
On a multilevel Levenberg-Marquardt method for the training of

artificial neural networks and its application to the solution of

partial differential equations

H. Calandraa and S. Grattonb and E. Ricciettib and X. Vasseurc

aTOTAL, Centre Scientifique et Technique Jean Féger, avenue de Larribau F-64000 Pau,
France; bINPT-IRIT, University of Toulouse and ENSEEIHT, 2 Rue Camichel, BP 7122,
F-31071 Toulouse Cedex 7, France; c ISAE-SUPAERO, University of Toulouse, 10, avenue
Edouard Belin, BP 54032, F-31055 Toulouse Cedex 4, France

ARTICLE HISTORY

Compiled February 13, 2020

ABSTRACT
In this paper we propose a new multilevel Levenberg-Marquardt optimizer for the
training of artificial neural networks with quadratic loss function. This setting al-
lows us to get further insight into the potential of multilevel optimization methods.
Indeed, when the least squares problem arises from the training of artificial neural
networks, the variables subject to optimization are not related by any geometri-
cal constraints and the standard interpolation and restriction operators cannot be
employed any longer. A heuristic, inspired by algebraic multigrid methods, is then
proposed to construct the multilevel transfer operators. We test the new optimizer
on an important application: the approximate solution of partial differential equa-
tions by means of artificial neural networks. The learning problem is formulated
as a least squares problem, choosing the nonlinear residual of the equation as a
loss function, whereas the multilevel method is employed as a training method. Nu-
merical experiments show encouraging results related to the efficiency of the new
multilevel optimization method compared to the corresponding one-level procedure
in this context.

KEYWORDS
Algebraic multigrid method; Artificial neural network; Levenberg-Marquardt
method; Multilevel optimization method; Partial differential equation.

1. Introduction

Artificial neural networks (ANNs) have been recently successfully employed in different
fields, such as classification and regression, image or pattern recognition, to name a
few [5, 25, 27, 32]. Their promising performance encouraged also the spread of special
neural networks’ hardware implementations, to decrease the computational training
times and to provide a platform for efficient adaptive systems [41].

One of the main issues with the use of artificial neural networks is to be able
to successfully train them. The training is based on the solution of an optimization
problem that can be large-scale as, for highly nonlinear problems, a network with a
large number of weights may be necessary to approximate the solution with a sufficient
accuracy. Gradient-based methods may exhibit a slow convergence rate, it may be

Contact E. Riccietti. Email: elisa.riccietti@enseeiht.fr

difficult to properly tune the learning rate and they are generally more efficient in
the solution of convex problems. Recently, a new stream of research has emerged,
on methods that make use of second-order derivative approximations, contributing to
build the next generation of optimization methods for large-scale machine learning
[1, 7]. These methods are anyway generally really expensive in their standard form,
especially when the number of variables is large.

For such problems multilevel techniques have shown to be really effective, both in
the context of pure multigrid methods for the solution of linear systems arising from
the discretization of linear or nonlinear elliptic partial differential equations in two
or higher dimensions [9, 23, 57] and in the context of nonlinear optimization [20, 21,
31, 35, 36, 42, 43, 58]. The main idea on which multilevel methods are based is the
exploitation of a hierarchy of problems, approximating the original one. Usually this
hierarchy is built exploiting the fact that the underlying infinite-dimensional problem
may be described at several discretization levels. The use of more levels is beneficial,
as the coarse problems will generally be cheaper to solve than the original one, and it
is possible to exploit the fact that such problems exhibit multiple scales of behaviour
[9].

Inspired by these developments, we propose a new multilevel Levenberg-Marquardt
training method, which is a member of the family of multilevel optimization methods
recently introduced by the authors in [10], aimed at reducing the cost of the standard
one-level procedure. Our aim is then twofold: on one side we can investigate the use-
fulness of multilevel methods as training methods, inquiring if the multilevel nature
of the proposed solver can help to speed up the training process with respect to the
one level optimization strategy. On the other side, this context allows us to get more
insight into the potential of multilevel strategies for nonlinear optimization, investi-
gating their application on problems that do not possess an underlying geometrical
structure. Multilevel techniques require the construction of transfer operators. Usually
standard interpolation and restriction operators, commonly employed in the case of
linear systems, are also used in the case of nonlinear problems. However, to employ
such operators a geometrical structure of the variables is needed. In the case of a
training problem, the variables subject to optimization are the weights and biases of
the network, which do not possess any geometrical structure. To derive a multilevel
method for the training problem, it is then necessary to design multilevel transfer
operators differently.

It is clear that the network possesses an important structure, even if it is not geo-
metric in nature. It rather presents an algebraic structure, as the one that is usually
exploited in algebraic multigrid, see, e.g., [51] and [57, Appendix A]. We investigate
then if we could exploit this structure to define both the hierarchy of problems and the
multilevel transfer operators. We propose a technique inspired by classical algebraic
multigrid methods to do so.

We then test the proposed procedure on an important and up-to-date problem:
the approximate solution of partial differential equations (PDEs) by neural networks.
ANNs are well known for their excellent flexibility in approximating complex high-
dimensional nonlinear functions and are thus naturally suitable to approximate the
solution of partial differential equations. The use of artificial neural networks in prob-
lems involving PDEs has attracted a lot of interest lately. ANNs have been used for
many different purposes in this field: for the numerical solution of either direct prob-
lems [15, 40, 44, 46, 49] or of inverse problems [45, 47], to reconstruct the equation
from given data [38, 50, 53], or to melt with standard solution techniques such as finite
element or finite difference methods, see [34, 39, 48, 56].

2

These techniques have indeed been shown to have several advantages over conven-
tional numerical methods, see for example [17, 34], including the following ones. The
differential operator does not need to be discretized, and the approximate solution
obtained possesses an analytical expression and is continuously differentiable. This is
essential for example in control problems, where derivatives of the solution are needed.
The solution is also meshless, which helps to solve problems in complex geometries,
as these methods require only a sampling of the domain, which is more easily pro-
duced than meshes when the geometry in irregular. Using neural networks provides
a solution with very good generalization properties, this allows not only to have an
approximation to the solution at all the points of the training interval (with an accu-
racy usually comparable to that obtained at the training points) but also to perform
extrapolation outside the interval. This approach is useful especially in case of high
dimensional equations, as it allows to alleviate the curse of dimensionality as the com-
putational cost of training is only weakly dependent on the problem dimension, see,
e.g., [24, 28, 29] among others, while for classical methods the problem’s size grows
exponentially with its dimension. Temporal and spatial derivatives can be treated in
the same way and the training is highly parallelizable on Graphics Processing Units
(GPU). These techniques are easy to implement, they are general and can be therefore
be applied to every kind of differential equation and can be easily modified to handle
different types of boundary conditions. More importantly, this approach provides a
natural way to solve problems with nonlinear operators, with no need of linearisation.
On some problems, e.g. problems in high dimension and problems with intricate do-
mains, approaches based on neural networks have already been shown to outperform
state-of-the-art methods [2, 28, 29, 37]. However, further work can be done to further
improve their performance.

We propose to use a feedforward neural network and to choose the residual of the
(possibly nonlinear) differential equation as the training loss function. This gives rise to
a nonlinear least squares problem that we solve by the multilevel Levenberg-Marquardt
method.

This manuscript represents a first step in the use of multilevel techniques in the
training of artificial neural networks. Indeed, here we focus on the simplest case, that
of one-layer networks. This case is interesting on its own, motivated by the Hecht-
Nielsen theorem [26], see Section 4.1. From this theorem, we know that a one-layer
network is capable of approximating a wide class of functions, up to any given accuracy
level. The necessary number of nodes may however be really large. We experimentally
show that it is not really the case for the class of problems we consider. Numerical
results show indeed that with a reasonable number of nodes we can reach the desired
solution accuracy. Moreover, the strategy we present to cope with the large dimension
of the input space may further encourage the use of such networks, the extension of
this to a more complicated multilayer being deferred to a forthcoming paper.

Our contributions We summarize here the main novelties and contributions of the
manuscript. Our aim is to study the applicability of multilevel optimization methods
for problems that do not possess an underlying geometrical structure, and in particular
we focus on the training of artificial neural networks. Two practical questions are
addressed.

• How to make the approach practical and face the lack of a geometrical structure
of the underlying problem? We propose the use of a heuristic inspired by clas-
sical algebraic multigrid methods to define the hierarchy of problems and the

3

multilevel transfer operators.
• What is the performance of the proposed method as compared to the standard

one-level version? We consider the approximation of the solution of a partial
differential equation by a neural network, problem lately widely addressed by
the machine learning community. We show through numerical experiments the
gains, in terms of floating point operations, arising from the use of multilevel
solvers as compared to standard one level solvers.

The idea of exploiting multiple scales in learning is not new, we mention for example
[22, 30, 52]. Therein the multilevel structure is introduced in the model architecture,
while here the training strategy is a multilevel strategy, the network’s architecture
being unchanged.

