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Key ingredients

Nonlinear least squares problems

Given R : R" — R™, m > n, nonlinear, continuously differentiable solve

1
min ®(x) = = ||R(x)[|%
min &(x) = S[IR(x)Il

Levenberg-Marquardt method

| \

It is an iterative method that builds the sequence of solution
approximations as xx11 = Xk + px Where py is the solution of:

1 1
.M 2 2
= IR + =X
pmeﬁgn mg" (p) 5 IR(xk) + J(xx)p|| 5 «|lpll

where J is the Jacobian matrix of R and Ay > 0 is a regularization
parameter.
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Classical Levenberg-Marquardt method

@ Given x, € R" and Ak > 0, the step px € R" is the minimizer of

1 1
mEM () = SIIRGa) + Sl + S Alpl
@ py is the solution of

(Bk + Al Pk = —8k
with By = J(xk) T J(xx), gx = J(xk) T R(xk).
e Set ®(x) = 1||R(x)|?, and compute

_ P(x) — Plxk + px)
pk(Pk) = m,ﬁM(O) _ m,eM(Pk)'

e Given n € (0,1):

o If pi < 1 then set Ak+1 > Ak and Xxgp1 = Xk
o If pi > n then set Ak+1 < Ak and Xgp1 = Xk + Pk
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1
min ®(x) = ~[|R(x)|1.
min &(x) = S[IR(x)Il

The thesis is divided into two parts:

@ | part: lll-posed problems with R(x) = F(x) — y for given data y. We
assume to have at disposal just noisy data y°. The noise is fixed and
arises from measurements errors. AIM: design stable methods for
their solution.

@ Il part: Large scale problems with noisy function and gradient,

R(x) = Fs(x) noisy approximation to F(x). The approximation can
be improved reducing the noise level. AIM: design fast methods for
the solution of the unperturbed problem for noise level converging to
zero.
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| part: lll-posed least squares problems

Elisa Riccietti (DIMAI - UNIFI) Levenberg-Marquardt method Firenze, 05/03/2018



| part: lll-posed least squares problems

Let us consider the following least squares problem: given X', ) Hilbert
spaces, F : X — Y, nonlinear, continuously differentiable and y € ), solve

in[|[F(x) — yl?
min [|F(x) = yll

Definition

The problem is well-posed if:
1 Yy € Y it exists a solution x € X,
2 the solution is unique,
3 property of stability holds.

The problem is ill-posed if one or more of the previous properties do not
hold.
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lll-posed problems

@ Let us consider problems of the form

min |[F(x) — y|%, x € R [[-2), y € R™, ][ [|2),
x€eRn

with F : R" — R™ and m > n, arising from the discretization of an
ill-posed problem.

@ In a realistic situation the data y are affected by noise, we have at
disposal only y? such that:

ly =yl <6
for some positive § .

@ We can handle only a noisy problem:

in ||F(x) — y°|°.
min [[F(x) = y7ll
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Need for regularization

@ As stability does not hold, the solutions of the original problem do not
depend continuously on the data.
= The solutions of the noisy problem may not be meaningful
approximations of the original problem solutions.
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Need for regularization

@ As stability does not hold, the solutions of the original problem do not
depend continuously on the data.
= The solutions of the noisy problem may not be meaningful
approximations of the original problem solutions.

@ For ill-posed problems there are no finite bounds on the inverse of the
Jacobian of F around a solution of the original problem.
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Need for regularization

@ As stability does not hold, the solutions of the original problem do not
depend continuously on the data.
= The solutions of the noisy problem may not be meaningful
approximations of the original problem solutions.

@ For ill-posed problems there are no finite bounds on the inverse of the
Jacobian of F around a solution of the original problem.

@ Classical methods used for well-posed systems are not suitable in this
contest.

4

Need for regularization.
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)

1) Zero-residual problems: F(x) =y

It exists x such that F(xT) = y. We propose a regularizing trust-region
approach, able to find an approximation to a solution of the unperturbed
problem.

2) Non-zero residual problems: min,cg- ||F(x) — y°|?

It does not exist x! such that F(x") —y = 0.
We extend the trust-region approach designed for zero-residual problem to
small residual problems.
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Trust-region methods

Trust region methods falls into the class of Levenberg-Marquardt methods.

