=1,...,m.

Because B_lNej is the j-th column of matrix B~ N, it holds

(xn);(B7'N);; < (B™'b); Vi=1,...,m,

that is B
0< (B b | Vi:(B'N)y=0  (2)
(xn); > m Vi : (B_lN)ij <0 (3)

Because B~ 'b = x5 >0, ie. (Bflb)l- >0 Vi=1,...,m, as the problem is nondegenerate by
assumption, (2) is always satisfied and, as (xx); > 0, (3) is always satisfied.
Then, if it exists i € {1,...,m} such that (B~'N);; > 0, then x* € Q if and only if

(B~'b);

9

i.e, said s € {1,...,m} the index such that

(B~'b)s : { (B~'b);

(BN),; BTN,

‘ 1=1,...,m, (B_lN)ij >O}7
it holds

B~'b)
+ . (B7'b)s
xTeQ <= (xn); < (BN,
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Otherwise, if it does not exist ¢ € {1,...,m} such that (B_lN)ij > 0, i.e., if B_lNej <0,
then x* € Q always: (xy); can be large, and so from (8.8) f is not lower bounded in . Then,
if the unboundedness test

B™'Ne; <0

is satisfied, the LP does not have a solution.
If on the other hand the test is not satisfied, we choose

B (B~ 'b),
(XN)] = (B_1N>Sj'
Then
o (X8 _ B™'b -~ B~ 'Nxy
- XN o XN
with
0
0
o — (B~'b), _ (B~'b), ..
N (B7IN)s; (B=IN)g; 7
0
0
and then
-1 -1 -1 (B7'b)s 1
xg=B""b—-—B "Nxy=8B b—mB Nej,
ie,Vi=1,....,m
- (B7'b)s 1 -1 (B7'b)s 4
(xB)i = (B7'b); — 24— (B 'Nej)i = (B™'b); — ———-5—(B7'N)j;.
(B-1N)s; 7 (B-1N); J
Because
B~ 1b),
(x5)s = (B1b), — 2D g1y,

(B7IN)s;
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it holds
-1
(B7b)s — (g (B Ny
B_.lb s
(B7b)cs = oy (B V)
s 0
B~ 'b), _
(B_lb)erl - (<BlN))SJ<B 1N)s+1,j
T .
xf— m (B™'b),, — M(B*N)mj
m+1 0
0
. (B~'b)s
md (B71N)s;
0
n 0
Remark that
= " (B~'b),
fxT) = fE)+En)jxn); = f(x)+@n)j oo < f(xO).
T
>0

We prove now that x* is a vertex of 2, showing that is a feasible basic point.
Because xV1 is admissible, we have to prove that the columns of A that correspond to the
positive elements of xT are linearly independent. We have to prove that the vectors

Aey, ..., Ae,_1,Aegy, ..., Aey, Aeyy g,
are linearly independent, or rather the vectors Bey, ..., Be,_1,Be,,1,...,Bey,, Ne;, or
Bey,...,Bes_1,Nej,Bes;1,...,Bey,,.

Theorem 8.5.1. Let vy,..., vy, € R™ be linearly independent. Let w = c1vi+...+ ¢V # 0
for some cq,...,cm € R. It exists s € {1,...,m} such that cs # 0.
The vectors Vi,...,Vs_1,W,Vsyi1,...,Vy, are linearly independent.

Proof. Assume by contradiction that vq,...,vs_1,W,Vsyi1,...,V,, are linearly dependent, that
is, that there exist dy,...,d, € R not all zero such that

divi+ ... +ds1vs_1 +dsw+ds1Vsr1 + ...+ dip v, = 0. (18.3)
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Remark that ds # 0: if it was ds = 0, we would have divy + ... + ds_1Vs_1 + ds41Vst1 +
oo +dpmvy, = 0, then, being by assumption vi,...,vs_1,Vsi1,...,Vy, linearly independent,
we would have d; = ... =d,, = 0, against the fact that dy,...,d,, are not all zero.