Moreover, to our knowledge, multilevel optimization techniques have only been ap-
plied to problems in which the hierarchy of function approximations could be built
by exploiting the underlying geometrical structure of the problem at hand. Thus this
work represents an improvement in the study of multilevel optimization methods.

Structure of the manuscript The manuscript is organized as follows. In Section
2 we briefly review the standard Levenberg-Marquardt method, whereas in Section 3
we describe its multilevel extension detailed in [10]. Then, in Section 4, we describe
the artificial neural network approximation of the solution of the partial differential
equation we employ and the related least squares problem. We then discuss its solution
by the multilevel solver. In particular, we introduce the heuristic we propose to build
the multilevel transfer operators. Finally, in Section 5, we present detailed numerical
experiments related to the solution of both linear and nonlinear partial differential
equations. Conclusions are drawn in Section 6.

2. The Levenberg-Marquardt method

The Levenberg-Marquardt (LM) method is an iterative procedure for the solution of
least squares problems.

Let us consider a least squares problem of the form:

min
x
f(x) =

1

2
‖F (x)‖2, (1)

with F : D ⊆ Rn → Rm, m ≥ n, a twice continuously differentiable function. At each
iteration k, given the current iterate xk, the objective function f is approximated by
the norm of an affine model of F , resulting in a quadratic Taylor model for f with
approximated Hessian matrix:

mk(xk, s) =
1

2
‖F (xk)‖2 + (J(xk)

TF (xk))
T s+

1

2
sTBks,

where J is the Jacobian matrix of F and Bk = J(xk)
TJ(xk) approximates the Hessian

matrix ∇2
xf(xk). We later denote mk(xk) = mk(xk, 0). Its regularized counterpart:

mk(xk, s) +
λk
2
‖s‖2, (2)

4

for λk > 0 a positive value called regularization parameter, is minimized (possibly
approximately) to find a step sk that is used to define the new iterate xk+1 = xk + sk.

At each iteration it has to be decided whether to accept the step or not. This decision
is based on the accordance between the decrease in the function (actual reduction,
ared = f(xk) − f(xk + sk)) and in the model (predicted reduction, pred = mk(xk) −
mk(xk, sk)):

ρk =
ared

pred
=

f(xk)− f(xk+1)

mk(xk)−mk(xk, sk)
. (3)

If the model is a sufficiently accurate approximation to the objective function, ρk will
be close to one. Then, the step is accepted if ρk is larger than a chosen threshold
η1 ∈ (0, 1) and is rejected otherwise. In the first case the step is said to be successful,
otherwise the step is unsuccessful.

After the step acceptance, the regularization parameter is updated for the next iter-
ation. The update is still based on the ratio (3). If the step is successful the parameter
λ is decreased, otherwise it is increased.

The whole process is stopped when a minimizer of f is reached. Usually, the stopping
criterion is based on the norm of the gradient, i.e. given a threshold ε > 0 the iterations
are stopped as soon as ‖∇xf(xk)‖ < ε.

The main computational work per iteration in this kind of methods is represented
by the minimization of the model (2). This is the most expensive task, and the cost
depends on the dimension of the problem. However, from the convergence theory of
such methods, it is well known that it is not necessary to minimize the model exactly
to obtain global convergence.

A well-known possibility is indeed to minimize the model until the Cauchy decrease
is achieved, i.e. until a fraction of the decrease provided by the Cauchy step (the step
that minimizes the model in the direction of the negative gradient) is obtained. Here,
we will consider a different kind of stopping criterion for the inner iterations, initially
proposed in [4, 12] and also used in [10]. In this case, the inner iterations (for the
minimization of the model) are stopped as soon as the norm of the gradient of the
regularized model becomes lower than a multiple of the norm of the step:

‖∇smk(xk, sk) + λksk‖ ≤ θ‖sk‖, (4)

for a chosen constant θ > 0. In order to minimize the model approximately, it is
possible to use a Krylov subspace method on the system

(Bk + λkI)s = −J(xk)
TF (xk),

(with I the identity matrix of order n) and stop it as soon as the inequality (4) is
satisfied.

The Levenberg-Marquardt procedure is sketched in Algorithm 1.
In the next section we will briefly review the multilevel extension of the Levenberg-

Marquardt method. This method is part of the family of methods introduced in [10],
and corresponds to the case q = 1, but with a different norm for the regularization
term. In [10], if q = 1, the regularized model is defined as

f(xk) +∇xf(xk)
T s+

λk
2
‖s‖2, (5)

5

where, in case of a least squares problem, ∇xf(xk) = J(xk)
TF (xk). For a symmetric

positive definite matrix M ∈ Rn×n and x ∈ Rn, we can define the following norm:

‖x‖M = (xTMx)1/2.

If we define Mk =
Bk
λk

+ I, then we have
λk
2
‖s‖2Mk

=
1

2
sTBks +

λk
2
‖s‖2, so that the

regularized model in (2) can be written as

f(xk) +∇xf(xk)
T s+

λk
2
‖s‖2Mk

,

corresponding to the model in (5), just with a different norm for the regularization
term.

The theory presented in [10] for the case q = 1 applies for the multilevel method
presented in Section 3, because the ‖·‖Mk

norm and the Euclidean norm are equivalent,
if we assume that ‖Bk‖ is bounded at each iteration k, which is a common assumption
in optimization.

Algorithm 1 LM(x0, λ0, ε) (Standard Levenberg-Marquardt method)

1: Given 0 < η1 ≤ η2 < 1, 0 < γ2 ≤ γ1 < 1 < γ3, λmin > 0, θ > 0.
2: Input: x0 ∈ Rn, λ0 > λmin, ε > 0.
3: k = 0
4: while ‖∇xf(xk)‖ > ε do
5: • Initialization: Define the model mk as in (2).
6: •Model minimization: Find a step sk that sufficiently reduces the model, i.e.

such that (4) holds.
7: • Acceptance of the trial point and regularization parameter update:

Compute ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk, sk)
.

8: if ρk ≥ η1 then
9:

xk+1 = xk + sk, λk+1 =

{
max{λmin, γ2λk}, if ρk ≥ η2,
max{λmin, γ1λk}, if ρk < η2.

10: else
11:

xk+1 = xk, λk+1 = γ3λk.

12: end if
13: k = k + 1
14: end while

3. Multilevel extension of the Levenberg-Marquardt method

We consider a least squares problem of the form (1). At each iteration of the standard
method, the objective function is approximated by the regularized Taylor model (2).

6

The minimization of (2) represents the major cost per iteration of the methods, which
crucially depends on the dimension n of the problem. We want to reduce this cost by
exploiting the knowledge of alternative simplified expressions of the objective function.
More specifically, we assume that we know a collection of functions {f l}lmax

i=0 such that
each f l is a twice-continuously differentiable function from Rnl → R and f lmax(x) =
f(x) for all x ∈ Rn. We will also assume that, for each i = 1, . . . , lmax, f l is more
costly to minimize than f l−1.

The method is recursive, so it suffices to describe the setting with two levels only.
Then, for sake of simplicity, from now on we will assume that we have two approxi-
mations to our objective function f .

For ease of notation, we will denote by fh : Rnh → R the approximation at the
highest level, then nh = n and fh = f lmax in the notation previously used, while for
nH < nh, fH : D ⊆ RnH → R is the approximation that is cheaper to optimize. All the
quantities on the fine level will be denoted by a superscript h and all the quantities on
the coarse level will be denoted by a superscript H, respectively. The main idea is then
to use fH to construct, in the neighbourhood of the current iterate xhk an alternative
model mH

k to the Taylor model mh
k for fh = f

mh
k(xhk , s) = fh(xhk) +∇xfh(xhk)T s+

1

2
sTBks. (6)

The alternative modelmH
k should be cheaper to optimize than the quadratic modelmh

k ,
and will be used, whenever suitable, to define the step for the Levenberg-Marquardt
algorithm. Of course, for fH to be useful at all in minimizing fh, there should be some
relation between the variables of these two functions. We henceforth assume that there
exist two full-rank linear operators R : Rnh → RnH and P : RnH → Rnh such that

σRP = RT , max{‖R‖, ‖P‖} ≤ κR

for some constants σR > 0 and κR > 0.
Let xH0,k := Rxhk be the starting point at coarse level. We define the lower level

model mH
k as a modification of the coarse function fH . fH is modified adding a linear

term to enforce the relation:

∇smH
k (xH0,k) = R∇xfh(xhk). (7)

Relation (7) crucially ensures that the first-order behaviour of f and mH
k , are coherent

in a neighbourhood of xhk and xH0,k. Indeed, if sH ∈ RnH and sh = PsH , it holds:

∇xfh(xhk)T sh = ∇xfh(xhk)TPsH =
1

σR
(R∇xfh(xhk))T sH =

1

σR
∇smH

k (xH0,k)
T sH .