Levenberg-Marquardt - Trust region

: 1 A
o LM: min m™(p) = SIIF(x0) — y + J(u)pl*+5 o

) 1
mpln mZ-R(p) = §||F(xk) —yv+ J(Xk)P||2,
s.t. |pl| < Ak

o TR:

It is possible to prove that for TR pj, solves
(B + M l)px = =8k, Bi = J0a) T I0xk), gk = J(x) T (F(x) — y)
for some Ax > 0 such that
Ak(l[pll = Ax) = 0.

= Trust-region methods are Levenberg-Marquardt methods!
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Trust-region methods

@ At each iteration the step is accepted if it provides sufficient decrease
in the objective function ®(x) = 1[|F(x) — y°||? and the trust region
radius is updated.

@ The update is based on the ratio between actual and predicted

reduction: () — ( )
Xk ) — O(Xk + px
pr(pk) = :

mR(0) — m{R(px)

e Given n € (0,1):

o If px < n then set Axi1 < Ay and Xpp1 = Xk.
o If px > n then set Ayi1 > Ay and X1 = Xk + P
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Zero-residual problems

Zero-residual problems

We consider
F(x) =y’

with § fixed noise level, and let xT be a solution of F(x) = y.
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Iterative regularization methods

Iterative regularization methods generate a sequence {xﬁ} If the process

is stopped at iteration k*(0) the method is supposed to guarantee the
following properties:

° x,f*(é) is an approximation of x':
° {le*(5)} tends to xT if § tends to zero;

e local convergence to x' in the noise-free case.
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Standard trust-region

Standard trust-region

The step px solves

(Bk + M\l pk = —8x«
for some Ay > 0 such that

Me(llpkll — Ax) = 0.

@ By is ill-conditioned.

@ In trust-region methods the trust region is eventually inactive:
llpkll < Ak — Ak =0.

@ It is not a regularization method!
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How to obtain a regularizing method?

Noisy problem

1
in ZIlIF 002
min S[[F(x) = y7ll

| A\

Exact problem

1 )
min S[IF(x) — v

x€R"

.

© stopping criterion
@ small steps
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Regularizing trust-region

1) Stopping criterion: with noisy data the process is stopped at iteration
k*(9) such that x,‘f*(é) satisfies the discrepancy principle:

IF (@) = ¥°ll < 76 < [IFE) — ¥

for 0 < k < k*(6) and 7 > 1 suitable parameter.

Error history
26 T

SEMI CONVERGENCE
Plot of the error ||x} — x|
versus iteration number.
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Regularizing trust-region

2) q-condition: [|F(x) — y* + JOf)pll = qllF(x{) —»°Il. g € (0,1)

15
- 1t
=
S \'.\_
= 0 1 "
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5
|
i
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|
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IN

— If Ay ﬁ”g}f” then py satisfies the g-condition and the trust region

is active.

Elisa Riccietti (DIMAI - UNIFI) Levenberg-Marquardt method Firenze, 05/03/2018 17 / 42



Local analysis

e Assumption 1 For index k it exist positive p and ¢ such that
1 the system F(x) = y is solvable in B,(x?);
2 for x,X € sz(xg)

[IF(x) = F(X) = J(x)(x = X)|| < clix = X[[[[F(x) = F(X)].

For well-posed systems: ||F(x) — F(X) — J(x)(x — X)|| < cl|x — X2

o Assumption 2: It exists positive K such that
O < Ky

forall x e L={x e R" s.t. d(x) < d(x)}.
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Theoretical results

The method generates a sequence {x?} such that:

1) the trust-region is active, i.e. A >0,

2) error decreases monotonically: ||x,‘fJrl —xt| < [Ix¢ — x|,
for k > k, with k < k*(9) for noisy data.

Theorem

If 6 = 0 the sequence {xx} converges to a solution x* of F(x) = y such
that ||x* — xT|| < p.

If 6 > 0 the discrepancy principle is satisfied after a finite number of
iterations k*(0) and the sequence {x,f*(é)} converges to a solution of
F(x) =y if ¢ tends to zero.