For (8.3) it holds

O0=dvi+...+ds—1vs_1 + ds(clvl +...+ Cmvm) + ds+lvs+1 +.. A+ dnvim
= (dl + dscl)vl +---+ (dsfl + dscsfl)vsfl + dscsvs + (derl + dscs+l)vs+l +---+ (dm + dscm)vm~

Because dscs # 0, this last is a zero linear combination of vi,...,v,, with coefficients which
are not all zero, then vq,...,v,, are linearly dependent, which is a contradiction. O

As the columns of B are linearly independent we have:

Ne;j = BB~ 'Ne; = Bq= (Be1)q1 + ...+ (Bep)qm.
q=B~'Ne;

Moreover the term ¢; = (Bleej)s > 0 from the computation of the index that enters in s.
Then from the previous, also

Bey,...,Be,_1,Ne;,Bes 1,...,Bey,

are linearly independent.
At the end of the step we update B setting

Bt = (Be1 | .- | Bey_1 | Ne; | Begyy | - \Bem),
that is invertible, and we update N setting
Nt = (Ne1 | .- | Nej_1 | Be, | Nejyi | -+ \Nen_m).

The base matrix changes: we say that Be, goes out of the basis and Ne; enters the basis.

The algorithm of a step of simplex method can be sketched in the following way:
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0. Given

C
x .
x° < CB), xp € R™ x5 >0, xiy e R x5, =0,

A= (B | N), B € R™*™ B invertible, N € R™*(n=1),

1. Optimality test:

1. Compute y = (B~ 1)Tep

2. Compute €y =cy — N'y

3. If ¢y > 0, then return x° as a solution and stop
2. Select j € {1,...,n —m} such that (cn); <0
3. Compute q = B~'(Ne;)

4. Unboundedness test:
If g < 0 then return “the problem does not have a solution” and stop

5. Find s € {1,...,m} such that
e _ {50

qs qi

1=1,....,m, qi>0}

(remember that B~'b = x%, given in input)
6. Update:

1. Set

() ! (x5)s
XX}Z(O,...,O, ,0,...,0) , XEZX%— q,

qs qs
2. Set
Bt = (Be1 | -+ | Bes_1 | Nej | Begyr | -+ |Bem),
Nt = (Ne1 | .- | Nej_1 | Be, | Nejyi | -+ |Nen_m).
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The simplex method terminates in a finite number of steps. Let’s prove this. Each time
that we move from the current vertex x¢ towards a new vertex x ', this last one is such that

f(x1) < f(x°), then it is not possible to visit a vertex more than once. Then, because 2 has a

finite number of vertexes, and because (from Theorem ?7?) at least one of the vertexes of 2 is

a solution, in a finite number of steps we will find a vertex that is a solution.
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8.5.1 How to choose a starting vertex of ()

There are various ways to choose a starting vertex in 2. We will explain one among them. Let
us consider the following artificial problem:

m
min Zi
XER",ZERM’E ¢
1=
Ax+FEz=DbD
x>0
z>0

where A and b are the data of the original problem, while

By
E= e R™*™, Eu{
Em'"L

1 seb; >0

1 se by < 0 Vi=1,...,m.

Set

we(uie) v (3)

n+m

min Z Yi
yERn+m Ml
My =b
y>0

the artificial problem becomes

The feasible set for this problem is

Q. ={y eR"™™ | My = b, yZO}{(:)eR”+m|Ax+Ezb, x>0, zZO}.

Let
0 |b1]
X0 o
Yo <Z0) - (|b|) ) ‘b‘ .
(2
Remark that yg € ,. Indeed
0 E |b1| E11]b1]
My, = (4] B) <|b|) = Elbl = =] s =
because Vi =1,...,m
].bl se b1 2 0 7
E’Ll|b’L| - { _1(_b7,) se bi <0 - b’Lv
we have that )
1
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=) = (o) =0

Having proved that yo € €, remark that yq is a vertex of {2, because its positive components

correspond to linearly independent columns of M. The positive components of y( are between

the (n+1)-th and the (n4m)-th, then they correspond to columns of M between the (n+1)-th
En

and the (n +m)-th. SO they correspond to columns of E = , which are all
Emm

Moreover

linearly independent because Fi1, ..., Fmm € {+1,—1}.

m

Remark that function f(z) = Z z; on the constraint z > 0 has the minimum in z = 0. Then,
i=1

if (g) € Qg, then (g) is solution of the artificial problem. It surely exists x € R™ such that

X
0
x € (), which is always true. Then the set of the solutions of the artificial problem is

- () s ees)

The simplex method applied to the artificial problem starting from the vertex yo will give as a
x*

0 of Q.

