

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2018 Society for Industrial and Applied Mathematics
Vol. 40, No. 4, pp. C503–C519

PARILUT—A NEW PARALLEL THRESHOLD ILU
FACTORIZATION∗

HARTWIG ANZT† , EDMOND CHOW‡ , AND JACK DONGARRA§

Abstract. We propose a parallel algorithm for computing a threshold incomplete LU (ILU)
factorization. The main idea is to interleave a parallel fixed-point iteration that approximates an
incomplete factorization for a given sparsity pattern with a procedure that adjusts the pattern. We
describe and test a strategy for identifying nonzeros to be added and nonzeros to be removed from
the sparsity pattern. The resulting pattern may be different and more effective than that of existing
threshold ILU algorithms. Also in contrast to other parallel threshold ILU algorithms, much of the
new algorithm has fine-grained parallelism.

Key words. incomplete factorization, ILU, parallel preconditioning

AMS subject classifications. 65F08, 65F50, 65Y05, 68W10

DOI. 10.1137/16M1079506

1. Introduction. Preconditioners are important components in solving large,
sparse linear systems via iterative methods. Among the most popular preconditioners
for general problems are incomplete LU (ILU) factorizations [23]. These are based on
the concept of truncating the fill-in that occurs in the Gaussian elimination process.
How well an ILU factorization works as a preconditioner depends on the problem
(the matrix and its ordering) and the factorization’s sparsity pattern. This sparsity
pattern either can be predetermined, as in the case of level-based ILU factorization,
or can be generated dynamically during the factorization process, as in the case of
threshold-based ILU factorization. In the latter, the decision of whether an element
is included in the sparsity pattern is traditionally based on whether its size is above
a certain threshold [23]. In terms of preconditioner quality, incomplete factorizations
based on thresholding [9, 14, 16, 19, 22] adapt the sparsity pattern to the matrix values
and thus they can be superior to level-based strategies. On the other hand, threshold-
ing makes the parallelization of the factorization process more challenging, compared
to using a predetermined sparsity pattern. ILU factorizations based on threshold-
ing cannot be parallelized using level scheduling or multicolor ordering techniques
because the sparsity pattern is not known beforehand. The only existing strategy
to parallelize threshold ILU factorizations is via graph partitioning or domain de-
composition [3, 15]. Here, the interior portion of the subdomains can be factored
in parallel, with one thread per subdomain. However, the factorization of the Schur

∗Submitted to the journal’s Software and High-Performance Computing section June 13, 2016;
accepted for publication (in revised form) May 7, 2018; published electronically July 12, 2018.

http://www.siam.org/journals/sisc/40-4/M107950.html
Funding: This material is based upon work supported by the U.S. Department of Energy Office

of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under
award DE-SC0016513. The first author has been supported by the “Impuls und Vernetzungsfond”
of the Helmholtz Association under grant VH-NG-1241.
†Karlsruhe Institute of Technology, Karlsruhe 76131, Germany, and University of Tennessee,

Knoxville, TN 37996 (hanzt@icl.utk.edu).
‡School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA

30332 (echow@cc.gatech.edu).
§School of Computer Science, University of Manchester, Manchester M139PL, UK, Oak Ridge

National Laboratory, Oak Ridge, TN 37830, and University of Tennessee, Knoxville, TN 37996
(dongarra@icl.utk.edu).

C503

D
ow

nl
oa

de
d

08
/0

7/
18

 to
 1

30
.8

8.
24

0.
12

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sisc/40-4/M107950.html
mailto:hanzt@icl.utk.edu
mailto:echow@cc.gatech.edu
mailto:dongarra@icl.utk.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C504 HARTWIG ANZT, EDMOND CHOW, AND JACK DONGARRA

complement corresponding to subdomain interfaces cannot be efficiently parallelized
if thresholding will be performed dynamically. Further, this strategy only provides
coarse-grained parallelism, and increasing the number of subdomains, which corre-
sponds to changing the ordering of the matrix, generally degrades the preconditioner
quality. There is currently no algorithm that computes a threshold ILU factorization
with fine-grained parallelism.

In this paper, we propose a new algorithm for computing an ILU preconditioner
that adapts its sparsity pattern to the values of the nonzeros in the matrix and
that can be considered a threshold ILU algorithm. The main idea is to combine a
fixed-point iteration for approximating the incomplete factors for a given sparsity
pattern [7] with a process that adaptively changes the sparsity pattern. Nonzeros
could both be added and removed from the sparsity pattern in each adaptive step.
Thus the thresholding strategy is different from existing threshold ILU techniques and
generates different sparsity patterns in general. While our initial goal was to match
the preconditioner quality of existing threshold ILU factorizations, the new algorithm
can generate factorizations that are better, for the same number of nonzeros in the
factorizations. This is because, by removing nonzeros, we can exclude certain nonzeros
that must be retained in existing techniques. In particular, a given fill-in element may
be the result of an earlier fill-in element. In most existing threshold ILU techniques,
the earlier fill-in element must be included in the pattern if the later fill-in element is
included. This is not the case in our new strategy.

Section 2 provides background on using a fixed-point iteration to compute or
update an ILU factorization. Section 3 proposes a new parallel threshold ILU fac-
torization algorithm and discusses its implementation on a shared memory parallel
computer. Section 4 shows numerical tests with the new preconditioner. Section 5
concludes the paper.

2. Fixed-point iteration for computing ILU factorizations. An incom-
plete factorization is the approximate factorization of a nonsingular sparse matrix A
into the product of a sparse lower triangular matrix L and a sparse upper triangular
matrix U , i.e., A ≈ LU , where nonzero values are dropped in the factorization process.
Conceptually, a sparsity pattern S is the set of matrix locations in L and U that are
allowed to be nonzero. The choice of S can be made either before the factorization
or dynamically, during the generation of the incomplete factors.

The traditional approach of generating ILU preconditioners is based on a Gaussian
elimination process. Gaussian elimination, however, is inherently sequential. Natural
parallelism exists only if it is possible to find multiple rows that only depend on rows
that already have been eliminated. There exist efforts to increase the parallelism
with strategies like multicolor ordering or domain decomposition [3, 4, 11, 15, 13,
18, 21]. However, all these approaches have limited scalability, as they generally
fail to leverage the fine-grained parallelism of current HPC architectures. Also, the
parallelism increase often comes at the cost of reduced preconditioner quality [11, 18].