To achieve this, we define mH
k as:

mH
k (xH0,k, s

H) = fH(xH0,k + sH) + (R∇xfh(xhk)−∇xfH(xH0,k))
T sH , (8)

where ∇xfh and ∇xfH are the gradients of the respective functions. At each generic
iteration k of our method, a step shk has to be computed to decrease the objective
function f . Then, two choices are possible: the Taylor model (6) or the lower level model

7

(8). Obviously, it is not always possible to use the lower level model. For example, it
may happen that ∇xfh(xhk) lies in the nullspace of R and thus that R∇xfh(xhk) is zero
while ∇xfh(xhk) is not. In this case, the current iterate appears to be first-order critical
for mH

k while it is not for f . Using the model mH
k is hence potentially useful only if

‖∇smH
k (xH0,k)‖ = ‖R∇xf(xhk)‖ is large enough compared to ‖∇xf(xhk)‖. We therefore

restrict the use of the model mH
k to iterations where

‖R∇xfh(xhk)‖ ≥ κH‖∇xfh(xhk)‖ and ‖R∇xfh(xhk)‖ > εH (9)

for some constant κH ∈ (0,min{1, ‖R‖}) and where εH ∈ (0, 1) is a measure of the
first-order criticality for mH

k that is judged sufficient at level H. Note that, given
∇xfh(xhk) and R, this condition is easy to check, before even attempting to compute
a step at level H.

If the Taylor model is chosen, then we just compute a standard Levenberg-
Marquardt step, minimizing (possibly approximately) the corresponding regularized
model. If the lower level model is chosen, then we minimize its regularized counterpart

mH
k (xH0,k, s

H) +
λk
2
‖sH‖2 (10)

(possibly approximately) and get a point xH∗,k such that (if the minimization is success-

ful) the model is reduced, and a step sHk = xH∗,k−xH0,k. This step has to be prolongated

on the fine level. Then, the step is defined as shk = PsHk .
In both cases, after the step is found, we have to decide whether to accept it or not.

The step acceptance is based on the ratio:

ρk =
fh(xhk)− fh(xhk + shk)

pred
. (11)

where pred is defined as

• pred = 1
σR

(mH
k (Rxhk)−mH

k (xH∗,k)) = 1
σR

(mH
k (Rxhk)−mH

k (Rxhk , s
H
k)) if the lower

level model has been selected,
• pred = mh

k(xhk)−mh
k(xhk , s

h
k) if the Taylor model has been selected.

As in the standard form of the methods, the step is accepted if it provides a sufficient
decrease in the function, i.e. if given η > 0, ρk ≥ η.

We sketch the whole procedure in Algorithm 2. As we anticipated, the procedure
is recursive. For sake of clarity, allowing the possibility of having more than two lev-
els, we denote the quantities on each level by a superscript l. We label our procedure
MLM (Multilevel Levenberg-Marquardt). It is assumed to have at disposal a sequence

of functions {f l(·) = 1
2‖F

l(·)‖2}lmax

l=1 with F l : Rnl → Rm for nl > nl−1, with cor-

responding Jacobian J l and we define Bl
k = J l(xlk)

TJ l(xlk). We provide additional
comments to explain Step 6 in Algorithm 2. The generic framework sketched in Algo-
rithm 2 comprises different possible methods. Specifically, one of the flexible features
is that, to ensure convergence, the minimization at lower levels can be stopped after
the first successful iteration, as shown in [10]. This therefore opens the possibility to
consider both fixed form recursion patterns and free form ones. A free form pattern is
obtained when Algorithm 2 is run carrying the minimization at each level out, until
the norm of the gradient becomes small enough. The actual recursion pattern is then

8

uniquely determined by the progress of minimization at each level and may be difficult
to forecast. By contrast, the fixed form recursion patterns are obtained by specifying
a maximum number of successful iterations at each level, a technique directly inspired
from the definitions of V- and W-cycles in multigrid algorithms [9].

4. Artificial neural network based approach for the approximate solution
of partial differential equations

In this section we describe the strategy we propose for the approximate solution of a
PDE.

Let us consider a stationary PDE written as:

D(z, u(z)) = g1(z), z ∈ Ω, (12a)

BC(z, u(z)) = g2(z), z ∈ ∂Ω, (12b)

where Ω ⊂ RN , N ≥ 1, is a connected subset, ∂Ω is the boundary of Ω, D is a differen-
tial operator, BC is an operator defining the boundary conditions, and g1, g2 : RN → R
are given functions. We remark that we do not need to make strong assumptions on
D, we do not require it to be elliptic nor linear.

In the following, we describe the network’s architecture that we have chosen to
employ, how the training problem is formulated and how the multilevel Levenberg-
Marquardt procedure is adapted to the solution of the specific problem.

4.1. Artificial neural network approximation of the solution of the partial
differential equation

Our approach is based on the approximation of the solution u(z) of the partial differ-
ential equation by an artificial neural network.

We assume the network to have just one hidden layer, as depicted in Figure 1. We
have selected this network because the weights and biases are related in a simple way. It
is therefore possible to devise a rather simple strategy to define the multilevel transfer
operators. As already discussed in the Introduction, such networks have interest on
their own, motivated by the Hecht-Nielsen theorem [26]1. However the case of more
hidden layers is at the same time an interesting and a challenging problem, due to the
increased nonlinearity. For this case, it is not trivial to extend the developed strategy.
We leave this as a perspective for future research. The aim of this manuscript is rather
to make a first step toward a deeper understanding of the potential of multilevel
techniques in speeding up the convergence of the corresponding one level methods,
when the geometry of the underlying problem cannot be exploited.

The neural network takes the value of z as input and gives an approximation û(p, z)
to u(z) as output, for p ∈ Rn, n = (N + 2)r + 1 with r the number of nodes in the
hidden layer. For the sake of simplicity, we describe our approach in the simplest case
N = 1, i.e. z ∈ R. The generalization to the case N > 1 is straightforward and is
reported in Appendix A.

The network is composed of three layers in total: one input layer composed of just
one neuron as z ∈ R, that receives the value of z as input; one hidden layer with r

1For any function in L2[(0, 1)n] (i.e. square integrable on the n-dimensional unit cube) it exists a neural

network with just one hidden layer that can approximate it, within any given accuracy.

9

Algorithm 2 MLM(l, objl, xl0, λ
l
0, ε

l) (Multilevel Levenberg-Marquardt method)

1: Given 0 < η1 ≤ η2 < 1, 0 < γ2 ≤ γ1 < 1 < γ3, λmin > 0, θ > 0.
2: Input: l ∈ N (index of the current level, 1 ≤ l ≤ lmax, lmax being the highest

level), objl : Rnl → R objective function to be optimized (objlmax = f), xl0 ∈ Rnl ,
λl0 > λmin, εl > 0.

3: Rl denotes the restriction operator from level l to l−1, Pl the prolongation operator
from level l − 1 to l.

4: k = 0
5: while ‖∇xf l(xlk)‖ > εl do
6: • Model choice: If l > 1 compute Rl∇xf l(xlk) and check (9). If l = 1 or (9)

fails, go to Step 7. Otherwise, choose to go to Step 7 or to Step 8.
7: • Taylor step computation: Define ml

k(x
l
k, s

l) the Taylor series of order 2 of

objl with approximated Hessian Bl
k = J l(xlk)

TJ l(xlk) and find a step slk that

sufficiently reduces ml
k(x

l
k, s

l) + λl
k

2 ‖s
l‖2, i.e. such that (4) holds. Go to Step 9.

8: • Recursive step computation: Define

ml−1
k (Rlx

l
k, s

l−1) =
1

2
‖F l−1(Rlx

l−1
k +sl−1)‖2+(Rl∇xf l(xlk)−∇xf l−1(Rlx

l
k))

T sl−1.

Choose εl−1 and call MLM(l− 1, ml−1
k ,Rl x

l
k, λ

l
k, ε

l−1) yielding an approximate

solution xl−1
∗,k of the minimization of ml−1

k . Define slk = Pl (xl−1
∗,k − Rl x

l
k) and

ml
k(x

l
k, s

l) = 1
σR
ml−1
k (Rlx

l
k, s

l−1) for all sl = Pls
l−1.

9: • Acceptance of the trial point and regularization parameter update:

Compute ρlk =
f l(xlk)− f l(xlk + slk)

ml
k(x

l
k)−ml

k(x
l
k, s

l
k)
.

10: if ρlk ≥ η1 then
11:

xlk+1 = xlk + slk, λlk+1 =

{
max{λmin, γ2λ

l
k}, if ρlk ≥ η2,

max{λmin, γ1λ
l
k}, if ρlk < η2.

12: else
13:

xlk+1 = xlk, λlk+1 = γ3λ
l
k.

14: end if
15: k = k + 1
16: end while

10

Iz → σ

b3

σ

b4

σ

b5

σ

b2

σ

b1

+

d

→ û(p, z; r)

Input
layer

Hidden
layer

Output
layer

w2

w 1
w3

w
4

w
5

v2

v
1

v3

v4

v 5

Figure 1. Artificial neural network architecture with weights and biases (r = 5, N = 1).

nodes, where r is a constant to be fixed. A bias bi, i = 1, . . . , r, is associated with each
of these nodes. All of them are connected to the input node by edges, whose weights
are denoted by wi, i = 1, . . . , r, as depicted in Figure 1. The wi are called input
weights. The last layer is the output layer, composed of just one node, as u(z) ∈ R,
associated with a bias d ∈ R. The output node is connected to all the nodes in the
hidden layer, the corresponding weights are called output weights and they are denoted
by vi, i = 1, . . . , r.