Remark that x* is a vertex of Q. Indeed x* € Q because y* € S,. Moreover x* is a vertex of
Q: y* is a vertex of , i.e., the positive components of y* correspond to linearly independent

*

€ Q, because this means that it exists x € R™ such that Ax = b e x > 0. Then it exists

solution a vertex y* =

columns of M. Because y* = (X

0>, the positive components of x* correspond to linearly

independent columns of A.
We have then found a vertex of €, x*, from which we can start the simplex method on the
original problem.

8.5.2 Generalization of the algorithm to the degenerate case

We have described the algorithm for a step of the simplex method under assumption (HP2) of
non degeneracy. If at a step a vertex x¢ is obtained with less then m positive components, at

least a component of x%, that is at least a component of B~ 'b is zero. If it exists i € {1,...,m}
such that (B~'N);; > 0 and (B~ 'b); = 0 then

(B~'b)s : { (B~'b); ’ : 1 }

—————— =ming ————— |i=1,...,m, (B""N);; >0, =0.

(B7IN)s; (B~IN)ij ( i

If the non boundedness test is not satisfied,

B (B~ 'b), B
(xn)j = BN, 0,

and xT = x¢, that is we remain on the same vertex. Then the finite termination of the method
is no longer guaranteed.
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Bland’s rule

Remark that in algorithm ?? steps (2) and (5) may be ambiguous: it may exist more than

just one index j € {1,...,n —m} such that (Cy); < 0 and it may exist more than just one
xC xS,

index s € {1,...,m} such that @ = min{(B)l i=1,...,m, q; > 0. In the algorithm
as qi

we have not specified which index to select in case of ambiguity. Bland’s rule requires to
choose at step (2) the smallest among the indexes j € {1,...,n — m} such that (cy); < 0
(&

e
and to choose at step (5) the smallest among the indexes s € {1,...,m} such that ~~22% =
as
C[(xB)i . .
min< —— |i=1,...,m, q; > 0 ;. Remark that, as permutations of the components of x are
q:

always possible, it is necessary to a-priori enumerate the components of x and the smallest

index is referred to such numbering.
It is possible to prove that the simplex method with Bland’s rule always terminates in a finite

number of steps, even in the degenerate case.

Example Let us consider the problem

3 1
min —11‘1 + 15029 — 701:3 + 624.

xER* 5

1 1

—-T1 — 60332 — —x3+ 9584 S 0
215

5.’1?1 — 90%2 — %l‘g + 3.’174 < 0

T3 < 1

x>0

The standard form is
i 3 150 L +6
min ——x; — - —
xeRr 471 T2 gt T

1 1
Z$1 — 60zy — %l‘;g + 9244+ 25 =0

1 1
5331 — 9029 — %563 +3x4+26 =0

T3+ 7 =1
x>0
that is
min ¢’ x.
x€R7
Ax=Db

x>0
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where
_3
4
—150 1 1
- 60 —— 91 0 O
1 4 25 ( ) 0
c= 50 A= 1 1 =(N|B b= 10
b _ _ o 1 )
6 2 90 50 310 0 1
0 0 0 1 00 0 1
0
0

The current point is

that is

C
X = <XN> . x4y €RYL XS =0, x4 =B"'b=(I,) 'b=h,

C
XB

x° = (0,0,0,0,0,0,1)""

It is a point with less than m = 3 positive components, then it is a degenerate point.

If we don’t use Bland’s rule we can create a loop from which we cannot escape: at first step
we take s =1 and j = 1, then s =2 and j = 2, then s =1 and j = 3, then s =3 and j = 1,
then s = 1 and j = 3, then s = 3 and j = 1, and so on: we always remain on the starting
vertex.
If we use Bland’s rule the process terminates in a finite number of steps.

8.5.3 Advantages and disadvantages of the simplex method

The simplex method has two main advantages.

(V.1)

(V.2)

Finite termination. We have seen this in the degenerate case but this holds also in
general.

A step is cheap. The only expensive computations in this algorithm are y = (B~")Tcp
and q = Bil(Nej). To perform such computations we never compute B~!, but we solve
the linear systems B’y = ¢ and Bq = Ne;. If an LU factorization of B is available, the
first system becomes (LU)Ty =cp, or UTLTy = cp, and the second one LUq = Ne;.
Then we solve the four triangular systems

Ul'w =cp Lw = Ne;
L'y=w ~ Ugq=w

Each of them cost O(m). The LU factorization of B is not computed ex-novo at each
step, which would cost O(m?’): once computed at the beginning of the algorithm, at each
step we can compute the factorization by updating the one computed at the previous
step. Exploiting the fact that the matrix B at the current step has just a column that is
different from that of the previous step, the update of the LU factorization costs O(m?).
Then, a step of the simplex method requires just the solution of four triangular linear
systems and the update of the LU factorization of B.