The recently proposed parallel fixed-point ILU algorithm [7] for a given sparsity
pattern is fundamentally different from existing parallel ILU strategies, as it does not
aim at parallelizing the Gaussian elimination process. Instead, a fixed-point iteration
is used to approximate the incomplete factors. The goal is to iteratively generate
incomplete factors L and U fulfilling the ILU property [23]

(1) (LU)ij = aij , (i, j) ∈ S,
where (LU)ij denotes the (i, j) entry of the product of the computed factors L and
U , and aij is the corresponding entry in the matrix A. This approach is appealing as
the unknowns

D
ow

nl
oa

de
d

08
/0

7/
18

 to
 1

30
.8

8.
24

0.
12

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARILUT—A PARALLEL THRESHOLD ILU FACTORIZATION C505

lij , i ≥ j, (i, j) ∈ S,
uij , i < j, (i, j) ∈ S

of the incomplete factors can be computed iteratively in parallel using the constraints

(2)

min(i,j)∑
k=1

(i,k)∈S
(k,j)∈S

likukj = aij , (i, j) ∈ S,

and the normalization uii = 1, i.e., the diagonal of U is all ones, assuming that the
sparsity pattern S includes the diagonal, as it should to ensure nonsingularity of the
resulting factors. From

lij = aij −
j−1∑
k=1

likukj , i ≥ j,(3)

uij =
1

lii

(
aij −

i−1∑
k=1

likukj

)
, i < j,(4)

with the sums over k implying (i, k) ∈ S and (k, j) ∈ S, the strategy can be formulated
as a fixed-point iteration for x = G(x), where x is the vector containing the unknowns
lij and uij for (i, j) ∈ S. Each fixed-point iteration is called a “sweep” in this paper.
Algorithm 1 shows the pseudocode for one sweep of the fixed-point ILU algorithm.
To promote convergence, we assume that the matrix A has been scaled such that it
has a unit diagonal [7]. The initial values of L and U used to start the fixed-point
iterations could be chosen to be the lower and upper triangular parts, respectively, of
this scaled matrix.

Algorithm 1. One sweep of the fixed-point ILU algorithm.
Input sparse matrix A, desired sparsity pattern S, and current L and U factors
for (i, j) ∈ S do

if i > j then

lij =
(
aij −

∑j−1
k=1 likukj

)
else
uij =

(
aij −

∑i−1
k=1 likukj

)
/lii

end if
end for

The approach used in the fixed-point ILU algorithm has drawn attention due to
its fine-grained parallelism, the possibility of updating all components in the incom-
plete factors simultaneously [7], its potential for architecture-specific optimization [6],
and the ability for the fixed-point iterations to benefit from a good initial approxima-
tion [1].

The fixed-point iteration can be performed asynchronously, usually resulting in
faster convergence [7]. However, we use synchronous fixed-point iterations in our
numerical tests in this paper. This allows our results to be reproduced.

3. New parallel threshold ILU algorithm. To compute an ILU factorization
where the sparsity patterns of the L and U factors are adapted to the values of A,
we propose interleaving a method for computing an ILU factorization for a fixed
sparsity pattern with a method for adjusting the sparsity pattern. However, in such

D
ow

nl
oa

de
d

08
/0

7/
18

 to
 1

30
.8

8.
24

0.
12

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C506 HARTWIG ANZT, EDMOND CHOW, AND JACK DONGARRA

an approach, we do not need to compute the ILU factorization for a given sparsity
pattern exactly, since that sparsity pattern will be further adjusted. Therefore, it is
natural to use one sweep of the fixed-point ILU algorithm to cheaply approximate an
ILU factorization in between adjusting the sparsity pattern.

There could be many possibilities for how to adjust the sparsity pattern. In this
section, we first describe one such procedure that we have found to work well. We then
discuss how to implement this procedure in parallel on a shared memory computer.

3.1. Adjusting the ILU sparsity pattern. To adjust the sparsity pattern for
the ILU factorization, we use the heuristic of reducing the Frobenius norm of the
ILU residual, R = A − LU . For symmetric positive definite (SPD) A, the norm of
R has been roughly correlated to the quality of the preconditioner [12]. However,
there exists no simple quantity, including the norm of R, that can be minimized to
produce an optimal incomplete factorization preconditioner, i.e., one that gives the
least number of solver iterations. Thus the method we propose does not attempt to
rigorously minimize the norm of R.

We separately consider the process of adding nonzeros and removing nonzeros
from a given sparsity pattern. To add nonzeros to the sparsity pattern S of the
current L and U approximations, consider an entry rij of R = A − LU . If L and U
are exact ILU factors for the pattern S, then rij would be zero, from property (1). If
rij is large in magnitude, then either L and U are very inaccurate incomplete factors
or (i, j) is not in the sparsity pattern of S. In the latter case, it is natural to consider
(i, j) as a nonzero location to add to the sparsity pattern.

A nonzero location (i, j) in R is called a candidate location, or simply a candidate.
To be clear, the candidate locations are the union of the nonzero locations in A and
the matrix product LU that are not already in the current sparsity pattern S. A
candidate can be added to S if its corresponding rij is large in magnitude according
to a threshold. Alternatively, all candidates could be added to S. We suggest using
the latter, simpler rule, which does not require selecting among the candidates. We
show some tests to support this choice in section 4.1.

We note that the sparsity pattern of LU corresponds to the pattern of the level-1
ILU factorization if the pattern of L and U corresponds to the level-0 ILU factor-
ization. (Such simple relations do not hold for higher level ILU factorizations except
for some regularly structured matrices.) This is additional justification to choose el-
ements in the sparsity pattern of the product LU as candidates. However, it is also
important to consider nonzero locations in A as candidates as well, since there can be
large elements rij that are not in the sparsity pattern of LU . As an example, consider
the following sparsity patterns for A, L, U , and LU :

A =

x x 0
x x x
0 x x

 , L =

x 0 0
0 x 0
0 x x

 , U =

x x 0
0 x x
0 0 x

 , LU =

x x 0
0 x x
0 x x

 .
If location (2, 1) is not in the sparsity pattern of L as shown above, then this loca-
tion can never become part of the sparsity pattern of the incomplete factorization.
Products of subsequent L and U factors will never contain a nonzero at (2, 1) if the
nonzero locations of A are not also considered as candidate locations.

Finally, we specify the procedure for removing nonzeros when adjusting the spar-
sity pattern S. Here, we simply remove nonzeros in L and U if they are small in
magnitude. To select which nonzeros to remove, either a threshold on the size of the
nonzeros and/or a threshold on the number of nonzeros can be used.

