
Optimization and Approximation

Elisa Riccietti12

1Thanks to Stefania Bellavia, University of Florence.
2Reference book: Numerical Optimization, Nocedal and Wright, Springer

2

Contents

I I part: nonlinear optimization 5

1 Prerequisites 7
1.1 Necessary and sufficient conditions . 9
1.2 Convex functions . 10
1.3 Quadratic functions . 11

2 Iterative methods 13
2.1 Directions for line-search methods . 14

2.1.1 Direction of steepest descent . 14
2.1.2 Newton’s direction . 15
2.1.3 Quasi-Newton directions . 16

2.2 Rates of convergence . 16
2.3 Steepest descent method for quadratic functions 17
2.4 Convergence of Newton’s method . 19

3 Line-search methods 23
3.1 Armijo and Wolfe conditions . 23
3.2 Convergence of line-search methods . 27
3.3 Backtracking . 30
3.4 Newton’s method . 32

4 Quasi-Newton method 33
4.1 BFGS method . 34
4.2 Global convergence of the BFGS method . 38

5 Nonlinear least-squares problems 41
5.1 Background: modelling, regression . 41
5.2 General concepts . 41
5.3 Linear least-squares problems . 43
5.4 Algorithms for nonlinear least-squares problems 44

5.4.1 Gauss-Newton method . 44
5.5 Levenberg-Marquardt method . 45

6 Constrained optimization 47
6.1 One equality constraint . 48
6.2 One inequality constraint . 50
6.3 First order optimality conditions . 52

3

4 CONTENTS

6.4 Second order optimality conditions . 58

7 Optimization methods for Machine Learning 61

II Linear and integer programming 63

8 Linear programming 65
8.1 How to rewrite an LP in standard form . 66
8.2 Primal and dual problems . 69
8.3 Convex and strictly convex problems . 71
8.4 Geometry of Ω . 72
8.5 Simplex method . 77

8.5.1 How to choose a starting vertex of Ω . 84
8.5.2 Generalization of the algorithm to the degenerate case 85
8.5.3 Advantages and disadvantages of the simplex method 87

9 Flow networks problems 89
9.1 Minimum cost flow problem . 89
9.2 Maximum flow problem . 91

9.2.1 How to find a starting point of Ω . 99

Part I

I part: nonlinear optimization

5

Chapter 1

Prerequisites

Let A be an open set of Rn and let

f : A ⊆ Rn −→ R
x = (x1, . . . , xn)T 7−→ f(x)

An unconstrained optimization problem is a problem of the form

min
x
f(x),

where f is called the objective function. In the following we will assume f to be a nonlinear
function.

1. If f is differentiable in x (i.e. if there exist all the partial derivatives of f in x), the
gradient of f in x is ∇f(x) ∈ Rn:

∇f(x) =


∂f(x)

∂x1
...

∂f(x)

∂xn

 .

2. If f is two times differentiable in x, the Hessian matrix of f in x is H(x) ∈ Rn×n

H(x) = Hf (x) =


∂2f(x)

∂x1∂x1
· · · ∂2f(x)

∂x1∂xn
...

...
∂2f(x)

∂xn∂x1
· · · ∂2f(x)

∂xn∂xn

 =



(
∇∂f(x)

∂x1

)T
...(

∇∂f(x)

∂xn

)T

 .

If f ∈ C2(x) then H(x) is a symmetric matrix.

3. Let us remind the first-order Taylor formula with Lagrange form of the remainder. Let
f ∈ C1(A). Let x,x + h ∈ A with h 6= 0 such that the segment {x + th | t ∈ [0, 1]} whose
endpoints are x and x + h is contained in A. Then it exists t ∈ (0, 1), depending on x
and h, such that

f(x + h) = f(x) +∇f(x + th)Th. (1.1)

7

8 CHAPTER 1. PREREQUISITES

4. Let us remind the second-order Taylor formula with Lagrange form of the remainder. Let
f ∈ C2(A). Let x,x + h ∈ A with h 6= 0 such that the segment {x + th | t ∈ [0, 1]} whose
endpoints are x and x + h is contained in A. Then it exists t ∈ (0, 1), depending on x
and h, such that

f(x + h) = f(x) +∇f(x)Th +
1

2
hTH(x + th)h. (1.2)

5. f is convex in A if ∀x,y ∈ A

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y), ∀t ∈ [0, 1].

6. f is strictly convex in A if ∀x,y ∈ A

f(tx + (1− t)y) < tf(x) + (1− t)f(y), ∀t ∈ (0, 1).

Definition 1.0.1. Let x∗ ∈ A.

• x∗ is a local minimizer or a local minimum point for f if it exists a neighbourhood Ω of
x∗ such that

f(x∗) ≤ f(x) ∀x ∈ Ω.

f(x∗) is a local minimum of f .

• x∗ is a global minimizer or a global minimum point for f if

f(x∗) ≤ f(x) ∀x ∈ A.

f(x∗) is a global minimum of f .

• x∗ is a stationary point for f if
∇f(x∗) = 0.

Definition 1.0.2. Directional derivatives
Let p ∈ Rn and f differentiable in a neighbourhood of x. The directional derivative of f in

x with respect to the direction p is defined as

∂f

∂p
(x) = lim

h→0

f(x + hp)− f(x)

h
. (1.3)

It holds (see TD1)
∂f

∂p
(x) = ∇f(x)Tp.

Definition 1.0.3. Descent directions
A direction p ∈ Rn is a descent direction for f in x if

∂f

∂p
(x) = ∇f(x)Tp < 0,

i.e., if the angle ϑ between p and ∇f(x) is such that ϑ ∈
(π

2
, π
]

.

If ∇f(x) 6= 0, we can always find a descent direction: that of the antigradient −∇f(x).
From (1.3) it follows that if p is a descent direction, then it exists h̄ > 0 such that

f(x + hp)− f(x) < 0 ∀h ∈ (0, h̄).

1.1. NECESSARY AND SUFFICIENT CONDITIONS 9

1.1 Necessary and sufficient conditions

In this section we give necessary and sufficient conditions for a point to be a minimum point.

Theorem 1.1.1. First order necessary condition
Let f ∈ C1(Ω) in a neighbourhood Ω of x∗.

x∗ is a minimizer for f (in Ω) =⇒ ∇f(x∗) = 0, i.e. x∗ is a stationary point for f.

Proof. We prove it by contradiction. Let us assume that ∇f(x∗) 6= 0. Let

p = −∇f(x∗)

the antigradient of f in x∗, clearly p 6= 0. The function

g(x) = ∇f(x)Tp

is such that
g(x∗) = ∇f(x∗)Tp = −∇f(x∗)T∇f(x∗) = −‖∇f(x∗)‖2 < 0.

Then, as f ∈ C1(Ω) and so g is continuous in Ω, it will remain negative in a neighbourhood of
x∗, i.e., it exists T ∈ R, T > 0 such that ∀t ∈ [0, T]

0 > g(x∗ + tp) = ∇f(x∗ + tp)Tp. (1.4)

From (1.1), ∀τ ∈ (0, T), it exists t ∈ (0, 1) such that

f(x∗+τp) = f(x∗)+∇f(x∗+ tτ︸︷︷︸
= t′∈(0,T)

p)T τp = f(x∗)+τ ∇f(x∗ + t′p)Tp︸ ︷︷ ︸
< 0 from (1.4)

< f(x∗).

Then x∗ cannot be a minimum point for f , which leads us to a contradiction.

This is just a necessary conditions, all minimizers are stationary points but not all stationary
points are minimizers, they may be maximizers or saddle points.

Theorem 1.1.2. Second order necessary condition
Let f ∈ C2(Ω) for a neighbourhood Ω of x∗.

x∗ is a minimum point for f (in Ω) =⇒ H(x∗) is positive semidefinite.

Proof. We do the proof by contradiction. Let us assume that H(x∗) is not positive semidefinite,
i.e. that it exists p ∈ Rn,p 6= 0 such that pTH(x∗)p < 0. Let us define

g(x) := pTH(x)p,

it holds g(x∗) < 0. Then, as f ∈ C2(Ω) and so g is continuous in Ω, it exists T ∈ R, T > 0 such
that ∀t ∈ [0, T]

0 > g(x∗ + tp) = pTH(x∗ + tp)p. (1.5)

From (1.2), ∀τ ∈ (0, T), it exists t ∈ (0, 1) such that

f(x∗ + τp) = f(x∗) + ∇f(x∗)T︸ ︷︷ ︸
= 0 from Theorem 1.1.1

τp +
1

2
(τp)TH(x∗ + tτ︸︷︷︸

= t′∈(0,T)

p)τp =

= f(x∗) +
1

2
τ2 pTH(x∗ + t′p)p︸ ︷︷ ︸

< 0 from (1.5)

< f(x∗).

Then x∗ cannot be a minimum point for f , which leads us to a contradiction.

10 CHAPTER 1. PREREQUISITES

In the following theorem we show a sufficient condition: if this condition is satisfied, we are
sure to have a minimum point. This is a second order condition: first order derivatives are not
enough to establish a sufficient condition.

Theorem 1.1.3. Sufficient second-order condition
Let f ∈ C2(Ω) for a neighbourhood Ω of x∗.{

∇f(x∗) = 0
H(x∗) is positive definite

=⇒ x∗ is a minimum point for f.

Proof. As H(x∗) is positive definite, it exists a neighbourhood B = BT (x∗) of x∗ such that
∀x ∈ B the matrix H(x) remains positive definite. Then for every p ∈ Rn, ∀τ ∈ (0, T) it exists
t ∈ (0, 1) such that

f(x∗ + τp) = f(x∗) +∇f(x∗)T︸ ︷︷ ︸
= 0

τp +
1

2
(τp)TH(x∗ + tτ︸︷︷︸

= t′∈(0,T)

p)τp =

= f(x∗) +
1

2
τ2 pTH(x∗ + t′p︸ ︷︷ ︸

∈B

)p

︸ ︷︷ ︸
> 0

> f(x∗),

i.e. f(x∗) is the minimum value taken by f in B, so x∗ is a minimum point for f .

It is in general expensive to establish if H(x∗) is positive definite, as this requires the
computation of the eigenvalues of the matrix. This condition is then usually not employed.

1.2 Convex functions

Let us now focus on a special case: that of convex functions.

Lemma 1.2.1. Minima of convex functions. If f is convex, then every local minimum point
for f is a global minimum point.

Proof. Let x be a local minimum point for f and let us proceed by contradiction. Assume that
x is not a global minimum, i.e. that it exists y ∈ A such that f(y) < f(x). Then, ∀t ∈ [0, 1)

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) < tf(x) + (1− t)f(x) = f(x).

Then f has lower values in the points of the segment that connects x with y (except the point
x) than in x, so x cannot be a local minimum point for f .

Lemma 1.2.2. Minima of strictly convex functions. If f is strictly convex it has just one
minimum point.

Proof. Let x be a minimum point for f and assume, by contradiction, that it exists another
minimum point y. From Lemma 1.2.1, all the minima points of f are global minima, so
f(x) = f(y). Then ∀t ∈ (0, 1)

f(tx + (1− t)y) < tf(x) + (1− t)f(y) = tf(x) + (1− t)f(x) = f(x).

Then f has lower values in the points of the segment that connects x with y (except for the
endpoints) than in x. Thus x cannot be a minimum point for f .

1.3. QUADRATIC FUNCTIONS 11

1.3 Quadratic functions

A quadratic function is a function of the form

q : Rn −→ R

x 7−→ q(x) =
1

2
xTAx− bTx =

1

2

n∑
i,j=1

xiaijxj −
n∑
i=1

bixi,

with A ∈ Rn×n symmetric, b ∈ Rn.

Remark 1.3.1. We can easily compute the gradient and Hessian for a quadratic function:

• ∇q(x) = Ax− b.

• H(x) = A.

Definition 1.3.1. q(x) is positive definite if A is positive definite.

Theorem 1.3.1. A quadratic function that is positive definite is a strictly convex function.

Theorem 1.3.2. A positive definite quadratic function q(x) has a unique minimizer x∗, that
is the unique solution of the problem

Ax = b.

Proof. As q(x) is strictly convex, q(x) has at most one minimizer. The Hessain matrix of q(x)
is A and it is positive definite, so from Theorem 1.1.3 and Theorem 1.1.1 it holds

x∗ is a minimizer of q(x) ⇐⇒ x∗ is a solution of ∇q(x) = 0,

i.e.
x∗ is a minimizer of q(x) ⇐⇒ x∗ is a solution of Ax = b.

A is positive definite and therefore invertible, so the problem Ax = b has a unique solution.

12 CHAPTER 1. PREREQUISITES

Chapter 2

Iterative methods

In unconstrained optimization iterative algorithms are usually used to find a minimizer of f ,
that is algorithms such that, starting from an initial guess x0 ∈ A, builds a sequence {xk}k∈N of
points of A converging to a stationary point x∗ ∈ A that satisfies the simple decrease property:

f(xk+1) ≤ f(xk)

(or, as it happens in nonmonotone algorithms, that satisfies a condition such as f(xk+m) <
f(xk) for m ≥ 2 fix). In this way x∗ will surely not be a maximum point, but in unfortunate
cases it may be a saddle point, there is usually no guarantee of convergence to a minimum, as
the sufficient condition is usually not checked.

Usually convergence is proved in the limit for k that goes to infinity:

lim
k→∞

xk = x∗,

but in practice the algorithm is stopped when a suitable stopping criterion is met. The stopping
criterion is usually based on the norm of the gradient. As we want to reach a stationary point,
we will have

lim
k→∞

‖∇f(xk)‖ = 0, (2.1)

so, given a positive tolerance ε > 0, the method is stopped as soon as ‖∇f(xk)‖ < ε. The
magnitude of the tolerance depends on the specific application.

An algorithm is said to be globally convergent, if (2.1) is guaranteed for any initial guess x0,
independently of the proximity of x0 to x∗. Methods that are convergent just for initial guesses
close enough to a minimum are said locally convergent. For such methods to be effective we
need to have an a-priori information on the minimizers, which is not always available.

However, local methods can be made globally convergent by two different types of strategies:
line-search and trust-region. These two strategies establish how to move from the current point
xk to the next one xk+1.

Line-search strategy In line-search methods we need to choose a descent direction pk. Then,
the iterative scheme is as follows:

xk+1 = xk + αkpk,

a step is taken in the selected direction from the current point xk whose length is αk > 0. We
call αkpk the step, pk the step direction and αk the step length. αk is chosen in a way that

13

14 CHAPTER 2. ITERATIVE METHODS

the following decrease condition is satisfied f(xk + αkpk) < f(xk). Ideally, one should choose
αk > 0 that minimizes ϕ(α) = f(xk + αpk), but to do that a minimization problem in R has
to be solved at each iteration (find the points α such that ϕ′(α) = 0). This would make the
algorithm too expensive, except in some exceptional cases, that we will see. Different strategies
are then used to make this choice.

Trust-region strategy The trust-region strategy is based on a quadratic model mk(x) that
approximates f(x) in a neighbourhood of the current position xk:

mk(xk,p) = f(xk) +∇f(xk)Tp +
1

2
pTBkp, p ∈ Rn,

where Bk is H(xk) (the Hessian matrix of f in xk) or an approximation to it.
We look for a step pk that minimizes mk(xk,p) under the constraint that xk + p lays in a
neighbourhood B∆k

(xk) of xk, called trust region, as it is the region in which we trust the
model to be a good approximation to the function. 1.

We look for a step pk solution of the problem

min
p∈Rn:‖p‖≤∆k

mk(xk,p), (2.2)

where ∆k > 0 is called trust-region radius.
As p = 0 belongs to the trust region, it holds mk(xk,pk) ≤ mk(xk, 0), but it may not hold
f(xk + pk) < f(xk). If this happens it means that the model is not a good approximation of
f(x) in the current trust region, the trust region is too large: we then chose ∆k+1 < ∆k and
we solve again problem (2.2).
Otherwise we accept the step, i.e. we set

xk+1 = xk + pk.

It is possible to show that after a finite number of steps f(xk + pk) < f(xk).
The two strategies are based on different ideas; in line-search strategy we first choose the

step direction and then we determine its length, in trust-region strategies first we choose the
maximal length of the step (the trust-region radius) and then we determine the direction.
In the following we will use just the line-search strategy.

2.1 Directions for line-search methods

2.1.1 Direction of steepest descent

The steepest descent direction for f in xk is

pk = −∇f(xk).

The direction pk = −∇f(xk) is called of steepest descent for f in xk because it is the direction
in which, starting from xk, the values of f decrease the fastest. Indeed the direction of steepest

1 Most often a ball is used as trust region, but other choices are possible depending on the problem, for
example elliptic or rectangular trust regions (used for example when box constraints are present)

2.1. DIRECTIONS FOR LINE-SEARCH METHODS 15

descent is the one that minimizes the directional derivative of f in xk:

∂f

∂p
(xk) = ∇f(xk)Tp =︸︷︷︸

ϑ ∈ [0, π] is the angle
between ∇f(xk) and p

‖∇f(xk)‖‖p‖ cosϑ,

If we assume, without loss of generality, that ‖p‖ = 1, the direction that maximises the decrease
is the one that minimizes cosϑ, so it must be such that ϑ = π and so

pk =
−∇f(xk)

‖∇f(xk)‖
.

An advantage of the steepest descent method (the one that uses this direction) is that it requires
just the computation of the gradient of f at each iteration, and not that of the second order
derivatives. However the convergence is generally really slow (it requires a large number of
iterations to reach a stationary point).

2.1.2 Newton’s direction

Let us consider the quadratic model of f in xk:

mk(p) = f(xk) +∇f(xk)Tp +
1

2
pTH(xk)p,

and let assume H(xk) to be positive definite.
Newton’s direction pNk is the minimizer of mk(p), i.e., being mk(p) a positive definite quadratic
function, it is the solution of Newton’s system

H(xk)p = −∇f(xk). (2.3)

The analytic expression of Newton’s direction is then

pNk = −H(xk)−1∇f(xk)

(note however that in practice H(xk) is never explicitly inverted to compute such a direction,
Newton’s system is rather solved.)

Thanks to the fact that H(xk) is positive definite, we have not only that H(xk) is invertible,
so Newton’s system has one and just one solution, but it also holds that pNk is a descent direction,
as

∇f(xk)TpNk = ∇f(xk)T
(
−H(xk)−1∇f(xk)

)
= −∇f(xk)TH(xk)−1∇f(xk) < 0,

because H(xk)−1 is positive definite.
If H(xk) is not positive definite, not only pNk may not be well-defined (H(xk) may not be
invertible and so (2.3) may not have a unique solution), but even if pNk is well-defined, pNk may
not be a descent direction.
Methods based on Newton’s direction are usually characterized by fast local convergence (they
require few iterations to converge), but they are expensive as they require not only the com-
putation of H(xk) at each step, but also the solution of the linear system (2.3) that may be
expensive if the size of the problem is large.

16 CHAPTER 2. ITERATIVE METHODS

2.1.3 Quasi-Newton directions

Let us consider a quadratic model for f :

mk(p) = f(xk) +∇f(xk)Tp +
1

2
pTBkp,

where Bk ≈ H(xk) is a SPD (symmetric positive definite) matrix.
Quasi-Newton direction pk is the minimizer of mk(p), i.e. is the solution of quasi-Newton
system

Bkp = −∇f(xk);

the analytical expression of the quasi-Newton direction is

pQNk = −B−1
k ∇f(xk).

2.2 Rates of convergence

Let {xk}k∈N be a sequence of elements of Rn converging to x∗. The speed at which a convergent
sequence approaches its limit is represented by its order of convergence and by its rate of
convergence. The sequence is said to have order of convergence q ≥ 1 and rate of convergence
µ if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖q

= µ.

• The sequence is said to converge linearly if it exists r ∈ (0, 1) such that

lim
k→+∞

‖xk+1 − x∗‖
‖xk − x∗‖

= r.

• The sequence is said to converge superlinearly (faster than linearly) if

lim
k→+∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0.

• The sequence is said to converge sublinearly (slower than linearly) if

lim
k→+∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 1.

• The convergence is said to be quadratic if it exists M > 0 such that

lim
k→+∞

‖xk+1 − x∗‖
‖xk − x∗‖2

< M.

• In general, given p > 1, the sequence is said to converge with order p if it exists M > 0
such that

lim
k→+∞

‖xk+1 − x∗‖
‖xk − x∗‖p

< M.

In particular, convergence with order

2.3. STEEPEST DESCENT METHOD FOR QUADRATIC FUNCTIONS 17

– p = 1 is called linear convergence,

– p = 2 is called quadratic convergence,

– p = 3 is called cubic convergence.

If the convergence is linear it means that

‖xk+1 − x∗‖ ≤ r‖xk − x∗‖

for all k large enough. This means that (asymptotically) the distance of the solution approxi-
mation from the solution at step k + 1 (‖xk+1 − x∗‖) is lower than a fraction of the distance
of the solution approximation from the solution at the previous step (r‖xk − x∗‖): at each
iteration this distance is decreased and the rate at which it is decreased depends on r, if r is
close to one the decrease is really slow.

Usually the cost of a method is directly proportional to the speed of convergence: generally
an expensive method (for which a single iteration is expensive to compute) has a higher rate of
convergence and requires less iterations to converge. For example methods based on Newton’s
directions enjoy a quadratic local rate of convergence. Quasi-Newton methods are less expensive
then Newton’s method, but this is paid with a slower superlinear convergence.

2.3 Steepest descent method for quadratic functions

We have seen that when using line-search strategies it is in general too expensive to choose αk
solving the minimization problem

min
α>0

ϕ(α)

with ϕ(α) = f(xk +αpk), given the current iterate xk and a descent direction pk. In particular
cases the solution of this minimization problem can be computed analytically, and so the optimal
value can be employed in a cheap way. This is the case when the steepest descent direction is
used for quadratic functions.

Let us consider the positive definite quadratic function

q : Rn −→ R

x 7−→ q(x) =
1

2
xTAx− bTx.

We know that x∗ is a minimizer for q(x) if and only if ∇q(x∗) = 0.
We choose the steepest descent direction

pk = −∇q(xk) = −(Axk − b) := −gk,

and we use the line-search method

xk+1 = xk + αkpk = xk − αkgk.

In this particular case it is possible to choose αk ∈ R that exactly minimizes

ϕ(α) = q(xk +αpk) = q(xk−αgk) =
1

2
(xk−αgk)TA(xk−αgk)− (xk−αgk)Tb.

The minimizer can indeed be analytically computed. Performing the computations and by
remarking that

xTkAgk︸ ︷︷ ︸
∈R

= (xTkAgk)T = gTkA
Txk =︸︷︷︸

A is symmetric

gTkAxk,

18 CHAPTER 2. ITERATIVE METHODS

we obtain that

ϕ(α) =
1

2
gTkAgkα

2 − xTkAgkα+ bTgkα+
1

2
xTkAxk − xTk b =

=
1

2
gTkAgkα

2 − gTk gkα+
1

2
xTkAxk − xTk b,

i.e., ϕ(α) is a parabola with branches pointing up, since
1

2
gTkAgk > 0, as A is positive definite.

Then the minimizer of ϕ(α) is α such that

0 = ϕ′(α) = gTkAgkα− gTk gk,

that is

αk =
gTk gk

gTkAgk
=
‖∇q(xk)‖2

‖∇q(xk)‖2A
,

having defined ∀y ∈ Rn, ∀A ∈ Rn×n SPD the energy norm ‖y‖2A = yTAy. Remark that
αk > 0: that means that we will go along the direction pk, and not in the opposite one.

We derive then the following algorithm for the steepest descent method or gradient method.

Algorithm for gradient method (first version)

0. Given x0, A,b, toll

1. Compute g0 = Ax0 − b

2. For k = 0, 1, . . .

1. Compute αk =
gTk gk

gTkAgk

2. Set xk+1 = xk − αkgk
3. Compute gk+1 = Axk+1 − b

4. If ‖gk+1‖ ≤ toll return xk+1 and stop.

At each iteration two matrix-vector products are performed: Agk and Axk+1. The algorithm
can be improved to require just one matrix vector product at each iteration, thanks to the fact
that

gk+1 = Axk+1 − b = A(xk − αkgk)− b = Axk − αkAgk − b = gk − αkAgk.