The simplex method also has a disadvantage, to understand it we need the following definition.



88 CHAPTER 8. LINEAR PROGRAMMING

Definition 8.5.1. Complexity

(-) The complexity of a method that terminates in a finite number of steps is the number of
steps performed before the termination.

(-) The complexity of an iterative method is the number of iterations necessary to reach a given
accuracy, which translates in a certain stopping criterion ||xp — x| < toll.

In both cases, (the tolerance must be fized for the iterative case) the complexity can either be
a linear, or a polynomial, or an exponential... function in the dimension n of the problem. In
such cases we will respectively say that the complexity is linear, polynomial, or exponential... in
n.

|

n!
In the worst case, the number of vertexes of €2 is ﬁ and we need to visit them all.
ml(n —m)!

n—

seldom encounter(ed in practice: the simplex method generally requires only 2m or 3m steps and
works very well. In 1973 Klee and Mint built an example in which Q is a cube with 2™ vertexes
and all of them need to be visited befor reaching the solution. They proved in this way that
the simplex method has indeed an exponential complexity in n. People started then looking
for methods with polynomial complexity in n. At the end of 1970 Khachiyan proposed the
ellipsoid method, which has a polynomial complexity but in practice is slower than the simplex
method. In the mid 1980 Karmarkar proposed another method with polynomial complexity,
which inspired the interior-point methods, that are widely used nowadays.

We then need ' 7 steps to terminate the procedure. This is clearly a worst case, which is
m! m)!



Chapter 9

Flow networks problems

In graph theory, a flow network (also known as a transportation network) is a directed graph
where each edge has a capacity and each edge receives a flow. The amount of flow on an edge
cannot exceed the capacity of the edge. Often in operations research, a directed graph is called
a network, the vertices are called nodes and the edges are called arcs. A flow must satisfy the
restriction that the amount of flow into a node equals the amount of flow out of it, unless it is a
source, which has only outgoing flow, or sink, which has only incoming flow. A network can be
used to model traffic in a computer network, circulation with demands, fluids in pipes, currents
in an electrical circuit, or anything similar in which something travels through a network of
nodes. Flow networks problems can be divided into two large categories: the first is the one of
problems for which the passage of the flow through an arc is associated to a cost, such costs
are known, and we look for the minimum cost; the second is the one of problems for which the
capacities of the edges are known, and we look for the maximum feasible flow.

9.1 Minimum cost flow problem
Let us consider a network, represented by an oriented graph
G=(V,E), V=A_1,...,n}, E={e1,...,e;} CV V.

In a minimum cost flow problem, each edge (¢, j) € E has a given cost ¢;;, and the cost of sending
a part of the flow x;; across the edge is ¢;;z;;. The objective is to send a given amount of flow
from the source to the sink, at the lowest possible price. These problems can be formulated in
this way.

For each 4,5 = 1,...,n: (i,j) € E we denote then with x;; > 0 the part of the flow that
passes from i to j and these are going to be the variables of our problem. The total cost that
n

we want to minimize is E CijTij.
i=1
(i,j)€E

89
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We formulate the problem as follows:

n
min E CijTij,
X

i,7=1
(.9)eE
n n
E Tij5 — E ﬂCﬂ:bl VZ:].,,TL
Jj=1 Jj=1
(i,4)€E (4:i)eE

x5 20 Vi,j=1,...,n:(i,j) € E

n n
where by, ..., b, are assigned quantities and Z x;; is the outgoing flow from node 7, Z T j;
j=1 Jj=1
(i,5)€E (4i)eEE

is the ingoing flow in node 1.

o If b; =0, i is said a transit node (the amount of flow that enters in the node i is the same
as that which goes out);

e If b; > 0, ¢ is said a supply node (the flow that goes out from i is larger than that which
goes in);

e If b; <0, i is said a termination node (the flow that enters in i is larger than that which
goes out).