— Regularizing method, [S. Bellavia, B. Morini, E. R., COAP, 2016].
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Test problems

@ Four nonlinear ill-posed systems arising from the discretization of
nonlinear first-kind Fredholm integral equation are considered, they

model gravimetric and geophysics problems:
1
| Kesxshas=y(0.  tef.1l

P1,P2, [Vogel, 1990], P3,P4 [Kaltenbacher,2007];

@ Their kernel is of the form

_ (t—s)>+ H? _
o) = s (g o)
1

\/1+(t—s)2+x(5)2;

k(t,s,x(s))
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ularizing properties of the method.

107
102 10 1074 10° 10°® 107 108

Semilogarithmic plot of the error HX;(E*((s) — xT|| as a function of the noise
level 6.
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Computed solution approximations
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Comparison between regularizing and standard trust-region

- - -regularizing trust-region

015
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005 0s
- - -regularizing trust-region - standard trust-region
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Non-zero residual problems

Non-zero residual problems

We consider non-zero residual problems:
it does not exist x such that F(x) —y = 0, but it exists x' local minimum
of the problem.
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Small residual problems

@ We extend the approach for zero-residual problems to small residual
problems. — We propose an elliptical trust-region approach.

@ Let us assume that J is full rank, but ill-conditioned, with
ill-conditioning due to smallest singular value close to zero, as often
happens in these applications.

At a generic iteration k, given Ay > 0, the following problem is solved:

min my(p) = fHF(xk)fy“H(xi)pH%
st. ||(Bx)” %p|| < Ay
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Regularizing properties

To maintain the regularizing properties of the trust-region approach we
assume equivalent conditions on the gradient instead on the function.

© discrepancy principle :

190 (5)) T (FOxes)) = v < 78 < [[J0) T (F(x) = »°)

@ ¢g-condition:
IV T(FO) = v + )Pl = allJ6) T (FOR) = »)|

If Ay < ”B 162 9(B)Y%g? +|| then pj satisfies the g-condition and the
trust-region is active.
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Convergence analysis

o Assumptionl: there exists k s.t. a solution exists in B,(x;) and for
X,)? S sz(XE)

IVF(%)=VF(x)=J(x) " J() (Z=x)|| < (cllx=x]|+0) [V F(x)= V().
V2£(x) = J(x) TJ(x) + S(x) = J(x) T J(x) + gml(Fj(X) — ¥ V2Fj(%).

o Assumption2: ||S(xT)|| < o < g < 1 (small residual problems)

4

Regularizing method.
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Convergence analysis

@ Let 6 = 0. Under Assumptions 1,2 the sequence {xx} generated
converges to a stationary point x* such that ||x* — x| < p.

@ Let 9 > 0. Under Assumptions 1,2 the iterates satisfy the discrepancy
principle after a finite number k,(9) of iterations. Moreover the
sequence {x,f*(é)} converges to a stationary point whenever § tends to
zero.
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Numerical results

@ P1: We want to reconstruct ¢ in the 2D-elliptic problem
—Au+cu=FfinQ=(0,1) x (0,1)
u= g on 0Q

from the knowledge of u in Q, f € L?(Q), & the trace of a function in
H?(Q). If F: D(F) — L%(Q) is the operator mapping parameter c to
the solution u we solve

.1 112
min > 1F(c) - a]

0 measured values of u.

@ P2: Reconstruct the conductivity x of the soil from measurements
b= (b1,...,bm)" at different heights h;,i =1,..., m:

1
min iHm(X) — b||2.
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Numerical tests on problem P1, 6 =1.e — 2
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Numerical tests on problem P2, 6 =1.e — 2

(a) (b)

Figure: (a) plot of the true solution x' and of the computed solution x?

§ = 1072, (b) regularization parameters \.

“(6) for
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Il part: Large scale noisy problems
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Il part: Large scale noisy problems

@ 6-months collaboration with S. Gratton, INP-ENSEEIHT, Toulouse.

@ We consider problems for which the objective function is expensive to
evaluate.

@ We want to recover the solution of the problem relying on cheap
approximations to the objective function:

min < |5 (x) | IFs(x) ~ Fx)l <6

@ |t is possible to improve the approximation quality decreasing the
noise level § during the optimization process.