We derive then the following optimized version of the algorithm.

Algorithm for gradient method (optimized version)

0. Given x0, A,b, toll

1. Compute g0 = Ax0 − b

2. For k = 0, 1, . . .

1. Compute rk = Agk

2. Compute αk =
gTk gk
gTk rk

2.4. CONVERGENCE OF NEWTON’S METHOD 19

3. Set xk+1 = xk − αkgk
4. Compute gk+1 = gk − αkrk
5. If ‖gk+1‖ ≤ toll return xk+1 and stop

This algorithm has then a really low per-iteration cost. The memory consumption is also
low: at each iteration it requires to memorize the vector gk, and no matrices.
The convergence is on the contrary slow: we can prove that it holds

‖xk+1 − x∗‖A
‖xk − x∗‖A

≤ k2(A)− 1

k2(A) + 1
,

where k2(A) is the condition number of A in the 2-norm. 2 The convergence of the method is
then linear.
If a method converges linearly it exists r ∈ (0, 1) such that

‖xk+1 − x∗‖
‖xk − x∗‖

≤ r

for each k sufficiently large. The more the constant r is close to 0 the faster the method
converges.

In this case, the closer
k2(A)− 1

k2(A) + 1
is to 0, the faster the method converges, i.e., the closer k2(A)

is to 1, i.e. if A is well-conditioned.
Methods with linear convergence are in general not well suited for problems in which a high
accuracy (low toll) is required, because they will need a large number of iterations to find the
desired solution approximation.
Figure 2.3 shows possible sequences of iterations generated by the steepest descent method (or
gradient method) applied to an elliptic quadratic function q(x) = q(x1, x2) (a quadratic function
that has ellipses as level curves). The convergence depends on the choice of the starting guess
and of the step length. This is particularly evident when the ellipses have the two centers that
are far from each other. If on the contrary the level curves are circles, the minimizer x∗ is easily
obtained in just one iteration: x1 = x∗.

2.4 Convergence of Newton’s method

What is usually called the ”pure Newton’s method” is based on the following iterative scheme:{
Given x0

xk+1 = xk + pNk

}
2 k2(A) = ‖A‖2‖A−1‖2. Being A SPD, if σ(A) = {λ1, . . . , λn} is the spectre of A with 0 < λ1 < λ2 < . . . <

λn, it holds k2(A) =
λn

λ1
. Indeed

‖A‖2 =︸︷︷︸
definition

√
ρ(ATA) =︸︷︷︸

A is symmetric

√
ρ(A2) =

√
ρ(A)2 =

√
λ2
n =︸︷︷︸
λn>0

λn.

The 2-norm of a SPD matrix is equal to its largest eigenvalue, so ‖A−1‖2 =
1

λ1
, and then

k2(A) = ‖A‖2‖A−1‖2 =
λn

λ1
.

20 CHAPTER 2. ITERATIVE METHODS

Figure 2.1: Sequence of iterations generated by the steepest descent method applied to a
quadratic function. The convergence depends on the choice of the starting guess and of the
step length.

As shown in the following theorem it is a locally convergent method, and the local rate of
convergence is quadratic. This is not a globally convergent method and it can be made so by
coupling it with a line-search strategy, as we will see in the next chapter.

Theorem 2.4.1. Local convergence of Newton’s method. Let x∗ be a minimizer for f , Ω be a
neighbourhood of x∗, f ∈ C2(Ω), H(x∗) positive definite and H(x) Lipschitz continuous in Ω
with Lipschitz constant L.
It exists ρ > 0 such that if x0 ∈ Bρ(x∗) then the sequence {xk} built by Newton’s method is
well-defined 3, converges to x∗ quadratically and ‖∇f(xk)‖ converges to 0 quadratically.

Proof. By assumption it exists r > 0 such that ∀x ∈ Br(x
∗) H(x) is positive definite (so

invertible) and it holds (see TD2)

‖H(x)−1‖ ≤ 2‖H(x∗)−1‖. (2.4)

We can assume Br(x
∗) ⊆ Ω.

If xk ∈ Br(x∗) then

xk+1 − x∗ = xk + pNk − x∗ = xk − x∗ −H(xk)−1∇f(xk) = H(xk)−1
(
H(xk)(xk − x∗)−∇f(xk)

)
= H(xk)−1

(
H(xk)(xk − x∗) +

= 0︷ ︸︸ ︷
∇f(x∗)−∇f(xk)

)
.

Because

∇f(x∗)−∇f(xk) =
[
∇f(xk + t(x∗ − xk))

]t=1

t=0
=

∫ 1

0

H(xk + t(x∗ − xk))(x∗ − xk) dt,

3 We can build it because H(xk) is positive definite for each k ∈ N.

2.4. CONVERGENCE OF NEWTON’S METHOD 21

we have

xk+1 − x∗ = H(xk)−1

(
H(xk)(xk − x∗) +

∫ 1

0

H(xk + t(x∗ − xk))(x∗ − xk) dt

)
= H(xk)−1

(
H(xk)(xk − x∗)︸ ︷︷ ︸
does not depend on t

−
∫ 1

0

H(xk + t(x∗ − xk))(xk − x∗) dt

)

= H(xk)−1

∫ 1

0

(
H(xk)−H(xk + t(x∗ − xk))

)
(xk − x∗) dt.

Passing to norms we obtain that

‖xk+1 − x∗‖ ≤ ‖H(xk)−1‖
∥∥∥∥∫ 1

0

(
H(xk)−H(xk + t(x∗ − xk))

)
(xk − x∗) dt

∥∥∥∥ ≤︸︷︷︸
(2.4)

≤ 2‖H(x∗)−1‖
∥∥∥∥∫ 1

0

(
H(xk)−H(xk + t(x∗ − xk))

)
(xk − x∗) dt

∥∥∥∥
≤ 2‖H(x∗)−1‖

∫ 1

0

∥∥∥H(xk)−H(xk + t(x∗ − xk))
∥∥∥‖xk − x∗‖ dt

= 2‖H(x∗)−1‖‖xk − x∗‖
∫ 1

0

∥∥∥H(xk)−H(xk + t(x∗ − xk))
∥∥∥ dt

≤ 2‖H(x∗)−1‖‖xk − x∗‖
∫ 1

0

L
∥∥∥xk − (xk + t(x∗ − xk))

∥∥∥ dt

= 2L‖H(x∗)−1‖︸ ︷︷ ︸
we call this L̃

‖xk − x∗‖
∫ 1

0

‖ − t(x∗ − xk)‖ dt

= 2L̃‖xk − x∗‖2
∫ 1

0

t dt︸ ︷︷ ︸
=

[
t2

2

]1
0

= 1
2

= L̃‖xk − x∗‖2.

We have proved that if xk ∈ Br(x∗) then

‖xk+1 − x∗‖ ≤ L̃‖xk − x∗‖2. (2.5)

Let ρ = min

{
r,

1

2L̃

}
.

Let us assume that x0 ∈ Bρ(x∗). Because x0 ∈ Bρ(x∗) ⊆︸︷︷︸
ρ≤r

Br(x
∗), it follows

‖x1 − x∗‖ ≤ L̃‖x0 − x∗‖2 ≤ L̃ρ2 ≤︸︷︷︸
ρ ≤ 1

2L̃
=⇒ L̃ρ ≤ 1

2

1

2
ρ,

i.e., x1 ∈ Bρ(x∗). Because x1 ∈ Bρ(x∗) ⊆︸︷︷︸
ρ≤r

Br(x
∗), analogously it holds ‖x2 − x∗‖ < 1

2
ρ, i.e.,

x2 ∈ Bρ(x∗), and so on. Then by induction we have that

xk ∈ Bρ(x∗) ∀k ∈ N.

22 CHAPTER 2. ITERATIVE METHODS

This ensures that the sequence {xk} built by Newton’s method is well-defined because the
matrices H(xk) are all positive definite from (2.4). Moreover, from (2.5)

‖xk+1 − x∗‖ ≤ L̃‖xk − x∗‖2 ∀k ∈ N. (2.6)

Then ∀k ∈ N

‖xk+1 − x∗‖ ≤ L̃‖xk − x∗‖2 ≤ L̃ρ‖xk − x∗‖ ≤︸︷︷︸
ρ ≤ 1

2L̃
=⇒ L̃ρ ≤ 1

2

1

2
‖xk − x∗‖,

i.e.

‖xk+1 − x∗‖ ≤ 1

2
‖xk − x∗‖ ∀k ∈ N

and so

‖xk − x∗‖ ≤ 1

2
‖xk−1 − x∗‖ ≤

(
1

2

)2

‖xk−2 − x∗‖ ≤ . . . <
(

1

2

)k
‖x0 − x∗‖ −−−−−→

k→+∞
0,

The sequence {xk} converges then to x∗ and from (2.6) we have that the convergence is
quadratic.
As x∗ is a stationary point by assumption, the sequence {‖∇f(xk)‖} converges to 0 by conti-
nuity. We remark that

‖∇f(xk+1)‖ = ‖∇f(xk+1)−

= 0︷ ︸︸ ︷
(H(xk)pNk +∇f(xk)) ‖ = ‖∇f(xk+1)−∇f(xk)−H(xk)pNk ‖.

Because

∇f(xk+1)−∇f(xk) =
[
∇f(xk + t(xk+1 − xk))

]t=1

t=0
=
[
∇f(xk + tpNk)

]t=1

t=0
=

∫ 1

0

H(xk + tpNk)pNk dt,

we have

‖∇f(xk+1)‖ =

∥∥∥∥∫ 1

0

H(xk + tpNk)pNk dt− H(xk)pNk︸ ︷︷ ︸
does not depend on t

∥∥∥∥ =

∥∥∥∥∫ 1

0

(
H(xk + tpNk)−H(xk)

)
pNk dt

∥∥∥∥
≤
∫ 1

0

‖H(xk + tpNk)−H(xk)‖‖pNk ‖ dt = ‖pNk ‖
∫ 1

0

‖H(xk + tpNk)−H(xk)‖ dt

≤ ‖pNk ‖
∫ 1

0

L‖xk + tpNk − xk‖ dt = L‖pNk ‖
∫ 1

0

‖tpNk ‖ dt

= L‖pNk ‖2
∫ 1

0

t dt︸ ︷︷ ︸
=

[
t2

2

]1
0

= 1
2

=
1

2
L‖pNk ‖2 =

1

2
L‖H(xk)−1∇f(xk)‖2

≤ 1

2
L‖H(xk)−1‖2‖∇f(xk)‖2 ≤︸︷︷︸

(2.4)

1

2
L4‖H(x∗)−1‖2‖∇f(xk)‖2

= 2L‖H(x∗)−1‖2‖∇f(xk)‖2 := M‖∇f(xk)‖2.

Because M does not depend on k, we have proved that it exists M > 0 such that ∀k ∈ N∣∣ ‖∇f(xk+1)‖ − 0
∣∣ ≤M ∣∣ ‖∇f(xk)‖ − 0

∣∣2,
i.e. the convergence of {‖∇f(xk)‖} to 0 is quadratic.

Chapter 3

Line-search methods

In this chapter we will introduce and analyse the line-search methods for nonlinear optimization
problems.

The crucial operation in line-search methods is the computation of the step-length, for which
we have to face a tradeoff. We would like to choose αk to have a substantial reduction of f , but
at the same time we do not want to spend too much time making this choice. In particular, we
will see that the asking the simple decrease of f is not a sufficient condition to get a convergent
method, and that we will require some other conditions on the step-length to avoid too small
or too long steps. Let’s see why these are needed by some examples.

3.1 Armijo and Wolfe conditions

Example 1 (Too long steps)

Let us consider f(x) = x2, x0 = 2, pk = (−1)k+1 (these are descent directions), αk = 2 +
3

2k+1
.

The sequence xk built iteratively starting from x0 setting xk+1 = xk + αkpk is

xk = (−1)k
(

1 +
1

2k

)
, k ∈ N.

We can prove this by induction on k.

x1 = x0 + α0p0 = 2 +

(
2 +

3

2

)
(−1) = −3

2
.

If the thesis holds for k,

xk+1 = xk + αkpk = (−1)k
(

1 +
1

2k

)
+

(
2 +

3

2k+1

)
(−1)k+1 =

= (−1)k+1

(
−1− 1

2k
+ 2 +

3

2k+1

)
= (−1)k+1

(
1− 3− 2

2k+1

)
= (−1)k+1

(
1 +

1

2k+1

)
.

The simple decrease condition is satisfied because

f(xk+1) = x2
k+1 =

(
1 +

1

2k+1

)2

<

(
1 +

1

2k

)2

= x2
k = f(xk),

23

24 CHAPTER 3. LINE-SEARCH METHODS

but xk does not converge to the minimizer of f(x), x∗ = 0, because

x2k = 1 +
1

22k
−−−−−→
k→+∞

1, x2k+1 = −
(

1 +
1

22k+1

)
−−−−−→
k→+∞

−1.

The simple decrease condition is not sufficient to guarantee a convergence of {xk} to x∗ = 0
because we have chosen a sequence of αk with too large values.

Example 2 (Too short steps)

Let us consider f(x) = x2, x0 = 2, pk = −1 (these are descent directions), αk =
1

2k+1
. The

sequence xk built iteratively starting from x0 setting xk+1 = xk + αkpk is

xk = 1 +
1

2k
, k ∈ N.

We can prove it by induction on k:

x1 = x0 + α0p0 = 2 +
1

2
(−1) = 1 +

1

2
.

If the thesis holds for k,

xk+1 = xk + αkpk = 1 +
1

2k
+

1

2k+1
(−1) = 1 +

1

2k
− 1

2k+1
= 1 +

2− 1

2k+1
= 1 +

1

2k+1
.

The simple decrease condition is satisfied as

f(xk+1) = x2
k+1 =

(
1 +

1

2k+1

)2

<

(
1 +

1

2k

)2

= x2
k = f(xk),

but xk does not converge to x∗ = 0 minimizer of f(x) because

xk = 1 +
1

2k
k→+∞−−−−−→ 1.

The simple decrease condition is not sufficient to guarantee a convergence of {xk} to x∗ = 0
because we have chosen a sequence of αk with too small values.

We need then additional conditions.

Armijo rule

Armijo rule (A) requires that

f(xk + αkpk) ≤ f(xk) + αkc1∇f(xk)Tpk, c1 ∈ (0, 1), (A)

usually c1 = 10−4. (A) is stronger than just asking the simple decrease f(xk+1) ≤ f(xk)
because ∇f(xk)Tpk < 0.

Let

ϕ(α) = f(xk + αpk),

`(α) = f(xk) + αc1∇f(xk)Tpk,

3.1. ARMIJO AND WOLFE CONDITIONS 25

Figure 3.1: Parameters α that satisfy (A)

Armijo rule requires ϕ(α) to be below the line `(α), i.e., that ϕ(α) ≤ `(α).

The slope of ϕ(α) is ϕ′(α) = ∇f(xk + αpk)Tpk, for αk = 0 this is ∇f(xk)Tpk < 0. The
slope of `(α) is c1∇f(xk)Tpk = c1ϕ

′(0) < 0. Because c1 < 1 and the two terms are negative, it
follows

c1∇f(xk)Tpk > ∇f(xk)Tpk,

that is the line `(α) lies above the graph of ϕ for small positive values of (α).

Choosing αk according to (A) avoids choosing αk too large, as in Example 1. However, this
condition alone is not sufficient to ensure the algorithm to make reasonable progress, because
too small steps may be taken. We then introduce also the following condition, to rule out
unacceptably small steps.

Wolfe rule

Wolfe rule requires that

∇f(xk + αkpk)Tpk ≥ c2∇f(xk)Tpk c2 ∈ (c1, 1). (W)

The first term ∇f(xk + αkpk)Tpk = ϕ′(αk) is the slope of ϕ(α). The condition requires
this slope to be greater than the negative slope c2∇f(xk)Tpk that in Figure 3.2 is labelled as
the desired slope. If the slope of ϕ′(αk) is strongly negative, it means that we can reduce f
significantly by moving further along the chosen direction. On the other hand, if the slope is
only slightly negative we cannot expect much more decrease in f in this direction and we can
terminate the line-search. Usually c2 = 0.9, for example when pk is the Newton or quasi-Newton
direction.

Because c1 < c2 < 1 and ∇f(xk)Tpk is negative it holds

c1∇f(xk)Tpk > c2∇f(xk)Tpk > ∇f(xk)Tpk,

i.e. the desired slope is between those of `(α) and ϕ(α).

Choosing αk satisfying (W) avoids choosing αk too small, as it happens in Example 2.

26 CHAPTER 3. LINE-SEARCH METHODS

Figure 3.2: Parameters α that satisfy (W)

Lemma 3.1.1. Wolfe’s Lemma
Let f : Rn → R continuously differentiable and bounded below in {xk + αpk | α > 0}, with

pk a descent direction for f in xk, and let c1, c2 : 0 < c1 < c2 < 1.
It exists I ⊆ (0,+∞) non empty such that every α ∈ I satisfies (A) + (W).

Proof. Let g(α) = ϕ(α)− `(α). (A) requires that

g(α) ≤ 0.

Because

g(0) = ϕ(0)− `(0) = f(xk)− f(xk) = 0

and

g′(0) = ϕ′(0)− `′(0) = ∇f(xk)Tpk − c1∇f(xk)Tpk = (1− c1)︸ ︷︷ ︸
> 0

∇f(xk)Tpk︸ ︷︷ ︸
< 0

< 0,

it means g(0) = 0 and then decreases. As g ∈ C0 because f ∈ C1, it exists a right neighbourhood
of 0 where g(α) < 0. Let α be the smallest positive zero of g(α).1 It holds g(α) ≤ 0, ∀α ∈ [0, α],
that is all the α ∈ [0, α] satisfy (A). In particular, in α (A) is satisfied and it is an equality.
Indeed g(α) = 0, i.e., ϕ(α) = `(α), that is f(xk + αpk) = f(xk) + c1α∇f(xk)Tpk. Then

f(xk + αpk)− f(xk) = c1α∇f(xk)Tpk. (1)

For the mean value theorem applied to ϕ′(α) in [0, α], 2 it exists α̃ ∈ (0, α) such that

ϕ(α)− ϕ(0) = αϕ′(α̃),

1 By assumption f is lower bounded in {xk +αpk | α ≥ 0}, i.e., ϕ(α) = f(xk +αpk) is lower bounded; then
(see also Figure 3.2) it exists α > 0, point in which ϕ(α) intersect the line `(α). So g(α) surely has a positive
zero.

2 By assumption f ∈ C1 in {xk + αpk | α ≥ 0}, i.e., ϕ(α) ∈ C1([0,+∞)), so ϕ′(α) is continuous in [0,+∞),
and we can apply the mean value theorem to ϕ′(α) in [0, α].

3.2. CONVERGENCE OF LINE-SEARCH METHODS 27

that is

α∇f(xk + α̃pk)Tpk = f(xk + αpk)− f(xk) =︸︷︷︸
(1)

c1 α∇f(xk)Tpk︸ ︷︷ ︸
< 0

>︸︷︷︸
0<c1<c2

c2α∇f(xk)Tpk.

Deleting α we obtain
∇f(xk + α̃pk)Tpk > c2∇f(xk)Tpk,

that is α̃ satisfies (W) without equality, so it exists a neighbourhood IW of α̃ where (W) is
satisfied. Given that α̃ < α, in IW ∩ [0, α] 6= ∅ both criterion (A) e (W) are satisfied.

Figure 3.3: Parameters α that satisfy (A) e (W)

3.2 Convergence of line-search methods

Theorem 3.2.1. Zoutendijk’s theorem
Let Ω = {x ∈ Rn | f(x) ≤ f(x0)}, f ∈ C1(Ω) and lower bounded on Ω, pk a descent direc-

tion for f , and assume that αk satisfies (A) and (W) and that ∇f(x) is Lipschitz continuous
in Ω.
Let ϑk be the angle between −∇f(xk) and pk, i.e. the angle such that

cos(ϑk) = − ∇f(xk)Tpk
‖∇f(xk)‖‖pk‖

.

The numerical series
+∞∑
j=0

cos2(ϑj)‖∇f(xj)‖2

is convergent.

Proof. Adding −∇f(xk)Tpk to both members of (W) we obtain

∇f(xk + αkpk)Tpk −∇f(xk)Tpk ≥ c2∇f(xk)Tpk −∇f(xk)Tpk,

28 CHAPTER 3. LINE-SEARCH METHODS

that is

(c2 − 1)∇f(xk)Tpk ≤
(
∇f(xk + αkpk)−∇f(xk)

)T
pk ≤ ‖∇f(xk + αkpk)−∇f(xk)‖‖pk‖

≤ L‖(xk + αkpk)− xk‖‖pk‖ = L‖αkpk‖‖pk‖ = Lαk‖pk‖2,

which gives

αk ≥
(c2 − 1)∇f(xk)Tpk

L‖pk‖2
, (3.1)

which is a positive amount of flow because c2 − 1 < 0 and ∇f(xk)Tpk < 0.
Note that

f(xk+1) ≤︸︷︷︸
(A)

f(xk) + αk c1∇f(xk)Tpk︸ ︷︷ ︸
< 0

≤︸︷︷︸
(3.1)

f(xk) +
(c2 − 1)c1

L

(∇f(xk)Tpk)2

‖pk‖2

= f(xk)− c (∇f(xk)Tpk)2

‖∇f(xk)‖2‖pk‖2
‖∇f(xk)‖2 = f(xk)− c cos2(ϑk)‖∇f(xk)‖2,

where c = − (c2 − 1)c1
L

> 0. This holds for each αj that satisfies the assumptions, so it holds

∀j ≤ k:
f(xj+1) ≤ f(xj)− c cos2(ϑj)‖∇f(xj)‖2. (3.2)

We can then use it recursively

f(xk+1) ≤︸︷︷︸
(3.2) with j=k−1

f(xk−1)− c cos2(ϑk−1)‖∇f(xk−1)‖2 − c cos2(ϑk)‖∇f(xk)‖2 ≤ . . .

≤︸︷︷︸
(3.2) with j=0

f(x0)− c
k∑
j=0

cos2(ϑj)‖∇f(xj)‖2.

We then have

f(xk+1) ≤ f(x0)− c
k∑
j=0

cos2(ϑj)‖∇f(xj)‖2,

that is
k∑
j=0

cos2(ϑj)‖∇f(xj)‖2 ≤
f(x0)− f(xk+1)

c
.

It holds

+∞∑
j=0

cos2(ϑj)‖∇f(xj)‖2 = lim
k→+∞

k∑
j=0

cos2(ϑj)‖∇f(xj)‖2 ≤ lim
k→+∞

f(x0)− f(xk+1)

c

=
f(x0)

c
− 1

c
lim

k→+∞
f(xk+1) = (∗∗).

For the simple decrease condition (which is implied by (A)) and from the definition of Ω it
holds xk ∈ Ω ∀k ∈ N. This together with the assumption that f is lower bounded in Ω, implies
that lim

k→+∞
f(xk+1) 6= −∞, then

(∗∗) 6= +∞.

3.2. CONVERGENCE OF LINE-SEARCH METHODS 29

This implies that

+∞∑
j=0

cos2(ϑj)‖∇f(xj)‖2 is not divergent. As the series has positive terms it

must converge.

The fact that the series

+∞∑
j=0

cos2(ϑj)‖∇f(xj)‖2 converges implies that

lim
k→+∞

cos2(ϑk)‖∇f(xk)‖2 = 0.

This can happen for two reasons (both or just one of them):

(i) lim
k→+∞

∇f(xk) = 0,

(ii) lim
k→+∞

cos(ϑk) = 0.