The network is also characterized by an activation function σ, which is a given
nonlinear function. Different choices are possible for σ, e.g. the sigmoid, hyperbolic
tangent, logistic and softplus functions, respectively:

σ(z) =
ez − 1

ez + 1
, σ(z) =

e2z − 1

e2z + 1
, σ(z) =

ez

ez + 1
, σ(z) = log(ez + 1).

We will denote by:

w = [w1, . . . , wr]
T , v = [v1, . . . , vr]

T , b = [b1, . . . , br]
T , p = [v, w, b, d]T ,

the vectors of input weights, output weights and biases of the hidden nodes and the
stacked vector of weights and biases, respectively. The output of the neural network
is a function of the weights and biases, but it also depends on the number of nodes r,
which is a parameter fixed before the training. We then denote the output as û(p, z; r),
which can be expressed as

û(p, z; r) =

r∑
i=1

viσ(wiz + bi) + d, for all z ∈ Ω. (13)

11

The training phase consists then in the minimization of a chosen loss function, which
depends on the network’s output and is a function of p, while z is constrained to the
training set T :

min
p
L(p, z) = F(û(p, z; r)), z ∈ T , (14)

for F : R3r+1 → R.
We choose the nonlinear residual of the equation as a loss function, plus a penalty

term with parameter λp > 0, to impose the boundary conditions as in [16, 33, 55], so
that for z ∈ T :

L(p, z) =
1

2t

(
‖D(z, û(p, z; r))− g1(z)‖2 + λp‖BC(z, û(p, z; r))− g2(z)‖2

)
, (15)

with T a training set such that |T | = t, in this case a set of points zi in Ω, i = 1, . . . , t.

Remark 1. The proposed strategy does not require the discretization of the operator
D, D(z, û(p, z; r)) can be analytically computed using the known expression (13) of
û(p, z; r).

Remark 2. The proposed strategy, coupled with a discretization scheme in time, can
be generalized to nonstationary equations.

4.2. Solution of the training problem

Optimizing (15) may be really expensive for certain problems. If the solution u(z) is
highly nonlinear, a really large number of nodes r may be necessary to approximate it
with a sufficient accuracy. Problem (15) becomes then a large scale problem. We solve
it thanks to the multilevel Levenberg-Marquardt strategy described in Section 3.

We remark that, from the analysis in [10], we do not need to make strong assump-
tions on the operator D nor on the functions g1, g2 to have a convergent training
method. It is just sufficient that the resulting objective function (15) has Lipschitz
continuous gradient, as well as its coarse approximations. We do not need to require
the operator to be elliptic nor linear.

To be able to employ the multilevel Levenberg-Marquardt method in the solution
of problem of the form (14), we need to define a strategy to build the hierarchy of
coarse problems and the multilevel transfer operators.

Usually, when the optimization problem to be solved directly arises from the dis-
cretization of an infinite dimensional problem, the approximations to the objective
function are simply chosen to be the functions arising from the discretization on coarser
levels, and P and R are chosen to be the interpolation and the restriction operators,
see [9]. However, we remind that in our case the variables subject to optimization are
the weights and biases of the network, and not the components of the solution. Conse-
quently, there is no geometric structure that can be exploited to construct a hierarchy,
and the grids will not be real geometric grids as in classical geometric multigrid, but
rather just sets of variables of different sizes. We have then to decide how to construct
a hierarchy of sets of variables.

Inspired by the fact that the network possesses an intrinsic algebraic structure, as
the one that is typically exploited in algebraic multigrid (AMG) [57], we propose here
a coarsening strategy based on AMG, to both explore and exploit the structure of the

12

network, to build the hierarchy of problems and the multilevel operators. First, we
give a brief overview of classical AMG techniques, and then we present the coarsening
strategy we propose.

4.2.1. Algebraic multigrid Ruge and Stüben coarsening strategy

AMG techniques are multilevel strategies used for the solution of linear systems of
the form Ax = b. The goal in AMG is to generalize the multilevel method used in
geometric multigrid to target problems where the correct coarse problem is not ap-
parent, since a geometric structure is not present. While, in geometric multigrid, a
multilevel hierarchy is directly determined from structured coarsening of the problem,
in standard AMG the coarse problems, together with the transfer operators, are auto-
matically constructed exploiting exclusively the information contained in the entries
of the matrix. Specifically, the variables on the fine level are split into two sets, C and
F , of coarse and fine variables, respectively. The variables in C are selected to be the
variables of the coarse problem, those in F are all the others. The coarse variables are
chosen to be representative of the fine ones, i.e. they are chosen to be the variables to
which many of the remaining ones are connected. The connection among variables is
only based on the entries of the matrix. There are many strategies to build this C/F
splitting. We decided to use the Ruge and Stüben strategy, one of the most classical
AMG coaesening strategies [8, 13, 57]. This is a first attempt and we do not claim
that this is the best strategy to use. Other options are possible, that could be more
effective.

The method relies on theoretical results if it is applied to a specific class of matri-
ces [57], but it is commonly also used for different problems, for which there are no
theoretical guarantees. If applied to systems arising from the discretization of simple
elliptic differential operators, as the Laplace operator, this strategy is known to recover
the structure exploited by geometric variants.

The splitting is built based on the notion of coupling. Two variables indexed by i
and j are said to be coupled if the corresponding entry of the matrix is different from
zero, i.e. ai,j 6= 0. The coupling is said to be negative if ai,j < 0, positive otherwise.
The splitting is usually made considering first negative couplings, as typically in the
applications AMG is used for, the negative couplings are more than the positive ones.
Then, the notion of strong negative coupling is introduced, i.e. we say that a variable
i is strongly negatively coupled to another variable j, if

−ai,j ≥ εAMG max
ai,k<0

|ai,k| (16)

for a fixed 0 < εAMG < 1. This measure is used to construct the splitting in practice.
Each F variable is required to have a minimum number of its strong couplings be
represented in C. The C/F splitting is usually made choosing some first variable i to
become a coarse variable. Then, all variables strongly coupled to it become F variables.
The process is repeated until all variables have been split. In order to avoid randomly
distributed C/F patches, more sophisticated procedures can be designed, for example
the process can be performed in a certain order, based on a measure of importance of
the variables, for more details see [57, §A.7.1]. Then, also positive couplings are taken
into account. After the coarsening process has been applied, a pass checks if there are

13

strong positive F/F couplings. If

ai,j ≥ εAMG max
k 6=i
|ai,k|

for some j 6= i, the variable j is added to the set of variables strongly connected to i
and the variable corresponding to the largest positive coupling becomes a C variable
[57].

Based on this splitting, the transfer operators are built to interpolate the compo-
nents of the error corresponding to the variables in F . The components of the error
corresponding to the variables in C are transferred to the higher level by the identity
operator, while the others are transformed by an interpolation formula, so that we
define the i-th variable at fine level as:

xhi = (PxH)i =

{
xHi if i ∈ C,∑

k∈Pi
δi,kx

H
k if i ∈ F,

with

δi,k =

{
−αiai,k/ai,i if k ∈ P−i ,
−βiai,k/ai,i if k ∈ P+

i ,
αi =

∑
j∈Ni

a−i,j∑
k∈Pi

a−i,k
, βi =

∑
j∈Ni

a+
i,j∑

k∈Pi
a+
i,k

,

where a+
i,j = max{ai,j , 0}, a−i,j = min{ai,j , 0}, Ni is the set of variables connected to

i (i.e. all j such that ai,j 6= 0), Pi the set of coarse variables strongly connected to
i, which is partitioned in P−i (negative couplings) and P+

i (positive couplings). The
interpolation operator, assuming to have regrouped and ordered the variables to have

all those corresponding to indexes in C at the beginning, is then defined as P =

[
I
∆

]
where I is the identity matrix of size |C| and ∆ is the matrix such that ∆i,j = δi,j , for
i = 1, . . . , |F | and j = 1, . . . , |C|.

