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SQUEEZING A MATRIX INTO HALF PRECISION, WITH AN
APPLICATION TO SOLVING LINEAR SYSTEMS\ast 

NICHOLAS J. HIGHAM\dagger , SRIKARA PRANESH\dagger , AND MAWUSSI ZOUNON\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Motivated by the demand in machine learning, modern computer hardware is increas-
ingly supporting reduced precision floating-point arithmetic, which provides advantages in speed,
energy, and memory usage over single and double precision. Given the availability of such hardware,
mixed precision algorithms that work in single or double precision but carry out part of a compu-
tation in half precision are now of great interest for general scientific computing tasks. Because of
the limited range of half precision arithmetic, in which positive numbers lie between 6 \times 10 - 8 and
7 \times 104, a straightforward rounding of single or double precision data into half precision can lead
to overflow, underflow, or subnormal numbers being generated, all of which are undesirable. We
develop an algorithm for converting a matrix from single or double precision to half precision. It first
applies two-sided diagonal scaling in order to equilibrate the matrix (that is, to ensure that every row
and column has \infty -norm 1), then multiplies by a scalar to bring the largest element within a factor
\theta \leq 1 of the overflow level, and finally rounds to half precision. The second step ensures that full
use is made of the limited range of half precision arithmetic, and \theta must be chosen to allow sufficient
headroom for subsequent computations. We apply the new algorithm to GMRES-based iterative re-
finement (GMRES-IR), which solves a linear system Ax = b with single or double precision data by
LU factorizing A in half precision and carrying out iterative refinement with the correction equations
solved by GMRES preconditioned with the low precision LU factors. Previous implementations of
this algorithm have used a crude conversion to half precision that our experiments show can cause
slow convergence of GMRES-IR for badly scaled matrices or failure to converge at all. The new
conversion algorithm computes \infty -norms of rows and columns of the matrix and its cost is negligible
in the context of LU factorization. We show that it leads to faster convergence of GMRES-IR for
badly scaled matrices and thereby allows a much wider class of problems to be solved.
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1. Introduction. The landscape of scientific computing is changing, because
of the growing availability and usage of low precision floating-point arithmetic. The
2008 revision of IEEE standard 754 introduced a 16-bit floating point format, known
as half precision (fp16) [19]. Although defined only as a storage format, it has been
widely adopted for computing, and is supported by the NVIDIA P100 and V100
GPUs and the AMD Radeon Instinct MI25 GPU. On such hardware, half precision
operations run at least twice as fast as single precision ones, and up to 8 times faster
on the NVIDIA V100 because of its tensor cores. The Summit machine at Oak Ridge
National Laboratory, which heads the June 2018, November 2018, and June 2019
TOP 500 lists (www.top500.org), has 4608 nodes, with 6 NVIDIA V100 GPUs per
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node [28], [32]. To obtain the best performance from such hardware, it is clearly
crucial to develop algorithms that can exploit half precision arithmetic. Indeed exaop
performance has already been achieved on Summit through careful use of the tensor
cores [11], [21].

As regards future machines, Fujitsu has announced that the A64FX Arm proces-
sor that will power Japan's first exascale computer supports half precision arithmetic
running at twice the speed of single precision [9].

Another form of half precision arithmetic is the bfloat16 format1 used by Google
in its tensor processing units. The bfloat16 format allocates more bits to the exponent
than fp16 and fewer to the significand, so it has a larger range but less precision. Intel
gives a detailed specification of the bfloat16 format, which will be supported in its
forthcoming Nervana Neural Network Processor [30] and Cooper Lake processors [10],
in a recent white paper [20].

While machine learning is one of the main drivers for the development of half
precision in hardware [13], [33], half precision is also being used in other applications
such as weather and climate modelling [6], [29].

Here, we are concerned with the fundamentally important problem of solving a
general linear system of equations Ax = b. We suppose that A \in \BbbR n\times n and b \in \BbbR n

are stored in a working precision of double precision (fp64) or single precision (fp32),
and that we want to solve Ax = b. The standard approach is to compute an LU
factorization in the working precision and solve two triangular systems, obtaining a
computed solution \widehat xw say. Our aim is to solve the problem substantially faster by
exploiting half precision arithmetic, yet obtain a computed solution with the same
level of backward and forward errors as \widehat xw, with minimal restrictions on A.

Algorithms satisfying most of these requirements have already been developed,
based on iterative refinement [3], [4], [14], [15], [16]. Such algorithms round the entries
of A to half precision, compute the LU factors in half precision, compute a solution
using the low accuracy LU factors, and then use iterative refinement to generate a
solution of working precision quality. Haidar et al. [14], [15] show that on NVIDIA
GPUs, using the tensor core features, this approach leads to a speedup of up to 4 over
highly optimized double precision solvers, with a reduction in power consumption of
up to 80\%. In this context, standard iterative refinement converges only for very
well conditioned matrices (\kappa (A) \lesssim 104, where \kappa (A) = \| A\| \| A - 1\| ), but the range of
solvable problems is greatly enlarged by using GMRES [31] preconditioned with the
low precision LU factors to solve the update equations [3], [4].