(i) In this case every accumulation point of {xk} (if it exists) is a stationary point. Indeed,
let x̃ be an accumulation point of {xk}, i.e., let x̃ be the limit point of a subsequence
{xkj} of {xk}. Then

∇f(x̃) = ∇f
(

lim
kj→+∞

xkj

)
= lim
kj→+∞

∇f(xkj) =︸︷︷︸
limk→+∞∇f(xk)=0

0.

(ii) In this case, being cos(ϑk) = − ∇f(xk)Tpk
‖∇f(xk)‖‖pk‖

, it holds

lim
k→+∞

∇f(xk)Tpk = 0,

that is ∇f(xk) and pk tend to be orthogonal. Formally ∇f(xk)Tpk is negative, and pk
remains a descent direction, but actually for k large ∇f(xk)Tpk is close to 0, i.e. along the
direction pk the values of f are almost constant. This is a situation that can be avoided,
choosing a descent direction pk such that cos(ϑk) > M for some M > 0.

With the steepest descent method, as pk = −∇f(xk), we have

cos(ϑk) = − ∇f(xk)Tpk
‖∇f(xk)‖‖pk‖

=
∇f(xk)T∇f(xk)

‖∇f(xk)‖‖∇f(xk)‖
= 1.

Then, under the assumptions of Zoutendijk’s Theorem, it holds lim
k→+∞

∇f(xk) = 0, as the

possibility (ii) is excluded.
With Newton’s and quasi-Newton methods, because pk = −B−1

k ∇f(xk) (with Bk = H(xk) in
Newton’s method or Bk ≈ H(xk) for quasi-Newton method) it holds

cos(ϑk) = − ∇f(xk)Tpk
‖∇f(xk)‖‖pk‖

=
∇f(xk)TB−1

k ∇f(xk)

‖∇f(xk)‖ ‖B−1
k ∇f(xk)‖︸ ︷︷ ︸

≤ ‖B−1
k ‖‖∇f(xk‖

≥

≥
∇f(xk)TB−1

k ∇f(xk)

‖∇f(xk)‖2‖B−1
k ‖

.

To bound this we need the following definition.

30 CHAPTER 3. LINE-SEARCH METHODS

Definition 3.2.1. The Rayleigh quotient. Given A ∈ Rn×n a symmetric matrix and v ∈ Rn
we call Rayleigh quotient associated to them the scalar

rA(v) =
vTAv

‖v‖2
.

Notably, it holds that ∀v ∈ Rn

λmin(A) ≤ rA(v) ≤ λmax(A).

We then have that

cos(ϑk) = rB−1
k

(∇f(xk))
1

‖B−1
k ‖

= rB−1
k

(∇f(xk))
1

λmax(B−1
k)

= rB−1
k

(∇f(xk))λmin(Bk)

≥ λmin(B−1
k)λmin(Bk) =

λmin(Bk)

λmax(Bk)
=

1

k2(Bk)
.

Then, if it exists M such that k2(Bk) < M , we have cos(ϑk) > 1/M and under the assumptions
of Zoutendijk’s Theorem, it holds lim

k→+∞
∇f(xk) = 0, being again excluded the situation (ii).

3.3 Backtracking

The algorithm for a generic line-search method can be sketched as follows:

0. Given x0, f, toll

1. For k = 0, 1, . . .

1. Choose pk descent direction (may be the steepest descent direction, New-
ton’s direction or quasi-Newton’s direction)

2. Find αk that satisfies (A) and (W)

3. Set xk+1 = xk + αkpk

4. If ‖∇f(xk+1)‖ ≤ toll return xk+1 (approximation of x∗) and stop

This algorithm is well-defined because the sequence ∇f(xk) converges to 0 for Zoutendijk’s
Theorem and because from Wolfe’s Lemma it exists αk that satisfies (A) and (W), as required
at step 2. The question is how to compute such an αk? We can use the backtracking technique.
Even if we have seen that both (A) and (W) conditions are necessary for the convergence, this
technique just checks the (A) condition, we will see later why.

The backtracking strategy is described in the following algorithm:

3.3. BACKTRACKING 31

0. Given xk, α0,pk, bmax, c1 ∈ (0, 1), γ ∈ (0, 1)

1. αk = α0

2. For b = 0, 1, . . . , bmax

1. If f(xk + αkpk) ≤ f(xk) + αkc1∇f(xk)Tpk, i.e. if αk satisfies (A), then
set IND = 1 and stop,
otherwise set αk = γαk

3. Set IND = −1

This can be used at each iteration of the line-search algorithm (at step 2).

The backtracking algorithm works as follows: if αk = α0 does not satisfy (A), we reduce
αk by multiplication with γ and this is repeated until the new αk satisfies (A) (the name
backtracking is due to the fact that αk if progressively reduced). In the proof of Wolfe’s
Lemma we have seen that it exists α > 0 such that each α ∈ [0, α] satisfies (A). Then we check
if αk = α0 ≤ α, if not we reduce αk by multiplication with γ until the new αk ≤ α. After a
finite number of reductions we will obtain a αk in [0, α], so the backtracking technique never
fails. However in the algorithm we decide to do at most bmax backtracking steps. If after bmax

iterations αk ≤ α has not been found, it means that α is too small, so that we will have to do
really small steps in the line-search, which will lead to a really slow convergence.

It is then clear why in the algorithm we check just (A) and not (W): if α is large, we get
an αk of the same order because while looking for αk we go inside [0, α] from above. If we
have refused αk because it does not satisfy (A) it means that the step is too long, than if γαk
is accepted it cannot be too small (it is a factor γ smaller than αk). If α is small, after bmax

backtracking steps we will not find αk < α. It never happens to have a too small αk and it
would therefore be redundant to check (W).
The backtracking algorithm has the flag IND in output: if IND = 0 it means that an αk that
satisfies both (A) and (W) has been found, otherwise if IND = −1 it means that after bmax

backtracking steps αk has not been found and so the backtracking has failed.

Each iteration of backtracking algorithm costs a function evaluation, so the algorithm costs
at most bmax function evaluations.

In the backtracking algorithm one of the inputs is α0, which can be chosen in various
ways, depending on which directions are used in the line-search algorithm within which the
backtracking is used.
If in the line-search the steepest descent direction is chosen, a popular choice is to choose α0

by assuming that the first-order change in the function at iteration k will be the same as that
obtained at the previous iteration. We then impose α0∇f(xk)T pk = αk−1∇f(xk−1)T pk−1 so
that

α0 = αk−1
∇f(xk−1)T pk−1

∇f(xk)T pk

(αk−1 is the value used at the previous iteration). Another popular choice is the Barzilai-
Borwein (BB) choice

α0 =
sTk−1sk−1

sTk−1yk−1
, sk−1 = xk − xk−1, yk−1 = ∇f(xk)−∇f(xk−1),

32 CHAPTER 3. LINE-SEARCH METHODS

that takes inspiration from the quasi-Newton methods, as we will see.
If in the line-search the Newton’s or quasi-Newton’s direction is chosen, we choose α0 = 1 (com-
puting a Newton’s step is expensive, we try to use it, if possible, to benefit from the quadratic
convergence of pure Newton method).

We deduce then the algorithm for a line-search with backtracking technique:

0. Given x0, f, kmax, toll, bmax, c1 ∈ (0, 1), γ ∈ (0, 1)

1. For k = 0, 1, . . . , kmax

1. Choose pk descent direction for f in xk

2. Use the backtracking algorithm to find αk

3. If in the backtracking algorithm IND = 0 then set xk+1 = xk + αkpk,
otherwise stop and set IND = −1 (failure)

4. If ‖∇f(xk+1)‖ ≤ toll then stop, return xk+1 and IND = 1

2. Set IND = −2 (failure)

We could put the last xk+αkpk and f(xk+αkpk) in output of the backtracking algorithm,
to save a function evaluation.
Assume that the line-search algorithm has been equipped with a proper stopping criterion
(based on a tolerance toll and on a maximum number of iterations kmax). The line-search
algorithm outputs the flag IND:

• IND = 1 an approximation has been computed with the desired accuracy;

• IND = −1 the backtracking technique failed;

• IND = −2 the stopping criterion was not satisfied within the maximum number of itera-
tions (failure of line-search method)

3.4 Newton’s method

With the expression ”Newton’s method” we usually refer to the Newton’s method (described
in Section 2.4) plus a line-search procedure to select the step length. The resulting method is
globally convergent thanks to the line-search, and in a neighbourhood of x∗ has a quadratic
rate of convergence for the following reason: thanks to the global convergence property, the
sequence ‖∇f(xk)‖ converges to zero. Then all the accumulation points of {xk} are stationary
points for f . If it exists an accumulation point x∗ of {xk} which is a minimizer for f , then
it exists k > 0 such that for each k ≥ k, xk enters in the ball Bρ(x

∗), region in which we

have the quadratic convergence of Newton’s method. We can also prove that it exists k̃ such
that αk = 1 satisfies Armijo’s condition (A) for each k ≥ k̃; i.e., starting from the iterate k̃,
Newton’s method with line-search corresponds to pure Newton’s method and it then inherits
its local quadratic convergence.

Chapter 4

Quasi-Newton method

Quasi-Newton methods are based on the same model of Newton’s method but instead of the
exact Hessian H(xk) we use an SPD approximation Bk. These can be built in various ways and
each choice corresponds to a different sequence of quasi-Newton directions and so to a different
quasi-Newton method.
A generic quasi-Newton method is based on the following iterative scheme:{

Given x0

xk+1 = xk + αkpk;

}
,

where pk is such that Bkpk = −∇f(xk), for some approximation Bk SPD of the Hessian ma-
trix. It is a locally convergent method that can be coupled with a line-search to become a
globally convergent method and has a superlinear local rate of convergence (this is the price to
be paid to avoid computation of second order derivatives).

How to compute Bk? We could approximate the Hessian of f

H(xk) =


∂2f

∂x1∂x1
(xk) · · · ∂2f

∂x1∂xn
(xk)

...
...

∂2f

∂xn∂x1
(xk) · · · ∂2f

∂xn∂xn
(xk)


by finite differences, i.e. making this approximation

∂2f

∂xi∂xj
(xk) =

∂

∂xj

(
∂f

∂xi
(xk)

)
= lim
h→0

∂f
∂xi

(xk + hej)− ∂f
∂xi

(xk)

h
≈

∂f
∂xi

(xk + hej)− ∂f
∂xi

(xk)

h

for each i, j = 1, . . . , n. This requires n evaluations of ∇f(x): indeed, to build the approxima-
tions

∂2f

∂x1∂x1
(xk) ≈

∂f
∂x1

(xk + he1)− ∂f
∂x1

(xk)

h
, . . . ,

∂2f

∂xn∂x1
(xk) ≈

∂f
∂xn

(xk + he1)− ∂f
∂xn

(xk)

h

it is necessary to evaluate ∇f(x) in xk + he1, to build the approximations

∂2f

∂x1∂xn
(xk) ≈

∂f
∂x1

(xk + hen)− ∂f
∂x1

(xk)

h
, . . . ,

∂2f

∂xn∂xn
(xk) ≈

∂f
∂xn

(xk + hen)− ∂f
∂xn

(xk)

h

33

34 CHAPTER 4. QUASI-NEWTON METHOD

it is necessary to evaluate ∇f(x) in xk + hen.
Then, if we build Bk at each iteration with finite differences we need n evaluations of ∇f(x)
for each iteration.
It is then too expensive to build a new Bk at each iteration: we need to exploit the informations
obtained in the previous iterations. Assuming to have finished iteration k and to have computed
Bk and xk+1, the idea of quasi-Newton methods is to avoid building an approximation Bk+1

ex-novo and to rather obtain Bk+1 from an update of Bk which preserves the symmetry and
the positive definiteness.
The most famous quasi-Newton method is the BFGS method.

4.1 BFGS method

Let us assume to be at the end of iteration k, i.e. to have computed xk, Bk, αk, pk =
−B−1

k ∇f(xk), xk+1 = xk+αkpk. We need to compute Bk+1. Let us built the quadratic model
of f

mk+1(p) = f(xk+1) +∇f(xk+1)Tp +
1

2
pTBk+1p.

We remark that (being ∇mk+1(p) = Bk+1p +∇f(xk+1)) in 0 the model has the same gradient
of f :

∇mk+1(0) = ∇f(xk+1).

We also ask that
∇mk+1(−αkpk) = ∇f(xk)

i.e., that
∇mk+1(xk − xk+1) = ∇f(xk);

or
Bk+1(xk − xk+1) +∇f(xk+1) = ∇f(xk).

If we define
sk = xk+1 − xk, yk = ∇f(xk+1)−∇f(xk),

we obtain the so-called secant equation

Bk+1sk = yk.

Anyway this equation only gives n conditions, which are not sufficient to univocally determine

the n2 coefficients of Bk+1 (actually Bk+1 is symmetric, so it has just
(n− 1)n

2
degrees of

freedom, because the coefficients of the upper triangular part are equal to those of the lower
triangular part). We need to impose other conditions: we ask that Bk+1 is SPD.

Remark 1

If it exists Bk+1 SPD that satisfies the secant equation

Bk+1sk = yk,

than the curvature condition is also satisfied

yTk sk > 0.

4.1. BFGS METHOD 35

Proof. By contradiction, let yTk sk ≤ 0, then

0 ≥ yTk sk =︸︷︷︸
yk=Bk+1sk

(Bk+1sk)T sk = sTkB
T
k+1sk = sTkBk+1sk,

which is impossible because Bk+1 is positive definite by assumption.

The curvature condition is not always satisfied for nonconvex functions, but it can be en-
forced imposing restrictions on the line-search, for example this is implied by the Wolfe condi-
tion:

Remark 2

If αk satisfies Wolfe condition

∇f(xk + αpk)Tpk ≥ c2∇f(xk)Tpk

for some c2 ∈ (0, 1), then the curvature condition yTk sk > 0 is satisfied.

Proof. The proof is given in TD3.

From Remark 1, if the curvature condition is not satisfied, then it cannot exist Bk+1 SPD
that satisfies the secant equation. In the algorithm is then advisable to verify if the curvature
condition is verified. From Remark 2, we could check this condition by verifying that (W) is
satisfied. However in line-search algorithm with backtrackinging technique (W) is not checked
so usually we directly check the curvature condition.
These conditions are still not enough: asking that Bk+1 is SPD imposes n additional inequalities
(all principal minors must be positive); there are still some degrees of freedom left.
To determine Bk+1 univocally, we choose Bk+1 as the matrix, among all the symmetric matrices
that satisfy the secant equation, closer (in some sense) to Bk: we ask that

Bk+1 = argmin{‖B −Bk‖ | B = BT , Bsk = yk},

where we know that Bk is SPD and that the curvature condition yTk sk > 0 is satisfied.
To solve this problem we can choose various matrix norms, and each of them leads to a different
quasi-Newton method. The norm that makes the solution easier is the weighted Frobenius
norm1 with weight W SPD such that Wyk = sk. For example we can choose, assuming H(x)

1 Let A ∈ Rn×n. The Frobenius norm of A is defined as

‖A‖F =

√√√√ n∑
i,j=1

a2
ij .

Given W ∈ Rn×n SPD, we know that

W = OTΛO for some O ∈ Rn×n orthogonal, Λ =

λ1

. . .

λn

 , λ1, . . . , λn > 0,

and so we can define

√
W = OT

√
ΛO,

√
Λ =


√
λ1

. . . √
λn

 ,

36 CHAPTER 4. QUASI-NEWTON METHOD

to be positive definite in [xk, xk + pk],

W = Ḡ−1
k ,

where Ḡk is the average Hessian matrix

Ḡk =

∫ 1

0

H(xk + tαkpk) dt. (4.1)

W is such that Wyk = sk because Ḡ−1
k yk = sk as

yk = ∇f(xk+1)−∇f(xk) =
[
∇f(xk + t(xk+1 − xk))

]t=1

t=0
=

=

∫ 1

0

H(xk + t(xk+1 − xk))(xk+1 − xk) dt =

∫ 1

0

H(xk + tαkpk) dt sk = Ḡksk.

With this choice, the unique solution of the problem is

Bk+1 = (I − ρkyksTk)Bk(I − ρkskyTk) + ρkyky
T
k , (DFP)

where

ρk =
1

yTk sk
> 0.

We can prove that if Bk is SPD then also Bk+1 is SPD.
This formula is called DFP because it was discovered empirically by physician Davidon in 1959,
and in 1963 the mathematicians Fletcher and Powell explained rigorously why this update
technique works: they understood that Bk+1 was the solution of this minimum problem.
DFP is an update formula, because it allows to build Bk+1 from Bk, ∇f(xk+1) and ∇f(xk): the
basic idea of quasi-Newton methods is indeed that of avoiding building ex-novo a matrix Bk+1

to approximate H(xk+1), and rather to obtain Bk+1 updating Bk (preserving the symmetry
and the positive definiteness) by using the informations ∇f(xk+1) and ∇f(xk).
Because

Bk+1 = (I − ρkyksTk)Bk(I − ρkskyTk) + ρkyky
T
k

= Bk − ρkyksTkBk − ρkBkskyTk + ρ2
kyks

T
kBksky

T
k + ρkyky

T
k

is obtained from Bk by adding rank 1 matrices (globally is we obtain Bk+1 with a rank 2
modification of Bk), we can use the Sherman-Morrison-Woodbury formula 2 to compute B−1

k+1

and it holds √
W
√
W = OT

√
ΛOOT

√
ΛO = OT

√
Λ
√

ΛO = OTΛO = W.

Given W ∈ Rn×n SPD, the weighted Frobenius of A with weight W is defined as

‖A‖W = ‖
√
WA
√
W‖F .

2 Let A ∈ Rn×n be invertible. Let A a matrix obtained from A by addition of a rank 1 matrix

A = A+ abT

with a,b ∈ Rn. If A is invertible, then we can compute A
−1

from A−1 and by doing just some matrix-vector
products:

A
−1

= A−1 −
A−1abTA−1

1 + bTA−1a
.

4.1. BFGS METHOD 37

from B−1
k :

B−1
k+1 = B−1

k −
B−1
k yky

T
kB
−1
k

yTkB
−1
k yk

+
sks

T
k

yTk sk
.

If we build the sequence Bk starting from a matrix B0 of which the inverse B−1
0 is known,

then using the prevoius formula, we can compute all the B−1
k by performing just matrix-vector

products, and we can also compute pk by a matrix-vector product pk = −B−1
k ∇f(xk) and we

do not need to solve the linear system Bkpk = −∇f(xk).

The DFP updating formula is quite effective, but it was soon superseded by the BFGS
formula, which is presently considered to be the most effective of all quasi-Newton updating
formulae. It was proposed by Broyden, Fletcher, Goldfarb, Shanno. The BFGS update formula
instead of approximating the Hessian matrix, imposes analogous conditions on approximations
B̃k of the inverse of the Hessian matrix.

Let us assume to be at the and of iteration k, we have computed xk, B̃k, αk, pk =
−B̃k∇f(xk), xk+1 = xk + αkpk. We need to compute B̃k+1. To determine B̃k+1 univo-
cally, we ask B̃k+1 to be, among all the symmetric matrices that satisfy the equation B̃yk = sk,
the closest matrix to B̃k:

B̃k+1 = argmin{‖B̃ − B̃k‖ | B̃ = B̃T , Hyk = sk},

where we know that B̃k is SPD and the curvature condition yTk sk > 0 holds.
We choose again the Frobenius norm with weight W such that W sk = yk. Also in this case
we can choose W = Ḡk (it holds W sk = yk). With this choice, the unique solution of the
minimization problem is

B̃k+1 = (I − ρkskyTk)B̃k(I − ρkyksTk) + ρksks
T
k , (BFGS)

where

ρk =
1

yTk sk
> 0.

We can prove that if B̃k is SPD then also B̃k+1 is SPD.

We can derive a version of the BFGS algorithm that works with the Hessian approximation
Bk rather than its inverse B̃k. The update formula for Bk is obtained by simply applying the
Sherman-Morrison-Woodbury formula to obtain (BFGS)

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+

yky
T
k

yTk sk
. (4.2)

The last question is how to chose B̃0? Unlucky there is not a general formula that works

well in all cases. Usually we choose B̃0 = In, or B̃0 = γIn with γ =
yT0 s0

yT0 y0
, or B̃0 = B−1

0 after

having computed an approximation B0 of H(x0) by finite differences.
Each iteration of quasi-Newton methods can be performed at a cost of O(n2) arithmetic

operations (plus the cost of function and gradient evaluations); there are no O(n3) operations
such as linear system solves or matrix-matrix operations. The algorithm is robust, and its rate
of convergence is superlinear, which is fast enough for most practical purposes. Even though
Newton’s method converges more rapidly (that is, quadratically), its cost per iteration is higher

38 CHAPTER 4. QUASI-NEWTON METHOD

because it requires the solution of a linear system. A more important advantage for BFGS is,
of course, that it does not require calculation of second derivatives.

We describe the algorithm of the BFGS method.

Given x0, ε > 0, inverse Hessian approximation B̃0, set k = 0.

While ‖∇f(xk)‖ > ε

1. Compute the search direction pk = −B̃k∇f(xk).

2. Set xk+1 = xk+αkpk where αk is computed from a line search procedure
to satisfy (A)+(W)

3. Define sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk)

4. Compute B̃k+1 by means of ??

5. Set k = k + 1

4.2 Global convergence of the BFGS method

We study the global convergence of BFGS, with a practical line search, when applied to a smooth
convex function from an arbitrary starting point x0 and from any initial Hessian approximation
B0 that is symmetric and positive definite.

We assume the following assumption

Assumption 4.2.1. We assume that

1. The objective function f is twice continuously differentiable.

2. The level set L = {x ∈ Rn : f(x) ≤ f(x0)} is convex, and there exist positive constants
m and M such that

m‖z‖2 ≤ zTH(x)z ≤M‖z‖2 (4.3)

for all z ∈ Rn and x ∈ L.

The second part of this assumption implies that H(x) is positive definite on L and that f
has a unique minimizer x∗. We have seen that yk = Ḡksk, where Ḡk is the average Hessian
defined in (4.1). From this and (4.3) we obtain

yTk sk
sTk sk

=
sTk Ḡksk

sTk sk
≥ m. (4.4)

From the assumption Ḡk is positive definite, so its square root is well-defined. Therefore, we

have by defining zk = Ḡ
1/2
k that

yTk yk
yTk sk

=
zTk Ḡkzk

zTk zk
≤M. (4.5)

We are now ready to present the global convergence result for the BFGS method.

Theorem 4.2.1. Let B0 be any symmetric positive definite initial matrix, and let x0 be a
starting point for which Assumption 4.2.1 is satisfied. Then the sequence {xk} generated by
BFGS Algorithm converges to the minimizer x∗ of f .