This is a LP because the objective function is linear. We can put it in standard form. We
define

c1 1
c= ) X = ,
Cm T
where Vk = 1,...,m, ¢ is the cost associated to the passage of the flow along the edge ey,

and zy, is the flow (to be found) that passes along the edge e;. We define the incidence matrix
node-edge of G as the matrix A € R™*™ such that

1 if e, = (4,4) for some j =1,...,n
Ay =4 -1 ife,=(j,4) forsomej=1,...,n
0 altrimenti

m

With this notations the total cost (i.e., the objective function) is Z cxxr = cl'x, the second
k=1
constraint becomes x > 0 and the first one Ax = b. Indeed Ax = b means (Ax); = b; Vi =

1,...,n, where
m m m
(AX)7 = ZAZka = Z T — Z Tk -
k=1 k=1 k=1

en=(i,%) er=(#,i)
——— N——
outgoing ingoing flow
flow from 2 in 7
We can then rewrite the LP as "
min c” x.
xER™
Ax=Db

x>0
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To solve the LP we could use the simplex algorithm, but usually the DIJKSTRA algorithm is
preferred that, exploiting the special structure of matrix A, has a quadratic complexity (and
so polynomial) in m, and not exponential as the simplex.

9.2 Maximum flow problem
We consider a network, represented by an oriented graph
G=(V,E), V={1,...,n}, E={e,...,em} CV XV,

with a source s and a sink ¢.

For each 4,5 = 1,...,n: (i,j) € E we know the capacity ¢;; € Z>¢ of the edge (3, j), i.e.,
the maximum amount of flow that can pass through an edge (3, j).

A feasible flow of G is a vector f = ( fij)

from 4 to j, such that

) € R™, where each f;; € Z>( represents the flow
i,j)€E =

outgoing flow  ingoing flow
from 3 in 4
—
n n
E fij_ E fji:() Vi=2,...,n—1
=1 j=1
(i,5)€E (J.1)EE

0<fij<cj Vi,j=1,...,n:(,j) €L

Given a feasible flow f, we call value of the flow the amount of flow passing from the source to

the sink:
v = Z fsj-
j=1
(s,j)EE

We want to find the maximum value of a feasible flow, i.e., we have to solve the problem

max v,
veER

outgoing flow from s

—_—

Z fsj =v

Jj=1
(s,)€E
outgoing flow from ¢ ingoing flow in ¢

—_— ——

zn: Jij - zn: fii =0 Vi=2,...,n—1
Jj=1 j=1

(i,j)€E (41)eE
ingoing flow in ¢

—

> fie o =v
=1
(G )eE
0<fij<cy Vij=1,...,n:(i,j) €E
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This is an LP:

min —v.
veR
outgoing flow from s

—

n

Z fsj =0

Jj=1
(s.4)€E
outgoing flow from ¢ ingoing flow in %

—

zn: fij - zn: fii =0 Vi=2,...,n—1
j=1 j=1

(i,j)€E (J,i)eE
ingoing flow in ¢

—

D fr =v
j=1
(Gt)eE
ngijgcij V’Lv]:]-vvn(za])eE

We can put this in standard form. Let’s define

C1 1
Cc = : ) f = 9
Cm Im
where Vk = 1,...,m ¢ is the capacity of the edge ey, and fi is the amount of flow (to be

found) that passes through the edge e;. We denote with A the incidence matrix of G. Let

v

0
b=v(e—e,)=| :
0
—v

With these notations the last constraint becomes 0 < f < ¢ and the other constraints become
Af = b. Indeed Af = b means (Af); =b; Vi=1,...,n, where

(Af)i:ZAikfk: Z fe - Z i
k=1 k=1 k=1

- er=(i,) ex=(x1)
N—— N—_——

outgoing flow from ¢ ingoing flow in 4

Then we can rewrite the LP as
min —o.
veER

Af =D
0<f<c

The admissible set of the LP is

Q={fcR™|Af=b, 0<f<c)
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A LP with Q # @ and with lower bounded objective function in €2 has a solution. Our LP is
such that © # &, indeed the zero flow f = 0 belongs to § as it corresponds to b = v(e; —e,,) =
0(e; — e,) = 0. Moreover the objective function is lower bounded in € because, as

Z f&j_ Z Csjs

(s J)GE (s J)GE

it holds

Z Csj-

(57J)EE

Then the LP has a solution.