However, this usage of half precision has the drawback that the elements of the
matrix A may overflow or underflow when rounded to half precision. To see why,
consider Table 1.1, which shows key characteristics of half, single, and double pre-
cision arithmetic, as well as bfloat16. When rounded to fp16, any double precision
number with magnitude on the interval [6.6\times 104, 1.8\times 10308] will overflow and any
double precision number with magnitude on the interval [2.2\times 10 - 308, 5.9\times 10 - 8] will
underflow. Many matrices of practical interest have entries in these ranges.

Overflow is unrecoverable, because LU factorization cannot produce useful results
for a matrix with infinities amongst its entries. Underflow during the rounding could
cause a serious loss of information; moreover the rounded matrix could have a zero
row or column and hence be structurally singular. It is also desirable to avoid produc-
ing subnormal numbers, which lie between the underflow threshold and the smallest
normalized floating-point number, as they have less precision than normalized num-

1https://en.wikipedia.org/wiki/Bfloat16 floating-point format
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Table 1.1
Parameters for bfloat16, fp16, fp32, and fp64 arithmetic, to three significant figures: unit

roundoff u, smallest positive (subnormal) number xs
min, smallest normalized positive number xmin,

and largest finite number xmax. In Intel's bfloat16 specification subnormal numbers are not supported
[20].

u xs
min xmin xmax

bfloat16 3.91\times 10 - 3 9.18\times 10 - 41 1.18\times 10 - 38 3.39\times 1038

fp16 4.88\times 10 - 4 5.96\times 10 - 8 6.10\times 10 - 5 6.55\times 104

fp32 5.96\times 10 - 8 1.40\times 10 - 45 1.18\times 10 - 38 3.40\times 1038

fp64 1.11\times 10 - 16 4.94\times 10 - 324 2.22\times 10 - 308 1.80\times 10308

bers and they incur a performance penalty if handled in software.2 The limited range
of fp16 may therefore create a fundamental problem in using it in this context---and
indeed more generally.

In the work on iterative refinement in [14], [15], [16] elements that overflow during
conversion to fp16 are mapped to the nearest finite number, \pm xmax. As we will show,
for badly scaled real-life matrices this approach can lead to slow convergence, so a
more sophisticated strategy is needed.

In this work we investigate how to convert a matrix A from single or double
precision to half precision without overflow and with a reduced chance of underflow
and of subnormal numbers being generated. Essentially, we squeeze the matrix into
half precision by a two stage process: first we apply a two-sided diagonal scaling to
ensure that for every row and column the largest absolute value of the elements is 1;
then we multiply by a scalar in order to expand the range of the matrix entries to
occupy most of the fp16 range.

We focus on fp16 arithmetic in this work, but our algorithms and analysis apply
equally well to bfloat16, which is, however, much less prone to overflow and underflow.

In the next section we present algorithms for handling the conversion to fp16
without reference to any specific problem, as the approaches presented are widely
applicable. In section 3 we focus on mixed precision iterative refinement for the
Ax = b application. Then in section 4 we perform numerical experiments to test the
effectiveness of the proposed scaling algorithms. In section 5 we discuss an alternative
scaling algorithm that employs a rank-1 update and explain its pros and cons. We
close with some concluding remarks in section 6.

2. Algorithms for converting a matrix to half precision. One response to
overflow in converting a matrix to fp16 is simply to map any elements too large for
fp16 to \pm xmax. Algorithm 2.1 is a little more general: it maps any number outside
the interval [ - \theta xmax, \theta xmax] to the nearest point on that interval, where \theta \in (0, 1] is a
parameter. We will explain the role of \theta in section 2.1. Here, f lh denotes the operator
that rounds to fp16 and sign is the function that maps positive real numbers to 1,
negative real numbers to  - 1, and 0 to 0. Algorithm 2.1, with \theta = 1, is the approach
used in [14], [15], [16].

Another approach is to scale the matrix before rounding, as in Algorithm 2.2,
which again ensures that the largest entry in magnitude is \theta xmax.

Algorithms 2.1 and 2.2 have the following drawbacks. Algorithm 2.1 makes a
potentially large perturbation for every element that overflows, so it can make a large
change to the matrix. When maxi,j | aij | > xmax, Algorithm 2.2 reduces every element

2https://devblogs.nvidia.com/cuda-pro-tip-flush-denormals-confidence/, https://en.wikipedia.
org/wiki/Denormal number
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Algorithm 2.1 (round then replace infinities). This algorithm rounds A \in \BbbR n\times n to
the fp16 matrix A(h), mapping any elements of modulus larger than \theta xmax to \pm \theta xmax.

1: A(h) = flh(A)

2: For every i and j such that | a(h)ij | \geq \theta xmax, set a
(h)
ij = sign(aij)\theta xmax.

Algorithm 2.2 (scale by scalar then round). This algorithm rounds A \in \BbbR n\times n to
the fp16 matrix A(h), scaling all elements to avoid overflow. \theta \in (0, 1] is a parameter.