4.2. GLOBAL CONVERGENCE OF THE BFGS METHOD 39

Proof. Some points of the proof (marked by ”see TD”) are treated in Exercise 3 of TD 4.
Let us define

mk =
yTk sk
sTk sk

, Mk =
yTk yk
yTk sk

(4.6)

and note from (4.4) and (4.5) that

mk ≥ m,Mk ≤M. (4.7)

By computing the trace of the BFGS approximation (4.2), we obtain that (see TD)

trace(Bk+1) = trace(Bk)− ‖Bksk‖2

sT
k Bksk

+
‖yk‖2

yT
k sk

. (4.8)

We can also show (see TD) that

det(Bk+1) = det(Bk)
yT

k sk

sT
k Bksk

. (4.9)

Let us also define

cos(θk) =
sTkBksk
‖sk‖‖Bksk‖

, qk =
sTkBksk
sTk sk

, (4.10)

so that θk is the angle between sk and Bksk. We then obtain that

‖Bksk‖2

sTkBksk
=
‖Bksk‖2‖sk‖2

(sTkBksk)2

sTkBksk
‖sk‖2

=
qk

cos2(θk)
. (4.11)

In addition, we have from (4.6) that

det(Bk+1) = det(Bk+1)
yT

k sk

sT
k sk

sT
k sk

sT
k Bksk

= det(Bk+1)
mk

qk
. (4.12)

We now combine the trace and determinant by introducing the following function of a positive
definite matrix B:

ψ(B) = trace(B)− ln(det(B)) (4.13)

where ln(·) denotes the natural logarithm. It is not difficult to show that ψ(B) > 0 (see TD).
By using (4.6) and (4.8)-(4.13), we have that

ψ(Bk+1) =ψ(Bk) +Mk −
qk

cos2(θk)
− ln(det(Bk))− ln mk + ln qk

=ψ(Bk) + (Mk − ln(mk)− 1)

+

[
1− qk

cos2(θk)
+ ln

(
qk

cos2(θk)

)]
+ ln(cos2(θk)) (4.14)

Now, since the function h(t) = 1− t+ ln(t) ≤ 0 is nonpositive for all t > 0 (see TD), the term
inside the square brackets is nonpositive, and thus from (4.7) and (4.14) we have

0 < ψ(Bk+1)− ψ(B1) + ck +

k∑
j=1

ln(cos2(θj)) (4.15)

40 CHAPTER 4. QUASI-NEWTON METHOD

where we can assume the constant c = M − ln(m)− 1 to be positive, without loss of generality.
We now relate these expressions to the results given in Chapter 3. Note from the form sk =
−αkB−1

k ∇fk the quasi-Newton iteration that cos(θk) defined by (4.10) is the angle between
the steepest descent direction and the search direction, which plays a crucial role in the global
convergence theory of Chapter 3. From the result of Zoutendijk’s theorem we know that the
sequence ‖∇f(xk)‖ generated by the line search algorithm is bounded away from zero only if
cos θj → 0. Let us then proceed by contradiction and assume that cos θj → 0. Then there
exists k1 > 0 such that for all j > k1, we have

ln(cos2(θj)) < −2c,

where c is the constant defined above. Using this inequality in (4.15) we find the following
relations to be true for all k > k1:

0 < ψ(B1) + ck +

k1∑
j=1

ln(cos2(θj)) +

k∑
j=k1+1

(−2c)

= ψ(B1) +

k1∑
j=1

ln(cos2(θj)) + 2ck1 − ck.

However, the right-hand-side is negative for large k, giving a contradiction. Therefore, there
exists a subsequence of indices {jk} such that {cos(θjk)} ≥ δ > 0. By Zoutendijk’s theorem
this limit implies that lim inf ‖∇f(xk)‖ → 0. Since the problem is strongly convex, the latter
limit is enough to prove that xk → x∗.

Chapter 5

Nonlinear least-squares problems

5.1 Background: modelling, regression

Nonlinear least-squares problems often arise when we want to fit a model to some data, i.e.,
when we solve a regression problem.

Assume to have some experimental measurements

(ti, yi), i = 1, ...,m.

The measurements are some (usually noisy) realisations of a function y : R −→ R of the variable
t that describes the observed phenomenon. We want to approximate this function by a model
m(x; t), where x = (x1, . . . , xn)T are some parameters to be determined. We can choose the
value of these parameters to adapt the model to the data at best. 1

The true variables of the model are then the parameters x, the variable t of the original function
will take the measured values.

To find the best parameters we try to minimize the distance of the model from the mea-
surements, i.e., we look for x ∈ Rn that minimizes the amount of flow

1

2

∥∥∥∥∥∥∥
 m(x; t1)− y1

...
m(tm,x)− ym


∥∥∥∥∥∥∥

2

=
1

2

m∑
i=1

(
m(x; ti)− yi

)2
.

This is a nonlinear (if m is nonlinear with respect to x) least-squares problem.

5.2 General concepts

Let
F : Rn −→ Rm

x =

x1

...
xn

 7−→ F(x) =

F1(x)
...

Fm(x)


1Usually we choose a family of functions to which the model belongs, which is parametrized by some param-

eters. For example we can have an exponential model m(x; t) = x1e
x2t, with x = (x1, x2)T or a linear model

m(x; t) = x1 + x2t.

41

42 CHAPTER 5. NONLINEAR LEAST-SQUARES PROBLEMS

and
f : Rn −→ R

x 7−→ f(x) =
1

2
‖F(x)‖2 =

1

2

m∑
i=1

Fi(x)2.

The general form of a nonlinear least-squares problem is

min
x
f(x) =

1

2
‖F(x)‖2.

In the following we will assume, as it is common in applications, that m ≥ n.
Let x ∈ Rn. If F is differentiable in x (i.e., if F1, . . . , Fm are differentiable in x), the Jacobain

matrix of F in x is J(x) ∈ Rm×n

J(x) =

∇F1(x)T

...

∇Fm(x)T

 =


∂F1

∂x1
(x) · · · ∂F1

∂xn
(x)

...
...

∂Fm
∂x1

(x) · · · ∂Fm
∂xn

(x)

 .

Let x∗ be a solution of the least-squares problem. The residual is the following amount of
flow:

r = f(x∗) =
1

2
‖F(x∗)‖2.

If it exists a solution for which r = 0 we say that the problem is a zero residual problem.

Remark 5.2.1. It holds

(a) ∇f(x) = J(x)TF(x),

(b) H(x) = J(x)TJ(x) +

m∑
i=1

Fi(x)HFi
(x).

Proof. (a) ∀j = 1, . . . , n(
∇f(x)

)
j

=
∂

∂xj
f(x) =

∂

∂xj

1

2

m∑
i=1

Fi(x)2 =
1

2

m∑
i=1

∂Fi(x)2

∂xj
=

1

2

m∑
i=1

2Fi(x)
∂Fi(x)

∂xj
=

m∑
i=1

∂Fi(x)

∂xj
Fi(x)

=

m∑
i=1

(
J(x)

)
ij

(
F(x)

)
i

=

m∑
i=1

(
J(x)T

)
ji

(
F(x)

)
i

=
(
J(x)TF(x)

)
j
.

(b) ∀j, k = 1, . . . , n(
H(x)

)
jk

=
∂2f(x)

∂xj∂xk
=

∂

∂xk

∂f(x)

∂xj
=

∂

∂xk

(
∇f(x)

)
j

=︸︷︷︸
(a)

=
∂

∂xk

m∑
i=1

Fi(x)
∂Fi(x)

∂xj
=

m∑
i=1

∂Fi(x)

∂xk

∂Fi(x)

∂xj
+

m∑
i=1

Fi(x)
∂2Fi(x)

∂xj∂xk

=

m∑
i=1

(
J(x)

)
ik

(
J(x)

)
ij

+

m∑
i=1

Fi(x)
(
HFi

(x)
)
jk
.

5.3. LINEAR LEAST-SQUARES PROBLEMS 43

Because

m∑
i=1

(
J(x)

)
ik

(
J(x)

)
ij

=

m∑
i=1

(
J(x)T

)
ki

(
J(x)

)
ij

=
(
J(x)TJ(x)︸ ︷︷ ︸
is symmetric

)
kj

=
(
J(x)TJ(x)

)
jk

it holds (
H(x)

)
jk

=
(
J(x)TJ(x

)
jk

+

m∑
i=1

Fi(x)
(
HFi

(x)
)
jk
.

Remark that r = 0 means F(x∗) = 0, i.e., x∗ is the solution of the nonlinear system

F(x) = 0.

If r = 0, then

H(x∗) = J(x∗)TJ(x∗) +
m∑
i=1

Fi(x
∗)︸ ︷︷ ︸

= 0

HFi
(x∗) = J(x∗)TJ(x∗).

In many situations the term J(x)TJ(x) is a good approximation of the Hessian matrix H(x),
for example when the residuals are small (Fi(x) ≈ 0) or when the model is almost linear
(HFi(x) ≈ 0). In such cases, for x close to x∗, we can use the following approximation:

H(x) = J(x)TJ(x) +

m∑
i=1

Fi(x)HFi(x) ≈ J(x)TJ(x).

This is convenient because it allows us to get a reliable approximation to the second order
derivatives by employing just first order derivatives, that can also be used to compute ∇f(x).

5.3 Linear least-squares problems

In the special case in which each function Fi is linear, we have F(x) = Ax + b, the Jacobian A
is constant, and we can write

f(x) =
1

2
‖Ax + b‖2.

We also have

∇f(x) = AT (Ax + b) H(x) = ATA.

The second term in (b) disappears as the function is linear so HFi
= 0 for all i. Function f

is always convex and any solution must satisfy ∇f(x) = AT (Ax + b) = 0, which leads to the
normal equations:

ATAx = −ATb.

44 CHAPTER 5. NONLINEAR LEAST-SQUARES PROBLEMS

5.4 Algorithms for nonlinear least-squares problems

5.4.1 Gauss-Newton method

Let us assume that r ≈ 0, that J(xk) ∈ Rm×n with m ≥ n, and that J(xk) is a full rank matrix,
i.e., rk(J(xk)) = n. The Gauss-Newton direction pGNk is the quasi-Newton direction obtained
choosing

Bk = J(xk)TJ(xk),

i.e., as ∇f(xk) = J(xk)TF(xk), pGNk is the solution of the quasi-Newton system

J(xk)TJ(xk)p = −J(xk)TF(xk). (5.1)

The matrix J(xk)TJ(xk) is SPD when J(xk) has full rank (all the eigenvalues are nonzero).
Indeed ∀v ∈ Rn, v 6= 0

vTJ(xk)TJ(xk)v =
(
J(xk)v

)T
J(xk)v = ‖J(xk)v‖2 > 0.

pGNk is a descent direction for f in xk because

∇f(xk)TpGNk =
(
J(xk)TF(xk)

)T
pGNk =

(
− J(xk)TJ(xk)pGNk

)T
pGNk

= −(pGNk)TJ(xk)TJ(xk)pGNk = −‖J(xk)pGNk ‖2 < 0,

where this last inequality follows from the fact that J(xk)TJ(xk) is positive definite.
If J(xk) is not full rank, then J(xk)TJ(xk) is still symmetric but it is just positive semidefinite.
In this case a possibility is to choose Bk = J(xk)TJ(xk) + εIn with ε > 0 small, so that Bk
is SPD2 and it approximates well J(xk)TJ(xk) (because ε is small). We will discuss this in
Section ??.

The Gauss-Newton method can be also derived by approximating the objective function F
by a linear model at each iteration: F(xk + p) ∼ F(xk) + J(xk)p. Using as a model for f
the squared norm of the linear model of F , we obtain a quadratic approximation to f with
approximated Hessian:

mGN
k (p) =

1

2
‖F(xk) + J(xk)p‖2 =

1

2
‖F(xk)‖2 + J(xk)TF(xk)p +

1

2
pTJ(xk)TJ(xk)Tp

= f(xk) +∇f(xk)Tp +
1

2
pTJ(xk)TJ(xk)Tp.

To get the step at each iteration we minimize the model, which amounts to solve a linear least-
squares problem, whose normal equations are exactly (5.1). By using the SVD decomposition
of J(xk) = USV T , we can write (see TD 5) the solution of this problem as

x∗ =

n∑
i=1

uTi F

σi
vi.

2 If A ∈ Rn×n is positive semidefinite, then ∀ε > 0 A+ εIn is positive definite.
Indeed, let λ1, . . . , λn be the eigenvalues of A and v1, . . . ,vn the relative eigenvectors. ∀i = 1, . . . , n

(A+ εIn)vi = Avi + εvi = λivi + εvi = (λi + ε)vi,

i.e., vi is an eigenvector of A+εIn with eigenvalue λi+ε. Then the eigenvalues of A+εIn are λ1 +ε, . . . , λn+ε,
which are all positive because λ1, . . . , λn ≥ 0 as A is positive semidefinite.

5.5. LEVENBERG-MARQUARDT METHOD 45

Gauss-Newton method is then based on the following iterative scheme:{
Given x0

xk+1 = xk + pGNk

}
.

The convergence of the method clearly depends on how important is the term we have dis-
carded in the Hessian approximation. As shown in the following theorem, the method is locally
convergent with quadratic local convergence in case of zero residual. If the residual is nonzero,

if
∥∥∥ m∑
i=1

Fi(x
∗)HFi

(x∗)
∥∥∥ is small with respect to the smallest eigenvalue of J(x∗)TJ(x∗), then

the convergence is linear. Otherwise, there is no guarantee of convergence for the method.

Theorem 5.4.1. Let F : Rn → Rm and let f(x) =
1

2
‖F(x)‖2 be twice continuously differ-

entiable in an open convex set D ⊂ Rn. Assume that J(x) is Lipschitz continuous in D with
Lipschitz constant γ and that ‖J(x)‖ ≤ α for all x ∈ D. Assume that there exists x∗ ∈ D such
that J(x∗)TF(x∗) = 0. Let λ be the smallest eigenvalue of J(x∗)TJ(x∗) and assume that

‖(J(x)− J(x∗))TF(x∗)‖ ≤ σ‖x− x∗‖

for some constant σ ≥ 0 and for all x ∈ D. If σ < λ then for any c ∈ (1, λ/σ) there exists
ε > 0 such that for all x0 ∈ Bε(x∗) the sequence {xk} generated by the Gauss-Newton method
is well-defined, converges to x∗ and obeys

‖xk+1 − x∗‖ ≤ cσ

λ
‖xk − x∗‖+

cαγ

2λ
‖xk − x∗‖2,

‖xk+1 − x∗‖ ≤ cσ + λ

2λ
‖xk − x∗‖ < ‖xk − x∗‖.

Corollary 5.4.1. Let the assumptions of Theorem 5.4.1 hold. If F(x∗) = 0, then there exists
ε > 0 such that for all x0 ∈ Bε(x∗) the sequence {xk} generated by the Gauss-Newton method
is well-defined and converges quadratically to x∗.

Theorem 5.4.1 shows that Gauss-Newton method may not be quickly locally convergent
and that (when S(x∗) is too large) it may not be convergent at all. The constant σ plays a
crucial role in the convergence. It may be seen as an absolute combined measure of linearity
and residual size of the problem because it holds:

(J(x)− J(x∗))TF(x∗) ' S(x∗)(x− x∗),

if F is linear or F(x∗) = 0 then σ = 0. For the convergence we must look at the ratio
σ

λ
, which

must be less than 1. This can be interpreted as a relative combined measure of linearity and
residual size of the problem.

Gauss-Newton method with line-search consists of choosing the Gauss-Newton direction in
the line-search algorithm. In this way the method becomes globally convergent and close to x∗

it has quadratic convergence in case r = 0.

5.5 Levenberg-Marquardt method

The Levenberg-Marquardt method is a modification of Gauss-Newton method that avoids one
of the weaknesses of Gauss-Newton, namely, its behavior when the Jacobian is rank-deficient,
or nearly so.

46 CHAPTER 5. NONLINEAR LEAST-SQUARES PROBLEMS

The Levenberg-Marquardt method is derived by modifying the Gauss-Newton model, by
adding a regularization term that depends on a strictly positive regularization parameter λk:

mLM
k (p) =

1

2
‖J(xk)p− F(xk)‖2 +

λk
2
‖p‖2. (5.2)

The minimizer of this model satisfies a modification of the normal equations:

(J(xk)TJ(xk) + λkI)p = −J(xk)TF(xk).

These are indeed the normal equations of the following linear least-squares problem:

min
p

1

2

∥∥∥∥∥
[
J(xk)√
λkI

]
p−

[
F(xk)

0

] ∥∥∥∥∥
2

,

which is equivalent to
min
p
mLM
k (p) (5.3)

where mLM
k is defined in (5.2). The term that is added ensures that J(xk)TJ(xk) is positive

definite. By using the SVD of J(xk), we can write the solution of this problem as

x∗ =

n∑
i=1

uTi F

σi + λk
vi.

Remark that when λk → 0, x∗ tends to the solution of the Gauss-Newton system. The
Levenberg-Marquardt model is then

mLM
k (p) =

1

2
‖F(xk)‖2 + J(xk)TF(xk)p +

1

2
pTJ(xk)TJ(xk)p +

λk
2
‖p‖2.

In the original version of the Levenberg-Marquardt method the parameter λk is updated at
each iteration, similarly to the trust-region radius in trust-region methods. It is increased or
decreased by a certain factor according to whether or not the previous trial step was effective
in decreasing f (opposed to the trust-region radius λk is decreased if the step is successful).
The Levenberg-Marquardt method can indeed be derived from Gauss-Newton method by using
a trust-region strategy. Recall that the Gauss-Newton method is like Newton?s method with
line search, except that we use the convenient and often effective approximation J(x)TJ(x)
for the Hessian. By replacing the line search strategy with a trust-region strategy we obtain
the Levenberg-Marquardt method. The second-order Hessian component in (b) is still ignored,
however, so the local convergence properties of the two methods are similar.

The following lemma indeed holds.

Lemma 5.5.1. The solution pLMk of the minimization of (5.2) is a solution of the trust-region
subproblem

min
p

1

2
‖J(xk)p− F(xk)‖2 subject to ‖p‖ ≤ ∆k

for some ∆k > 0 if and only if there is a scalar λk ≥ 0 such that

(J(xk)TJ(xk) + λkI)pLMk = −J(xk)TF(xk),

λk(∆k − ‖pLMk ‖) = 0.

This lemma tells us that when the solution pGNk of the Gauss-Newton equations (5.1) lies
strictly inside the trust region (that is, ‖pGNk ‖ < ∆k), then this step also solves the subproblem
(5.3). Otherwise, there is a λk > 0 such that the solution pLMk lays on the boundary of the
trust-region because as λk > 0 it must hold ∆k = ‖pLMk ‖.

Chapter 6

Constrained optimization

We are interested in the minimizer x∗ of

f : Rn −→ R
x 7−→ f(x)

subject to some constraints on the variables, that is we assume that for some

h : Rn −→ Rp
x 7−→ h(x),

g : Rn −→ Rm
x 7−→ g(x)

,

it holds
h(x) = 0, g(x) ≥ 0, 1

that is we have p equality constraints and m inequality constraints.
We look for a solution x∗ of the problem

min
x∈Rn

f(x)

h(x) = 0,
g(x) ≥ 0.

The set
Ω = {x ∈ Rn | h(x) = 0, g(x) ≥ 0}

is called feasible set for the problem. We can then state the problem as

min
x∈Ω

f(x).

We say that an inequality constraint i ∈ {1, . . . ,m} is active in x if gi(x) = 0, and inactive if
gi(x) > 0. We denote

A(x) = {i ∈ {1, . . . ,m} | gi(x) = 0}
the set of active constraints in x.

Moreover,

• x∗ ∈ Ω is a local minimizer for f if it exists a neighbourhood N of x∗ such that

f(x∗) ≤ f(x) ∀x ∈ Ω ∩N .

• x∗ is an isolated minimizer for f if it exists a neighbourhood N of x∗ such that x∗ is the
only minimizer in Ω ∩N .

1For v,w ∈ RN , v ≥ w means vi ≥ wi ∀i = 1, . . . , N .

47

48 CHAPTER 6. CONSTRAINED OPTIMIZATION

6.1 One equality constraint

Let us consider the problem
min
x∈R2

x1 + x2

2− x2
1 − x2

2 = 0,

i.e., we look for the minimizer of f(x) on the boundary of the circle centred at (0, 0)T and of radius√
2. From Figure 6.1, in which level curves of f(x) are plotted, it is clear that x∗ = (−1,−1)T .

We remark that

∇f(x) =

(
1
1

)
, ∇h(x) = −2

(
x1

x2

)
.

Then for each x on the circumference ∇h(x) is orthogonal to it and points towards the interior of
the circle.
Starting from a point on the circle it is easy to see how to move to remain on the constraint and
at the same time to decrease the values of f(x). For example, starting from x = (

√
2, 0)T , we can

move on the circle clockwise, i.e. following the direction that is tangent to the circle and orthogonal
to ∇h(x) and that is of descent for f in x, i.e. we have to follow the direction d such that{

∇h(x)Td = 0,

∇f(x)Td < 0.

We remark that at the solution, the gradient of the constraint is parallel to the gradient of the
function, that is ∃µ∗ ∈ R s.t.

∇f(x∗) = µ∗∇h(x∗);

in particular it holds µ∗ =
1

2
.

Let us assume to have just one equality constraint:

min
x∈Rn

f(x)

h(x) = 0
.

If we are at a feasible point x : h(x) = 0, and we approximate h(x + αd) with the first order
Taylor series, we get:

h(x + αd) ≈ h(x) + α∇h(x)Td = α∇h(x)Td,

and to decrease f(x) it is necessary that d is a descent direction for f in x, Then, at first order,
we have to move along a direction d such that{

∇h(x)Td = 0,

∇f(x)Td < 0.
(EC)

If we are at a feasible point x : h(x) = 0 and it exists a direction d that satisfies (EC), we can
move along that direction and find a point on the constraint in which f has a lower value, then
x is not x∗. We can then infer the following necessary condition to have that x is a solution: if
x is a solution, then it cannot exist d ∈ Rn that satisfies (EC).
The only way that d ∈ Rn that satisfies (EC) cannot exist is if ∇f(x) is parallel to ∇h(x). The
necessary condition becomes then:

x∗ is a solution =⇒ ∃µ∗ ∈ R s.t. ∇f(x∗) = µ∗∇h(x∗).

6.1. ONE EQUALITY CONSTRAINT 49

Figure 6.1: Problem of the example, showing constraint and function gradients at various
feasible points.

We introduce the Lagrangian function

L(x, µ) = f(x)− µh(x),

where µ is called Lagrange multiplier of the equality constraint, and by ∇xL(x, µ) = ∇f(x)−
µ∇h(x), the necessary condition becomes

x∗ is a solution =⇒ ∃µ∗ ∈ R s.t. ∇xL(x∗, µ∗) = 0. (NC)

This necessary condition is not sufficient. Indeed, in the previous example, if x̃ = (1, 1)T ,
∃µ̃ ∈ R s.t. ∇f(x̃) = µ̃∇h(x̃), but x̃ is not a solution of the problem (this is a maximizer).

50 CHAPTER 6. CONSTRAINED OPTIMIZATION

6.2 One inequality constraint

Let us consider again the previous problem, in which we replace the equality constraint by an
inequality constraint:

min
x∈R2

x1 + x2

2− x2
1 − x2

2 ≥ 0

We look for the minimizer of f(x) in the close ball of centre (0, 0)T and radius
√

2. From Figure
6.1 it is clear that the solution is still x∗ = (−1,−1)T , point in which the constraint is active, i.e.,
g(x∗) = 0. Remark that

∇f(x) =

(
1
1

)
, ∇g(x) = −2

(
x1

x2

)
,

then for each x on the circumference of the ball ∇g(x) is orthogonal to it and points towards the
inside.
The gradient of f is parallel to the gradient of g in x∗, that is ∃λ∗ ∈ R s.t.

∇f(x∗) = λ∗∇g(x∗);

in particular it holds λ∗ =
1

2
.

Suppose to have just one inequality constraint:

min
x∈Rn

f(x)

g(x) ≥ 0.

If x : g(x) ≥ 0, we have to move along a direction d remaining on the constraint and at the
same time decreasing f ; using a first order approximation to g, to remain on the constraint is
necessary to have

0 ≤ g(x + αd) ≈ g(x) + α∇g(x)Td,

and to decrease f(x) it is necessary that d is a descent direction for f in x. Then, at first order,
we have to move along d such that{

g(x) +∇g(x)Td ≥ 0

∇f(x)Td < 0
(IC)

If x : g(x) ≥ 0 and it exists a direction d that satisfies (IC), then we can move along that
direction and find a point on the constraint where f has a lower value, then x is not x∗. We
infer then the following necessary condition for x to be a solution: if x is a solution, then it
does not exist d ∈ Rn that satisfies (IC).

• If the constraint is inactive in x, i.e. g(x) > 0, then the first condition in (IC) is always
satisfied, if we choose d of sufficiently small length, so (IC) becomes

∇f(x)Td < 0.

It does not exist d ∈ Rn that satisfies this condition if and only if ∇f(x) = 0. Then the
necessary condition becomes

x∗ is a solution =⇒ ∇f(x∗) = 0.