D
ow

nl
oa

de
d

08
/0

7/
18

 to
 1

30
.8

8.
24

0.
12

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARILUT—A PARALLEL THRESHOLD ILU FACTORIZATION C507

3.2. Algorithm outline. An outline of the parallel threshold ILU algorithm,
called “ParILUT,” is shown in Algorithm 2. Starting with an initial approximation
for L and U , the algorithm performs several iterations, which we call “steps.” We use
this term to differentiate these types of steps from solver iterations; also recall that
fixed-point iterations are called “sweeps” in this paper. In each step, (1) nonzeros are
added to L and U , then (2) all nonzero values in L and U are adjusted by a fixed-point
ILU sweep, then (3) selected nonzeros are removed from L and U , followed by (4)
another adjustment of the nonzero values by a fixed-point ILU sweep. For simplicity,
we do not consider performing more than one fixed-point ILU sweep at a time.

The ParILUT algorithm can be adapted for SPD matrices for a computational
savings of up to 50%. In this version, called “ParICT,” only the incomplete Cholesky
factor (also denoted by L) is computed.

Algorithm 2. ParILUT.
Input A, initial L and U factors
Output: incomplete factors L and U
repeat

Identify candidate locations
Compute ILU residual at candidate locations
Estimate ILU residual norm
Add mL nonzeros to L and mU nonzeros to U
Do one sweep of the fixed-point ILU algorithm
Remove the mL and mU smallest magnitude elements from L and U , respectively
Do one sweep of the fixed-point ILU algorithm

until (convergence)

Within one step, we have chosen to add nonzeros to the sparsity pattern before
removing nonzeros. Compared to removing and then adding nonzeros, this gives
somewhat more accurate L and U factors at the end of each step, although the cost
is slightly higher because the fixed-point ILU sweeps then operate on more nonzeros.
We have also chosen, at each step, to remove the same number of nonzeros as the
number of nonzeros that were added earlier in the step (with nonzeros for L and U
counted separately). This keeps the total number of nonzeros in L and U fixed from
step to step. It is possible that slowly allowing the number of nonzeros in L and U
to grow with each step (or some other strategy) would ultimately give more accurate
L and U factors, but our scheme allows us to avoid devising the details of such a
strategy.

The initial approximations for L and U that we use in this paper are the lower and
upper triangular parts of A, respectively. This corresponds to using the level-0 ILU
pattern as the initial sparsity pattern S, which has a reasonable number of nonzeros
for an incomplete factorization. It is, of course, also possible to use other sparsity
patterns for the initial approximations for L and U , e.g., the level-1 ILU pattern. In
this case, the initial approximations for L and U are still, respectively, the lower and
upper triangular parts of A, but in an implementation, explicit zeros are added to
the data structures for L and U to represent the additional nonzeros contained in the
level-1 pattern.

In the procedure for adjusting the sparsity pattern, we must specify the initial
values of the selected candidate locations, i.e., the matrix locations added to L and
U . One natural choice for these initial values is zero. However, since we use a single
fixed-point sweep to adjust the nonzero values, the zeros added do not contribute to
adjusting existing nonzero values of L and U until they themselves have been updated
to a nonzero value.

D
ow

nl
oa

de
d

08
/0

7/
18

 to
 1

30
.8

8.
24

0.
12

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C508 HARTWIG ANZT, EDMOND CHOW, AND JACK DONGARRA

Another choice of initial value for a newly added lij or uij is

lij = rij/ujj if i > j or uij = rij/lii if i < j.

If only a single nonzero is added to the sparsity pattern, these are the values of lij or
uij that would reduce rij to zero. However, adding such a nonzero will also generally
change the residual at other locations besides at (i, j). In the expressions above, the
case i = j is excluded because the diagonals of L and U must always be nonzero and
are never added or removed from the sparsity pattern. Recall from section 2 that
the matrix A has been scaled such that it has a unit diagonal and that the initial
approximations for L and U are the lower and upper triangular parts of this scaled A.
Since the diagonal elements of L and U will typically be close to 1 as the algorithm
progresses, the simpler formulas for the initial values,

(5) lij = rij if i > j or uij = rij if i < j,

could be used as an expedient. We use these formulas for our numerical tests in this
paper.

In summary, there are no parameters to choose in the way we have defined the
ParILUT algorithm. The number of nonzeros in the factors is controlled by the
number of nonzeros in the initial L and U factors used as the initial guess to the
algorithm. Such a strategy makes it easy to predict the number of nonzeros in the
preconditioner, in contrast to most forms of threshold-based incomplete factorizations.

3.3. Implementation details. The ParILUT algorithm for adjusting the spar-
sity pattern can be divided into the following building blocks.

Convert U from CSC to CSR format. For efficiency of the fixed-point ILU
algorithm (Algorithm 1), L is stored by rows in compressed sparse row (CSR) format
and U is stored by columns in compressed sparse column (CSC) format. Unfortu-
nately, this is not an efficient layout of the matrices for forming the sparse product
LU that is needed for identifying candidate nonzero locations. To form the sparse
product efficiently, both L and U should be stored by rows (or by columns). Thus,
we create a copy of U in CSR format, which is a sparse matrix transpose operation,
before forming the LU product.

To implement this transpose operation in parallel, each thread is assigned a subset
of rows of the transpose of U to be constructed. All threads traverse the original CSC
data structure of U in parallel, and when a thread encounters nonzero elements in its
rows, these elements are added to the new CSR data structure.

Identify candidates. Now that L and a copy of U are in CSR format, the set of
candidate locations is generated by performing a specialized symbolic multiplication
of L and U that includes the nonzero locations in A and ignores nonzero locations
already in the current sparsity pattern S. Since L and U are in CSR format, the
result is in CSR format. This procedure is parallelized by assigning each thread a
subset of the rows of the result.

Compute residuals for the candidate locations. Separately, we compute
the residuals rij corresponding to the candidate locations, denoted by the set Sc. The
residual rij for (i, j) ∈ Sc can be computed with fine-grained parallelism using an
algorithm similar in structure to Algorithm 1. Each thread computes rij for a subset
of the locations in Sc.

D
ow

nl
oa

de
d

08
/0

7/
18

 to
 1

30
.8

8.
24

0.
12

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARILUT—A PARALLEL THRESHOLD ILU FACTORIZATION C509

These residuals can be used for selecting which candidate locations to add to L
and U if not all candidates will be added (see section 3.1). Also, these residuals can
be used in the formulas for providing initial values for the candidate nonzeros, given
in (5). Further, these residuals can be used to estimate the ILU residual norm, to be
discussed next.