1: amax = maxi,j | aij | 
2: \mu = \theta xmax/amax

3: A(h) = flh(\mu A)

in magnitude, so it increases the risk of underflow. We illustrate the algorithms with
the matrix, adapted from [12, p. 45],

(2.1) A =

\left[  1 1 \alpha 
1  - 1 \alpha 
1 1 0

\right]  , \alpha \gg 1,

and we take \theta = 1 in both algorithms. For \alpha > xmax, Algorithm 2.1 produces

A(h) =

\left[  1 1 xmax

1  - 1 xmax

1 1 0

\right]  ,

which is a large rank-1 change to A if \alpha \gg xmax. Algorithm 2.2 produces A(h) =
flh((xmax/\alpha )A), which (in view of Table 1.1) has first and second columns consisting
entirely of subnormal numbers if

109 \approx xmax

xmin
< \alpha \leq xmax

xs
min

\approx 1012

and has zero first and second columns (hence is singular) if \alpha \geq 2\times 1012.
A second weakness of Algorithms 2.1 and 2.2 is that they do nothing to avoid

underflow of elements of A. Consider the matrix

(2.2) A(\delta ) =

\left[  1 \delta \delta 
\delta \delta  - \delta 
1  - \delta \delta 

\right]  , 0 < \delta < 1,

and take \theta = 1 in both algorithms. If \delta \leq 10 - 8, Algorithm 2.1 produces A(h) = A(0),
which has zero second and third columns, while Algorithm 2.2 produces the same
result if \delta \leq 9\times 10 - 13.

To address these issues we now consider a more sophisticated class of algorithms
that carry out two-sided diagonal scaling prior to converting to fp16: they replace A
by RAS, where

R = diag(ri), S = diag(si), ri, si > 0, i = 1: n.

Such scaling algorithms have been developed in the context of linear systems and
linear programming problems. Despite the large literature on scaling such problems,
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no clear conclusions are available on when or how one should scale; see [8] for a
recent experimental study. In any case, our use of these scalings is different from
that in previous studies, where the aim of scaling has been to reduce a condition
number or to speed up the convergence of an iterative method applied to the scaled
matrix. We scale in order to help squeeze a single or double precision matrix into
half precision, with a particular application to using the resulting half precision LU
factors for iterative refinement.

Our usage of two-sided diagonal scaling is given in Algorithm 2.3.

Algorithm 2.3 (two-sided diagonal scaling then round). This algorithm rounds
A \in \BbbR n\times n to the fp16 matrix A(h), scaling all elements to avoid overflow. \theta \in (0, 1] is
a parameter.

1: Apply any two-sided diagonal scaling algorithm to A, to obtain diagonal matrices
R, S.

2: Let \beta be the maximum magnitude of any entry of RAS.
3: \mu = \theta xmax/\beta 
4: A(h) = flh(\mu (RAS))

We now consider two different algorithms for determining R and S; both algo-
rithms are carried out at the working precision. We first consider row and column
equilibration, implemented in Algorithm 2.4. This scaling ensures that every row and
column has maximum element in modulus equal to 1---that is, each row and column
is equilibrated. The LAPACK routines xyyEQU carry out this form of scaling [2].

Algorithm 2.4 (row and column equilibration). Given A \in \BbbR n\times n, which is assumed
to have no zero row or column, this algorithm computes nonsingular diagonal matrices
R and S such that B = RAS has the property that maxk | bik| = maxk | bki| = 1 for
all i.
1: for i = 1: n do
2: ri = \| A(i, :)\|  - 1

\infty 
3: end for
4: R = diag(r)

5: \widetilde A = RA \% \widetilde A is row equilibrated.
6: for j = 1: n do
7: sj = \| \widetilde A(:, j)\|  - 1

\infty 
8: end for
9: S = diag(s)

We note that Algorithm 2.4 applies the row scaling before the column scaling.
If the column scaling is applied first a different result may be obtained, and while
the result has the same characteristic scaling property the conditioning may be very
different. For the matrix (2.1), Algorithm 2.4 yields

RAS =

\left[  \alpha  - 1 \alpha  - 1 1
\alpha  - 1  - \alpha  - 1 1
1 1 0

\right]  , \kappa \infty (RAS) \approx \alpha ,

whereas scaling columns then rows gives

A =

\left[  1 1 1
1  - 1 1
1 1 0

\right]  , \kappa \infty (RAS) \approx 1.
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However, in general there is no reason to prefer to scale by rows or columns first.
If the input matrix is symmetric then Algorithm 2.4 will generally destroy sym-

metry. A symmetry-preserving two-sided scaling is proposed by Knight, Ruiz, and
U\c car [22]. The algorithm, given in Algorithm 2.5, is iterative and scales simultaneously
on both sides rather than sequentially on one side then the other as in Algorithm 2.4.
It has the properties that

1. if A = AT then R = S;
2. the algorithm is permutation invariant: if it produces the scaling RAS for A

then it produces the scaling P1RPT
1 (P1AP2)P

T
2 SP2 for P1AP2;

3. it is linearly convergent, with asymptotic error constant 1/2.

Algorithm 2.5 (symmetry-preserving row and column equilibration). Given A \in 
\BbbR n\times n, which is assumed to have no zero row or column, this algorithm computes
nonsingular diagonal matrices R and S such that B = RAS has the property that
maxk | bik| = maxk | bki| = 1 for all i and R = S if A = AT . tol is a convergence
tolerance.
1: R = I, S = I
2: repeat
3: for i = 1: n do
4: ri = \| A(i, :)\|  - 1/2

\infty 

5: si = \| A(:, i)\|  - 1/2
\infty 

6: end for
7: A = diag(r)A diag(s)
8: R = diag(r)R
9: S = S diag(s)

10: until maxi | ri  - 1| \leq tol and maxi | si  - 1| \leq tol

Applied to A in (2.1), Algorithm 2.5 gives (converging after one iteration)

RAS =

\left[  \alpha  - 1/2 \alpha  - 1/2 1
\alpha  - 1/2  - \alpha  - 1/2 1

1 1 0

\right]  , \kappa \infty (RAS) \approx \alpha 1/2,

which in terms of conditioning and the size of the smallest nonzero entry is intermedi-
ate between the matrices from Algorithm 2.4 and the variant that scales the columns
first.