6.2. ONE INEQUALITY CONSTRAINT 51

• If the constraint is inactive in x, that is g(x) = 0, then (IC) becomes{
∇g(x)Td ≥ 0

∇f(x)Td < 0

The first of these two conditions defines a closed semispace of Rn, while the second one an
open semispace. It does not exist d ∈ Rn that satisfies the condition if and only if such
semispaces have void intersection, i.e., if and only if ∇f(x) and ∇g(x) are parallel and
point towards the same direction (see Figure 6.2). Then the necessary condition becomes

Figure 6.2: The light blue region is the open semispace of the vectors d such that ∇fTd < 0;
the green region is the closed semispace of the vectors d such that ∇gTd ≥ 0.

x∗ is a solution =⇒ ∃λ∗ > 0 s.t. ∇f(x∗) = λ∗∇g(x∗).

The global necessary condition becomes

x∗ is a solution =⇒ ∃λ∗ ≥ 0 s.t. ∇f(x∗) = λ∗∇g(x∗), λ∗g(x∗) = 0.

The condition λ∗g(x∗) = 0 is called complementarity condition.
If the constraint is inactive in x∗, that is g(x∗) > 0, then the complementarity condition
requires that λ∗ = 0, and so the necessary condition becomes the one we use in unconstrained
optimization.
If in x∗ the constraint is inactive, i.e., g(x∗) = 0, then the complementarity condition does not
impose a condition on λ∗.
Introducing the Lagrangian function

L(x, λ) = f(x)− λg(x),

52 CHAPTER 6. CONSTRAINED OPTIMIZATION

where λ is called Lagrange multiplier of the inequality constraint, and by ∇xL(x, λ) = ∇f(x)−
λ∇g(x), the necessary condition becomes

x∗ is a solution =⇒ ∃λ∗ ≥ 0 s.t. ∇xL(x∗, λ∗) = 0, λ∗g(x∗) = 0.

6.3 First order optimality conditions

In general, the Lagrangian function of the problem is defined as

L(x,µ,λ) = f(x)−
p∑
i=1

µihi(x)−
m∑
i=1

λigi(x),

where µ = (µ1, . . . , µp)
T is the vector of Lagrange multipliers for equality constraints and

λ = (λ1, . . . , λm)T is the vector of Lagrange multipliers for inequality constraints.
Generalizing what we have seen in the examples, if x : h(x) = 0,g(x) ≥ 0, and we want to

move along a direction d remaining on the constraint, at first order we have to move along a
direction d such that {

∇hi(x)Td = 0 ∀i = 1, . . . , p

∇gi(x)Td ≥ 0 ∀i ∈ A(x).

We define

F1(x) = {d ∈ Rn | ∇hi(x)Td = 0 ∀i = 1, . . . , p, ∇gi(x)Td ≥ 0 ∀i ∈ A(x)}

set of feasible directions in x. Remark that F1(x) is a cone2.
However, this is just a first order approximation (this is exact only if the constraints are linear):
in general we have to move along an arc. An arc α parametrized by a parameter ϑ ≥ 0 and
such that α(0) = x is said admissible arc in x if{

hi(α(ϑ)) = 0 ∀i = 1, . . . , p
gi(α(ϑ)) ≥ 0 ∀i ∈ A(x)

}
for ϑ small enough (i.e., for ϑ ∈ [0, ϑ] for some ϑ > 0). The set

T (x) = {d ∈ Rn | d = α′(0) for some α(ϑ) admissible arc in x}

of tangent directions to the admissible arcs in x is a cone and it is called tangent cone in x.

Observation 1 T (x) ⊆ F1(x).

Proof. Let d ∈ T (x). From the definition of tangent cone, d = α′(0) for some α(ϑ) admissible
arc in x. It holds ∀i = 1, . . . , p

0 =︸︷︷︸
hi(α(ϑ)) = 0 ∀ϑ∈[0,ϑ]

[
d

dϑ
hi(α(ϑ))

]
ϑ=0

= ∇hi(α(0))Tα′(0) = ∇hi(x)Td

and ∀i ∈ A(x)

0 ≤︸︷︷︸
gi(α(0)) = 0 and

gi(α(ϑ)) ≥ 0 ∀ϑ∈(0,ϑ]

[
d

dϑ
gi(α(ϑ))

]
ϑ=0

= ∇gi(α(0))Tα′(0) = ∇gi(x)Td.

2C ⊆ Rn, C 6= ∅ is a cone if ∀d ∈ C it holds αd ∈ C ∀α ≥ 0

6.3. FIRST ORDER OPTIMALITY CONDITIONS 53

Remark 2 T (x) 6⊇ F1(x).
Let’s show this with two examples.

(1) Let us consider the problem
min
x∈R2

x1 + x2

(2− x2
1 − x2

2)2 = 0
.

Remark that

∇h(x) =

(
2(2− x2

1 − x2
2)(−2x1)

2(2− x2
1 − x2

2)(−2x2)

)
= −4(2− x2

1 − x2
2)

(
x1

x2

)
.

We notice that Ω = {x ∈ R2 | (2 − x2
1 − x2

2)2 = 0} = {x ∈ R2 | 2 − x2
1 − x2

2 = 0} is

the boundary of the circle of centre 0 and radius
√

2. Let x ∈ Ω. It is clear that the
tangent directions and feasible arcs in x are just two, then T (x) contains just two elements.
However, because x ∈ Ω, it holds 2− x2

1 − x2
2 = 0, and then ∇h(x) = 0. Then

F1(x) = {d ∈ R2 | ∇h(x)T︸ ︷︷ ︸
= 0

d = 0} = R2.

(2) Let us consider the problem

min
x∈R2

f(x)

(x1 − 1)2 + x2
2 − 1 = 0,

(x1 + 1)2 + x2
2 − 1 = 0.

Remark that

∇h1(x) = 2

(
x1 − 1
x2

)
, ∇h2(x) = 2

(
x1 + 1
x2

)
.

The feasible set Ω = {x ∈ R2 | (x1 − 1)2 + x2
2 − 1 = 0, (x1 + 1)2 + x2

2 − 1 = 0} is the
intersection of two circumferences that pass from 0 but the first one belongs to the right
part of the plane while the second one to the left part of the plane R2, so Ω = {0}.
There does not exist any admissible arc in 0, then there does not exist any tangent direction
to an admissible arc in 0 and T (0) = ∅. On the other hand, because

F1(0) = {d ∈ R2 | ∇h1(0)Td = 0, ∇h2(0)Td = 0} = {d ∈ R2 | (−2, 0)d = 0, (2, 0)d = 0},

it holds d ∈ F1(0) ∀d = (0, d2) : d2 6= 0; then F1(0) 6= ∅.

Definition 6.3.1. We say that in x the LICQ (Linear Indipendence Constrains Qualification)
holds if the set

{∇hi(x) i = 1, . . . , p, ∇gi(x) i ∈ A(x)}

is formed by linearly independent vectors.

Examples In example (1) the LICQ does not hold in x because ∇h(x) = 0. In example (2)
the LICQ does not hold in 0 because ∇h1(0) ‖ ∇h2(0).

Lemma 6.3.1. If LICQ holds in x, then T (x) = F1(x).

54 CHAPTER 6. CONSTRAINED OPTIMIZATION

Example Let us consider the problem

min
x∈Rn

x1 + x2

2− x2
1 − x2

2 ≥ 0
x2 ≥ 0

We know that

∇g1(x) = −2

(
x1

x2

)
, ∇g2(x) =

(
0
1

)
.

Let x = (0,
√

2)T . It holds A(x) = {1}, ∇g1(x) = (0,−2
√

2)T . The LICQ holds in x, so

T (x) = F1(x) = {d ∈ R2 | ∇g1(x)Td ≥ 0} =

{(
d1

d2

)
∈ R2

∣∣∣ (0,−2
√

2)

(
d1

d2

)
≥ 0

}
=

{(
d1

d2

)
∈ R2

∣∣∣ − 2
√

2d2 ≥ 0

}
=

{(
d1

d2

)
∈ R2

∣∣∣ d2 ≤ 0

}
.

Let now x = (−
√

2, 0)T . It holds A(x) = {1, 2}, ∇g1(x) = (2
√

2, 0)T , ∇g2(x) = (0, 1)T , then
the LICQ holds in x and

T (x) = F1(x) = {d ∈ R2 | ∇g1(x)Td ≥ 0, ∇g2(x)Td ≥ 0}

=

{(
d1

d2

)
∈ R2

∣∣∣ (2
√

2, 0)

(
d1

d2

)
≥ 0, (0, 1)

(
d1

d2

)
≥ 0

}
=

{(
d1

d2

)
∈ R2

∣∣∣ 2
√

2d1 ≥ 0, d2 ≥ 0

}
=

{(
d1

d2

)
∈ R2

∣∣∣ d1 ≥ 0, d2 ≥ 0

}
.

Remark 6.3.1. If in x the LICQ does not hold, we cannot derive a necessary condition of the
form (NC). For example we can analyse the problem

min
x∈R2

x1 + x2

(2− x2
1 − x2

2)2 = 0.

For each x ∈ Ω, the LICQ does not hold in x because ∇h(x) = 0. This makes it impossible to
proceed as in the case of just one equality constraint to obtain (NC).

Lemma 6.3.2.

x∗ local minimum point =⇒ 6 ∃d ∈ T (x∗) s.t. ∇f(x∗)Td < 0

Proof. Let d ∈ T (x∗), i.e., d = α′(0) for some α(ϑ) admissible arc in x∗. Because α(ϑ) is an
admissible arc in x∗ and because x∗ is the constrained minimum point, moving from x∗ = α(0)
along α(ϑ) we will find larger values of f :

0 ≤
[

df(α(ϑ))

dϑ

]
ϑ=0

= ∇f(α(0))Tα′(0) = ∇f(x∗)Td.

Theorem 6.3.1. First order necessary condition{
x∗ is a local minimum point
in x∗ LICQ holds

=⇒ 6 ∃d ∈ F1(x∗) s.t. ∇f(x∗)Td < 0.

6.3. FIRST ORDER OPTIMALITY CONDITIONS 55

The necessary condition is not sufficient. Let’s see this with an example. Let us consider
the problem

min
x∈R2

x2

x2
1 + x2 ≥ 0.

It holds

Ω = {x ∈ R2 | x2 ≥ −x2
1}.

Remark that f is not lower bounded in Ω, then the problem does not admit a solution.
Let us consider the point x∗ = (0, 0)T . In x∗ the LICQ holds because

∇g(x∗) =
[
∇g(x)

]
x=x∗

=

[(
2x1

1

)]
x=x∗

=

(
0
1

)
6= 0.

Because in x∗ the constraint is active, it holds

F1(x∗) = {d ∈ R2 | ∇g(x∗)Td ≥ 0} =

{(
d1

d2

)
∈ R2

∣∣∣ (0 1
)(d1

d2

)
≥ 0

}
=

{(
d1

d2

)
∈ R2

∣∣∣ d2 ≥ 0

}
.

Remark that ∀d ∈ F1(x∗)

∇f(x∗)Td =
(
0 1

)(d1

d2

)
= d2 ≥ 0,

but x∗ is not a solution.

Lemma 6.3.3. Farkas Lemma
Given C ∈ Rn×p, B ∈ Rn×M we consider the following cone of Rn:

K = {Cw +By | w ∈ Rp,y ∈ RM ,y ≥ 0}

For each g ∈ Rn exactly one of the following sentences is true:

(a) g ∈ K

(b) ∃d ∈ Rn s.t.


gTd < 0 (b.1)

CTd = 0 (b.2)

BTd ≥ 0 (b.3)

(a) and (b) are each other opposite: (b) ⇐⇒ ¬(a).

Theorem 6.3.2. KKT, first order necessary conditions
If x∗ is a solution in which the LICQ holds, then there exist µ∗ ∈ Rp,λ∗ ∈ Rm such that

∇xL(x∗,µ∗,λ∗) = 0,
h(x∗) = 0,
g(x∗) ≥ 0,
λ∗ ≥ 0,

λ∗Tg(x∗) = 0.

In this case we say that (x∗,µ∗,λ∗) satisfies the Karush-Kuhn-Tucker conditions, usually called
KKT conditions. The last condition is the complementarity condition.

56 CHAPTER 6. CONSTRAINED OPTIMIZATION

Proof. Let x∗ be a solution in which the LICQ holds.
Let

g = ∇f(x∗),

C =
(
∇h1(x∗) | · · · | ∇hp(x∗)

)
∈ Rn×p,

B =
(
∇gi1(x∗) | · · · | ∇giM (x∗)

)
∈ Rn×M , {i1, . . . , iM} = A(x∗)

and
K = {Cw +By | w ∈ Rp,y ∈ RM ,y ≥ 0}. (6.1)

With this notation it holds

F1(x∗) = {d ∈ Rn | ∇hi(x∗)Td = 0 ∀i = 1, . . . , p, ∇gi(x∗)Td ≥ 0 ∀i ∈ A(x∗)}
= {d ∈ Rn | ∇hi(x∗)Td = 0 ∀i = 1, . . . , p, ∇gij (x∗)Td ≥ 0 ∀j = 1, . . . ,M}
= {d ∈ Rn | (Cei)

Td = 0 ∀i = 1, . . . , p, (Bej)
Td ≥ 0 ∀j = 1, . . . ,M}

= {d ∈ Rn | eTi CTd = 0 ∀i = 1, . . . , p, eTj B
Td ≥ 0 ∀j = 1, . . . ,M}

= {d ∈ Rn | (CTd)i = 0 ∀i = 1, . . . , p, (BTd)j ≥ 0 ∀j = 1, . . . ,M}
= {d ∈ Rn | CTd = 0, BTd ≥ 0}.

By the first order necessary condition, being x∗ a solution in which the LICQ holds,

6 ∃d ∈ F1(x∗) s.t. gTd < 0,

that is

6 ∃d ∈ Rn s.t.


gTd < 0

CTd = 0

BTd ≥ 0

Condition (b) of Farkas Lemma does not hold, then (a) must hold and

g ∈ K.

This means that ∇f(x∗) ∈ K, that is there exist w∗ ∈ Rp,y∗ =

 y∗i1
...
y∗iM

 ∈ RM ,y∗ ≥ 0 such

that

∇f(x∗) = Cw∗ +By∗ =
(
∇h1(x∗) | · · · | ∇hp(x∗)

)
w∗ +

(
∇gi1(x∗) | · · · | ∇giM (x∗)

)
y∗

=

p∑
i=1

∇hi(x∗)w∗i +

M∑
j=1

∇gij (x∗)y∗ij =

p∑
i=1

w∗i∇hi(x∗) +
∑

i∈A(x∗)

y∗i∇gi(x∗).

Set
µ∗ = w∗,

λ∗ =

λ∗1
...
λ∗m

 , λ∗i =

{
y∗i if i ∈ A(x∗)
0 otherwise

6.3. FIRST ORDER OPTIMALITY CONDITIONS 57

There exist µ∗ ∈ Rp,λ∗ ∈ Rm : λ∗ ≥ 0, λ∗i gi(x
∗) = 0 ∀i = 1, . . . ,m such that

∇f(x∗) =

p∑
i=1

µ∗i∇hi(x∗) +

m∑
i=1

λ∗i∇gi(x∗),

that is, (because λ∗ ≥ 0 and g(x∗) ≥ 0) there exist µ∗ ∈ Rp,λ∗ ∈ Rm : λ∗ ≥ 0,λ∗Tg(x∗) = 0
such that

∇f(x∗)−
p∑
i=1

µ∗i∇hi(x∗)−
m∑
i=1

λ∗i∇gi(x∗) = 0.

Because

∇xL(x,µ,λ) = ∇f(x)−
p∑
i=1

µi∇hi(x)−
m∑
i=1

λi∇gi(x),

there exist µ∗ ∈ Rp,λ∗ ∈ Rm : λ∗ ≥ 0,λ∗Tg(x∗) = 0 such that

∇xL(x∗,µ∗,λ∗) = 0.

Remark 6.3.2. This necessary condition is not sufficient. Let’s see this with an example. We
consider again the problem

min
x∈R2

x2

x2
1 + x2 ≥ 0.

We have seen that in x∗ = (0, 0)T the LICQ holds. Because

L(x, λ) = f(x)− λg(x) = x2 − λx2
1 − λx2,

∇xL(x, λ) =

(
−2λx1

1− λ

)
,

∇xL(x∗, λ) =

(
0

1− λ

)
,

it holds
∇xL(x∗, λ) = 0 ⇐⇒ λ = 1,

then (x∗, λ∗) with λ∗ = 1 that satisfies the KKT because in x∗ the constraint is active. But x∗

is not a solution.

Lemma 6.3.4. Let x∗ be a solution in which the LICQ is satisfied. The first order necessary
condition and the KKT conditions are equivalent:

6 ∃d ∈ F1(x∗) s.t. ∇f(x∗)Td < 0 ⇐⇒ ∃µ∗ ∈ Rp,λ∗ ∈ Rm s.t. (x∗,µ∗,λ∗) satisfies the KKT.

Proof. (=⇒) is the prof of the previous theorem.
(⇐=) Because (x∗,µ∗,λ∗) satisfies KKT conditions it holds

∇xL(x∗,λ∗,µ∗) = 0,

that is

∇f(x∗) =

p∑
i=1

µ∗i∇hi(x∗) +

m∑
i=1

λ∗i∇gi(x∗),

58 CHAPTER 6. CONSTRAINED OPTIMIZATION

and then

∇f(x∗) =

p∑
i=1

µ∗i∇hi(x∗) +

m∑
i=1

i∈A(x∗)

λ∗i∇gi(x∗) +

m∑
i=1

i6∈A(x∗)

λ∗i︸︷︷︸
= 0 for

complementary

∇gi(x∗)

=

p∑
i=1

µ∗i∇hi(x∗) +

m∑
i=1

i∈A(x∗)

λ∗i︸︷︷︸
≥ 0
KKT

∇gi(x∗).

So ∇f(x∗) belongs to the cone defined in (6.1) and Farkas Lemma guarantees that there do
not exist directions d ∈ F1(x∗) s.t. ∇f(x∗)Td < 0.

6.4 Second order optimality conditions

Let us assume that (x∗,µ∗,λ∗) satisfies the KKT conditions. Then ∇f(x∗)Td ≥ 0 ∀d ∈
F1(x∗). If ∇f(x∗)Td = 0, with just first order informations we are not able to establish if along
the direction d the values of f increase or decrease: we need second order informations. Then
the directions in the set

{d ∈ F1(x∗) | ∇f(x∗)Td = 0}

are called critical directions; this set is a cone. If i ∈ A(x∗), i.e., gi(x
∗) = 0, and λ∗i = 0 then

the i-th inequality constraint is said to be degenerate.
Remark that, given d ∈ F1(x∗),

∇f(x∗)Td = 0 ⇐⇒︸ ︷︷ ︸
proof of

prev. thm.

m∑
i=1

i∈A(x∗)

λ∗i∇gi(x∗)Td = 0

⇐⇒
m∑
i=1

i∈A(x∗)
i degenerate

λ∗i︸︷︷︸
= 0

∇gi(x∗)Td +

m∑
i=1

i∈A(x∗)
i non degenerate

λ∗i︸︷︷︸
> 0

∇gi(x∗)Td︸ ︷︷ ︸
≥ 0

d∈F1(x∗)

= 0

⇐⇒ ∇gi(x∗)Td = 0 ∀i ∈ A(x∗) : i non degenerate

⇐⇒ ∇gi(x∗)Td = 0 ∀i ∈ A(x∗) : λ∗i > 0.

i.e.,

{d ∈ F1(x∗) | ∇f(x∗)Td = 0} = {d ∈ F1(x∗) | ∇gi(x∗)Td = 0 ∀i ∈ A(x∗) : λ∗i > 0}.

This last set is the critical cone in (x∗,λ∗) and we denote it with C(x∗,λ∗).

Theorem 6.4.1. Second order necessary condition

Let x∗ a solution in which LICQ holds. By the first order necessary condition we know that
there exist µ∗ ∈ Rp,λ∗ ∈ Rm such that (x∗,µ∗,λ∗) satisfies the KKT. Then

dTHL,x(x∗,µ∗,λ∗)d ≥ 0 ∀d ∈ C(x∗,λ∗),

6.4. SECOND ORDER OPTIMALITY CONDITIONS 59

i.e., the matrix

HL,x(x∗,µ∗,λ∗) =


∂L

∂x1∂x1
(x∗,µ∗,λ∗) · · · ∂L

∂x1∂xn
(x∗,µ∗,λ∗)

...
...

∂L
∂xn∂x1

(x∗,µ∗,λ∗) · · · ∂L
∂xn∂xn

(x∗,µ∗,λ∗)


is the Hessian of L(x,µ,λ) with respect to x in (x∗,µ∗,λ∗) is semipositive definite with respect
to the vectors of the critical cone C(x∗,λ∗).

Theorem 6.4.2. Second order sufficient condition
Let x∗ ∈ Ω for which there exist µ∗ ∈ Rp,λ∗ ∈ Rm such that (x∗,µ∗,λ∗) satisfies the KKT.

If
dTHL,x(x∗,µ∗,λ∗)d > 0 ∀d ∈ C(x∗,λ∗),d 6= 0,

i.e. if HL,x(x∗,µ∗,λ∗) is positive definite with respect to the vectors of the critical cone
C(x∗,λ∗), then x∗ is a solution.

Remark 6.4.1. In the unconstrained case, i.e. in the case in which Ω = Rn, it holds L = f
and the set of admissible directions and the critical cone both are Rn, then these conditions are
equivalent to those we have seen in the first part of the course.

Example 1

Let us consider again problem
min
x∈R2

x2

x2
1 + x2 ≥ 0

.

We have seen that in x∗ = (0, 0)T the LICQ holds and that (x∗, λ∗) with λ∗ = 1 satisfies the
KKT. We have also seen that

F1(x∗) =

{(
d1

d2

)
∈ R2

∣∣∣ d2 ≥ 0

}
,

then

C(x∗, λ∗) = {d ∈ F1(x∗) | ∇g(x∗)Td = 0} =

{(
d1

d2

)
∈ R2

∣∣∣ d2 ≥ 0,
(
0 1

)(d1

d2

)
= 0

}
=

{(
d1

d2

)
∈ R2

∣∣∣ d2 = 0

}
=

{(
d1

0

) ∣∣∣ d1 ∈ R
}
.

We have seen that

∇xL(x, λ) =

(
−2λx1

1− λ

)
,

then

HL,x(x, λ) =

(
−2λ 0

0 0

)
and

HL,x(x∗, λ∗) =

(
−2 0
0 0

)
.

60 CHAPTER 6. CONSTRAINED OPTIMIZATION

Remark that ∀d ∈ C(x∗, λ), that is for each d =

(
d1

0

)
for some d1 ∈ R, it holds

dTHL,x(x∗, λ∗)d =
(
d1 0

)(−2 0
0 0

)(
d1

0

)
=

(
d1 0

) (
−2d1 0

)
= −2d2

1 < 0,

then the second order necessary condition does not hold, and x∗ is not a solution.

Example 2

Let us consider problem

min
x∈R2

− 1

10
(x1 − 4)2 + x2

2

x2
1 + x2

2 − 1 ≥ 0.

After computing

L(x, λ) = f(x)− λg(x) = − 1

10
(x1 − 4)2 + x2

2 − λ(x2
1 + x2

2 − 1),

and

∇xL(x, λ) =

(
−(1/5)(x1 − 4)− 2λx1

2x2(1− λ)

)
it is easy to solve the KKT system 

∇xL(x, λ) = 0
g(x) ≥ 0
λ ≥ 0
λg(x) = 0

and to see that the solutions are(
x∗

λ∗

)
=

 1
0
3

10

 ,

(
x∗∗

λ∗∗

)
=

4
0
0


and (

x+

λ+

)
=

 4/11√
105/121

1

 ,

(
x+

λ+

)
=

 4/11

−
√

105/121
1

 .