Estimate ILU residual norm. The square of the ILU residual norm is

‖R‖2F = ‖(R)S‖2F + ‖(R)Sc
‖2F ,

where S is the current sparsity pattern (before adding nonzeros) and Sc is the sparsity
pattern of the set of candidates. The notation (R)S indicates the matrix R masked by
the sparsity pattern S, i.e., rij = 0 if (i, j) 6∈ S. The term ‖(R)S‖2F is small or zero if L
and U are good approximations to the incomplete factorization with sparsity pattern
S. Assuming that this is the case, we estimate the square of the ILU residual norm as
‖R‖2F ≈ ‖(R)Sc‖2F . If the residuals for the candidate locations have been computed,
then ‖(R)Sc‖2F is easily computed via a parallel reduction across the threads. This
approximation to the ILU residual norm could be used to help detect convergence
of ParILUT, i.e., when the ILU residual norm stagnates, and also could be used to
detect when the ParILUT steps are diverging.

Select nonzeros to add. Instead of adding all the candidates to the current
sparsity pattern, it is possible to add a subset of the candidates. This is discussed
further in section 4.1.

Convert to CSC format. The nonzeros to be added to U were generated and
stored in CSR format, but U is in CSC format. Thus a second transposition is
required, which is typically smaller than the first, as it only involves the nonzeros to
be added to U .

In the ParICT version of the algorithm, this conversion is not needed because
there is no U factor. The nonzeros to be added to L, which is in CSR format, are
already stored in a row-based format because they were generated in that format.

Add nonzeros to L and U . Adding nonzeros to L (or to U) involves merging
two CSR (or CSC) data structures into one. This is implemented in two phases. In
the first phase, the two data structures are traversed and the number of nonzeros in
each row (or column) of the result is counted. Then data structures for the result are
allocated and the second phase fills these data structures. Both phases are parallelized
by partitioning the rows (or columns) of the result among the threads.

Due to the sparse dot products between rows of L and columns of U used in the
fixed-point ILU algorithm, it is also desirable to have the nonzeros in rows of L sorted
by column index and nonzeros in columns of U sorted by row index. This property is
enforced by the second phase of the merging routine.

Select nonzeros to remove. If mL nonzeros were added to L and mU nonzeros
were added to U , then to control the total number of nonzeros in the incomplete
factors, we now remove mL locations from L and mU locations from U . The nonzeros
we remove are the ones with the smallest absolute value. To accomplish this, we need
to select a threshold for L such that there are exactly mL nonzeros in L smaller than
the threshold, and similarly for U . Choosing these thresholds, however, requires an
expensive and hard-to-parallelize selection process [5].

For our purpose, the thresholds do not need to be exact, which would simply
give slightly different numbers of nonzeros in L and U from step to step. Then, to

D
ow

nl
oa

de
d

08
/0

7/
18

 to
 1

30
.8

8.
24

0.
12

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C510 HARTWIG ANZT, EDMOND CHOW, AND JACK DONGARRA

efficiently parallelize the threshold selection process, we split the nonzeros in a factor
(L or U) into subsets and select multiple thresholds in parallel. More precisely, we
partition a set of nonzero values in a factor into p subsets and generate p thresholds,
each separating the mL/p (or mU/p) smallest magnitude values in its subset. We take
the median of the p thresholds as the threshold used for marking nonzeros to remove
from the factor. We choose p to be four times the number of threads. Smaller subsets
reduce the overall runtime for selecting the threshold, at a cost of less accuracy of the
selected threshold. For factors containing fewer than 100,000 nonzeros, however, we
use the standard sequential algorithm for selecting the threshold, which has worst-case
linear complexity [5].

Remove nonzeros in L and U . Removing nonzeros is realized by contracting
the current L (or U) factor into new CSR (or CSC) sparse matrix data structures,
skipping the nonzeros previously marked for removal. This operation is implemented
in two phases. First, the number of nonzeros in each row (or column) of the result
is counted in parallel, and a global reduction is used to obtain the total nonzero
count. After allocating the memory for the new structure, the second phase copies
the nonzeros not marked for removal in row-parallel (or column-parallel) fashion.

4. Numerical tests. Comparisons are made with the threshold incomplete fac-
torizations implemented in MATLAB version 2017b. We call these the “classical”
ILUT and ICT factorizations, the latter being for SPD matrices. For comparison pur-
poses, the threshold is always chosen such that the number of nonzeros in the resulting
factorization is almost equal to the number of nonzeros in the zero-fill incomplete fac-
torization. We also make comparisons with the zero-fill incomplete factorizations,
denoted by ILU(0) and IC(0).

The ParILUT algorithm is implemented using double precision arithmetic in C
and parallelized using OpenMP. As already mentioned, we always take the upper and
lower triangular parts of the problem matrix as the initial L and U factors for the
ParILUT algorithm. Thus the factorizations that are generated have approximately
the same number of nonzeros as their corresponding zero-fill incomplete factorizations.

The implementations of the PCG and GMRES solvers are taken from the MAGMA-
sparse software package [2]. Full (not restarted) GMRES was used in order to focus
the results on the effect of the preconditioners. For each linear system tested, the
right-hand-side vector contains random values uniformly chosen from [−0.5, 0.5]. The
iterative solvers are started with a zero vector initial guess. Convergence is declared
once the relative residual norm decreases by a factor of 10−10.

4.1. Initial tests and observations. In this section, we illustrate some ideas
with a small SPD matrix, ani3, from an anisotropic diffusion problem on a square
discretized using irregular linear triangles by the finite element method (FEM). The
ratio of the diffusion coefficients in the x and y directions is 1000. The matrix has
741 equations and 4951 nonzeros, and reverse Cuthill–McKee (RCM) reordering was
applied. Refinements of the mesh will give larger matrices but classical incomplete
Cholesky breaks down with negative pivots for these larger matrices. We first show
the convergence of PCG with IC(0), classical ICT, and ParICT preconditioning. We
then show the effect of varying the number of candidate locations that are added at
each step of ParICT. Last, for this small matrix, we compare the sparsity patterns
resulting from classical ICT and ParICT.

PCG convergence. ParICT preconditioners were generated using up to 15 steps
of the algorithm and each preconditioner was used for the PCG method. Figure 1

D
ow

nl
oa

de
d

08
/0

7/
18

 to
 1

30
.8

8.
24

0.
12

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARILUT—A PARALLEL THRESHOLD ILU FACTORIZATION C511

0 5 10 15

Number of ParICT steps (2 sweeps per step)

0

10

20

30

40

50

60

70

80

C
G

 I
te

ra
ti
o

n
s

IC(0)

ICT

ParICT = 0.02

ParICT = 0.05

ParICT = 1.0

ParICT

0 5 10 15

Number of ParICT steps (2 sweeps per step)

0

1

2

3

4

5

6

7

8

R
e

s
id

u
a

l
n

o
rm

 |
|A

-L
L

T
|| F

IC(0)

ICT

ParICT = 0.02

ParICT = 0.05

ParICT = 1.0

ParICT

Fig. 1. PCG iteration count and ILU residual norm for the ParICT preconditioner computed
with different number of steps for the ani3 matrix. The results for IC (0) and classical ICT are also
shown.