@ Generally we will deal with large-scale non-zero residual problems.
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Levenberg-Marquardt method

@ At each iteration we consider
: 1 2
min ®s, (x) = 5 [|Fs, (x)] [1F5.(x) = FOO < 0k
@ At each iteration we have to solve a noisy linear systems of the form:

(s (X2 T 5, (x2) + il Yok = —gs,, (x}).-

@ We have to compute:

bs, (x0€) — P, (X0 + )
my(0) — my(px)

b
P (pk) =

o If the noise is too high the reduction in ®s, can be just an effect of
the presence of the noise.
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Noise control

Let

0k < SA% eI,

N

for a € (3,1]. If

¢5k (lek) B ¢5k (Xl(jk + Pk)

Ok _
Pic(Pe) = == O~ i)

>

then also 5 5
P(x ) — PO + pi)
my(0) — mk(px)

pk(pk) =

— True reduction in the noise-free objective function ¢
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Algorithm : k-th iteration of regularizing Levenberg-Marquardt

Given a € (3,1], do, m € (0,1), 72 > 0, Amax > Amin > 0, ¥ > 1, xo and
)\max > )\0 Z )\min-

Compute f%(xp). For k=0,1,2,...
1. Compute a solution px of the LM subproblem.

2. 1f 8 < 222 [lpill?, compute @5, (x¢* + px), else reduce dx and go
back to 1.

3. Compute

B, (f*) = ©, (" + pr)

pik(pk) = mk(o) — mk(pk)

3.1 1f p(px) > 11, then set x,ffrl = x* 4 py and

p— { min{'y)‘kv )\max} if Hg5k(xl[<§)|| < 772/)‘k»
N max{ A, Amin} if [|g5, ()| = 72/ Ak

3.2 Otherwise set xfil = x,fk, A1 = Yk
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Inexact step

Large-scale problems: approximate solution of LM subproblem

p provides the sufficient Cauchy decrease:

my(0) — me(pk) > o RS

: 9 >0.
2 [ 5 (N1 + A

The Levenberg-Marquardt step computed as

(s, (X2 T J5, (62%) + M) px = —gs, (<) +1i

for a residual ry satisfying ||rk|| < exllgs, (x2), with ex small enough
achieves the Cauchy decrease.
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Let £ = {x | f(x) < f(x0)}, x' a local minimum of function f.
@ Assumption 1: It exists K > 0 such that ||J(x)|| < K for all x € L.

@ Assumption 2: f has Lipschitz continuous gradient on L:
lg(x) —gW)Il < Lix = y| for all x,y € L .

@ Assumption 3: Let H the Hessian matrix of function f, H(XT) =0, H
is Lipschitz continuous: [[H(x) — H(y)|| < M||x — y|| for all x,y € L,
and let 0 < / < L < oo such that / [, < H(x") < L I, with I, the
identity matrix of size n.
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Theoretical results

@ Global convergence: Let Assumptions 1 and 2 hold. Then

lim 6, =0, Jim s, ()] =0

o Parameters A: It exists k > 0 such that Ay = Amax for all k > k.
@ Asymptotic step behaviour Let py satisfy the Cauchy decrease. Then

. LM\ 0 S\Y. H—
lefT;o(Pk ):+m(g6k(Xk)),—0 for i=1,...,n,

If Ag is large enough py tends to a steepest descent step with
step-length ﬁ

@ Local Convergence perturbed steepest descent: Let Assumptions 1,2
and 3 hold and let pr = —Amlaxg(;k(x,f) with ﬁ < % If the starting

guess xg is close enough to x', the method converges locally.
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Numerical results

Nonlinear wave equation:
2u(z, t) 62u(z t)

ar? 0z =0
U(O, t) = u(17 t) =0, U(Z, 0) = UO(Z)7
du(z,0)

=0,0<t<T,0<z<l1.
ot

We look for the initial state up(z), from the knowledge of observations
u(zi, tj), tj > 0. Data assimilation problem:

N
min S lx =6l + 5 D 1B () -yl
J 0

o ||x/|2, = xT Mx for a symmetric positive definite matrix M,

@ xp € R" is the background vector (a priori estimate)

@ y; € R™ is the vector of observations at time t;, m; < n.

@ Hj is the operator modelling the observation process at t;

@ x(tj) the state vector, solution of the nonlinear model at time t;.
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Numerical results

o o1 02 03 04 05 06 07 08 09
z

All samples | Subsampled
it 9 12
costs 10 3
cost, 67 15
RMSE 1.2e-2 3.8e-2
savef 67%
save, 78%
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