Let us consider (x∗, λ∗). Because

HL,x(x, λ) =

(
−2λ− 1

5
0

0 2− 2λ

)
,

we have that

HL,x(x∗, λ∗) =

−4

5
0

0
7

5

 ,

which is an indefinite matrix. But dTHL,x(x∗, λ∗)d > 0, ∀d ∈ C(x∗, λ∗) = {d ∈ R2s.t.d1 = 0}.
Then, for the second order sufficient condition, x∗ is a solution.

On the contrary, in (x∗∗, λ∗∗) the constraint is inactive, and as the Hessain matrix of the
Lagrangian function in (x∗∗, λ∗∗) is indefinite, the point is not a minimum point.

Chapter 7

Optimization methods for
Machine Learning

TO DO

61

62 CHAPTER 7. OPTIMIZATION METHODS FOR MACHINE LEARNING

Part II

Linear and integer programming

63

Chapter 8

Linear programming

A linear programming problem (LP) is a constrained minimization problem with f(x) a linear
function of variables x1, . . . , xn:

f(x) = c1x1 + . . .+ cnxn = cTx

for some c = [c1, . . . , cn]T ∈ Rn.
Linear programming problems are usually written and analysed in the following form, which

is called the standard form:
min
x∈Rn

cTx

Ax = b
x ≥ 0

with A ∈ Rm×n,m < n, rk(A) = m, b ∈ Rm. The feasible set of the problem is Ω = {x ∈
Rn | Ax = b, x ≥ 0}. 1.

We will analyse just the case m < n for the following reasons.

(-) If m = n, then A ∈ Rn×n with rk(A) = n, then the system Ax = b has a unique solution
x. If x ≥ 0 then Ω = {x} and so the solution to the LP is x, otherwise Ω = ∅ and the LP
does not have a solution. In every case the problem is trivial.

(-) If m > n, then the system Ax = b has a solution if and only if b ∈ range(A), but it is very
unluckily that a vector of Rm belongs to a subspace of Rm of dimension n (indeed, if for
example m = 2 and n = 1, it is not luckily that a vector of R2 belongs to a given line of
R2). It is then highly probable that Ω = ∅.

Because

L(x,µ,λ) = cTx−
m∑
i=1

µi(Ax− b)i −
n∑
i=1

λixi =

n∑
i=1

cixi −
m∑
i=1

µi
(
(Ax)i − bi

)
−

n∑
i=1

λixi

=

n∑
i=1

cixi −
m∑
i=1

µi(ai1x1 + . . .+ ainxn − bi)−
n∑
i=1

λixi,

1 While studying constrained minimization problems we have called p the number of equality constraints and
m the number of inequality constraints, while in the standard form of LP we have m (independent) equality
constraints and n inequality constraints. The difference between these two notations is due to historical reasons:
for long time the constrained problems and the LPs have been studied separately, then they have been formulated
with different notations.

65

66 CHAPTER 8. LINEAR PROGRAMMING

we have that ∀j = 1, . . . , n

(
∇xL(x,µ,λ)

)
j

=
∂

∂xj
L(x,µ,λ) = cj −

m∑
i=1

µiaij − λj = cj −
m∑
i=1

(AT)jiµi − λj

= cj − (ATµ)j − λj =
(
c−ATµ− λ

)
j
,

and so

∇xL(x,µ,λ) = c−ATµ− λ.

(x∗,µ∗,λ∗) solves the KKT if and only if
c−ATµ∗ − λ∗ = 0,
Ax∗ = b,
x∗ ≥ 0,
λ∗ ≥ 0,

λ∗Tx∗ = 0.

Because the constraints of the problem are linear, F1(x) coincide with the tangent cone
T (x), ∀x ∈ Ω.

In the following theorem we will see that the KKT are both necessary and sufficient for an
LP.

Theorem 8.0.1. KKT for LP
Let x∗ ∈ Ω. x∗ is a solution to if and only if there exist µ∗ ∈ Rm,λ∗ ∈ Rn such that

(x∗,µ∗,λ∗) satisfies the KKT.

Proof. We know that (=⇒) is true for every constrained problem, we then need just to prove
(⇐=). Remark that

f(x∗) = cTx∗ =︸︷︷︸
(KKT 1)

(ATµ∗ + λ∗)Tx∗ = µ∗TAx∗ + λ∗Tx∗ =︸︷︷︸
(KKT 2,5)

µ∗Tb (8.1)

and that ∀x ∈ Ω holds

f(x) = cTx =︸︷︷︸
(KKT 1)

(ATµ∗ + λ∗)Tx = µ∗TAx + λ∗Tx ≥︸︷︷︸
x∈Ω, (KKT 4)

µ∗Tb = f(x∗).

Corollary 8.0.1. If (x∗,µ∗,λ∗) satisfies the KKT of the LP, then

cTx∗ = bTµ∗.

Proof. This follows from (8.1).

8.1 How to rewrite an LP in standard form

It always possible to rewrite an LP in standard form by adding new variables to the problem,
that are called slack variables.

8.1. HOW TO REWRITE AN LP IN STANDARD FORM 67

• Example 1. Let us rewrite the following LP in standard form:

min
x∈Rn

cTx

Ax ≤ b
x ≥ 0

Setting
s = b−Ax ∈ Rm,

where s1, . . . , sm are called slack variables, the problem becomes

min
x∈Rn

cTx

Ax + s = b
s ≥ 0
x ≥ 0

Setting

c̃ =

(
c
0

)
, x̃ =

(
x
s

)
, Ã =

(
A | Im

)
(8.2)

the problem becomes
min

x̃∈Rn+m
c̃T x̃

Ãx̃ = b
x̃ ≥ 0

that is in standard form.

• Example 2. We consider now the following LP:

min
x∈R2

−x1 − 2x2.

−2x1 + x2 ≤ 2
−x1 + x2 ≤ 3
x1 ≤ 3
x1 ≥ 0
x2 ≥ 0

It is an LP of the form
min
x∈R2

cTx

Ax ≤ b
x ≥ 0

with

c =

(
−1
−2

)
, A =

−2 1
−1 1
1 0

 , b =

2
3
3

 .

We can introduce the slack variabless1

s2

s3

 = s = b−Ax =

2
3
3

−
−2 1
−1 1
1 0

(x1

x2

)
=

2 + 2x1 − x2

3 + x1 − x2

3− x1



68 CHAPTER 8. LINEAR PROGRAMMING

and by the same setting as in (8.2) the problem becomes

min
x̃∈R5

c̃T x̃

Ãx̃ = b
x̃ ≥ 0

that is
min

x∈R2,s∈R3
−x1 − 2x2,

−2x1 + x2 + s1 = 2
−x1 + x2 + s2 = 3
x1 + s3 = 3
x1 ≥ 0
x2 ≥ 0
s1 ≥ 0
s2 ≥ 0
s3 ≥ 0.

• Example 3
min
x∈Rn

cTx.

x2, . . . , xn ≥ 0

Setting

x′ =


x′1 − x′′1
x2

...
xn


the problem becomes

min
x′∈Rn

cTx′

x′1, x
′′
1 , x2, . . . , xn ≥ 0

because, even setting x′1, x
′′
1 ≥ 0, the variable x1 = x′1 − x′′1 remains free. Setting

c′ =


c1
−c1
c2
...
cn

 , x′′ =


x′1
x′′1
x2

...
xn


the problem becomes

min
x′′∈Rn+1

c′Tx′′.

x′′ ≥ 0

• Example 4
min
x∈Rn

cTx.

x1 ≥ 3,
x2, . . . , xn ≥ 0

8.2. PRIMAL AND DUAL PROBLEMS 69

Setting s1 = x1 − 3 and

c̃ =


c1
c2
...
cn
0

 , x̃ =


x1

x2

...
xn
s1


the problem becomes

min
x̃∈Rn+1

c̃T x̃.

x̃ ≥ 0

Remark that in each case we have obtained a problem in standard form, but of greater dimension
with respect to the original one.

8.2 Primal and dual problems

Problem
min
x∈Rn

cTx

Ax = b
x ≥ 0

is often called the primal problem. The dual problem is

max
µ∈Rm

bTµ

ATµ ≤ c.

Let ΩD = {µ ∈ Rm | ATµ ≤ c} the feasible set for the dual problem.

Theorem 8.2.1. Strong duality for LP

(i) The primal problem has a solution x∗ if and only if the dual problem has a solution µ∗.
In such case the values of the objective functions in the respective solutions coincide:

cTx∗ = bTµ∗.

(ii) If cTx is not lower bounded in Ω, then ΩD = ∅. If bTµ is not upper bounded in ΩD,
then Ω = ∅.

Proof. Let us rewrite the dual problem as an LP in the following way:

min
µ∈Rm

−bTµ

c−ATµ ≥ 0

Because (denoting by x the n-dimensional vector of the Lagrange multipliers of the n inequality
constraints of the dual problem)

L(µ,x) = −bTµ−
n∑
i=1

xi(c−ATµ)i = −
m∑
i=1

biµi −
n∑
i=1

xi(ci − (ATµ)i)

= −
m∑
i=1

biµi −
n∑
i=1

xi(ci − a1iµ1 − . . .− aniµn),

70 CHAPTER 8. LINEAR PROGRAMMING

we have that ∀j = 1, . . . ,m(
∇µL(µ,x)

)
j

=
∂

∂µj
L(µ,x) = −bj −

n∑
i=1

xi(−aji) =

= −bj +

n∑
i=1

ajixi = −bj + (Ax)j ,

and so
∇µL(µ,x) = Ax− b.

Then, a point (µ,x) satisfies the KKT of the dual problem if and only if
Ax− b = 0

ATµ ≤ c
x ≥ 0

xT (c−ATµ) = 0.

Setting λ = c−ATµ, we obtain the KKT of the primal problem, for a point (x,µ,λ):
Ax− b = 0

ATµ + λ = c
λ ≥ 0
x ≥ 0

xTλ = 0.

Remark that λ is a vector of slack variables: the inequality c−ATµ ≥ 0 becomes c−ATµ+λ = 0
and λ ≥ 0. It follows that (µ∗,x∗,λ∗) satisfies the KKT of the dual if and only if (x∗,µ∗,λ∗)
satisfies the KKT of the primal. Moreover, being the dual an LP, the KKT of the dual are
necessary and sufficient.

(i) Let us assume that the primal problem has a solution x∗. This means that there exist
µ∗ ∈ Rm,λ∗ ∈ Rn such that (x∗,µ∗,λ∗) satisfies the KKT. So (µ∗,x∗,λ∗) satisfies the
KKT of the dual, i.e., µ∗ is a solution of the dual problem.
Vice-versa, let us assume that the dual problem has a solution µ∗. This means that there
exist x∗,λ∗ ∈ Rn such that (µ∗,x∗,λ∗) satisfies the KKT of the dual. This means that
(x∗,µ∗,λ∗) satisfies the KKT of the primal, so x∗ is solution off the primal problem.
Moreover, in such case, because (x∗,µ∗,λ∗) satisfies the KKT of the primal, from Corol-
lary 8.0.1, it holds

cTx∗ = bTµ∗.

(ii) We know that if x∗ is solution of the primal and µ∗ is solution of the dual, it holds
∀µ ∈ ΩD,∀x ∈ Ω

bTµ ≤ bTµ∗ = cTx∗ ≤ cTx.

If cTx is not lower bounded in Ω, than the minimum value of cTx in Ω is −∞, then the
maximum value of bTµ in ΩD is −∞, then ΩD = ∅. Vice-versa, if bTµ is not upper
bounded in ΩD, the maximum value of bTµ in ΩD is +∞, then the maximum value of
cTx in Ω is +∞ and Ω = ∅.

8.3. CONVEX AND STRICTLY CONVEX PROBLEMS 71

8.3 Convex and strictly convex problems

The problem
min
x∈Rn

f(x)

h(x) = 0
g(x) ≥ 0

is said convex if both f and Ω are convex; it is strictly convex if f is strictly convex and Ω is
convex.

Lemma 8.3.1. {
∀i = 1, . . . , p hi(x) is linear
∀i = 1, . . . ,m gi(x) is concave

=⇒ Ω is convex.

Proof. Let x,y ∈ Ω and t ∈ [0, 1]. We need to prove that tx + (1− t)y ∈ Ω. We remind that

Ω = {x ∈ Rn | hi(x) = 0 ∀i = 1, . . . , p, gi(x) ≥ 0 ∀i = 1, . . . ,m}.

It holds ∀i = 1, . . . , p that

hi(tx + (1− t)y) =︸︷︷︸
hi is linear

t hi(x)︸ ︷︷ ︸
= 0

+(1− t)hi(y)︸ ︷︷ ︸
= 0

= 0

and ∀i = 1, . . . ,m

gi(tx + (1− t)y) ≥︸︷︷︸
gi is concave

t gi(x)︸ ︷︷ ︸
≥ 0

+ (1− t)︸ ︷︷ ︸
≥ 0

gi(y)︸ ︷︷ ︸
≥ 0

≥ 0.

Corollary 8.3.1. f is convex
∀i = 1, . . . , p hi(x) is linear
∀i = 1, . . . ,m gi(x) is concave

=⇒ the problem is convex.

 f is striclty convex
∀i = 1, . . . , p hi(x) is linear
∀i = 1, . . . ,m gi(x) is concave

=⇒ the problem is striclty convex.

Remark 8.3.1. f is striclty convex
∀i = 1, . . . , p hi(x) is linear
∀i = 1, . . . ,m gi(x) is concave

=⇒ the KKT are necessary and sufficient.

Proof. We know that for each constrained problem the KKT are necessary, we prove that they
are also sufficient. Let x∗ ∈ Ω for which there exist µ∗ ∈ Rm,λ∗ ∈ Rn such that (x∗,µ∗,λ∗)
satisfies the KKT. Then

HL,x(x∗,µ∗,λ∗) = H(x∗)−
p∑
i=1

µ∗i Hhi(x
∗)︸ ︷︷ ︸

= 0, hi is linear

−
m∑
i=1

λ∗iHgi(x
∗) =

72 CHAPTER 8. LINEAR PROGRAMMING

= H(x∗)︸ ︷︷ ︸
posit. def. because
f strictly convex

−
m∑
i=1

λ∗i︸︷︷︸
≥ 0

Hgi(x
∗)︸ ︷︷ ︸

neg. semidef.
because gi concave︸ ︷︷ ︸

neg. semidef.

= H(x∗)︸ ︷︷ ︸
posit. def.

+

(
−

m∑
i=1

λ∗iHgi(x
∗)

)
︸ ︷︷ ︸

posit. semidef.

is positive definite. Then, for the second order sufficient condition, x∗ is a solution.

(6⇐=) For LPs the KKT sare necessary and sufficient, but f(x) = cTx is not strictly
convex because it is linear (i.e., convex and concave).

Remark 8.3.2. LPs are convex (not strictly). Then Ω is convex.

Proof. f is convex (because it is linear); ∀i = 1, . . . ,m

hi(x) = (Ax− b)i = (Ax)i − bi = ai1x1 + . . .+ ainxn − bi

is linear. Also ∀i = 1, . . . ,m
gi(x) = xi

is concave (because it is linear). Then, for the corollary, LP is convex.

8.4 Geometry of Ω

Let us give some preliminary definitions. A half space of Rn is a set of the form

{x|aTx ≥ b}, a,b ∈ Rn,a 6= 0.

Given x1, . . . ,xm ∈ Rn, and λ1, . . . , λm ∈ R, x =

m∑
i=1

λixi is a convex combination if

m∑
i=1

λi = 1

and λi ≥ 0 for every i. The convex hull conv(X) of a finite set of points X is the set of points
which are convex combinations of a finite number of points of X.

A polyhedron is an intersection of finitely many half spaces. We say a polyhedron is bounded
if it does not contain a line or a half-line. A bounded polyhedron is a polytope. A polytope is
then the set of solutions of a system of linear equations and linear inequalities. A polytope can
also be defined as the convex hull of finitely many points, i.e., it is a set of the form conv(X)
for X a finite set. The extreme points of a polytope P are called vertexes and if V is the set
of such vertexes it holds P = conv(V). Then Ω = {x ∈ Rn | Ax = b, x ≥ 0} is a closed and
convex polytope (from Remark 8.3.2).

Definition 8.4.1. x ∈ Ω is a vertex of Ω if it does not lie on a segment of Ω, i.e., if there do
not exist y, z ∈ Ω,y, z 6= x such that x = ty + (1− t)z for some t ∈ (0, 1).

Definition 8.4.2. x ∈ Rn is a feasible basic point if x ∈ Ω (then x ≥ 0) and the columns of A
in the set {Aei | i = 1, . . . , n, xi > 0} are linearly independent.

Notations

Each point x ∈ Ω is such that x ≥ 0, then it is possible to reorder its components in a way
such that

x =

(
xB
xN

)
, xB ∈ Rr,xB > 0, xN ∈ Rn−r,xN = 0.

8.4. GEOMETRY OF Ω 73

For the theory we will always consider this partition and the corresponding partition for A:

A =
(
B | N

)
, B ∈ Rm×r, N ∈ Rm×(n−r).

Remark 8.4.1. Let x ∈ Ω.

x is a feasible basic point ⇐⇒ the colums of B, i.e., Be1, . . . , Ber,
are linearly independent.

In such a case, being Be1, . . . , Ber vectors of Rm, it holds r ≤ m and rk(B) = r. B is called
base matrix. If moreover r = m, B ∈ Rm×m is invertible.

Theorem 8.4.1.

x is a feasible basic point ⇐⇒ x is a vertex of Ω.

Proof. Starting from each one of the two assumptions we have x ∈ Ω, then we can partition x
and A as explained above.

(=⇒) Let us assume by contradiction that x is not a vertex, i.e. that there exist y, z ∈
Ω,y, z 6= x such that

x = ty + (1− t)z (8.3)

for some t ∈ (0, 1). We write

y =

(
yB
yN

)
, z =

(
zB
zN

)
, yB , zB ∈ Rr, yN , zN ∈ Rn−r.

Remark that
0 = xN =︸︷︷︸

(8.3)

t︸︷︷︸
> 0

yN︸︷︷︸
≥ 0

+ (1− t)︸ ︷︷ ︸
> 0

zN︸︷︷︸
≥ 0

,

then yN = zN = 0, i.e.,
yN = xN , zN = xN .

Because x ∈ Ω it holds

b = Ax =
(
B | N

)(xB
xN

)
= BxB +N0 = BxB ,

i.e.,
BxB = b.

Similarly, because y, z ∈ Ω, it holds

ByB = b, BzB = b.

Then yB − xB ∈ ker(B). Because dim(ker(B)) = r − rk(B) = 0, yB − xB = 0, i.e., yB = xB .
Then

y =

(
yB
yN

)
=

(
xB
xN

)
= x.

Similarly we can prove that B(zB − xB) = 0 and zB = xB . Then

z =

(
zB
zN

)
=

(
xB
xN

)
= x.

We have then found a contradiction with the assumption y, z 6= x.

74 CHAPTER 8. LINEAR PROGRAMMING

(⇐=) We need to prove that the columns of B (Be1, . . . , Ber), are linearly independent.
Let us assume by contradiction that Be1, . . . , Ber are not independent, i.e., that it exists

p =

p1

...
pr

 6= 0 such that

0 = (Be1)p1 + . . .+ (Ber)pr =
(
Be1 | · · · | Ber

)p1

...
pr

 = Bp. (8.3)

Because xB > 0, it exists ε > 0 small enough such that

xB + εp > 0 ∧ xB − εp > 0.

Let

y =

(
xB + εp

0

)
, z =

(
xB − εp

0

)
∈ Rn.

Because p 6= 0 it holds y, z 6= x. We remark that y ∈ Ω because

Ay =
(
B | N

)(xB + εp
0

)
= B(xB + εp) = BxB + εBp =︸︷︷︸

(8.3)

= BxB =
(
B | N

)(xB
0

)
= Ax = b

and

y =

(
xB + εp

0

)
≥ 0.

Similarly z ∈ Ω. Remark that

1

2
y +

1

2
z =

1

2

(
xB + εp

0

)
+

1

2

(
xB − εp

0

)
=

(
xB
0

)
= x,

against the assumption that x is a vertex of Ω.

Remark 8.4.2. The number of vertexes of Ω is less than

(
n

m

)
=

n!

m!(n−m)!
.

Theorem 8.4.2. Fundamental theorem of linear programming

(i) If there exist some admissible points, then at least one of them is a feasible basic point.

(ii) If LP has solutions, then at least one of them is a feasible basic point.

Proof. (i) Among all the admissible points we choose the one with the minimum number of
positive components. Let k be such number and x be such point:

x =

(
xB
xN

)
, xB ∈ Rk,xB > 0, xN ∈ Rn−k,xN = 0;

A =
(
B | N

)
, B ∈ Rm×k, N ∈ Rm×(n−k).

8.4. GEOMETRY OF Ω 75

Let us assume by contradiction that x is not a feasible basic point, i.e., because x is

admissible, thatBe1, . . . , Bek are not linearly independent, i.e., that it exists p =

p1

...
pk

 6=
0 such that

0 = (Be1)p1 + . . .+ (Bek)pk =
(
Be1 | · · · | Bek

)p1

...
pk

 = Bp. (8.3)

Because xB > 0, it exists ε ∈ R small enough such that

xB + εp ≥ 0 ∧ ∃i ∈ {1, . . . , k} s.t. (xB + εp)i = 0.

Let

y =

(
xB + εp

0

)
∈ Rn.

Remark that y is admissible because

Ay =
(
B | N

)(
xB + εp

0

)
= B(xB + εp) = BxB + εBp =︸︷︷︸

(8.3)

= BxB =
(
B | N

)(xB
0

)
= Ax = b

and

y =

(
xB + εp

0

)
≥ 0.

Then y is admissible and has at most k − 1 positive components. This is against the
definition of k.

(ii) Among all the solutions of the LP, we choose the one, x∗, with the minimum number of
positive components. Let k be such number:

x∗ =

(
x∗B
x∗N

)
, x∗B ∈ Rk,x∗B > 0, x∗N ∈ Rn−k,x∗N = 0;

A =
(
B | N

)
, B ∈ Rm×k, N ∈ Rm×(n−k).

Let us assume by contradiction that x∗ is not a feasible basic point, i.e., because x∗ is

admissible, that Be1, . . . , Bek are not linearly independent, i.e., it exists p =

p1

...
pk

 6= 0

such that

0 = (Be1)p1 + . . .+ (Bek)pk =
(
Be1 | · · · | Bek

)p1

...
pk

 = Bp. (8.3)

76 CHAPTER 8. LINEAR PROGRAMMING

Because x∗B > 0, it exists ε > 0 such that ∀ε ∈ [0, ε]

x∗B + εp ≥ 0 ∧ x∗B − εp ≥ 0

and such that

∃i ∈ {1, . . . , k} s.t. (x∗B + εp)i = 0 ∨ (x∗B − εp)i = 0.

Let ∀ε ≥ 0

y(ε) =

(
x∗B + εp

0

)
, z(ε) =

(
x∗B − εp

0

)
∈ Rn.

Remark that ∀ε ∈ [0, ε] y(ε) is admissible because

Ay(ε) =
(
B | N

)(x∗B + εp
0

)
= B(x∗B + εp) = Bx∗B + εBp =︸︷︷︸

(8.3)

= Bx∗B =
(
B | N

)(
x∗B
0

)
= Ax∗ = b

and

y(ε) =

(
x∗B + εp

0

)
≥
(

0
0

)
= 0.

Similarly ∀ε ∈ [0, ε] z(ε) is admissible.
x∗ is solution of LP, i.e., f(x∗) ≤ f(x) ∀x ∈ Ω, then ∀ε ∈ [0, ε]{

f(x∗) ≤ f(y(ε))
f(x∗) ≤ f(z(ε)).