We note that \beta in line 2 of Algorithm 2.3 is equal to 1 for Algorithms 2.4 and 2.5.
This is immediate for Algorithm 2.4 and is true for Algorithm 2.5 as long as at least
one iteration is performed (of course, row and column equilibration in Algorithm 2.5
is achieved only in the limit).

Other two-sided diagonal scaling algorithms exist, including Hungarian scaling [18]
and other algorithms discussed by Larsson [23]. We have tried several of them and
not found other algorithms to have any advantage over Algorithms 2.4 or 2.5 in our
linear system application, so we do not discuss them here.

2.1. Discussion. How do Algorithm 2.1, Algorithm 2.2, and Algorithm 2.3 with
Algorithm 2.4 or Algorithm 2.5 compare for converting a matrix to fp16? Depending
on the usage of the fp16 matrix A(h), several possible criteria may be of interest, of
which we mention three.

\bullet As few elements as possible should underflow or become nonzero but unnor-
malized.
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Table 3.1
Bounds on \kappa \infty (A) such that GMRES-IR with precisions given in the first three columns is

guaranteed to converge with the limiting backward or forward errors shown in the final three columns,
where ``single"" and ``double"" denote quantities of the order of the unit roundoffs for single precision
and double precision, respectively.

Backward error
uh u ur \kappa \infty (A) Normwise Componentwise Forward error

half single double 108 single single single
half double quad 1012 \ast double double double

* This bound is from the forward error analysis in [4]; the backward error analysis requires only
\kappa \infty (A) \leq 1016.

\bullet Key properties of the original matrix, such as singular values or condition
number, should be preserved as much as possible.

\bullet The inverses of the computed LU factors of A(h) should form an effective
preconditioner for A.

In section 4 we give numerical experiments that focus on the first and last of
these criteria. We look at the percentage of nonzero elements of a matrix that under-
flow after scaling and rounding to fp16 as well as the performance of GMRES-based
iterative refinement.

Now we discuss the parameter \theta in Algorithms 2.1, 2.2, and 2.3. The best choice
will be problem-dependent. The aim is to take \theta close to 1 in order to maximize
the use of the fp16 range and thereby to reduce the chance of underflow (which in
the worst case could make the matrix singular) and of producing subnormal numbers.
However, \theta needs to be sufficiently less than 1 to allow headroom for subsequent
computations not to overflow. It is unusual in scientific computing to work close
to the overflow level, but given the constant relative spacing of the floating-point
number system there is no reason not to do so. This reasoning is analogous to the
``expose to the right"" approach in digital photography,3 whereby at the capture stage
one maximizes the exposure without overexposing, thereby making full use of the
dynamic range representable in a digital image.

3. Application to \bfitA \bfitx = \bfitb . Now we employ the algorithms of the previous sec-
tion within the solution of Ax = b using GMRES-based iterative refinement (GMRES-
IR) in three precisions [3], [4]. GMRES-IR carries out iterative refinement at the
working precision u using LU factors computed at a precision uh \geq u, and with
residuals computed at a precision ur \leq u. It solves the update equation in iterative
refinement, which has the residual as right-hand side, using GMRES preconditioned
with the LU factors. Table 3.1 shows the limiting backward and forward errors that
are guaranteed by the analysis of [3], [4] for \kappa \infty (A) satisfying the specified bounds.

We convert the matrix to fp16 by one of Algorithms 2.1--2.3 before it is factorized.
The overall algorithm is Algorithm 3.1, and the choices of precisions of interest here
are (uh, u, ur) = (half, double, quad) and (uh, u, ur) = (half, single, double). The
preconditioned matrix MA is not formed explicitly, but rather its action on a vector
is obtained by two triangular solves and a multiplication with A, both at precision ur.

In Algorithm 3.1, the refinement and the GMRES solves work with the original
system, so backward errors and residuals are measured on the original data. It would
be possible to work with the diagonally scaled system, but since norms are not in-

3https://en.wikipedia.org/wiki/Exposing to the right
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Algorithm 3.1 (GMRES-IR) Let A \in \BbbR n\times n and b \in \BbbR n be given in precision u. This
algorithm solves Ax = b using GMRES-based iterative refinement with the conversion
to fp16 done by one of Algorithms 2.1, 2.2, and 2.3. \theta \in (0, 1] is a parameter.

1: Obtain A(h) from one of
(a) Algorithm 2.1. Set \mu = 1, R = I, S = I.
(b) Algorithm 2.2. Set R = I, S = I.
(c) Algorithm 2.3 together with Algorithm 2.4 or Algorithm 2.5.

2: b(h) = flh(Rb)

3: Compute an LU factorization A(h) \approx \widehat L\widehat U in precision uh.
4: Solve A(h)y0 = b(h) in precision uh using the LU factors and form x0 = \mu Sy0 at

precision u.
5: for i = 0: imax  - 1 do
6: Compute ri = b - Axi at precision ur and round ri to precision u.
7: Solve MAdi = Mri by GMRES at precision u, where M = \mu S \widehat U - 1\widehat L - 1R and

where matrix--vector products with MA are computed at precision ur, and
store di at precision u.