4.2.2. Algebraic coarsening strategy when solving optimization problems related to
the training of artificial neural networks

In this section, we propose a possible strategy to define both R and P , required in
the solution of problem (14). As in classical AMG, we rely on a heuristic strategy.
In our procedure, we have the nonlinear minimization problem (14) to solve. At each
iteration at fine level, the minimization process requires the solution of a linear system
with matrix Bk = J(xk)

TJ(xk), where J is the Jacobian matrix of F at xk. Then,
a possibility to build the C/F splitting is to apply the algebraic multigrid technique
we just described to Bk. However, we cannot apply the procedure directly to this
matrix. Indeed, while in the coarsening process of standard AMG all the variables
are treated in the same way, in our application the variables are coupled [13]. We are
actually optimizing with respect to triples {vi, wi, bi} of input weights, output weights
and biases. The bias d being a scalar is treated separately. If no distinction is made,
a weight/bias could be removed, without the other components of the triple being
removed, leading to a network that would not be well defined. Consequently, instead
of considering the strength of connections among the variables, we will consider the
strength of connections among the triples. We propose therefore to apply the AMG
splitting to the matrix A ∈ Rr×r resulting from a weighted sum of the submatrices of

14

Bk containing the derivatives of F taken with respect to the same kind of variables, so
that the contributions of the three different variables are not melted. More precisely,
Bk = JT (xk)J(xk) reads:

Bk =


F Tv Fv F Tv Fw F Tv Fb F Tv Fd
F TwFv F TwFw F TwFb F TwFb
F Tb Fv F Tb Fw F Tb Fb F Tb Fd
F Td Fv F Td Fw F Td Fb F Td Fd

 , Fξ =


∂F1(xk)
∂ξ1

. . . ∂F1(xk)
∂ξr

. . .
∂Fm(xk)
∂ξ1

. . . ∂Fm(xk)
∂ξr

 , Fd =


∂F1(xk)
∂d
...

∂Fm(xk)
∂d

 ,
for each variable ξ ∈ Rr and for d ∈ R.

We then apply the Ruge and Stüben splitting strategy [57] to the following matrix:

A =
F Tv Fv
‖Fv‖∞

+
F TwFw
‖Fw‖∞

+
F Tb Fb
‖Fb‖∞

.

In this way, we first obtain a C/F slitting of the triples and then deduce the corre-
sponding interpolation operator P ∈ Rr×rc with rc ≤ r and the restriction operator
R ∈ Rrc×r to use in the multilevel Levenberg-Marquardt method. These operators are
used to project the vector shk ∈ R3r of fine weights and biases on the coarse level and
to prolongate the coarse level step sHk ∈ R3rc to the fine level (in both cases omitting
the contribution of the bias d that is a scalar variable and is therefore left unchanged
when changing levels). In both cases, the operators P and R are applied to each of the
three components of shk , s

H
k , corresponding to the three different kinds of variables. In

case of more than two levels, the operators Rl and Pl, on each level, can be built with
the same technique, applied to the matrix that approximates the Hessian matrix of
the coarse function approximating f on level l.

Remark 3. We remark that the strategy we propose is not specifically tailored for
(15), it can be used for all problems of the form (14).

5. Numerical experiments

In this section, we report on the practical performance of our multilevel approach.

5.1. Setting

The whole procedure has been implemented in Julia [3]. We set the following values for
the parameters in Algorithms 1 and 2, respectively: η1 = 0.1, η2 = 0.75, γ1 = 0.85, γ2 =
0.5, γ3 = 1.5, θ = 10−2, λ0 = 0.05 and λmin = 10−6. We compare the standard (one
level) Levenberg-Marquardt method with a two-level Levenberg-Marquardt variant.
We have decided to rely on just two levels, as in the experiments the cardinality of
the coarse set of variables is much lower than that of the fine set (just a few dozens of
parameters rather than more than 500 or 1000, depending on the problem).

The construction of the coarse set of variables is performed through the Julia’s
algebraic multigrid package (AMG), that implements the classical Ruge and Stüben
method2. The operators R and P are built just once at the beginning of the optimiza-
tion procedure, using matrix B0. In (9), we choose κH = 0.1 and εH is equal to the

2Available at: https://github.com/JuliaLinearAlgebra/AlgebraicMultigrid.jl

15

tolerance chosen at the fine level. In (16), we set εAMG = 0.9, but numerical experi-
ments highlighted that the cardinality of the coarse set does not strongly depend on
this choice. For the procedure to be effective, we noticed that it is also beneficial to
scale the operators R and P , yielded by the AMG package, by their infinity norm.
We choose to perform a fixed form of recursion pattern, inspired by the V-cycle of
multigrid methods [9]. Hence we alternate a fine and a coarse step, and we impose a
maximum number of 10 iterations at the coarse level.

The linear systems arising from the minimization of the models on the fine level
are solved by a truncated CGLS method [6, §7.4], while those on the coarse level, due
to the really low number of parameters, are solved with a direct method. However,
it is worth mentioning that such systems have a peculiar structure. This is similar to
that of normal equations, but is fundamentally different due to the presence of the
linear correction term (R∇xfh(xhk) − ∇xfH(xH0,k))

T sH on the right-hand side, which

prevents the use of methods based on normal equations. We refer the reader to [11]
for a discussion on how to exploit this structure in case of higher dimensional coarse
level problems.

5.2. Definition of the test problems

We consider both partial differential equations in one- and two-dimensions. In (12a)
we obtain g1 as the result of the choice of the true solution uT , and we choose uT =
uT (z, ν), depending on a parameter ν, that controls the oscillatory behaviour of the
solution. As ν increases, the true solution becomes more oscillatory and thus harder
to approximate. A network with a larger number of nodes (r) is thus necessary, and
consequently the size of the fine problem increases. We set Ω = (0, 1)N for the problems
corresponding to the first six lines in Table 1 and for the rest of the problems we
choose domains with more intricate geometries, which are specified in Table 1. In all
the experiments we impose Dirichlet boundary conditions. We choose T as a Cartesian
uniform grid with h = 1

2ν , according to the Nyquist-Shannon sampling criterion [54],
so that the cardinality of the training set is t = 2ν + 1. Finally, in (15) we have set
the penalty parameter to λp = 0.1 t.

In many practical applications, as in seismology for example, a really accurate so-
lution is not required. We stress that this setting is typical when solving partial dif-
ferential equations by artificial neural networks: a high accuracy is never sought, but
rather an approximate solution is looked for, see, e.g., [40, 46, 47]. Therefore, we look
for an approximate solution and stop the procedure as soon as ‖∇L(phk , z)‖ ≤ 10−4

for one-dimensional problems, ‖∇L(phk , z)‖ ≤ 10−3 for two-dimensional problems, re-
spectively. Indeed in the one-dimensional case, the convergence is quite fast at the
beginning, allowing to quickly reach an approximate solution, while it requires far
more iterations to obtain a more accurate solution for two-dimensional problems. We
remark that the selected test problems are quite difficult, due to the high nonlinearity
of the solutions. We outline that additional tests performed on problems with smaller
value of ν (not reported here) allowed to reach a tighter accuracy level with a smaller
amount of iterations.

All selected problems are listed in Table 1, where we report in which table the
corresponding results are reported, which equation is considered, the imposed true
solution and its frequency ν, respectively. We consider both linear and nonlinear partial
differential equations (such as Liouville equation). For the two-dimensional Helmholtz
equation, we have chosen different choices for c(z): a constant function, a piecewise

16

Table 1. Problems considered in Tables 2 to 9. We report: the equation considered, the true solution uT ,
the frequency considered ν and the domain chosen Ω. Dm is the domain depicted in Figure 2 and Ds is the

domain depicted in Figure 3. For the two-dimensional Helmholtz equation (Table 5) the reference solution is

computed by finite differences.

Equation uT (z, ν) ν Ω

Table 2 −∆u = g1 (1D) cos(νz) 20, 25 (0, 1)N

Table 3 −∆u = g1 (2D) cos(ν(z1 + z2)) 5, 6 (0, 1)N

Table 4 −∆u− ν2u = 0 (1D) sin(νz) + cos(νz) 5 (0, 1)N

Table 5 −∆u−
(

2πν
c(z)

)2
u = g1 (2D) - 1, 2 (0, 1)N

Table 6 (left) ∆u+ sinu = g1 (1D) 0.1 cos(νz) 20

Table 6 (right) ∆u+ eu = g1 (2D) log
(

ν
z1+z2+10

)
1 (0, 1)N

Table 7 −∆u+ ν2u = g1 (2D) sin(ν(x+ y)) 3, 7 Dm
Table 8 −∆u+ ν2u = g1 (2D) (x2 + y2) + sin(ν(x2 + y2)) 3, 5 Ds
Table 9 −∆u+ νu2 = g1 (2D) (x2 + y2) + sin(ν(x2 + y2)) 0.5 Ds

Table 2. One-dimensional Poisson problem. Solution of the minimization problem (15) with the one level
Levenberg-Marquardt method (LM) and the two-level Levenberg-Marquardt method (MLM), respectively.

iter denotes the averaged number of iterations over ten simulations, RMSE the root-mean square error with

respect to the true solution uT and save the ratio between the total number of floating point operations
required for the matrix-vector products in LM and MLM, r is the number of nodes in the hidden layer.

ν = 20 r = 29 ν = 25 r = 210

Method iter RMSE save iter RMSE save

LM 869 10−4 1439 10−3

MLM 507 10−4 1.1-2.6-4.3 1325 10−3 1.2-1.7-2.8

Table 3. Two-dimensional Poisson problem. Solution of the minimization problem (15) with the one level

Levenberg-Marquardt method (LM) and the two-level Levenberg-Marquardt method (MLM), respectively. iter
denotes the averaged number of iterations over ten simulations, RMSE the root-mean square error with respect

to the true solution uT and save the ratio between the total number of floating point operations required for

the matrix-vector products in LM and MLM, r is the number of nodes in the hidden layer.