(left) shows the PCG iteration counts (along with results with the parameter δ to be
explained later). The number of solver iterations using IC(0) and classical ICT are
also shown. Classical ICT preconditioning gives about half the number of iterations
as IC(0) preconditioning. Compared to classical ICT, ParICT preconditioning gives
about the same number of iterations after four or five steps. It is also observed that
ParICT can be slightly better than classical ICT when many steps are taken. This is
possible because the sparsity patterns for ICT and for ParICT are not guaranteed to
be the same.

Figure 1 (right) shows the incomplete factorization residual norm ‖A − LLT ‖F
where L is the computed incomplete Cholesky factor. The norm is larger for IC(0)
than for classical ICT. The norm for ParICT after many steps is very close to that
for classical ICT. The ParICT norm does not appear to be smaller than the classical
ICT norm when the ParICT preconditioner gives fewer PCG iterations than classical
ICT. The incomplete factorization residual norm is not sensitive enough to identify
differences between preconditioners that lead to small but noticeable differences in
PCG iteration count.

Number of nonzero locations to add. Figure 1 also shows results for variant
ParICT preconditioners where different numbers of nonzero locations are added at
each step. Recall that ParICT generates candidate locations to add to the sparsity
pattern of the incomplete factors, and for simplicity, all these candidate locations
are added. It is possible, however, to add only a subset of these locations. This
reduces the cost of the subsequent operations, such as the fixed-point ILU sweeps.
The nonzeros are added more gradually, but it is not clear how this typically affects
the quality of the resulting factorization after many steps.

Procedures for selecting the subset of nonzero locations to add, however, can
be very costly. In some sense, it is ideal to choose the nonzero locations associated
with the largest magnitude locations in the residual R = A− LU ; however, selection
algorithms to accomplish this are difficult to parallelize unless severe approximations
to this process are permitted.

Here, we propose a cheaper strategy for selecting the nonzero locations to add,
which consists of two phases. In the first phase, the nonzero locations with the largest
magnitude residual in each row of the current L factor (and each column of the current

D
ow

nl
oa

de
d

08
/0

7/
18

 to
 1

30
.8

8.
24

0.
12

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C512 HARTWIG ANZT, EDMOND CHOW, AND JACK DONGARRA

U factor, in the nonsymmetric case) are identified. This can be performed in parallel
without interaction between threads. In the second phase, a fraction of these nonzeros
are selected, based on the magnitude of their residuals. Cooperation between threads
is required in this phase. The first phase reduces the number of nonzero locations
that need to be considered. Some of these nonzero locations, however, can be very
small, and these are eliminated in the second phase. The second phase also reduces
the total number of nonzero locations to be added, in case this number is still larger
than desired after the first phase. The fraction of nonzeros to keep in the second
phase is the δ parameter shown in the legend in Figure 1.

The figure shows that utilizing only a subset of the possible nonzero locations to
be added is never better, at least for this test problem. Smaller values of δ lead to
worse results in terms of PCG convergence.

Resulting sparsity pattern. The new parallel threshold incomplete factoriza-
tion algorithm in general does not produce the same sparsity patterns for the incom-
plete factors as the classical incomplete factorization. It is thus interesting to check
how similar these patterns are. To quantify the similarity between the sparsity pat-
tern of two matrices, A and B, we define the “pattern discrepancy” as the number
of nonzero locations that are included in one sparsity pattern but not the other, i.e.,
the number of elements in

{(i, j) | aij 6= 0 ∧ bij = 0} ∪ {(i, j) | bij 6= 0 ∧ aij = 0}.

Figure 2 shows the pattern discrepancy for the ani3 matrix. Starting with an IC(0)
pattern for the ParICT algorithm, the pattern discrepancy decreases as the ParICT
sparsity pattern is updated. Note, however, that the pattern discrepancy never reaches
zero, i.e., the ultimate ParICT sparsity pattern and the classical ICT sparsity pattern
are different, although the preconditioners can be comparable in effectiveness.

Adding all possible nonzero locations at each step results in the fastest decrease
of the pattern discrepancy. In the plot, dotted lines show the maximum possible
decrease of the pattern discrepancy for factorizations using the δ parameter. For
smaller values of δ, the sparsity pattern changes more slowly, and the change in the
sparsity pattern comes close to the maximum possible rate of decrease of the pattern

0 5 10 15

Number of ParICT steps (2 sweeps per step)

0

200

400

600

800

1000

1200

1400

1600

P
a
tt
e
rn

 d
is

c
re

p
a
n
c
y
 w

.r
.t
.
IC

T

IC(0)

ParICT = 0.02

ParICT = 0.05

ParICT = 1.0

ParICT

Fig. 2. Pattern discrepancy between the classical ICT factor and the ParICT factor, the latter
computed using different numbers of steps. The discrepancy between the classical ICT factor and
the IC (0) factor is also shown. The test matrix is ani3. Dotted lines show the maximum possible
decrease of the pattern discrepancy for ParICT factorizations using the δ parameter.

D
ow

nl
oa

de
d

08
/0

7/
18

 to
 1

30
.8

8.
24

0.
12

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARILUT—A PARALLEL THRESHOLD ILU FACTORIZATION C513

10
3

10
4

10
5

Matrix dimension

10
3

10
4

10
5

N
u

m
.

c
a

n
d

id
a

te
s
 a

t
s
te

p
 3

10
3

10
4

10
5

Matrix dimension

10
-4

10
-3

10
-2

R
u

n
ti
m

e
 [

s
]

Total for step 3

Identify candidates

Fixed-point sweep

Fig. 3. (Left) Number of candidates at step 3 of the ParICT algorithm versus matrix dimension.
(Right) Time (in seconds) as a function of matrix dimension for step 3 of the ParICT algorithm,
along with the portion of time for identifying candidates and for the first fixed-point sweep of the
step. These results are for a sequence of finite element matrices of different sizes.

discrepancy. This means that the sparsity pattern is adapted efficiently in the sense
that the nonzeros that are added at each step are typically not removed at future
steps. In the remaining numerical tests in this paper, however, we consider the case
where all possible nonzero locations are added, as this usually results in the fastest
convergence without degrading the quality of the preconditioner constructed in the
end.

4.2. Scaling up the problem size. We now illustrate how the ParICT al-
gorithm scales as the problem size is increased. The mesh for the ani3 problem
was refined uniformly to obtain FEM discretizations with 3,081, 12,561, 50,721, and
203,841 equations. (The latter three matrices, called ani5, ani6, and ani7, will also
be used in later tests.) For the timings in this section, the ParICT algorithm was run
on an Intel Haswell system using 20 threads on 20 cores. The timings are the average
of several separate runs.