8: xi+1 = xi + di at precision u.
9: if converged then

10: return xi+1, quit
11: end if
12: end for

variant under diagonal scaling this would change the convergence test and hence the
attained backward and forward errors, so it should only be done with knowledge of
the problem. This is why LAPACK, the MATLAB backslash, and other standard
solvers do not automatically scale linear systems. For further discussion of the role of
scaling in solving Ax = b see [17, sect. 9.8].

Now we consider the effect of the scaling in Algorithm 3.1. A complication in
analyzing LU factors of diagonally scaled matrices is that scaling might change the
pivot sequence. Therefore to simplify the analysis we assume that the pivot sequence is
unaffected by R and S. We consider a matrix whose entries are within the normalized
fp16 range and assume that \mu and the diagonal elements of R and S are powers of
2. Then flh(\mu RAS) = \mu R f lh(A)S = \mu RA(h)S. If A(h) = L1U1 and \mu RA(h)S =

LU are LU factorizations then A(h) = R - 1LR \cdot \mu  - 1R - 1US - 1 \equiv \widetilde L\widetilde U is also an LU
factorization. Since an LU factorization is unique, \widetilde L = L1 and \widetilde U = U1. Hence the
matrix M in Algorithm 3.1 satisfies (in exact arithmetic)

M = \mu SU - 1L - 1R = \mu SU - 1R \cdot R - 1L - 1R = \widetilde U - 1\widetilde L - 1 = U - 1
1 L - 1

1 .

The latter matrix corresponds to the unscaled problem, so the matrix MA to which
GMRES-IR is applied is the same with or without scaling, and so the scaled and
unscaled algorithms are equivalent. There is even a numerical equivalence, stemming
from the fact that the rounding errors in the LU factorizations of RAS and A scale
in the same way for a fixed pivot sequence, given our assumptions on R and S [17,
sect. 9.8]. In practice, the pivot sequences for A and RAS may be different, but in
this case it is hard to compare the matrices M obtained with and without scaling.
Nevertheless, the purpose of scaling is to fit A into fp16, and this argument shows that
if it accelerates iterative refinement it will do so indirectly, through allowing better
LU factors to be computed.
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The initial linear system that we solve for x0 in Algorithm 3.1, which reduces to
triangular systems with \widehat L and \widehat U , may need scaling in order to avoid overflow and
unnecessary underflow. How to scale triangular systems is well understood [1], [7],
[24], so we do not discuss it here. In our numerical experiments we did not scale the
triangular systems. We also note that any scaling necessary for b is best done at the
triangular solve stage.

Finally, we consider how to choose the parameter \theta in Algorithms 2.1, 2.2, and
2.3. We need to ensure that the elements of L and U do not overflow. Assume that
we are using LU factorization with partial pivoting, PA = LU . The lower triangular
matrix L has elements bounded in modulus by 1 and | uij | \leq \rho n maxi,j | aij | for all i
and j, where \rho n is the growth factor [17, sects. 9.3, 9.4]. Therefore we need \theta \leq \rho  - 1

n .
In practice, \rho n is not large, so to avoid overflow in the LU factors we might take
\theta = 0.1 (say), for which the final fp16 matrix satisfies maxi,j | aij | = 0.1xmax.

As well as avoiding overflow we also wish to avoid zero pivots. A pivot ukk

underflows to zero if | ukk| < xs
min. From the inequality

| u - 1
kk | = | eTk U - 1ek| = | eTkA - 1PTLek| = | (PA - T ek)

TLek| 
\leq \| PA - T ek\| 1\| Lek\| \infty \leq \| A - 1\| \infty ,

we see that if ukk underflows then \| A - 1\|  - 1
\infty \leq | ukk| < xs

min, in which case

(3.1) \kappa \infty (A) = \| A\| \infty \| A - 1\| \infty \geq max
i,j

| aij | \| A - 1\| \infty \geq \theta xmax

xs
min

.

For half precision the lower bound is 1.09 \times 1011 with \theta = 0.1, and in practice we
will usually have \kappa \infty (A) \ll 1011 after applying diagonal scaling. Therefore we can
conclude that it is unlikely that a pivot will underflow.

4. Numerical experiments. In this section we perform numerical experiments
to evaluate the different approaches to dealing with the conversion from double or
single precision to half precision within GMRES-IR. The convergence test that we
use in line 9 of Algorithm 3.1 is

\| b - Axi+1\| \infty 
\| A\| \infty \| xi+1\| \infty + \| b\| \infty 

\leq nu,(4.1)

in which the quantity on the left is the normwise backward error [17, Thm. 7.1]. We
first demonstrate the ineffectiveness of Algorithms 2.1 and 2.2 and then we study the
performance of Algorithm 2.3. Throughout this section performance is measured in
terms of the total number of GMRES iterations required in Algorithm 3.1. We use
the MATLAB codes for GMRES-based iterative refinement from https://github.com/
eccarson/ir3, with minor modifications. The inner GMRES iterations are terminated
based on a backward error criterion for the preconditioned system with tolerance 10 - 2

and 10 - 4 for working precisions of single and double respectively, and a maximum of 10
iterative refinement steps are performed. Finally we take tol = 10 - 4 in Algorithm 2.5.