ν = 5 r = 210 ν = 6 r = 211

Method iter RMSE save iter RMSE save

LM 633 10−3 1213 10−3

MLM 643 10−3 1.1-1.5-2.1 1016 10−3 1.2-1.9-2.4

Table 4. One-dimensional Helmholtz problem. Solution of the minimization problem (15) with the one level

Levenberg-Marquardt method (LM) and two-level Levenberg-Marquardt method (MLM), respectively. iter

denotes the averaged number of iterations over ten simulations, RMSE the root-mean square error with respect

to the true solution uT and save the ratio between total number of floating point operations required for the

matrix-vector products in LM and MLM, r is the number of nodes in the hidden layer.

ν = 5 r = 210

Method iter RMSE save

LM 1159 10−3

MLM 1250 10−3 1.2-1.9-3.1

17

Table 5. Two-dimensional Helmholtz problem. Solution of the minimization problem (15) with the one level
Levenberg-Marquardt method (LM) and two-level Levenberg-Marquardt method (MLM), respectively. iter

denotes the averaged number of iterations over ten simulations, RMSE the root-mean square error with respect to

the solution computed by finite differences and save the ratio between total number of floating point operations
required for the matrix-vector products in LM and MLM. With respect to the notation in Table 1, in all the

tests g1([z1, z2]) = (0.25 < z1 < 0.75)(0.25 < z2 < 0.75), and c(z) has been chosen as: c̄1([z1, z2]) = 40 (up,

left); c̄1([z1, z2]) = 20 (0 ≤ z1 < 0.5)+40 (0.5 ≤ z1 ≤ 1) (up right); c̄2([z1, z2]) = 20 (0 ≤ z1 < 0.25)+40 (0.25 ≤
z2 ≤ 0.5) + 60 (0.5 ≤ z3 < 0.75) + 80 (0.75 ≤ z4 ≤ 1) (bottom, left); c̄2([z1, z2]) = 0.1 sin(z1 + z2) (bottom,

right).

ν = 1 r = 29 ν = 2 r = 29

Method iter RMSE save iter RMSE save

LM 200 10−3 200 10−2

MLM 200 10−3 1.7-1.8-1.9 200 10−2 1.7-1.8-1.9

ν = 2 r = 29 ν = 2 r = 29

Method iter RMSE save iter RMSE save

LM 200 10−2 200 5 10−3

MLM 200 10−2 1.7-1.8-1.8 200 5 10−3 1.7-1.8-1.9

Table 6. Nonlinear partial differential equations (see Table 1). Solution of the minimization problem (15)

with the one level Levenberg-Marquardt method (LM) and two-level Levenberg-Marquardt method (MLM),
respectively. iter denotes the averaged number of iterations over ten simulations, RMSE the root-mean square

error with respect to the true solution uT and save the ratio between total number of floating point operations
required for the matrix-vector products in LM and MLM, r is the number of nodes in the hidden layer.

ν = 20 r = 29 ν = 1 r = 29

Method iter RMSE save iter RMSE save

LM 950 10−5 270 10−3

MLM 1444 10−5 0.8-2.9-5.3 320 10−3 1.2-1.7-1.8

Table 7. Two-dimensional Screened Poisson problem on domain Dm. Solution of the minimization problem
(15) with the one level Levenberg-Marquardt method (LM) and the two-level Levenberg-Marquardt method

(MLM), respectively. iter denotes the averaged number of iterations over ten simulations, RMSE the root-mean

square error with respect to the true solution uT and save the ratio between the total number of floating point
operations required for the matrix-vector products in LM and MLM, r is the number of nodes in the hidden

layer.

ν = 3 r = 29 ν = 7 r = 210

Solver iter RMSE save iter RMSE save

LM 395 3.e-4 1500 2.4e-3
MLM 110 2.e-4 1.3-5.6-10.0 1039 1.6e-3 1.6-2.1-2.5

Figure 2. Contour plot corresponding to the problem in Table 7 for ν = 7, of true solution (left), solution

approximation computed by LM (center) and MLM (right).

18

Table 8. Two-dimensional Screened Poisson problem on domain Ds. Solution of the minimization problem
(15) with the one level Levenberg-Marquardt method (LM) and the two-level Levenberg-Marquardt method

(MLM), respectively. iter denotes the averaged number of iterations over ten simulations, RMSE the root-mean

square error with respect to the true solution uT and save the ratio between the total number of floating point
operations required for the matrix-vector products in LM and MLM, r is the number of nodes in the hidden

layer.

ν = 3 r = 29 ν = 5 r = 210

Solver iter RMSE save iter RMSE save

LM 1482 5.0e-3 2143 1.2e-2
MLM 952 3.7e-3 1.4-2.4-3.5 2076 1.0e-2 1.4-1.6-1.8

Figure 3. Contour plot corresponding to the problem in Table 8 for ν = 5, of true solution (top), solution
approximation computed by LM (bottom left) and MLM (bottom right).

Table 9. Nonlinear problem on domain Ds (see Table 1). Solution of the minimization problem (15) with

the one level Levenberg-Marquardt method (LM) and the two-level Levenberg-Marquardt method (MLM),

respectively. iter denotes the averaged number of iterations over ten simulations, RMSE the root-mean square
error with respect to the true solution uT and save the ratio between the total number of floating point
operations required for the matrix-vector products in LM and MLM, r is the number of nodes in the hidden
layer. Over the 10 runs, LM is successful in only 4 for ν = 0.5 and 3 for ν = 1, while RLM is successful in 8
and 9 runs respectively. The results refer just to the successful runs.

ν = 0.5 r = 29 ν = 1 r = 29

Solver iter RMSE save iter RMSE save

LM 1408 3.2e-3 1450 1.5e-2
MLM 1301 3.6e-3 0.9-1.7-2.4 1295 1.9e-2 1.1-1.7-2.1

19

constant function and a sinusoidal function, see Table 5. For this test case, we do not
choose the true solution, but rather impose the right-hand side. The reference solution
(needed for the computation of the root mean squared error) is then computed by
finite differences.

5.3. Analysis of the numerical results

In what follows, the numerical results refer to ten simulations for different random
initial guesses. For each simulation however, the starting guess is the same for the
two solvers. The first line refers to the standard (one level) Levenberg-Marquardt
method (LM), while the second one to the two-level Levenberg-Marquardt method
(MLM), respectively. We report the average number of iterations (iter) over the ten
simulations, the root mean squared error (RMSE) of the computed solution evaluated on
a grid of 100N testing points, inside the training interval and other than the training
points, with respect to the true solution evaluated at the same points and (save), the
ratio between the total number of floating point operations required for the matrix-
vector products in the two methods (min-mean-max values are given), respectively.

As expected, we can notice that the problems become more difficult to solve as ν
increases, and that the number of nodes r in the neural network has to be increased
to obtain an approximate solution as accurate as for lower values of ν.

Most often, the number of iterations required by the two-level procedure is lower
than that required by the one-level procedure, which is a behaviour typically observed
when using classical multilevel methods. This effect is particularly evident in the prob-
lem corresponding to Table 7, where the ratios are found to be really large, as the one-
level procedure seldom manages to satisfy the stopping criterion within the maximum
number of iterations. Contrarily to the standard Levenberg-Marquardt method, the
new method is able to reach lower values of the stopping tolerance than those chosen
in the test, thus being able to find more accurate solution approximations.

Moreover, due also to the lower dimension of the linear systems at the coarse level,
the number of floating point operations required for the matrix-vector products is
always considerably lower, even when MLM performs more iterations. The computa-
tional gain in terms of floating point operations is on average a factor around 2 on all
the experiments, and the maximum values of the ratio is much larger for certain prob-
lems (see Tables 6 and 7). More importantly, the quality of the approximate solution
is not affected. This is a rather satisfactory result.

Finally, the method manages to solve problems defined on domains with non-
standard geometries, such as the ones in Figures 2-3, both for linear (cf. Tables 7-
8) and nonlinear (cf. Table 9) equations. For such domains ANN-based approaches
are easier to use than standard mesh-based methods, as the domain just needs to be
sampled, which is much easier than building a mesh. The advantage of the multilevel
procedure over the standard method is particularly evident for the problem in Table
9, for which the new method shows to be more robust. The problem is particularly
difficult and the standard method fails to reach the stopping criterion and to correctly
approximate the true solution in 6 runs for ν = 0.5 and in 7 runs for ν = 1, while the
new method only fails in 2 and 1 run(s), respectively. The results in Table 9 are then
referred just to the successful runs.