For these matrices, as the ParICT steps progress, the number of candidates found
at each step stays approximately constant. To see how the number of candidates varies
for problems of different sizes, Figure 3 (left) plots this relation for step 3 of the ParICT
algorithm. The number of candidates is proportional to the matrix dimension, and
this result could be expected to apply to other FEM and regular meshes.

Figure 3 (right) shows how the total time for step 3 of the ParICT algorithm
increases for increasing problem size. The scaling is expected to be at best linear in
the matrix dimension, like for sparse matrix multiplication, but we observe sublinear
scaling for small problem sizes and behavior closer to linear scaling for large problem
sizes. The reason for this is likely because the ParICT building blocks are less efficient
for smaller problem sizes. The scaling of two of the building blocks is also shown in
the figure.

4.3. Benchmark problems. Benchmark test matrices are listed in Table 1 and
include both nonsymmetric and SPD matrices. The matrices have different origins,
as shown in the table. All matrices are reordered using RCM. For the nonsymmetric
matrices, the RCM permutation is found using the structure of A+AT .

For the SPD problems, Table 2 shows PCG iteration counts using various pre-
conditioners. Zero to five steps were used for ParICT. The first observation is that
classical ICT often breaks down, i.e., encounters a negative pivot. Recall that we try to

D
ow

nl
oa

de
d

08
/0

7/
18

 to
 1

30
.8

8.
24

0.
12

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C514 HARTWIG ANZT, EDMOND CHOW, AND JACK DONGARRA

Table 1
Test matrices.

Matrix Origin SPD Num. Rows Nz Nz/Row
ani5 2D anisotropic diffusion yes 12,561 86,227 6.86
ani6 2D anisotropic diffusion yes 50,721 349,603 6.89
ani7 2D anisotropic diffusion yes 203,841 1,407,811 6.91
apache1 Suite Sparse [10] yes 80,800 542,184 6.71
apache2 Suite Sparse yes 715,176 4,817,870 6.74
cage10 Suite Sparse no 11,397 150,645 13.22
cage11 Suite Sparse no 39,082 559,722 14.32
jacobianMat0 Fun3D fluid flow [20] no 90,708 5,047,017 55.64
jacobianMat9 Fun3D fluid flow no 90,708 5,047,042 55.64
majorbasis Suite Sparse no 160,000 1,750,416 10.94
topopt010 Geometry optimization [24] yes 132,300 8,802,544 66.53
topopt060 Geometry optimization yes 132,300 7,824,817 59.14
topopt120 Geometry optimization yes 132,300 7,834,644 59.22
thermal1 Suite Sparse yes 82,654 574,458 6.95
thermal2 Suite Sparse yes 1,228,045 8,580,313 6.99
thermomech tc Suite Sparse yes 102,158 711,558 6.97
thermomech dm Suite Sparse yes 204,316 1,423,116 6.97
tmt sym Suite Sparse yes 726,713 5,080,961 6.99
torso2 Suite Sparse no 115,967 1,033,473 8.91
venkat01 Suite Sparse no 62,424 1,717,792 27.52

Table 2
PCG iteration counts using various preconditioners. ParICT preconditioners were generated

with various numbers of steps. A dash (–) indicates a breakdown of the classical ICT factorization
or lack of PCG convergence when using the ParICT preconditioner.

ParICT
Matrix No prec. IC(0) ICT 0 1 2 3 4 5
ani5 951 226 – 297 184 136 108 93 86
ani6 1,926 621 – 595 374 275 219 181 172
ani7 3,895 1,469 – 1,199 753 559 455 405 377
apache1 3,727 368 331 1,480 933 517 321 323 323
apache2 4,574 1,150 785 1,890 1,197 799 766 760 754
thermal1 1,640 453 412 626 447 409 389 385 383
thermal2 6,253 1,729 1,604 2,372 1,674 1,503 1,457 1,472 1,433
thermomech dm 21 8 8 8 7 7 7 7 7
thermomech tc 21 8 7 8 7 7 7 7 7
tmt sym 5,481 1,453 1,185 1,963 1,234 1,071 1,012 992 1,004
topopt010 2,613 692 331 845 551 402 342 316 313
topopt060 3,123 871 – 988 749 693 1,116 – –
topopt120 3,062 886 – 991 837 784 2,185 – –

select a threshold to generate factors with the same number of nonzeros as IC(0). For
the matrices tested, either the classical ICT factorization succeeds for wide ranges of
the threshold or it fails for wide ranges of the threshold. In the latter case, thresholds
that lead to completion of the factorization are generally those that give either very
accurate factorizations (small thresholds) or very inaccurate ones (large thresholds
and factorizations with sparsity patterns that are nearly diagonal).

It is also observed that ParICT can successfully compute an incomplete factor-
ization for cases where classical ICT fails. This is the case for the ani matrices. For
topopt060 and topopt120 where the classical ICT factorization also fails, Par-
ICT is able to compute a useful factorization with up to two steps but then starts
to produce worse factors. Since square roots of diagonal elements of L are used in

D
ow

nl
oa

de
d

08
/0

7/
18

 to
 1

30
.8

8.
24

0.
12

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARILUT—A PARALLEL THRESHOLD ILU FACTORIZATION C515

Table 3
GMRES iteration counts using various preconditioners. ParILUT preconditioners were gener-

ated with various numbers of steps.

ParILUT
Matrix No prec. ILU(0) ILUT 0 1 2 3 4 5
ani5 882 172 78 278 161 105 84 74 66
ani6 1,751 391 127 547 315 211 168 143 131
ani7 3,499 828 290 1,083 641 459 370 318 289
cage10 20 8 8 9 7 8 8 8 8
cage11 21 9 8 9 7 7 7 7 7
jacobianMat0 315 40 34 63 36 33 33 33 33
jacobianMat9 539 66 65 110 60 55 54 53 53
majorbasis 95 15 9 26 12 11 11 11 11
topopt010 2,399 565 303 835 492 375 348 340 339
topopt060 2,852 666 397 963 584 445 417 412 410
topopt120 2,765 668 396 959 584 445 416 408 408
torso2 46 10 7 18 8 6 7 7 7
venkat01 195 22 17 42 18 17 17 17 17

the fixed-point incomplete Cholesky factorization algorithm, ParICT can also break
down. These matrices are challenging for both classical ICT and ParICT.

In all other cases, three steps of the ParICT algorithm are sufficient to generate
a preconditioner comparable or superior to that of classical ICT.