We use Moler's fp16 class for half precision computations [25], [26], and for
quadruple precision we use the Advanpix Multiprecision Computing Toolbox [27] with
the setting mp.Digits(34), which is compliant with the IEEE 754-2008 standard [19].
We take \theta = 0.1 in all the numerical experiments. Two combinations of precisions are
considered: (uh, u, ur) = (half, double, quad) and (uh, u, ur) = (half, single, double).

The numerical experiments were performed in MATLAB R2018b on a Mac laptop
with Intel Core i5, and 8 Gb of RAM. We use 13 matrices from the SuiteSparse Matrix
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Table 4.1
Selected matrices from the SuiteSparse Matrix Collection. `` \ast "" denotes that the matrix is

symmetric. The categories that the matrices come from are 1--2: chemical process simulation,
3--6: CFD, 7: materials problem, 8: optimal control, 9--11: structural problems, and 12--13: 2D/3D
problem sequence.

Index Matrix n \kappa \infty (A) maxi,j | aij | mini,j\{ | aij | : aij \not = 0 \} 
1 west0132 132 1.05e+12 3.16e+05 3.31e-05
2 west0167 167 6.76e+10 3.16e+05 3.30e-05
3 pores 1 30 2.49e+06 2.46e+07 4.00e+00
4 saylr1 238 1.59e+09 3.06e+08 7.19e-04
5 steam1 240 3.11e+07 2.17e+07 1.48e-07
6 steam3 80 7.64e+10 1.73e+10 1.08e-01
7 arc130 130 1.20e+12 1.05e+05 7.71e-31
8\ast tumorAntiAngiogenesis 2 305 1.98e+10 5.15e+05 8.50e-06
9\ast bcsstk01 48 1.59e+06 2.47e+09 3.33e+03
10\ast lund a 147 5.44e+06 1.50e+08 1.22e-04
11\ast nos1 237 2.53e+07 1.22e+09 8.00e+05
12 fs 183 3 183 1.59e+14 8.45e+08 2.35e-10
13 fs 183 1 183 1.08e+14 8.22e+08 1.81e-25

Collection4 [5], which are selected as representative of all 36 n \times n matrices in the
collection with n \leq 400 and maximum absolute value of a matrix entry greater than
xmax for fp16. We restrict to n \leq 400 because the time required to LU factorize in
half precision is very high for larger n, because of the overheads of the fp16 class.
Table 4.1 lists the matrices along with their properties and the underlying application.
The right-hand side of each system is generated as randn(n,1), and the random
number generator is seeded for reproducibility. Our test codes are available at https:
//github.com/SrikaraPranesh/fp16Scaling.

We first consider the use of Algorithms 2.1 and 2.2 in GMRES-IR. The results
are displayed in Table 4.2. We see that Algorithm 2.1 often requires a large number of
GMRES iterations for iterative refinement to converge. Algorithm 2.2 requires fewer
GMRES iterations than Algorithm 2.1, but iterative refinement fails to converge for
matrices 12 and 13, because underflow causes the matrices to be singular in fp16.
From these numerical experiments we conclude that Algorithms 2.1 and 2.2 are not
reliable ways to convert a matrix to fp16.

Next we consider the performance of Algorithm 3.1 using Algorithms 2.4 and 2.5
for the scaling. The results, in Table 4.3, show that both diagonal scalings perform
very well. We make two observations. First, in the (half, single, double) case, no
iterations are required for many of the matrices. This is because one or both of
\| A\| \infty and \| x\| \infty are so large that (4.1) is satisfied for the initial solution. Second,
we note that convergence is achieved in every case and with generally fewer iterative
refinement steps and GMRES iterations than for Algorithms 2.1 and 2.2.

To explore these results further, we note that the analysis in [3], [4] actually shows
that convergence of iterative refinement will be achieved provided that \kappa \infty (MA)u is

sufficiently less than 1, where MA = \mu S \widehat U - 1\widehat L - 1R is the preconditioned matrix in
Algorithm 3.1. (The bounds in Table 3.1 are a weakening of this condition.) Table 4.4
shows the values of \kappa \infty (MA) for a working precision of double; for single precision
the quantities are broadly similar. We see that \kappa \infty (MA)u \ll 1 for matrices 1--11.

For matrices 12 and 13 the preconditioned matrixMA is extremely ill conditioned,
like A, but Algorithms 2.4 and 2.5 nevertheless converge, even though \kappa \infty (MA) is of

4Formerly known as the University of Florida Sparse Matrix Collection.
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Table 4.2
Total number of GMRES iterations required by GMRES-IR (Algorithm 3.1), using Algo-

rithm 2.1 and Algorithm 2.2, for single and double as working precision. Failure to converge is
denoted by ``--"". Numbers in parentheses indicates the number of iterative refinement steps.