We remark also that the two-dimensional problems are more difficult than one-
dimensional ones, especially those corresponding to the Helmholtz equation, which is a
particularly difficult problem with Dirichlet boundary conditions, for which standard

20

multigrid methods are known not to be effective, see for example [14, 18, 19]. In
this case, a rough approximation is obtained in really few iterations, a maximum
number of 200 iterations is imposed, as iterating further is not useful to improve the
approximation. This is already a satisfactory result. To improve the solution accuracy,
a network with a more complex topology shall be more efficient, as the problem itself
possesses a more complex structure.

6. Conclusions

We have investigated the potential of the multilevel Levenberg-Marquardt method
in the solution of training problems. This is chosen as representative of a class of
problems in which the variables subject to optimization are not related by any explicit
geometrical structure. To the best of our knowledge, this is also the first attempt at
using multilevel optimization for the training of artificial neural networks.

We have chosen the approximation of the solution of partial differential equations by
a neural network as an applicative context to test our procedure. We remark however
that the approach introduced here is not specific to the solution of partial differential
equations. It can generally be used to solve least squares problems of the form (14),
in which the solution can be expressed by an artificial neural network.

We have proposed a possible heuristic strategy based on standard algebraic multi-
grid methods, to both explore and exploit the structure of the neural network to build
a hierarchy of problems and the multilevel transfer operators.

The performance of the multilevel optimization method has been tested and com-
pared to that of the standard one-level version. The numerical results are quite satis-
factory, showing the potential of the multilevel strategy. The new method is shown to
provide considerable savings in terms of number of floating point operations, and on
specific problems to be more robust and to be capable of driving the stopping tolerance
to lower values, thus providing better solution approximations.

These preliminary numerical results and the perspective for improvements encour-
age us to investigate further on multilevel training methods. This strategy has been
designed for networks with one hidden layer. Considering a multilayer network is a nat-
ural and challenging extension due to the increased nonlinearity. We currently consider
the extension of the procedure to multilayer networks as a significant perspective, as
we believe that this could lead to a competitive learning method, especially if coupled
with a strategy to make the approach purely matrix-free.

Funding

This work was funded by TOTAL.

References

[1] A. Berahas, J. Nocedal, and M. Takáč, A Multi-batch L-BFGS Method for Machine Learn-
ing, in Proceedings of the 30th International Conference on Neural Information Process-
ing Systems, USA. Curran Associates Inc., NIPS’16, 2016, pp. 1063–1071. Available at
http://dl.acm.org/citation.cfm?id=3157096.3157215.

[2] J. Berg and K. Nyström, A unified deep artificial neural network approach to partial
differential equations in complex geometries, Neurocomputing 317 (2018), pp. 28–41.

21

[3] J. Bezanson, A. Edelman, S. Karpinski, and V. Shah, Julia: A fresh ap-
proach to numerical computing, SIAM Review 59 (2017), pp. 65–98. Available at
https://doi.org/10.1137/141000671.

[4] E.G. Birgin, J.L. Gardenghi, J.M. Mart́ınez, S.A. Santos, and P.L. Toint, Worst-case
evaluation complexity for unconstrained nonlinear optimization using high-order reg-
ularized models, Mathematical Programming 163 (2017), pp. 359–368. Available at
https://doi.org/10.1007/s10107-016-1065-8.

[5] C. Bishop, Pattern recognition and machine learning, Information Sci-
ence and Statistics, Springer-Verlag New York, 2006, Available at
https://www.springer.com/us/book/9780387310732.

[6] A. Björck, Numerical Methods for Least Squares Problems, Vol. 51, Siam, 1996, Available
at https://epubs.siam.org/doi/book/10.1137/1.9781611971484?mobileUi=0.

[7] L. Bottou, F. Curtis, and J. Nocedal, Optimization methods for large-
scale machine learning, SIAM Review 60 (2018), pp. 223–311. Available at
https://doi.org/10.1137/16M1080173.

[8] A. Brandt, General highly accurate algebraic coarsening, Electronic Transactions on Nu-
merical Analysis 10 (2000), pp. 1–20. Available at http://eudml.org/doc/120680.

[9] W. Briggs, V. Henson, and S. McCormick, A Multigrid Tutorial, Second Edi-
tion, 2nd ed., Society for Industrial and Applied Mathematics, 2000, Available at
https://epubs.siam.org/doi/abs/10.1137/1.9780898719505.

[10] H. Calandra, S. Gratton, E. Riccietti, and X. Vasseur, On high-order multilevel optimiza-
tion strategies, in arXiv preprint. 2019. Available at https://arxiv.org/abs/1904.04692.

[11] H. Calandra, S. Gratton, E. Riccietti, and X. Vasseur, On the solution of the extended
normal equations, in arXiv preprint. 2019. Available at https://arxiv.org/abs/1911.00026.

[12] C. Cartis, N.I.M. Gould, and P.L. Toint, Adaptive cubic regularisation methods for uncon-
strained optimization. Part I: motivation, convergence and numerical results, Mathemat-
ical Programming 127 (2011), pp. 245–295. Available at https://doi.org/10.1007/s10107-
009-0286-5.

[13] T. Clees, AMG strategies for PDE systems with applications in industrial semicon-
ductor simulation, Ph.D. diss., University of Cologne, Germany, 2005. Available at
https://kups.ub.uni-koeln.de/1575/.

[14] P. Cocquet and M. Gander, How large a shift is needed in the shifted Helmholtz precon-
ditioner for its effective inversion by multigrid?, SIAM Journal on Scientific Computing
39 (2017), pp. A438–A478. Available at https://doi.org/10.1137/15M102085X.

[15] G. Di Muro and S. Ferrari, A constrained-optimization approach to train-
ing neural networks for smooth function approximation and system identifica-
tion, in 2008 IEEE International Joint Conference on Neural Networks (IEEE
World Congress on Computational Intelligence). 2008, pp. 2353–2359. Available at
http://dx.doi.org/10.1109/IJCNN.2008.4634124.

[16] M. Dissanayake and N. Phan-Thien, Neural-network-based approxima-
tions for solving partial differential equations, Communications in Nu-
merical Methods in Engineering 10 (1994), pp. 195–201. Available at
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1640100303.

[17] W. E and B. Yu, The deep Ritz method: A deep learning-based numerical algo-
rithm for solving variational problems, eprint arXiv 1710.00211 (2017). Available at
https://arxiv.org/abs/1710.00211.

[18] O.G. Ernst and M.J. Gander, Why it is Difficult to Solve Helmholtz Problems with Classi-
cal Iterative Methods, in Numerical Analysis of Multiscale Problems, Springer Berlin Hei-
delberg, Berlin, Heidelberg (2012), pp. 325–363. Available at https://doi.org/10.1007/978-
3-642-22061-6 10.

[19] M. Gander and H. Zhang, A class of iterative solvers for the Helmholtz equation: Fac-
torizations, sweeping preconditioners, source transfer, single layer potentials, polarized
traces, and optimized Schwarz methods, SIAM Review 61 (2019), pp. 3–76. Available at
https://doi.org/10.1137/16M109781X.

22

[20] S. Gratton, A. Sartenaer, and P.L. Toint, Recursive trust-region methods for multiscale
nonlinear optimization, SIAM Journal on Optimization 19 (2008), pp. 414–444. Available
at https://doi.org/10.1137/050623012.

[21] C. Groß and R. Krause, On the convergence of recursive trust-region methods for multi-
scale nonlinear optmization and applications to nonlinear mechanics, SIAM Journal on
Numerical Analysis 47 (2009), pp. 3044–3069.

[22] E. Haber, L. Ruthotto, E. Holtham, and S. Jun, Learning across scales-Multiscale methods
for convolution neural networks, in Thirty-Second AAAI Conference on Artificial Intelli-
gence. 2018.

[23] W. Hackbusch, Multi-grid methods and applications, Springer Series in Computa-
tional Mathematics Vol. 4, Springer-Verlag, Berlin, Heidelberg, 1985, Available at
https://www.springer.com/us/book/9783540127611.

[24] J. Han, A. Jentzen, and W. E, Solving high-dimensional partial differential equations
using deep learning, Proceedings of the National Academy of Sciences 115 (2018), pp.
8505–8510. Available at https://doi.org/10.1073/pnas.1718942115.

[25] S. Haykin, Neural networks: a comprehensive foundation, 1st ed., Prentice Hall, 1994,
Available at https://dl.acm.org/citation.cfm?id=541500.

[26] R. Hecht-Nielsen, Theory of the backpropagation neural network, in International
1989 Joint Conference on Neural Networks, Vol. 1. 1989, pp. 593–605. Available at
https://doi.org/10.1109/IJCNN.1989.118638.

[27] C. Higham and D. Higham, Deep learning: An introduction for applied mathematicians,
SIAM Review 61 (2019), pp. 860–891.

[28] M. Hutzenthaler, A. Jentzen, T. Kruse, T. Nguyen, and P. Wurstemberger, Over-
coming the curse of dimensionality in the numerical approximation of semilinear
parabolic partial differential equations, eprint arXiv 1807.01212 (2018). Available at
https://arxiv.org/abs/1807.01212.