Reminding that ∀ε ∈ [0, ε], it holds

f(y(ε)) = cTy(ε) =
(
cTB | cTN

)(x∗B + εp
0

)
= cTB(x∗B + εp) = cTBx∗B + εcTBp

=
(
cTB | cTN

)(x∗B
0

)
+ εcTBp = cTx∗ + εcTBp = f(x∗) + εcTBp (8.4)

and analogously
f(z(ε)) = f(x∗)− εcTBp. (8.5)

This means that ∀ε ∈ [0, ε] {
f(x∗) ≤ f(x∗) + εcTBp

f(x∗) ≤ f(x∗)− εcTBp,

that is ∀ε ∈ [0, ε] {
εcTBp ≥ 0

εcTBp ≤ 0,

so that
cTBp = 0.

Then from (8.4) and (8.5) we have that ∀ε ∈ [0, ε]

f(y(ε)) = f(x∗), f(z(ε)) = f(x∗).

8.5. SIMPLEX METHOD 77

Then ∀ε ∈ [0, ε] y(ε) and z(ε) are solutions of the LP.
We know that

∃i ∈ {1, . . . , k} s.t. (x∗B + εp)i = 0 ∨ (x∗B − εp)i = 0.

If (x∗B + εp)i = 0, then

y(ε) =

(
x∗B + εp

0

)
,

even if it is a solution, it has at most k − 1 positive components; if (x∗B − εp)i = 0, then

z(ε) =

(
x∗B − εp

0

)
,

even if it is a solution, it has at most k − 1 positive components. In each case we have a
contradiction, with the definition of k.

8.5 Simplex method

The simplex method is a method that terminates in a finite number of steps that starts from a
vertex of Ω and at each steps moves from a vertex to another one. We are going to describe a
step of the simplex method under the following assumptions:

(HP1) suppose to have chosen a starting vertex of Ω (we will see how to do that);

(HP2) suppose that the LP is not degenerate, i.e., that each vertex of Ω has exactly m positive
components (we will consider the general case later).

Let

xc =

(
xcB
xcN

)
, xcB ∈ Rm,xcB > 0, xcN ∈ Rn−m,xcN = 0

be the current vertex. Because xc ∈ Ω,

b = Axc =
(
B | N

)(
xcB
0

)
= BxcB ; xcB = B−1b,

then

xc =

(
B−1b

0

)
.

Remark that

f(xc) = cTxc =
(
cTB | cTN

)(
B−1b

0

)
= cTBB

−1b.

We will write a generic x ∈ Ω as

x =

(
xB
xN

)
, xB ∈ Rm, xN ∈ Rn−m.

Remark that ∀x ∈ Ω

b = Ax =
(
B | N

)(xB
xN

)
= BxB +NxN ; BxB = b−NxN ;

78 CHAPTER 8. LINEAR PROGRAMMING

xB = B−1b−B−1NxN ,

i.e.,

x =

(
B−1b−B−1NxN

xN

)
.

Remark that ∀x ∈ Ω

f(x) = cTx =
(
cTB | cTN

)(
B−1b−B−1NxN

xN

)
= cTBB

−1b− cTBB
−1NxN + cTNxN

= f(xc) + (cTN − cTBB
−1N)xN = f(xc) + ĉTNxN , (8.6)

where we have set
ĉN = cN −NT (B−1)T cB ,

that is a vector of Rn−m that does not depend on x, but only on c, B,N . Because of this
dependence on B and on N , and because (as we will see) at the end of the step B and N are
updated, we have a different ĉN at each step. ĉN is called the vector of reduced costs.
If ĉN ≥ 0, then ∀x ∈ Ω

f(x) = f(xc) + ĉTN︸︷︷︸
≥ 0T

xN︸︷︷︸
≥ 0

≥ f(xc),

i.e., f(xc) ≤ f(x) ∀x ∈ Ω, i.e., the current vertex xc is solution of LP. Then, if the
optimality test

ĉN ≥ 0

is satisfied, it means we have found a solution of LP: the current vertex xc.
Otherwise, it means that xc is not a solution to LP, then we want to move from xc to another
vertex of Ω.
If x ∈ Ω is such that xN = 0, then

x =

(
B−1b−B−1NxN

xN

)
=

(
B−1b

0

)
= xc;

then, to obtain a vertex x different from xc, it is necessary that xN 6= 0, i.e. that it exists
i ∈ {1, . . . , n−m} such that (xN)i > 0.
As the optimality test is not satisfied, ĉN < 0, i.e.,

∃j ∈ {1, . . . , n−m} s.t. (ĉN)j < 0.

We will choose as new vertex a point

x+ =

(
B−1b−B−1NxN

xN

)
with

xN =



0
...
0

(xN)j
0
...
0


= (xN)jej , ej =



0
...
0
1
0
...
0


∈ Rn−m,

8.5. SIMPLEX METHOD 79

with (xN)j > 0.
Remark that

f(x+) =︸︷︷︸
(8.6)

f(xc) + ĉTNxN = f(xc) +
(
(ĉN)1 · · · (ĉN)n−m

)


0
...
0

(xN)j
0
...
0


= f(xc) + (ĉN)j(xN)j , (8.7)

and so

lim
(xN)j→+∞

f(x+) = f(xc) + lim
(xN)j→+∞

(ĉN)j︸ ︷︷ ︸
< 0

(xN)j = −∞. (8.8)

Remark that x+ ∈ Ω if and only if

0 ≤ B−1b−B−1NxN = B−1b− (xN)jB
−1Nej ,

that is

(xN)j(B
−1Nej)i ≤ (B−1b)i ∀i = 1, . . . ,m.

Because B−1Nej is the j-th column of matrix B−1N , it holds

(xN)j(B
−1N)ij ≤ (B−1b)i ∀i = 1, . . . ,m,

that is 
(xN)j ≤

(B−1b)i
(B−1N)ij

∀i : (B−1N)ij > 0 (1)

0 ≤ (B−1b)i ∀i : (B−1N)ij = 0 (2)

(xN)j ≥
(B−1b)i

(B−1N)ij
∀i : (B−1N)ij < 0 (3)

Because B−1b = xcB ≥ 0, i.e. (B−1b)i > 0 ∀i = 1, . . . ,m, as the problem is nondegenerate by
assumption, (2) is always satisfied and, as (xN)j > 0, (3) is always satisfied.
Then, if it exists i ∈ {1, . . . ,m} such that (B−1N)ij > 0, then x+ ∈ Ω if and only if

(xN)j ≤
(B−1b)i

(B−1N)ij
∀i : (B−1N)ij > 0,

i.e., said s ∈ {1, . . . ,m} the index such that

(B−1b)s
(B−1N)sj

= min

{
(B−1b)i

(B−1N)ij

∣∣∣ i = 1, . . . ,m, (B−1N)ij > 0

}
,

it holds

x+ ∈ Ω ⇐⇒ (xN)j ≤
(B−1b)s

(B−1N)sj
.

80 CHAPTER 8. LINEAR PROGRAMMING

Otherwise, if it does not exist i ∈ {1, . . . ,m} such that (B−1N)ij > 0, i.e., if B−1Nej ≤ 0,
then x+ ∈ Ω always: (xN)j can be large, and so from (8.8) f is not lower bounded in Ω. Then,
if the unboundedness test

B−1Nej ≤ 0

is satisfied, the LP does not have a solution.
If on the other hand the test is not satisfied, we choose

(xN)j =
(B−1b)s

(B−1N)sj
.

Then

x+ =

(
xB
xN

)
=

(
B−1b−B−1NxN

xN

)

with

xN =



0
...
0

(B−1b)s
(B−1N)sj

0
...
0


=

(B−1b)s
(B−1N)sj

ej

and then

xB = B−1b−B−1NxN = B−1b− (B−1b)s
(B−1N)sj

B−1Nej ,

i.e., ∀i = 1, . . . ,m

(xB)i = (B−1b)i −
(B−1b)s

(B−1N)sj
(B−1Nej)i = (B−1b)i −

(B−1b)s
(B−1N)sj

(B−1N)ij .

Because

(xB)s = (B−1b)s −
(B−1b)s

(B−1N)sj
(B−1N)sj = 0,

8.5. SIMPLEX METHOD 81

it holds

x+ =



(B−1b)1 −
(B−1b)s

(B−1N)sj
(B−1N)1j

...

(B−1b)s−1 −
(B−1b)s

(B−1N)sj
(B−1N)s−1,j

s 0

(B−1b)s+1 −
(B−1b)s

(B−1N)sj
(B−1N)s+1,j

...

m (B−1b)m −
(B−1b)s

(B−1N)sj
(B−1N)mj

m+ 1 0

...

0

m+ j
(B−1b)s

(B−1N)sj

0

...

n 0



.

Remark that

f(x+) =︸︷︷︸
(8.7)

f(xc) + (ĉN)j(xN)j = f(xc) + (ĉN)j︸ ︷︷ ︸
< 0

(B−1b)s
(B−1N)sj︸ ︷︷ ︸

> 0

< f(xc).

We prove now that x+ is a vertex of Ω, showing that is a feasible basic point.
Because x+ is admissible, we have to prove that the columns of A that correspond to the
positive elements of x+ are linearly independent. We have to prove that the vectors

Ae1, . . . , Aes−1, Aes+1, . . . , Aem, Aem+j ,

are linearly independent, or rather the vectors Be1, . . . , Bes−1, Bes+1, . . . , Bem, Nej , or

Be1, . . . , Bes−1, Nej , Bes+1, . . . , Bem.

Theorem 8.5.1. Let v1, . . . ,vm ∈ Rm be linearly independent. Let w = c1v1 + . . .+cmvm 6= 0
for some c1, . . . , cm ∈ R. It exists s ∈ {1, . . . ,m} such that cs 6= 0.
The vectors v1, . . . ,vs−1,w,vs+1, . . . ,vm are linearly independent.

Proof. Assume by contradiction that v1, . . . ,vs−1,w,vs+1, . . . ,vm are linearly dependent, that
is, that there exist d1, . . . , dm ∈ R not all zero such that

d1v1 + . . .+ ds−1vs−1 + dsw + ds+1vs+1 + . . .+ dmvm = 0. (8.3)

82 CHAPTER 8. LINEAR PROGRAMMING

Remark that ds 6= 0: if it was ds = 0, we would have d1v1 + . . . + ds−1vs−1 + ds+1vs+1 +
. . . + dmvm = 0, then, being by assumption v1, . . . ,vs−1,vs+1, . . . ,vm linearly independent,
we would have d1 = . . . = dm = 0, against the fact that d1, . . . , dm are not all zero.
For (8.3) it holds

0 = d1v1 + . . .+ ds−1vs−1 + ds(c1v1 + . . .+ cmvm) + ds+1vs+1 + . . .+ dmvm

= (d1 + dsc1)v1 + · · ·+ (ds−1 + dscs−1)vs−1 + dscsvs + (ds+1 + dscs+1)vs+1 + · · ·+ (dm + dscm)vm.

Because dscs 6= 0, this last is a zero linear combination of v1, . . . ,vm with coefficients which
are not all zero, then v1, . . . ,vm are linearly dependent, which is a contradiction.

As the columns of B are linearly independent we have:

Nej = BB−1Nej =︸︷︷︸
q=B−1Nej

Bq = (Be1)q1 + . . .+ (Bem)qm.

Moreover the term qs = (B−1Nej)s > 0 from the computation of the index that enters in s.
Then from the previous, also

Be1, . . . , Bes−1, Nej , Bes+1, . . . , Bem

are linearly independent.
At the end of the step we update B setting

B+ =
(
Be1 | · · · | Bes−1 | Nej | Bes+1 | · · · | Bem

)
,

that is invertible, and we update N setting

N+ =
(
Ne1 | · · · | Nej−1 | Bes | Nej+1 | · · · | Nen−m

)
.

The base matrix changes: we say that Bes goes out of the basis and Nej enters the basis.

The algorithm of a step of simplex method can be sketched in the following way:

8.5. SIMPLEX METHOD 83

0. Given

xc =

(
xcB
xcN

)
, xcB ∈ Rm,xcB > 0, xcN ∈ Rn−m,xcN = 0,

A =
(
B | N

)
, B ∈ Rm×m, B invertible, N ∈ Rm×(n−r).

1. Optimality test:

1. Compute y = (B−1)T cB

2. Compute ĉN = cN −NTy

3. If ĉN ≥ 0, then return xc as a solution and stop

2. Select j ∈ {1, . . . , n−m} such that (ĉN)j < 0

3. Compute q = B−1(Nej)

4. Unboundedness test:
If q ≤ 0 then return “the problem does not have a solution” and stop

5. Find s ∈ {1, . . . ,m} such that

(xcB)s
qs

= min

{
(xcB)i

qi

∣∣∣ i = 1, . . . ,m, qi > 0

}
(remember that B−1b = xcB , given in input)

6. Update:

1. Set

x+
N =

(
0, . . . , 0,

(xcB)s
qs

, 0, . . . , 0

)T
, x+

B = xcB −
(xcB)s
qs

q,

2. Set
B+ =

(
Be1 | · · · | Bes−1 | Nej | Bes+1 | · · · | Bem

)
,

N+ =
(
Ne1 | · · · | Nej−1 | Bes | Nej+1 | · · · | Nen−m

)
.

The simplex method terminates in a finite number of steps. Let’s prove this. Each time
that we move from the current vertex xc towards a new vertex x+, this last one is such that
f(x+) < f(xc), then it is not possible to visit a vertex more than once. Then, because Ω has a
finite number of vertexes, and because (from Theorem ??) at least one of the vertexes of Ω is
a solution, in a finite number of steps we will find a vertex that is a solution.

84 CHAPTER 8. LINEAR PROGRAMMING

8.5.1 How to choose a starting vertex of Ω

There are various ways to choose a starting vertex in Ω. We will explain one among them. Let
us consider the following artificial problem:

min
x∈Rn,z∈Rm

m∑
i=1

zi

Ax + Ez = b
x ≥ 0
z ≥ 0

where A and b are the data of the original problem, while

E =

E11

. . .

Emm

 ∈ Rm×m, Eii =

{
1 se bi ≥ 0
−1 se bi < 0

∀i = 1, . . . ,m.

Set

M =
(
A | E

)
, y =

(
x
z

)
,

the artificial problem becomes

min
y∈Rn+m

n+m∑
i=n+1

yi

My = b
y ≥ 0

The feasible set for this problem is

Ωa = {y ∈ Rn+m |My = b, y ≥ 0} =

{(
x
z

)
∈ Rn+m | Ax + Ez = b, x ≥ 0, z ≥ 0

}
.

Let

y0 =

(
x0

z0

)
=

(
0
|b|

)
, |b| =

 |b1|...
|bm|

 .

Remark that y0 ∈ Ωa. Indeed

My0 =
(
A | E

)(0
|b|

)
= E|b| =

E11

. . .

Emm


 |b1|...
|bm|

 =

 E11|b1|
...

Emm|bm|

 = (∗);

because ∀i = 1, . . . ,m

Eii|bi| =
{

1bi se bi ≥ 0
−1(−bi) se bi < 0

= bi,

we have that

(∗) =

 b1
...
bm

 = b.

8.5. SIMPLEX METHOD 85

Moreover

y0 =

(
0
|b|

)
≥
(

0
0

)
= 0.

Having proved that y0 ∈ Ωa, remark that y0 is a vertex of Ωa because its positive components
correspond to linearly independent columns of M . The positive components of y0 are between
the (n+1)-th and the (n+m)-th, then they correspond to columns of M between the (n+1)-th

and the (n+m)-th. SO they correspond to columns of E =

E11

. . .

Emm

, which are all

linearly independent because E11, . . . , Emm ∈ {+1,−1}.

Remark that function f(z) =

m∑
i=1

zi on the constraint z ≥ 0 has the minimum in z = 0. Then,

if

(
x
0

)
∈ Ωa, then

(
x
0

)
is solution of the artificial problem. It surely exists x ∈ Rn such that(

x
0

)
∈ Ωa because this means that it exists x ∈ Rn such that Ax = b e x ≥ 0. Then it exists

x ∈ Ω, which is always true. Then the set of the solutions of the artificial problem is

Sa =

{
y =

(
x
0

)
∈ Rn+m | x ∈ Ω

}
.

The simplex method applied to the artificial problem starting from the vertex y0 will give as a

solution a vertex y∗ =

(
x∗

0

)
of Ωa.

Remark that x∗ is a vertex of Ω. Indeed x∗ ∈ Ω because y∗ ∈ Sa. Moreover x∗ is a vertex of
Ω: y∗ is a vertex of Ωa, i.e., the positive components of y∗ correspond to linearly independent

columns of M . Because y∗ =

(
x∗

0

)
, the positive components of x∗ correspond to linearly

independent columns of A.
We have then found a vertex of Ω, x∗, from which we can start the simplex method on the
original problem.

8.5.2 Generalization of the algorithm to the degenerate case

We have described the algorithm for a step of the simplex method under assumption (HP2) of
non degeneracy. If at a step a vertex xc is obtained with less then m positive components, at
least a component of xcB , that is at least a component of B−1b is zero. If it exists i ∈ {1, . . . ,m}
such that (B−1N)ij > 0 and (B−1b)i = 0 then

(B−1b)s
(B−1N)sj

= min

{
(B−1b)i

(B−1N)ij

∣∣∣ i = 1, . . . ,m, (B−1N)ij > 0

}
= 0.

If the non boundedness test is not satisfied,

(xN)j =
(B−1b)s

(B−1N)sj
= 0,

and x+ = xc, that is we remain on the same vertex. Then the finite termination of the method
is no longer guaranteed.

86 CHAPTER 8. LINEAR PROGRAMMING

Bland’s rule

Remark that in algorithm ?? steps (2) and (5) may be ambiguous: it may exist more than
just one index j ∈ {1, . . . , n − m} such that (ĉN)j < 0 and it may exist more than just one

index s ∈ {1, . . . ,m} such that
(xcB)s

qs
= min

{
(xcB)i

qi

∣∣∣ i = 1, . . . ,m, qi > 0

}
. In the algorithm

we have not specified which index to select in case of ambiguity. Bland’s rule requires to
choose at step (2) the smallest among the indexes j ∈ {1, . . . , n − m} such that (ĉN)j < 0

and to choose at step (5) the smallest among the indexes s ∈ {1, . . . ,m} such that
(xcB)s

qs
=

min

{
(xcB)i

qi

∣∣∣ i = 1, . . . ,m, qi > 0

}
. Remark that, as permutations of the components of x are

always possible, it is necessary to a-priori enumerate the components of x and the smallest
index is referred to such numbering.
It is possible to prove that the simplex method with Bland’s rule always terminates in a finite
number of steps, even in the degenerate case.

Example Let us consider the problem

min
x∈R4

−3

4
x1 + 150x2 −

1

50
x3 + 6x4.

1

4
x1 − 60x2 −

1

25
x3 + 9x4 ≤ 0

1

2
x1 − 90x2 −

1

50
x3 + 3x4 ≤ 0

x3 ≤ 1
x ≥ 0

The standard form is

min
x∈R7

−3

4
x1 − 150x2 −

1

50
x3 + 6x4,

1

4
x1 − 60x2 −

1

25
x3 + 9x4 + x5 = 0

1

2
x1 − 90x2 −

1

50
x3 + 3x4 + x6 = 0

x3 + x7 = 1
x ≥ 0

that is

min
x∈R7

cTx.

Ax = b
x ≥ 0

8.5. SIMPLEX METHOD 87

where

c =



−3

4
−150

− 1

50
6
0
0
0


, A =


1

4
−60 − 1

25
9 1 0 0

1

2
−90 − 1

50
3 0 1 0

0 0 1 0 0 0 1

 =
(
N | B

)
, b =

0
0
1

 .

The current point is

xc =

(
xcN
xcB

)
, xcN ∈ R4,xcN = 0, xcB = B−1b = (Im)−1b = b,

that is
xc =

(
0, 0, 0, 0, 0, 0, 1

)T
.

It is a point with less than m = 3 positive components, then it is a degenerate point.
If we don’t use Bland’s rule we can create a loop from which we cannot escape: at first step

we take s = 1 and j = 1, then s = 2 and j = 2, then s = 1 and j = 3, then s = 3 and j = 1,
then s = 1 and j = 3, then s = 3 and j = 1, and so on: we always remain on the starting
vertex.
If we use Bland’s rule the process terminates in a finite number of steps.

8.5.3 Advantages and disadvantages of the simplex method

The simplex method has two main advantages.

(V.1) Finite termination. We have seen this in the degenerate case but this holds also in
general.

(V.2) A step is cheap. The only expensive computations in this algorithm are y = (B−1)T cB
and q = B−1(Nej). To perform such computations we never compute B−1, but we solve
the linear systems BTy = cB and Bq = Nej . If an LU factorization of B is available, the
first system becomes (LU)Ty = cB , or UTLTy = cB , and the second one LUq = Nej .
Then we solve the four triangular systems{

UTw = cB
LTy = w

,

{
Lw = Nej
Uq = w

Each of them cost O(m). The LU factorization of B is not computed ex-novo at each
step, which would cost O(m3): once computed at the beginning of the algorithm, at each
step we can compute the factorization by updating the one computed at the previous
step. Exploiting the fact that the matrix B at the current step has just a column that is
different from that of the previous step, the update of the LU factorization costs O(m2).
Then, a step of the simplex method requires just the solution of four triangular linear
systems and the update of the LU factorization of B.

The simplex method also has a disadvantage, to understand it we need the following definition.

88 CHAPTER 8. LINEAR PROGRAMMING

Definition 8.5.1. Complexity

(-) The complexity of a method that terminates in a finite number of steps is the number of
steps performed before the termination.

(-) The complexity of an iterative method is the number of iterations necessary to reach a given
accuracy, which translates in a certain stopping criterion ‖xk − x∗‖ ≤ toll.

In both cases, (the tolerance must be fixed for the iterative case) the complexity can either be
a linear, or a polynomial, or an exponential... function in the dimension n of the problem. In
such cases we will respectively say that the complexity is linear, polynomial, or exponential... in
n.

In the worst case, the number of vertexes of Ω is
n!

m!(n−m)!
and we need to visit them all.

We then need
n!

m!(n−m)!
steps to terminate the procedure. This is clearly a worst case, which is

seldom encountered in practice: the simplex method generally requires only 2m or 3m steps and
works very well. In 1973 Klee and Mint built an example in which Ω is a cube with 2n vertexes
and all of them need to be visited befor reaching the solution. They proved in this way that
the simplex method has indeed an exponential complexity in n. People started then looking
for methods with polynomial complexity in n. At the end of 1970 Khachiyan proposed the
ellipsoid method, which has a polynomial complexity but in practice is slower than the simplex
method. In the mid 1980 Karmarkar proposed another method with polynomial complexity,
which inspired the interior-point methods, that are widely used nowadays.

Chapter 9

Flow networks problems

In graph theory, a flow network (also known as a transportation network) is a directed graph
where each edge has a capacity and each edge receives a flow. The amount of flow on an edge
cannot exceed the capacity of the edge. Often in operations research, a directed graph is called
a network, the vertices are called nodes and the edges are called arcs. A flow must satisfy the
restriction that the amount of flow into a node equals the amount of flow out of it, unless it is a
source, which has only outgoing flow, or sink, which has only incoming flow. A network can be
used to model traffic in a computer network, circulation with demands, fluids in pipes, currents
in an electrical circuit, or anything similar in which something travels through a network of
nodes. Flow networks problems can be divided into two large categories: the first is the one of
problems for which the passage of the flow through an arc is associated to a cost, such costs
are known, and we look for the minimum cost; the second is the one of problems for which the
capacities of the edges are known, and we look for the maximum feasible flow.

9.1 Minimum cost flow problem

Let us consider a network, represented by an oriented graph

G = (V,E), V = {1, . . . , n}, E = {e1, . . . , em} ⊆ V × V.

In a minimum cost flow problem, each edge (i, j) ∈ E has a given cost cij , and the cost of sending
a part of the flow xij across the edge is cijxij . The objective is to send a given amount of flow
from the source to the sink, at the lowest possible price. These problems can be formulated in
this way.