Index
(half, single, double) (half, double, quad)

Algorithm 2.1 Algorithm 2.2 Algorithm 2.1 Algorithm 2.2
1 4 (1) 2 (1) 11 (2) 7 (2)
2 3 (1) 2 (1) 10 (2) 8 (2)
3 27 (2) 2 (1) 66 (3) 7 (2)
4 31 (2) 0 (0) 235 (3) 14 (2)
5 94 (2) 0 (0) 258 (3) 4 (2)
6 8 (1) 2 (1) 106 (3) 3 (1)
7 0 (0) 1 (1) 4 (2) 2 (1)
8 0 (0) 3 (1) 25 (3) 10 (2)
9 94 (3) 0 (0) 119 (3) 7 (2)

10 409 (5) 0 (0) 334 (3) 13 (3)
11 212 (2) 0 (0) 562 (3) 21 (2)
12 0 (0) -- (--) 9 (2) -- (--)
13 0 (0) -- (--) 8 (2) -- (--)

Table 4.3
Total number of GMRES iterations required by GMRES-IR (Algorithm 3.1), using Algo-

rithm 2.4 and Algorithm 2.5, for single and double as working precision. Numbers in parentheses
indicate the number of iterative refinement steps.

Index
(half, single, double) (half, double, quad)

Algorithm 2.4 Algorithm 2.5 Algorithm 2.4 Algorithm 2.5
1 0 (0) 0 (0) 2 (1) 2 (1)
2 0 (0) 0 (0) 4 (2) 4 (2)
3 2 (1) 2 (1) 6 (2) 5 (2)
4 0 (0) 0 (0) 16 (2) 14 (2)
5 0 (0) 0 (0) 2 (1) 2 (1)
6 0 (0) 0 (0) 2 (1) 2 (1)
7 0 (0) 0 (0) 2 (1) 2 (1)
8 0 (0) 0 (0) 8 (2) 8 (2)
9 0 (0) 0 (0) 9 (3) 10 (3)

10 1 (1) 0 (0) 11 (3) 11 (3)
11 0 (0) 0 (0) 36 (3) 22 (2)
12 0 (0) 0 (0) 9 (2) 2 (1)
13 0 (0) 0 (0) 7 (2) 2 (1)

order u - 1. We also note that a small number of GMRES iterations are required in
every case, as shown in Table 4.3.

We note that in the previous works [4], [14], [15] the forward error test \| x  - 
x\ast \| \infty /\| x\ast \| \infty < u, where x\ast is the exact solution, was also used as a convergence
criterion for GMRES-IR. We have run all our experiments with this forward error
test along with (4.1); we found no major differences, with the forward error test
typically requiring 1--3 additional GMRES iterations.

When diagonal scalings are applied in practice, they are often rounded to the
nearest powers of 2 in order to avoid rounding errors in their application; this is done
in the LAPACK xyyEQUB routines, for example. We have not rounded the scalings
in the results reported here. We did try such rounding, but it had no effect on the
number of GMRES iterations, which we attribute to rounding errors in applying the
scaling (which is done at the working precision) being negligible compared with those
in the rounding to fp16.

Based on these numerical experiments with GMRES-IR we conclude that Algo-
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Table 4.4
Condition number of MA in Algorithm 3.1 for a working precision of double, where M =

\mu S \widehat U - 1\widehat L - 1R and \widehat L and \widehat U are the LU factors of A(h) computed in fp16.

Algorithm 2.4 Algorithm 2.5

Index \kappa \infty (A) \kappa \infty (MA) \kappa \infty (MA)
1 1.05e+12 8.03e+05 8.70e+05
2 6.76e+10 1.39e+03 5.18e+03
3 2.49e+06 2.48e+00 2.13e+00
4 1.59e+09 8.78e+01 9.56e+01
5 3.11e+07 1.01e+00 2.21e+00
6 7.64e+10 2.67e+00 5.62e+02
7 1.20e+12 6.24e+04 8.95e+04
8 1.98e+10 5.20e+03 9.56e+03
9 1.60e+06 7.40e+00 2.99e+01

10 5.44e+06 2.02e+03 1.55e+03
11 2.53e+07 4.64e+04 4.95e+02
12 1.59e+14 7.24e+14 3.97e+16
13 1.08e+14 2.24e+14 3.06e+16

rithms 2.4 and 2.5 are both very effective as scaling algorithms within Algorithm 2.3
and are significantly better than Algorithms 2.1 and 2.2. If a symmetry-preserving
LU-type factorization is to be computed then Algorithm 2.5 should be preferred, as
it preserves symmetry.

At the end of section 2 we explained that the purpose of \theta in Algorithm 2.3 is
to increase the matrix entries in order to avoid subnormal numbers and underflow.
To check the effect of \theta we compared the results for \theta = 0.1, for which the largest
entry in absolute value of the scaled matrix is 0.1xmax, and \theta = 1/xmax, for which
the entries lie on the interval [ - 1, 1]. We found that setting \theta = 1/xmax does not lead
to any significant change in the number of GMRES iterations. However, as shown
in Table 4.5, for some matrices the percentage of nonzero elements that underflow
drops significantly for \theta = 0.1. Note that for matrices 7, 12, and 13, \theta = 0.1 results
in a significant reduction in the percentage of nonzero entries that underflow when
compared with \theta = 1/xmax. The percentage of entries that become subnormal is very
small (always less than 1 percent), but again \theta = 0.1 leads to a smaller percentage
than \theta = 1/xmax.

5. Another scaling strategy. One can consider other transformations, in addi-
tion to Algorithm 2.3, in an attempt to fully exploit the fp16 range. Let A denote the
matrix after the initial diagonal scaling using either Algorithm 2.4 or Algorithm 2.5
and define

amin = min
i,j

aij , amax = max
i,j

aij .