For the nonsymmetric problems, Table 3 shows GMRES iteration counts using
various preconditioners. We also include, however, the SPD problems for which the
classical ICT factorization broke down, i.e., these matrices are treated as nonsymmet-
ric matrices. The main observation in Table 3 is that ParILUT is able to compute a
preconditioner comparable in quality to that of classical ILUT with a small number
of adaptive steps.

4.4. Execution time breakdown and scalability. Timing tests here and in
the rest of this paper are conducted with an Intel Xeon Phi 7250 (KNL) processor with
68 cores running at 1.40 GHz. The on-package MCDRAM is configured in “hybrid
mode,” which splits the 16 GB memory into 8 GB addressable main memory and 8
GB cache. The scatter thread affinity setting is used in the tests. The timing results
we report are averaged over several runs for each thread count.

We focus on the timing and scalability of the individual building blocks of the
ParILUT algorithm for two matrices, topopt120 and thermal2. These two ma-
trices have a similar number of nonzeros, but topopt120 has many fewer rows and
thus many more nonzeros per row. Figure 4 shows the execution time and parallel
scalability of the ParILUT building blocks for one step of the ParILUT algorithm (the
SPD matrices are treated as being nonsymmetric for timing purposes).

The results show that candidate search, i.e., identifying candidate locations to
add to the sparsity pattern, is the most expensive building block of ParILUT. This
is especially true for the topopt120 matrix, where the higher nonzero-per-row ratio
results in a much larger number of nonzero elements in the ILU residual A − LU .
Luckily, candidate search also scales fairly well, giving a speedup between 40 and 50
for 68 threads.

The fixed-point ILU sweeps and the elementwise parallel computation of the ILU
residuals also account for a large portion of the total computation time. These routines
are fine-grained parallel and scale almost perfectly for both problems. Note that the
first fixed-point sweep is more expensive than the second, since the first one utilizes
a sparsity pattern that includes candidate nonzero locations just added.

D
ow

nl
oa

de
d

08
/0

7/
18

 to
 1

30
.8

8.
24

0.
12

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C516 HARTWIG ANZT, EDMOND CHOW, AND JACK DONGARRA

thermal2

0 10 20 30 40 50 60 70

Number of Threads

10
-4

10
-3

10
-2

10
-1

10
0

10
1

R
u
n
ti
m

e
 [
s
]

0 10 20 30 40 50 60 70

Number of Threads

0

10

20

30

40

50

60

70

S
p

e
e

d
u

p

CSC CSR

Candidates

Residuals

ILU-norm

CSR CSC

Add

Sweep1

Select2Rm

Remove

Sweep2

topopt120

0 10 20 30 40 50 60 70

Number of Threads

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u
n
ti
m

e
 [
s
]

0 10 20 30 40 50 60 70

Number of Threads

0

10

20

30

40

50

60

70

S
p

e
e

d
u

p

CSC CSR

Candidates

Residuals

ILU-norm

CSR CSC

Add

Sweep1

Select2Rm

Remove

Sweep2

Fig. 4. For the thermal2 matrix (top row of plots) and topopt120 matrix (bottom row of
plots), the execution time (left) and multithreaded speedup (right) for the various building blocks of
ParILUT. The black solid line (without markers) is the overall execution time (left) and the total
speedup (right).

The components of ParILUT with the worst scaling are the conversions between
CSR and CSC formats. For these components, speedup is limited to about 10 on 68
threads. These components are likely memory bandwidth limited. The component
with next worst scaling is the estimation of the ILU residual norm. This component
is a reduction operation across all threads and is thus communication bound. The
execution time for this component, however, is very small.

Overall, the ParILUT algorithm can use the 68 cores of the KNL system effi-
ciently, achieving 37× speedup for the thermal2 problem and 52× speedup for the
topopt120 problem.

Comparing the raw timings, the factorization for topopt120 is an order of mag-
nitude more expensive than for thermal2. The main reason is the high cost of
candidate search for topopt120, due to its large average number of nonzeros per
row. To reduce the cost, and to reduce the number of candidates generated, an op-
tion is to perform the multiplication LU for generating candidates with only large
magnitude values in L and U . However, we did not test this option in our numerical
experiments.D

ow
nl

oa
de

d
08

/0
7/

18
 to

 1
30

.8
8.

24
0.

12
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARILUT—A PARALLEL THRESHOLD ILU FACTORIZATION C517

Table 4
Execution time for ParICT, ParILUT, and SuperLU ILU factorization (all in seconds), and

speedup of ParILUT over SuperLU incomplete factorization. For ParILUT and ParICT, five steps
were used. For ParICT, a dash (–) indicates that the matrix is nonsymmetric and no ParICT
factorization was computed.

Matrix ParICT ParILUT SuperLU Speedup
ani5 0.16 0.18 0.65 3.54
ani6 0.19 0.23 2.68 11.45
ani7 0.30 0.43 10.48 24.11
apache1 0.24 0.33 6.20 18.89
apache2 0.65 1.17 62.27 53.21
cage10 – 0.29 7.82 26.53
cage11 – 0.51 60.89 119.29
jacobianMat0 – 6.99 153.17 21.90
jacobianMat9 – 7.08 153.84 21.72
majorbasis – 0.46 9.23 20.05
thermal1 0.19 0.24 6.09 24.90
thermal2 0.68 1.17 91.83 78.59
thermomech dm 0.22 0.27 15.20 56.29
thermomech tc 0.20 0.22 7.65 34.03
tmt sym 0.41 0.67 53.42 79.81
topopt060 8.01 13.96 43.12 3.09
topopt120 8.24 14.15 44.22 3.13
torso2 – 0.26 10.78 41.34
venkat01 – 0.72 8.53 11.85

4.5. Timing comparison. Table 4 shows factorization timings for ParICT (on
the SPD matrices), for ParILUT (for all matrices), and, for comparison, for the thresh-
old ILU code implemented in the SuperLU library [17]. SuperLU is designed for
nonsymmetric matrices and a Cholesky version of the incomplete factorization is not
available. Thus, we also treat the SPD matrices as being nonsymmetric when using
the SuperLU code.

The incomplete factorization in SuperLU uses supernodes to gain efficiency but
is a single-threaded code. To control the number of nonzeros in the incomplete fac-
tors, SuperLU uses a “fill factor” parameter. This allows us to generate factors with
numbers of nonzeros comparable to those in ParILUT, which in turn are comparable
to those in ILU(0).

We first observe in Table 4 that the timings for ParICT are less than those for
ParILUT. For the largest problems, the ParICT time is about half of the ParILUT
time, but the ParICT time is generally more than half when the problem size is
small. The main observation is that ParILUT is much faster than the incomplete
factorization in SuperLU. This is mostly explained by the fact that 68 KNL threads
were used for ParILUT (and ParICT), but only one thread could be used for the
SuperLU single-threaded code.