[29] A. Jentzen, D. Salimova, and T. Welti, A proof that deep artificial neural networks over-
come the curse of dimensionality in the numerical approximation of Kolmogorov partial
differential equations with constant diffusion and nonlinear drift coefficients, eprint arXiv
1809.07321 (2018). Available at https://arxiv.org/abs/1809.07321.

[30] T. Ke, M. Maire, and S.X. Yu, Multigrid Neural Architectures, in Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 4067–
4075. Available at https://doi.org/10.1109/CVPR.2017.433.

[31] M. Kočvara and S. Mohammed, A first-order multigrid method for bound-constrained con-
vex optimization, Optimization Methods and Software 31 (2016), pp. 622–644. Available
at https://doi.org/10.1080/10556788.2016.1146267.

[32] A. Krizhevsky, I. Sutskever, and G.E. Hinton, Imagenet classification with deep convolu-
tional neural networks, in NIPS’12 Proceedings of the 25th International Conference on
Neural Information Processing Systems - Volume 1. 2012, pp. 1097–1105. Available at
https://dl.acm.org/citation.cfm?id=2999257.

[33] I.E. Lagaris, A. Likas, and D.I. Fotiadis, Artificial neural networks for solving ordinary
and partial differential equations, IEEE Transactions on Neural Networks 9 (1998), pp.
987–1000. Available at https://doi.org/10.1109/72.712178.

[34] H. Lee and I.S. Kang, Neural algorithm for solving differential equations, Journal of Com-
putational Physics 91 (1990), pp. 110–131. Available at https://doi.org/10.1016/0021-
9991(90)90007-N.

[35] R.M. Lewis and S.G. Nash, Using inexact gradients in a multilevel optimization algo-
rithm, Computational Optimization and Applications 56 (2013), pp. 39–61. Available at
https://doi.org/10.1007/s10589-013-9546-7.

[36] R. Lewis and S. Nash, Model problems for the multigrid optimization of systems governed
by differential equations, SIAM journal on Scientific Computing 26 (2005), pp. 1811–1837.
Available at https://doi.org/10.1137/S1064827502407792.

[37] X. Li, J. Lowengrub, A. Rätz, and A. Voigt, Solving PDEs in complex geometries: a diffuse
domain approach, Communications in Mathematical Sciences 7 (2009), p. 81.

23

[38] Z. Long, Y. Lu, X. Ma, and B. Dong, PDE-Net: Learning PDEs from data, in Proceedings
of the 35th International Conference on Machine Learning, PMLR 80. 2018, pp. 3208–
3216. Available at http://proceedings.mlr.press/v80/long18a.html.

[39] L. Manevitz, A. Bitar, and D. Givoli, Neural network time series forecasting of finite-
element mesh adaptation, Neurocomputing 63 (2005), pp. 447 – 463. Available at
https://doi.org/10.1016/j.neucom.2004.06.009.

[40] S. Mishra, A machine learning framework for data driven acceler-
ation of computations of differential equations, Tech. Rep. 2018-28,
Seminar for Applied Mathematics, ETH Zürich, 2018. Available at
https://www.sam.math.ethz.ch/sam reports/reports final/reports2018/2018-28.pdf.

[41] J. Misra and I. Saha, Artificial neural networks in hardware: A survey of two
decades of progress, Neurocomputing 74 (2010), pp. 239 – 255. Available at
https://doi.org/10.1016/j.neucom.2010.03.021.

[42] S. Nash, A multigrid approach to discretized optimization problems, Op-
timization Methods and Software 14 (2000), pp. 99–116. Available at
https://doi.org/10.1080/10556780008805795.

[43] S. Nash, Properties of a class of multilevel optimization algorithms for equality con-
strained problems, Optimization Methods and Software 29 (2014), pp. 137–159. Available
at https://doi.org/10.1080/10556788.2012.759571.

[44] M. Raissi, P. Perdikaris, and G. Karniadakis, Numerical Gaussian processes for time-
dependent and nonlinear partial differential equations, SIAM Journal on Scientific Com-
puting 40 (2018), pp. A172–A198. Available at https://doi.org/10.1137/17M1120762.

[45] M. Raissi and G.E. Karniadakis, Hidden physics models: Machine learning of nonlinear
partial differential equations, Journal of Computational Physics 357 (2018), pp. 125 – 141.
Available at https://doi.org/10.1016/j.jcp.2017.11.039.

[46] M. Raissi, P. Perdikaris, and G.E. Karniadakis, Physics informed deep learning (part I):
data-driven solutions of nonlinear partial differential equations, eprint arXiv 1711.10561
(2017). Available at http://arxiv.org/abs/1711.10561.

[47] M. Raissi, P. Perdikaris, and G.E. Karniadakis, Physics informed deep learning (part II):
data-driven discovery of nonlinear partial differential equations, eprint arXiv 1711.10566
(2017). Available at http://arxiv.org/abs/1711.10566.

[48] P. Ramuhalli, L. Udpa, and S.S. Udpa, Finite-element neural networks for solving dif-
ferential equations, IEEE Transactions on Neural Networks 16 (2005), pp. 1381–1392.
Available at https://doi.org/10.1109/TNN.2005.857945.

[49] K. Rudd, Solving partial differential equations using artificial neu-
ral networks, Ph.D. diss., Cornell University, 2013. Available at
http://lisc.mae.cornell.edu/PastThesis/KeithRuddPhD.pdf.

[50] S.H. Rudy, S.L. Brunton, J.L. Proctor, and J.N. Kutz, Data-driven discov-
ery of partial differential equations, Science Advances 3 (2017). Available at
http://advances.sciencemag.org/content/3/4/e1602614.

[51] J.W. Ruge and K. Stüben, Algebraic multigrid, in Multigrid methods, chap. 4, SIAM,
1987, pp. 73–130. Available at https://epubs.siam.org/doi/10.1137/1.9781611971057.ch4.

[52] E. Sadrfaridpour, T. Razzaghi, and I. Safro, Engineering fast multilevel support vector
machines, eprint arXiv 1707.07657 (2017). Available at https://arxiv.org/abs/1707.07657.

[53] H. Schaeffer, Learning partial differential equations via data discovery and sparse opti-
mization, Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences 473 (2017). Available at https://doi.org/10.1098/rspa.2016.0446.

[54] C.E. Shannon, Communication in the presence of noise, Proceedings of the IEEE 86
(1998), pp. 447–457. Available at https://doi.org/10.1109/JPROC.1998.659497.

[55] Y. Shirvany, M. Hayati, and R. Moradian, Multilayer perceptron neural networks
with novel unsupervised training method for numerical solution of the partial dif-
ferential equations, Applied Soft Computing 9 (2009), pp. 20 – 29. Available at
http://www.sciencedirect.com/science/article/pii/S1568494608000276.

[56] J. Takeuchi and Y. Kosugi, Neural network representation of finite el-

24

I1

I2

σ

b1

σ

b2

σ

b3

+

d

w1,1

w
1,2

w
1,3

w2,2

w
2,3

w 2,
1

v
1

v2

v 3

Input
layer

Hidden
layer

Output
layer

Figure A1. Artificial neural network architecture with weights and biases (Case of r = 3 and N = 2).

ement method, Neural Networks 7 (1994), pp. 389 – 395. Available at
http://www.sciencedirect.com/science/article/pii/0893608094900310.

[57] U. Trottenberg, C.W. Oosterlee, and A. Schuller, Multigrid, Elsevier, New-York, 2000,
Available at https://www.elsevier.com/books/multigrid/trottenberg/978-0-08-047956-9.

[58] Z. Wen and D. Goldfarb, A line search multigrid method for large-scale nonlin-
ear optimization, SIAM J. on Optimization 20 (2009), pp. 1478–1503. Available at
http://dx.doi.org/10.1137/08071524X.

Appendix A.

In Section 4.1, we have considered the simplest case of network’s architecture, corre-
sponding to N = 1. However, our method is also applicable when N > 1, as shown
in Section 5. Here, we describe this extension (still considering the case of just one
hidden layer). The network is still composed of three layers in total, but the input layer
is composed of N nodes, one for each component of the input. The input nodes are
connected to all the nodes in the hidden layer. Instead of having just r input weights,
we have N groups of r input weights, {wi,1, . . . , wi,r}, i = 1, . . . , N , where the weights
in group i are located on the edges departing from the i-th input node. The right part
of the network remains the same, with one output node and r output weights. The
input space of the objective function F in (14) will be R(N+2)r+1 rather than R3r+1.
As an example, we depict the case N = 2 in Figure A1.

The training procedure is exactly the same, with the only difference that
p = [v, w1, . . . , wN , b, d] ∈ R(N+2)r+1, with wi = [wi,1, . . . , wi,r]

T , i = 1, . . . , N . In
the construction of the matrix required for the application of the AMG coarsening
strategy, the contribution of the input weights is now represented by N submatrices,
corresponding to the derivatives with respect to couples (wi, wi), i = 1, . . . , N :

A =
F Tv Fv
‖Fv‖∞

+

N∑
i=1

F Twi
Fwi

‖Fwi
‖∞

+
F Tb Fb
‖Fb‖∞

.

25