For each i, j = 1, . . . , n : (i, j) ∈ E we denote then with xij ≥ 0 the part of the flow that
passes from i to j and these are going to be the variables of our problem. The total cost that

we want to minimize is

n∑
i=1

(i,j)∈E

cijxij .

89

90 CHAPTER 9. FLOW NETWORKS PROBLEMS

We formulate the problem as follows:

min
xij

n∑
i,j=1

(i,j)∈E

cijxij ,

n∑
j=1

(i,j)∈E

xij −
n∑
j=1

(j,i)∈E

xji = bi ∀i = 1, . . . , n

xij ≥ 0 ∀i, j = 1, . . . , n : (i, j) ∈ E

where b1, . . . , bn are assigned quantities and

n∑
j=1

(i,j)∈E

xij is the outgoing flow from node i,

n∑
j=1

(j,i)∈E

xji

is the ingoing flow in node i.

• If bi = 0, i is said a transit node (the amount of flow that enters in the node i is the same
as that which goes out);

• If bi > 0, i is said a supply node (the flow that goes out from i is larger than that which
goes in);

• If bi < 0, i is said a termination node (the flow that enters in i is larger than that which
goes out).

This is a LP because the objective function is linear. We can put it in standard form. We
define

c =

 c1
...
cm

 , x =

x1

...
xm

 ,

where ∀k = 1, . . . ,m, ck is the cost associated to the passage of the flow along the edge ek,
and xk is the flow (to be found) that passes along the edge ek. We define the incidence matrix
node-edge of G as the matrix A ∈ Rn×m such that

Aik =

 1 if ek = (i, j) for some j = 1, . . . , n
−1 if ek = (j, i) for some j = 1, . . . , n
0 altrimenti

With this notations the total cost (i.e., the objective function) is

m∑
k=1

ckxk = cTx, the second

constraint becomes x ≥ 0 and the first one Ax = b. Indeed Ax = b means (Ax)i = bi ∀i =
1, . . . , n, where

(Ax)i =

m∑
k=1

Aikxk =

m∑
k=1

ek=(i,∗)

xk

︸ ︷︷ ︸
outgoing

flow from i

−
m∑
k=1

ek=(∗,i)

xk

︸ ︷︷ ︸
ingoing flow

in i

.

We can then rewrite the LP as
min
x∈Rm

cTx.

Ax = b
x ≥ 0

9.2. MAXIMUM FLOW PROBLEM 91

To solve the LP we could use the simplex algorithm, but usually the DIJKSTRA algorithm is
preferred that, exploiting the special structure of matrix A, has a quadratic complexity (and
so polynomial) in m, and not exponential as the simplex.

9.2 Maximum flow problem

We consider a network, represented by an oriented graph

G = (V,E), V = {1, . . . , n}, E = {e1, . . . , em} ⊆ V × V,

with a source s and a sink t.

For each i, j = 1, . . . , n : (i, j) ∈ E we know the capacity cij ∈ Z≥0 of the edge (i, j), i.e.,
the maximum amount of flow that can pass through an edge (i, j).

A feasible flow of G is a vector f =
(
fij

)
(i,j)∈E

∈ Rm, where each fij ∈ Z≥0 represents the flow

from i to j, such that

outgoing flow
from i︷ ︸︸ ︷
n∑
j=1

(i,j)∈E

fij −

ingoing flow
in i︷ ︸︸ ︷
n∑
j=1

(j,i)∈E

fji = 0 ∀i = 2, . . . , n− 1

0 ≤ fij ≤ cij ∀i, j = 1, . . . , n : (i, j) ∈ E

Given a feasible flow f , we call value of the flow the amount of flow passing from the source to
the sink:

v =

n∑
j=1

(s,j)∈E

fsj .

We want to find the maximum value of a feasible flow, i.e., we have to solve the problem

max
v∈R

v,

outgoing flow from s︷ ︸︸ ︷
n∑
j=1

(s,j)∈E

fsj = v

outgoing flow from i︷ ︸︸ ︷
n∑
j=1

(i,j)∈E

fij −

ingoing flow in i︷ ︸︸ ︷
n∑
j=1

(j,i)∈E

fji = 0 ∀i = 2, . . . , n− 1

ingoing flow in t︷ ︸︸ ︷
n∑
j=1

(j,t)∈E

fjt = v

0 ≤ fij ≤ cij ∀i, j = 1, . . . , n : (i, j) ∈ E

92 CHAPTER 9. FLOW NETWORKS PROBLEMS

This is an LP:

min
v∈R
−v.

outgoing flow from s︷ ︸︸ ︷
n∑
j=1

(s,j)∈E

fsj = v

outgoing flow from i︷ ︸︸ ︷
n∑
j=1

(i,j)∈E

fij −

ingoing flow in i︷ ︸︸ ︷
n∑
j=1

(j,i)∈E

fji = 0 ∀i = 2, . . . , n− 1

ingoing flow in t︷ ︸︸ ︷
n∑
j=1

(j,t)∈E

fjt = v

0 ≤ fij ≤ cij ∀i, j = 1, . . . , n : (i, j) ∈ E

We can put this in standard form. Let’s define

c =

 c1
...
cm

 , f =

 f1

...
fm

 ,

where ∀k = 1, . . . ,m ck is the capacity of the edge ek, and fk is the amount of flow (to be
found) that passes through the edge ek. We denote with A the incidence matrix of G. Let

b = v(e1 − en) =


v
0
...
0
−v

 .

With these notations the last constraint becomes 0 ≤ f ≤ c and the other constraints become
Af = b. Indeed Af = b means (Af)i = bi ∀i = 1, . . . , n, where

(Af)i =

m∑
k=1

Aikfk =

m∑
k=1

ek=(i,∗)

fk

︸ ︷︷ ︸
outgoing flow from i

−
m∑
k=1

ek=(∗,i)

fk

︸ ︷︷ ︸
ingoing flow in i

.

Then we can rewrite the LP as
min
v∈R
−v.

Af = b
0 ≤ f ≤ c

The admissible set of the LP is

Ω = {f ∈ Rm | Af = b, 0 ≤ f ≤ c}.

9.2. MAXIMUM FLOW PROBLEM 93

A LP with Ω 6= ∅ and with lower bounded objective function in Ω has a solution. Our LP is
such that Ω 6= ∅, indeed the zero flow f = 0 belongs to Ω as it corresponds to b = v(e1−en) =
0(e1 − en) = 0. Moreover the objective function is lower bounded in Ω because, as

v =

n∑
j=1

(s,j)∈E

fsj ≤
n∑
j=1

(s,j)∈E

csj ,

it holds

−v ≥ −
n∑
j=1

(s,j)∈E

csj .

Then the LP has a solution.
We define a cut of the network G a partition {W,W ′} of V such that s ∈W and t ∈W ′.

Given a cut {W,W ′} of G, we define capacity of the cut {W,W ′} the maximum amount of flow
that can pass from W to W ′:

C(W,W ′) =

n∑
i,j=1

(i,j)∈E
i∈W
j∈W ′

cij .

Given a feasible flow f and a cut {W,W ′} of G, we define the flow of the cut {W,W ′} the exact
amount of flow that passes from W to W ′:

F (W,W ′) =

flow from
W to W ′︷ ︸︸ ︷
n∑

i,j=1
(i,j)∈E
i∈W
j∈W ′

fij −

flow from
W ′ to W︷ ︸︸ ︷
n∑

i,j=1
(i,j)∈E
i∈W ′
j∈W

fij .

Given a feasible flow f of G, we can show (thanks to the fact that f is a feasible flow) that for
each cut {W,W ′} of G it holds

F (W,W ′) = v.

The flow of the cut {W,W ′} does then not depend on the cut {W,W ′}, then we can denote it
simply by F , dropping the dependence on the specific cut.
Remark that, given a feasible flow f of G, it holds

v ≤ C(W,W ′) ∀{W,W ′} cut of G. (9.1)

Indeed, given a cut {W,W ′} of G, we have

v = F = F (W,W ′) =

n∑
i,j=1

(i,j)∈E
i∈W
j∈W ′

fij −
n∑

i,j=1
(i,j)∈E
i∈W ′
j∈W

fij ≤
n∑

i,j=1
(i,j)∈E
i∈W
j∈W ′

fij ≤
n∑

i,j=1
(i,j)∈E
i∈W
j∈W ′

cij = C(W,W ′).

Given a feasible flow f of G, an edge (i, j) ∈ E is said saturated if fij = cij . A backward
edge is a couple (j, i) such that (i, j) ∈ E. The edges of G are on the contrary called forward

94 CHAPTER 9. FLOW NETWORKS PROBLEMS

edges. An backward edge (j, i) is void if fij = 0.
A path in the network G is a set

P = {(s, i1), (i1, i2), . . . , (ip, t)}

whose elements (ij , ij+1) are direct or backward edges. Given a feasible flow f in G, a path P
in G is an augmenting path if it does not have saturated forward edges and it does not have
void backward edges.

Remark 9.2.1. If f is a feasible flow in G with value v and P is an augmenting path in G,
then it exists an admissible flow fnew of G with value vnew > v.

Proof. We build fnew with the following algorithm:

Given f feasible flow in G (for example f = 0) of value v, P augmenting
path in G.

1. Set
P+ = {forward arcs of P}, P− = {backward arcs of P}

2. Compute

δ+ = min{cij − fij | i, j = 1, . . . , n, (i, j) ∈ P+},
δ− = min{fij | i, j = 1, . . . , n, (j, i) ∈ P−}.

3. Set δ = min{δ+, δ−}

4. Set ∀i, j = 1, . . . , n : (i, j) ∈ E

(fnew)ij =

 fij + δ if (i, j) ∈ P+

fij − δ if (j, i) ∈ P−
fij otherwise

Remark that, because P is an augmenting path, it does not have forward saturated edges
and void backward edges, then δ+ > 0 and δ− > 0, so that δ > 0.
Remark that fnew ∈ Rm built in this way is a feasible flow (easy to prove TD) and that its value
is

vnew =

n∑
j=1

(s,j)∈E

(fnew)sj .

Among the forward edges from s, exactly one belongs to P : is the forward edge (s, i1), then

vnew =

n∑
j=1

(s,j)∈E
j 6=i1

(fnew)sj + (fnew)s,i1 =

n∑
j=1

(s,j)∈E
j 6=i1

fsj + fs,i1 + δ =

n∑
j=1

(s,j)∈E

fsj + δ = v + δ > v.

Theorem 9.2.1. Let f be a feasible flow of G with value v.

v is a solution of LP ⇐⇒ there does not exist an augmenting path in G.

9.2. MAXIMUM FLOW PROBLEM 95

Proof. (=⇒) By contradiction. Assume there exists an augmenting path in G, then for the
previous observation it exists a feasible flow fnew in G with value vnew > v, and so v would not
be a solution of LP.

(⇐=) Let

W = {s} ∪ {nodes that can be reached from s along an augmenting path}, W ′ = V \W.

By assumption t ∈W ′, then {W,W ′} is a cut of G.

v = F = F (W,W ′) =

n∑
i,j=1

(i,j)∈E
i∈W
j∈W ′

fij −
n∑

i,j=1
(i,j)∈E
i∈W ′
j∈W

fij .

The edges (i, j) ∈ E : i ∈ W, j ∈ W ′ are such that fij = cij . By contradiction, let (i, j) ∈ E :
i ∈ W, j ∈ W ′ be such that fij < cij . Then the edge (i, j) would be non saturated, and, as
i ∈W is reachable from s along an augmenting path, also j would be reachable from s thorough
an augmenting path, so j ∈W , which is in contradiction with the assumption j ∈W ′.
The edges (i, j) ∈ E : i ∈ W ′, j ∈ W are such that fij = 0. By contradiction, if it exists
(i, j) ∈ E : i ∈ W ′, j ∈ W such that fij > 0, then the backward edge (j, i) wouldn’t be void,
and so, because j ∈ W is reachable from s by an augmenting path, also i would be reachable
from s with an augmenting path. Then i ∈W , in contradiction with i ∈W ′.
Then

v =

n∑
i,j=1

(i,j)∈E
i∈W
j∈W ′

cij −
n∑

i,j=1
(i,j)∈E
i∈W ′
j∈W

0 = C(W,W ′).

We have then a cut {W,W ′} of G such that v = C(W,W ′). From (9.1), the value of the other
flows in G cannot be larger than C(W,W ′), i.e. it must be lower than v, then v is solution to
the LP.

The LP can be solved using the Ford-Fulkerson algorithm:

Given f feasible flow of G (for example f = 0) of value v

1. Look for an augmenting path G

2. If such a path is not found, then return v and stop.
Otherwise

2.1 Build fnew with the algorithm sketched in the previous remark

2.2 Set vnew = v + δ

2.3 Go back to 1

The algorithm returns the value of a flow of G such that there do not exist augmenting
paths in G, that is, for the previous theorem, whose value is a solution of the LP.

96 CHAPTER 9. FLOW NETWORKS PROBLEMS

Because

v =

n∑
j=1

(s,j)∈E

fsj ≤
n∑
j=1

(s,j)∈E

csj

︸ ︷︷ ︸
is a costant

:= C,

and because at each step of the algorithm v is increased of at least 1, the algorithm stops in at
most C steps. The cost of a step is mainly related to the cost of searching for an augmenting
path in G, i.e. O(m). Then the Ford-Fulkerson algorithm costs O(Cm), it has then a linear
complexity (and so polynomial) in m.

Theorem 9.2.2. Max flow-min cut
Let f be a feasible flow of G with value v.

v is a solution to the LP ⇐⇒ v = Cmin,

where Cmin = min
{
C(W,W ′) | {W,W ′} cut of G

}
.

Proof. (=⇒) The assumption, from the previous theorem, guarantees that there do not exist
augmenting paths in G. Repeating the proof of the implication (⇐=) of the previous theorem,

we find a cut {W,W
′} of G such that

v = C(W,W
′
). (9.2)

From (9.1) it holds

v ≤ C(W,W ′) ∀{W,W ′} cut of G,

then from (1) it holds

C(W,W
′
) ≤ C(W,W ′) ∀{W,W ′} cut of G,

that is C(W,W
′
) = Cmin. Then from (9.2)

v = Cmin.

(⇐=) Because Cmin = C(W,W ′) for some cut {W,W ′} of G,

v = C(W,W ′).

From (9.1), the value of any other flow of G cannot be larger than C(W,W ′), that is it cannot
be larger than v, then v is solution of the LP.

If at step k it holds pk = 0 and if it exists at least a j ∈ {1, . . . ,M} such that (λk)ij < 0,
said

(λk)is = min{(λk)ij | j = 1, . . . ,M : (λk)ij < 0},

the algorithm sets

xk+1 = xk,

W(xk+1) =W(xk) \ {is}

9.2. MAXIMUM FLOW PROBLEM 97

and moves on. That is, it finds the solution pk+1 of the problem

min
p∈Rn

1

2
pTQp + gTk+1p.

AEp = 0
(AIp)i = 0 ∀i ∈ W(xk+1)

It holds

pk+1 6= 0, (AIpk+1)i > 0 ∀i ∈ {1, . . . ,m} \W(xk+1).

Remark 9.2.2. We do not prove the theorem, but we show why it is relevant. Once we have
found pk+1 6= 0, we set

xk+2 = xk+1 + αpk+1

where we choose α ∈ (0, 1] such that xk+1 + αpk+1 ∈ Ω, i.e., such that

(AIxk+1)i + α(AIpk+1)i ≥ (bI)i ∀i ∈ {1, . . . ,m} \W(xk+1). (9.3)

Then, because is ∈ {1, . . . ,m} \W(xk+1), we choose α ∈ (0, 1] such that

(AIxk+1)is + α(AIpk+1)is ≥ (bI)is ,

i.e., as it holds (AIxk+1)is = (bI)is because is ∈ W(xk) ⊆ A(xk) =︸︷︷︸
xk=xk+1

A(xk+1), we choose

α ∈ (0, 1] such that

α(AIpk+1)is ≥ 0.

The fact that

(AIpk+1)i > 0 ∀i ∈ {1, . . . ,m} \W(xk+1)

ensures that we will not be forced to choose α = 0: this choice, that we eliminate a-priori as we
ask α ∈ (0, 1], will imply xk+2 = xk+1, and we would not be able to move from this point.

Lemma 9.2.1. If at step k it holds pk 6= 0, then the function

ϕ : (0, 1] −→ R
α 7−→ ϕ(α) = q(xk + αpk)

is strictly decreasing.
Then for any α ∈ (0, 1] such that xk+1 = xk + αpk, it will always hold

q(xk+1) < q(xk).

Proof. pk is the only solution of
min
p∈Rn

q̃(p),

Ap = 0
(9.4)

where

q̃(p) =
1

2
pTQp + gTk p.

that is

q̃(pk) < q̃(p) ∀p ∈ Rn \ {pk} : Ap = 0.

98 CHAPTER 9. FLOW NETWORKS PROBLEMS

Then, because pk 6= 0 by assumption and it holds A0 = 0, it follows

q̃(pk) < q̃(0),

i.e.,
1

2
pTkQpk + gTk pk < 0,

i.e.,

gTk pk < −
1

2
pTkQpk︸ ︷︷ ︸

> 0Q is pos. def.
and pk 6= 0

< 0. (9.5)

Remark that

ϕ(α) = q(xk + αpk) =
1

2
(xk + αpk)TQ(xk + αpk) + cT (xk + αpk)

= . . . =
1

2
pTkQpkα

2 + pTk gkα+ q(xk)

is a parabola with ?? rivolta verso l’alto (because Q is positive definite) whose vertex has
abscissa

αV =
−pTk gk
pTkQpk

>︸︷︷︸
(9.5)

0.

Then ϕ(α) is strictly decreasing in (0, αV]. If we prove that αV ≥ 1 we get the thesis.
Because pk is a solution of

min
p∈Rn

1

2
pTQp + gTk p,

Ap = 0

it exists µ′k ∈ Rp+M such that (pk,µ
′
k) satisfies the KKT of (9.4), that is such that{
Qpk + gk −ATµ′k = 0
Apk = 0

.

Multiplying the first set of equations by pTk we obtain

pTkQpk + pTk gk − pTkA
T︸ ︷︷ ︸

= (Apk)T = 0T

µ′k = 0,

i.e.,

pTkQpk = −pTk gk,

i.e., αV = 1.

Lemma 9.2.2. If at step k it holds pk 6= 0 and α = 1, then pk+1 = 0.

In the following theorem we prove that the active-set method stops in a finite number of
steps.

Theorem 9.2.3. The active-set method stops in a finite number of steps.

9.2. MAXIMUM FLOW PROBLEM 99

Proof. (a) The algorithm meets pk = 0 at least every n steps.
Let’s prove this Let us assume that pk 6= 0. If α = 1, then from Lemma 2 it holds pk+1 = 0.
Let us assume that α 6= 1. Then, from the definition of the algorithm

|W(xk+1)| = |W(xk)|+ 1 = M + 1

Analogously

pk+1 6= 0, α 6= 1 =⇒ |W(xk+2)| = |W(xk+1)|+ 1 = M + 2.

...

pk+(m−M)−1 6= 0, α 6= 1 =⇒ |W(xk+(m−M))| = |W(xk+(m−M)−1)|+1 = M+(m−M) = m

=⇒ W(xk+(m−M)) = {1, . . . ,m}.

Then pk+(m−M) will be the solution of the problem

min
p∈Rn

1

2
pTQp + gTk p, (PQWp)

AEp = 0
(AIp)i = 0 ∀i = 1, . . . ,m

that is

min
p∈Rn

1

2
pTQp + gTk p, (PQWp)

Ap = 0

where A ∈ R(p+m)×n = Rn×n. The only feasible point is 0, and so

pk+(m−M) = 0.

Because m−M ≤ m ≤ n we get the thesis.

(b) When the algorithm meets a point pk = 0 the working-set will never be equal to W(xk).
We can prove this by using the fact that from Lemma 1 it holds pk+1 6= 0 and so from the
preposition q(xk+2) < q(xk+1) =︸︷︷︸

xk+1=xk

q(xk).

From (a) and (b), at least every n steps the algorithm abandons forever a given working-set.
As the number of working sets is finite (working-sets are subsets of {1, . . . ,m}), the algorithm
stops after a finite number of steps.

9.2.1 How to find a starting point of Ω

To find a starting point of Ω we build the following artificial problem:

min
x∈Rn,w∈Rp,z∈Rm

p∑
i=1

wi +

m∑
i=1

zi

(AEx)i + γiwi = (bE)i ∀i = 1, . . . , p
(AIx)i + zi ≥ (bI)i ∀i = 1, . . . ,m
w ≥ 0
z ≥ 0

100 CHAPTER 9. FLOW NETWORKS PROBLEMS

where AE ,bE , AI ,bI are the same that appears in the original problem, while, set x̃ ∈ Rn,

γi =

{
1 se (bE)i − (AEx̃)i ≥ 0
−1 se (bE)i − (AEx̃)i < 0

∀i = 1, . . . , p.

The feasible set for this problem is

Ωa =


x

w
z

 ∈ Rn+p+m
∣∣∣ (AEx)i + γiwi = (bE)i ∀i = 1, . . . , p,

(AIx)i + zi ≥ (bI)i ∀i = 1, . . . ,m, w ≥ 0, z ≥ 0

}
.

Let

w̃ =

w̃1

...
w̃p

 , w̃i = |(bE)i − (AEx̃)i| ∀i = 1, . . . , p,

z̃ =

 z̃1

...
z̃m

 , z̃i = max{(bI)i − (AI x̃)i, 0} ∀i = 1, . . . ,m.

It is easy to verify that

 x̃
w̃
z̃

 ∈ Ωa.

Remark that the function f(w, z) =

p∑
i=1

wi+

m∑
i=1

zi on the constraint

(
w
z

)
≥
(

0
0

)
has minimum

value in

(
w
z

)
=

(
0
0

)
. Then, if

x
0
0

 ∈ Ωa, then

x
0
0

 is a solution of the artificial problem. It

surely exists x ∈ Rn such that

x
0
0

 ∈ Ωa because this means that it exists x ∈ Rn such that

(AEx)i = (bE)i ∀i = 1, . . . , p, (AIx)i ≥ (bI)i ∀i = 1, . . . ,m,

i.e., such that
AEx = bE , AIx = bI ,

i.e., it exists x ∈ Ω, that is always true. The set of solutions of the artificial problem is

Sa =


x

0
0

 ∈ Rn+p+m | x ∈ Ω

 .

The active set method applied to the artificial problem starting from

 x̃
w̃
z̃

 ∈ Ωa gives as a

solution a point

x∗

0
0

 of Sa. Then we have found a point of Ω, x∗, from which we can start

with the active set method on the original problem.

	I I part: nonlinear optimization
	Prerequisites
	Necessary and sufficient conditions
	Convex functions
	Quadratic functions

	Iterative methods
	Directions for line-search methods
	Direction of steepest descent
	Newton's direction
	Quasi-Newton directions

	Rates of convergence
	Steepest descent method for quadratic functions
	Convergence of Newton's method

	Line-search methods
	Armijo and Wolfe conditions
	Convergence of line-search methods
	Backtracking
	Newton's method

	Quasi-Newton method
	BFGS method
	Global convergence of the BFGS method

	Nonlinear least-squares problems
	Background: modelling, regression
	General concepts
	Linear least-squares problems
	Algorithms for nonlinear least-squares problems
	Gauss-Newton method

	Levenberg-Marquardt method

	Constrained optimization
	One equality constraint
	One inequality constraint
	First order optimality conditions
	Second order optimality conditions

	Optimization methods for Machine Learning

	II Linear and integer programming
	Linear programming
	How to rewrite an LP in standard form
	Primal and dual problems
	Convex and strictly convex problems
	Geometry of
	Simplex method
	How to choose a starting vertex of
	Generalization of the algorithm to the degenerate case
	Advantages and disadvantages of the simplex method

	Flow networks problems
	Minimum cost flow problem
	Maximum flow problem
	How to find a starting point of