We define a cut of the network G a partition {W, W'} of V such that s € W and t € W'.
Given a cut {W, W'} of G, we define capacity of the cut {W, W’} the maximum amount of flow
that can pass from W to W':

C(VV, W/) = Z Cij-
i,j=1
(i,5)EE
iew
jew’
Given a feasible flow f and a cut {W, W'} of G, we define the flow of the cut {W, W'} the exact
amount of flow that passes from W to W':

flow from flow from
W to W' W' to W
—_—— ——

S fi— > fi

i,j=1 i,j=1
(ij)€E (i))€R
icw, iEW’
JjEW JjEW

Given a feasible flow f of G, we can show (thanks to the fact that f is a feasible flow) that for
each cut {W, W'} of G it holds
FW,W') =

The flow of the cut {W, W'} does then not depend on the cut {W, W'}, then we can denote it
simply by F', dropping the dependence on the specific cut.
Remark that, given a feasible flow f of G, it holds

v< C(W, W' V{W,W'} cut of G. (9.1)

Indeed, given a cut {W, W'} of G, we have

v=F=FWW') Z fij — 2": fi; < 2": fiz < zn: cij = C(W,W').

1,j=1 i,j=1 i,j=1 4,j=1
(i)eE (i.9)EE (ig)eE (ig)eE
;EW, iEW ?EW/ ?EW/
JEW JEW JEW JEW

Given a feasible flow f of G, an edge (4, j) € E is said saturated if f;; = ¢;;. A backward
edge is a couple (j,7) such that (i,j) € E. The edges of G are on the contrary called forward
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edges. An backward edge (j, ) is void if f;; = 0.
A path in the network G is a set

P = {(S,il), (ilaiQ)a R (ipat)}

whose elements (,,4,41) are direct or backward edges. Given a feasible flow f in G, a path P
in G is an augmenting path if it does not have saturated forward edges and it does not have
void backward edges.

Remark 9.2.1. If f is a feasible flow in G with value v and P is an augmenting path in G,
then it exists an admissible flow fyow of G with value Vpew > v.

Proof. We build f,,c,, with the following algorithm:

Given f feasible flow in G (for example f = 0) of value v, P augmenting
path in G.

1. Set
P, = {forward arcs of P}, P_ = {backward arcs of P}

2. Compute

oy :min{cij 7fij |17] =1,...,n, (Z,]) € P+}a
6_ :mln{f” | ,7=1,...,n, (],Z) EP_}.
3. Set § = min{d;,0_}
4. SetVi,j=1,...,n:(i,j) € E
fig+0 if (i, j) € Py

(fnew)ij = fij -6 if (],Z) e P_
fij otherwise

Remark that, because P is an augmenting path, it does not have forward saturated edges
and void backward edges, then §; > 0 and d_ > 0, so that § > 0.
Remark that fi,c,, € R™ built in this way is a feasible flow (easy to prove TD) and that its value

1S
n

VUnew = Z (fncw)sj'

j=1
(s, 4)EE

Among the forward edges from s, exactly one belongs to P: is the forward edge (s,41), then

n

Unew = Z (fnew)sj + (fnew)s,il = Z fsj + fs,il + 0= Z fsj + o=v + 0 > .
=1

Jj=1 J Jj=1
(S"Q‘EE (S,QEE (s,j)EE
JF1 J7Fu

Theorem 9.2.1. Let f be a feasible flow of G with value v.

v is a solution of LP <= there does not exist an augmenting path in G.
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Proof. (=) By contradiction. Assume there exists an augmenting path in G, then for the
previous observation it exists a feasible flow f,cy, in G with value v,ew > v, and so v would not
be a solution of LP.

(<) Let

W = {s} U {nodes that can be reached from s along an augmenting path}, W' =V \W.

By assumption ¢t € W', then {W, W'} is a cut of G.

v=F=F(WW) Z fii — Z fi-

3,7=1 1,5=1
(i) (i)
_zEWI ieWw’
JEW JEW

The edges (i,7) € E :i € W,j € W’ are such that f;; = ¢;;. By contradiction, let (¢,j) € E :
i € W,j € W be such that f;; < ¢;;. Then the edge (4, ) would be non saturated, and, as
i € W is reachable from s along an augmenting path, also j would be reachable from s thorough
an augmenting path, so j € W, which is in contradiction with the assumption j € W’.

The edges (i,j) € E : i € W',j € W are such that f;; = 0. By contradiction, if it exists
(i,j) € E:i € W',j € W such that f;; > 0, then the backward edge (j,7) wouldn’t be void,
and so, because j € W is reachable from s by an augmenting path, also ¢ would be reachable
from s with an augmenting path. Then i € W, in contradiction with i € W’.