5. Conclusion. Threshold-based ILU factorizations are typically more accurate
than level-based ILU factorizations with similar numbers of nonzeros. However, up to
now, there exists no fine-grained parallel algorithms for threshold-based factorizations.
We have presented such an algorithm in this paper, basing it on a fixed-point iteration
procedure.

The sparsity pattern of the resulting L and U factors of the new algorithm are
generally different than those generated by existing threshold ILU factorizations. We
observed that, for some SPD matrices, classical ICT factorizations may break down for

D
ow

nl
oa

de
d

08
/0

7/
18

 to
 1

30
.8

8.
24

0.
12

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C518 HARTWIG ANZT, EDMOND CHOW, AND JACK DONGARRA

large ranges of the threshold parameter. However, the new ParICT factorization may
be successfully computed, likely because it is able to find a better sparsity pattern.

The robustness of ILU preconditioning is a persistent issue. The observation
has been made in the past, at least for indefinite matrices, that threshold-based ILU
factorizations can produce very poor factorizations when small pivots are produced,
generating very large off-diagonal entries that are propagated through the factor-
ization [8]. Factorizations where the sparsity pattern is fixed beforehand (such as
zero-fill ILU) do not propagate these large, likely erroneous entries. Similarly, this
phenomenon does not occur in the new threshold-based ILU factorization presented
here, as the sparsity pattern is fixed when the matrix values in the factors are adjusted,
and a small number of adaptive steps are taken, suggesting that the new algorithm
at least is not prone to this type of failure.

Acknowledgments. The authors would like to thank Sherry Li and Meiyue
Shao for their support with the SuperLU software package.

REFERENCES

[1] H. Anzt, E. Chow, J. Saak, and J. Dongarra, Updating incomplete factorization precondi-
tioners for model order reduction, Numer. Algorithms, 73 (2016), pp. 611–630.

[2] H. Anzt, M. Gates, J. Dongarra, M. Kreutzer, G. Wellein, and M. Köhler, Precondi-
tioned Krylov solvers on GPUs, Parallel Comput., 68 (2017), pp. 32–44.

[3] A. Basermann, Parallel block ILUT/ILDLT preconditioning for sparse eigenproblems and
sparse linear systems, Numer. Linear Algebra Appl., 7 (2000), pp. 635–648.

[4] M. Benzi, W. Joubert, and G. Mateescu, Numerical experiments with parallel orderings for
ILU preconditioners, Electron. Trans. Numer. Anal., 8 (1999), pp. 88–114.

[5] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan, Time bounds for
selection, J. Comput. System Sci., 7 (1973), pp. 448–461.

[6] E. Chow, H. Anzt, and J. Dongarra, Asynchronous iterative algorithm for computing in-
complete factorizations on GPUs, in Proceedings of 30th International Conference, ISC
High Performance 2015, Lecture Notes in Comput. Sci. 9137, J. Kunkel and T. Ludwig,
eds., Springer, New York, 2015, pp. 1–16.

[7] E. Chow and A. Patel, Fine-grained parallel incomplete LU factorization, SIAM J. Sci.
Comput., 37 (2015), pp. C169–C193.

[8] E. Chow and Y. Saad, Experimental study of ILU preconditioners for indefinite matrices,
J. Comput. Appl. Math., 85 (1997), pp. 387–414.

[9] E. Chow and Y. Saad, ILUS: An incomplete LU preconditioner in sparse skyline format,
Internat. J. Numer. Methods Fluids, 25 (1997), pp. 739–748.

[10] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math.
Software, 38 (2011), pp. 1:1–1:25.

[11] S. Doi, On parallelism and convergence of incomplete LU factorizations, Appl. Numer. Math.,
7 (1991), pp. 417–436.

[12] I. S. Duff and G. A. Meurant, The effect of ordering on preconditioned conjugate gradients,
BIT, 29 (1989), pp. 635–657.

[13] D. Hysom and A. Pothen, A scalable parallel algorithm for incomplete factor preconditioning,
SIAM J. Sci. Comput., 22 (2001), pp. 2194–2215.

[14] M. T. Jones and P. E. Plassmann, An improved incomplete Cholesky factorization, ACM
Trans. Math. Softw., 21 (1995), pp. 5–17.

[15] G. Karypis and V. Kumar, Parallel threshold-based ILU factorization, in Proceedings of the
ACM/IEEE Conference on Supercomputing, 1997, pp. 1–24.

[16] N. Li, Y. Saad, and E. Chow, Crout versions of ILU for general sparse matrices, SIAM J.
Sci. Comput., 25 (2003), pp. 716–728.

[17] X. S. Li and M. Shao, A supernodal approach to incomplete LU factorization with partial
pivoting, ACM Trans. Math. Softw., 37 (2011), pp. 43:1–43:20.

[18] D. Lukarski, Parallel Sparse Linear Algebra for Multi-Core and Many-Core Platforms—
Parallel Solvers and Preconditioners, Ph.D. thesis, Karlsruhe Institute of Technology,
Germany, 2012.

[19] N. Munksgaard, Solving sparse symmetric sets of linear equations by preconditioned conjugate
gradients, ACM Trans. Math. Softw., 6 (1980), pp. 206–219.

D
ow

nl
oa

de
d

08
/0

7/
18

 to
 1

30
.8

8.
24

0.
12

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARILUT—A PARALLEL THRESHOLD ILU FACTORIZATION C519

[20] NASA, https://fun3d.larc.nasa.gov/.
[21] E. L. Poole and J. M. Ortega, Multicolor ICCG methods for vector computers, SIAM J.

Numer. Anal., 24 (1987), pp. 1394–1417.
[22] Y. Saad, ILUT: A dual threshold incomplete LU factorization, Numer. Linear Algebra Appl.,

1 (1994), pp. 387–402.
[23] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
[24] S. Wang, E. de Sturler, and G. H. Paulino, Large-scale topology optimization using pre-

conditioned Krylov subspace methods with recycling, Internat. J. Numer. Methods Engrg.,
69 (2007), pp. 2441–2468.

D
ow

nl
oa

de
d

08
/0

7/
18

 to
 1

30
.8

8.
24

0.
12

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://fun3d.larc.nasa.gov/

	Introduction
	Fixed-point iteration for computing ILU factorizations
	New parallel threshold ILU algorithm
	Adjusting the ILU sparsity pattern
	Algorithm outline
	Implementation details

	Numerical tests
	Initial tests and observations
	Scaling up the problem size
	Benchmark problems
	Execution time breakdown and scalability
	Timing comparison

	Conclusion
	References