In this section we explore the idea of carrying out a linear transformation of the
elements of A to a different interval [z1, z2] within the fp16 range. To that end, we
define the matrix C by

cij = z2

\biggl( 
aij  - amin

amax  - amin

\biggr) 
+ z1

\biggl( 
aij  - amax

amin  - amax

\biggr) 
= aij

\biggl( 
z2  - z1

amax  - amin

\biggr) 
+

z1amax  - z2amin

amax  - amin
.

Hence

(5.1) C = \alpha A+ \beta eeT ,
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Table 4.5
Percentage of nonzero entries which underflow during conversion from double precision to half

precision for \theta = 1/xmax (for which maxi,j | a
(h)
ij | = 1) and \theta = 0.1 (for which maxi,j | a

(h)
ij | =

0.1xmax).

Index
Algorithm 2.4 Algorithm 2.5

\theta = 1/xmax \theta = 0.1 \theta = 1/xmax \theta = 0.1
1 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00
5 2.85 0.00 2.85 0.00
6 0.00 0.00 0.00 0.00
7 44.84 36.45 44.36 30.67
8 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00

10 5.59 0.00 5.96 0.00
11 0.00 0.00 0.00 0.00
12 16.37 3.37 10.76 0.00
13 23.85 11.72 21.04 4.81

where e = [1, 1, . . . , 1]T and

\alpha =
z2  - z1

amax  - amin
, \beta =

z1amax  - z2amin

amax  - amin
.

One possible choice of target interval is [z1, z2] = [ - \theta xmax, \theta xmax], where \theta \in 
(0, 1], which stretches the range to within a factor \theta of the whole fp16 range (which
Algorithm 2.3 does not guarantee to do). To demonstrate the advantage of this
approach, consider the matrix

A =

\biggl[ 
1 - \epsilon 1
1 1

\biggr] 
, \epsilon = 2 - k, 12 \leq k \leq 16,

which is stored exactly in double precision arithmetic and for which \kappa 2(A) \approx 4/\epsilon \leq 
2.6 \times 105. Note that A is equilibrated and so diagonal scaling by Algorithms 2.4 or
2.5 does not alter the matrix entries. Therefore f lh(A) is the matrix of 1s and so is
singular, even though A is relatively well conditioned as a double precision matrix.
If we use the rank-1 update scaling with [z1, z2] = [ - \theta xmax, \theta xmax] then the scaled
matrix in (5.1) is given by

C = \theta xmax

\biggl[ 
 - 1 1
1 1

\biggr] 
, \kappa \infty (A) = 2.(5.2)

The transformation (5.1) preserves information in the \epsilon term and greatly improves
the condition number of the matrix. However, a drawback is that it fills in any zero
elements, so destroys sparsity. We also note that when z1 =  - z2 and amin =  - amax,
\beta = 0, and so C = \alpha A and the condition number does not change.

Another possibility is [z1, z2] = [\mu xmin, \theta xmax], where \mu \in \{ 0, \widetilde \theta \} , with \widetilde \theta \geq 1. This
transformation maps the aij onto the nonnegative interval [\mu xmin, \theta xmax]. We could
alternatively use this choice of [z1, z2] and modify amin and amax so that

amin = min
i,j

| aij | , amax = max
i,j

| aij | .

Here, we can set \mu = 0 to preserve sparsity. Now the transformation maps the
nonnegative aij onto [\mu xmin, \theta xmax], but the nonpositive elements are not constrained
and can overflow.
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In the context of a system of linear equations Ax = b, the transformation (5.1)
yields

(C  - \beta eeT )x = \alpha b.

This equation can be solved using the Sherman--Morrison formula to give

(5.3) x =

\biggl( 
C - 1  - \beta C - 1eeTC - 1

1 - \beta eTC - 1e

\biggr) 
\alpha b,

which requires the solution of two linear systems with C, which can be done by
GMRES-IR with the need for just one LU factorization.

Our experience in the context of GMRES-IR is that this transformation generally
does not provide any benefits over Algorithm 2.3 on its own, so we will not pursue
it here. In other contexts the transformation could prove useful. For example, it can
potentially reduce the condition number, as demonstrated in (5.2), and if the matrix

has positive entries then using (5.1) with [z1, z2] = [\widetilde \theta xmin, \theta xmax] prevents entries
from overflowing, underflowing, or becoming subnormal in the conversion to fp16.

6. Conclusions. Converting a floating-point matrix to lower precision is not
a trivial task when the lower precision format has a much narrower range than the
original one, especially when the target is the fp16 arithmetic that is increasingly
available in hardware. Overflow and underflow in the conversion are undesirable, as
is the generation of subnormal numbers.

We have derived a new conversion algorithm that employs two-sided diagonal
scaling along with a further scalar multiplication that moves the elements of largest
magnitude close to the overflow threshold. Our particular interest is in GMRES-IR
(Algorithm 3.1), which solves a linear system Ax = b, where A and b are given in
double precision, using an LU factorization of an fp16 representation of A. Previous
work has shown significant benefits in speed and energy usage over solving entirely
in double precision [14], [15], [16], but in that work the conversion to fp16 was done
by rounding and then mapping any infinities back to the nearest floating-point num-
ber. Our new conversion algorithm produces more reliable and faster convergence of
GMRES-IR on badly scaled matrices, usually requiring fewer total GMRES iterations
and fewer iterative refinement steps. It thereby allows a wider class of problems to
be solved and so, given its negligible cost, is recommended for use with GMRES-IR.
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