Then
n
> - E 0=C(W,W’).
1,7=1 7,7=1
(i,J)€EE (i,J)EE
iEW icW’
jeEW’ JEW

We have then a cut {W, W'} of G such that v = C(W,W’). From (9.1)), the value of the other
flows in G cannot be larger than C(W, W'), i.e. it must be lower than v, then v is solution to
the LP. O

The LP can be solved using the Ford-Fulkerson algorithm:

Given f feasible flow of G (for example f = 0) of value v

1. Look for an augmenting path G

2. If such a path is not found, then return v and stop.
Otherwise
2.1 Build £,y with the algorithm sketched in the previous remark
2.2 Set Vpew =V + 0
2.3 Go back to 1

The algorithm returns the value of a flow of G such that there do not exist augmenting
paths in G, that is, for the previous theorem, whose value is a solution of the LP.
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Because

n n
U= Z fsj < Z Csj = C,
j=1 j=1
(s,J)EE (s.4)EE

is a costant

and because at each step of the algorithm v is increased of at least 1, the algorithm stops in at
most C' steps. The cost of a step is mainly related to the cost of searching for an augmenting
path in G, i.e. O(m). Then the Ford-Fulkerson algorithm costs O(C'm), it has then a linear
complexity (and so polynomial) in m.

Theorem 9.2.2. Max flow-min cut
Let £ be a feasible flow of G with value v.

v 18 a solution to the LP <= v = Cyin,
where Cin = min {C(W, W) | {W, W'} cut of G}.

Proof. (=) The assumption, from the previous theorem, guarantees that there do not exist
augmenting paths in G. Repeating the proof of the implication (<=) of the previous theorem,

we find a cut {W, W/} of G such that
v=C(W,W). (9.2)

From (9.1)) it holds
v C(W, W' VY{W,W'} cut of G,

then from (1) it holds
C(W, W) < C(W, W) W{W,W'} cut of G,
that is C(W, W/) = Chin. Then from
v = Cupin-
(<) Because Chyin, = C(W, W) for some cut {W, W'} of G,
v=C(W,W").

From ({9.1]), the value of any other flow of G cannot be larger than C' (W, W'), that is it cannot
be larger than v, then v is solution of the LP.
O

If at step k it holds pr = 0 and if it exists at least a j € {1,..., M} such that (Ag);, <0,
said
(M), =min{(Ag)s, |7 =1,..., M : (A);; <0},
the algorithm sets

xk-‘rl = Xk,

W(xk11) = W(xk) \ {is}
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and moves on. That is, it finds the solution pg41 of the problem

1 T T
min — .
nin op Qp + g11P

App=0
(Arp)i =0 Vi € W(xp41)

It holds
Pr+1 # O, (Arpr+1): >0 Vie {1,... m}P\ W(Xgt1)-

Remark 9.2.2. We do not prove the theorem, but we show why it is relevant. Once we have
found pr41 # 0, we set
Xp+2 = Xk41 + OPE+1

where we choose a € (0,1] such that X1 + aprt1 € , i.e., such that
(Arxgs1)i + a(Arpra1)i > (br); Vie{l,...,m} \ W(Xg+1)- (9.3)
Then, because is € {1,...,m} \ W(xxt1), we choose a € (0,1] such that
(Arxp+1)i, + a(ArPr+1)i, = (br)i,,

i.e., as it holds (Arxg+y1)i, = (br)i, because iy € W(xy) C A(xx) = A(Xpt+1), we choose

Xe=Xk+1

a € (0,1] such that
a(Arpe+1)i, = 0.

The fact that
(A]p]H_l)i >0 Vie {1, ey m} \ W(Xk+1)

ensures that we will not be forced to choose a = 0: this choice, that we eliminate a-priori as we
ask a € (0, 1], will imply X120 = Xk+1, and we would not be able to move from this point.

Lemma 9.2.1. If at step k it holds py # 0, then the function

v: (0,1] — R
a  —r p(a) =q(xx + apk)

18 strictly decreasing.
Then for any « € (0,1] such that Xg41 = Xi + apg, it will always hold

q(Xp41) < q(xp)-

Proof. py is the only solution of

min g(p), 9.4)
Ap=0
where
q(p) = %pTQp + 8P
that is

qdpe) <qlp) VP ER"\{px}:Ap=0.
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Then, because pi # 0 by assumption and it holds A0 = 0, it follows

i.e.,
1
5Pi QP + gl pr <0,
ie.,
1
giPk<—5 PiQpr <O (9.5)
——
> 0Q is pos. def.

and py # 0

Remark that

1
o(a) = q(xk + apr) = §(Xk + apr) T Q(xx, + api) + ¢’ (x + apy)

1
= ...= ingPkOZQ + pi gro + q(xk)
is a parabola with 77 rivolta verso l'alto (because @ is positive definite) whose vertex has
abscissa
_ *ngk
ay =

> 0.
PfQPk ~

Then ¢(«) is strictly decreasing in (0, ay|. If we prove that ay > 1 we get the thesis.
Because py is a solution of

: 1 T T
in op Qp + g p,
Ap=0

it exists ), € RPT™™ such that (py, p},) satisfies the KKT of (9.4), that is such that

Qpr +gr— ATp, =0
Apr =0

Multiplying the first set of equations by pg we obtain

pPrQpr+pigi— prAT  pL=0,
——
= (Apk)T = OT
ie.,
Pt QPk = — P} 8k,
ie, ay = 1. [

Lemma 9.2.2. If at step k it holds px, # 0 and o = 1, then px41 = 0.

In the following theorem we prove that the active-set method stops in a finite number of
steps.

Theorem 9.2.3. The active-set method stops in a finite number of steps.
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Proof. (a) The algorithm meets pj, = 0 at least every n steps.
Let’s prove this Let us assume that pg # 0. If & = 1, then from Lemma 2 it holds py+; = 0.
Let us assume that a # 1. Then, from the definition of the algorithm

W(xk41)| = W(xp)| +1=M +1
Analogously

Prr1 #0,a#1 = WEXpt2)| = WEi41)| +1=M + 2.

Pitm-m)—1 7 0,a#1 = W(Xprm-m)|l = WEprm-nrn)—1)|+1 = M+(m—M) =m
- W(Xk+(me)) = {1,...,m}.

Then Py (m—ar) Will be the solution of the problem

1
min ~p’ Qp + gL p, (PQWp)
pER™ 2

Agp=0

(A;p)i =0 Vi=1,....m
that is L
min ~p”Qp + g p, (PQWp)
peR” 2
Ap=0

where A € RPT™)*" — R"X" The only feasible point is 0, and so
Pk+(m—n) = 0.
Because m — M < m < n we get the thesis.

(b) When the algorithm meets a point py = 0 the working-set will never be equal to W(x).
We can prove this by using the fact that from Lemma 1 it holds pg4+1 # 0 and so from the

preposition ¢(xx+2) < ¢(xg+1) = q(xk).

Xk+1=Xg
From (a) and (b), at least every n steps the algorithm abandons forever a given working-set.
As the number of working sets is finite (working-sets are subsets of {1,...,m}), the algorithm
stops after a finite number of steps. O

9.2.1 How to find a starting point of ()
To find a starting point of 2 we build the following artificial problem:

2 m
min g w; + E Zi
xER™ weRP zeR™ 4 ] —
1= 1

(A[X)i +z; > (b[)2 Vi=1,...,m
w>0
z>0
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where Ag,bg, A7, by are the same that appears in the original problem, while, set x € R",

)1 se (bp); — (ApX); >0 .
h= { 1 se(bp)— (Apx) <0 T Lep
The feasible set for this problem is
X
Q. = w | € RvTPrm (AEX)Z—FVZUJZ = (bE)z Vi=1,...,p,
z

(Arx);+2z; > (by); Yi=1,...,m, w>0, z>0}.

Let
wy
{EP
Z1
zZ= 5 Zi:max{(bf)i—(AISE)i,O} Vi = 1,...,m.
Zm

X
It is easy to verify that [ w | € Q,.
z

P m
. . w 0 ..
Remark that the function f(w,z) = g w;+ g z; on the constraint (z) > <0> has minimum

i=1 i=1

x X

value in <VZV> = <g) Then, if | 0] € Q,, then | O | is a solution of the artificial problem. It
0 0
X

surely exists x € R™ such that | 0 | € ©Q, because this means that it exists x € R"™ such that
0

(AEX)i = (bE)z Vi = 1, SN /N (AIX)i Z (bI)z Vi = 1, e,y
i.e., such that
AEX:bE, A[X:b[,
i.e., it exists x € €, that is always true. The set of solutions of the artificial problem is
X

S = 0| eR™™PH™ | x €
0

<!

The active set method applied to the artificial problem starting from | w | € §, gives as a

N?

x*
solution a point | 0 | of S;. Then we have found a point of 2, x*, from which we can start
0

with the active set method on the original problem.
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