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Key ingredients

Nonlinear least squares problems

Given R : Rn → Rm, m ≥ n, nonlinear, continuously differentiable solve

min
x∈Rn

Φ(x) =
1

2
‖R(x)‖2.

Levenberg-Marquardt method

It is an iterative method that builds the sequence of solution
approximations as xk+1 = xk + pk where pk is the solution of:

min
p∈Rn

mLM
k (p) =

1

2
‖R(xk) + J(xk)p‖2 +

1

2
λk‖p‖2

where J is the Jacobian matrix of R and λk ≥ 0 is a regularization
parameter.
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Classical Levenberg-Marquardt method

Given xk ∈ Rn and λk ≥ 0, the step pk ∈ Rn is the minimizer of

mLM
k (p) =

1

2
‖R(xk) + J(xk)p‖2 +

1

2
λk‖p‖2.

pk is the solution of

(Bk + λk I )pk = −gk

with Bk = J(xk)T J(xk), gk = J(xk)TR(xk).

Set Φ(x) = 1
2‖R(x)‖2, and compute

ρk(pk) =
Φ(xk)− Φ(xk + pk)

mLM
k (0)−mLM

k (pk)
.

Given η ∈ (0, 1):

If ρk < η then set λk+1 > λk and xk+1 = xk .
If ρk ≥ η then set λk+1 ≤ λk and xk+1 = xk + pk .
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Outline

min
x∈Rn

Φ(x) =
1

2
‖R(x)‖2.

The thesis is divided into two parts:

I part: Ill-posed problems with R(x) = F (x)− y for given data y . We
assume to have at disposal just noisy data y δ. The noise is fixed and
arises from measurements errors. AIM: design stable methods for
their solution.

II part: Large scale problems with noisy function and gradient,
R(x) = Fδ(x) noisy approximation to F (x). The approximation can
be improved reducing the noise level. AIM: design fast methods for
the solution of the unperturbed problem for noise level converging to
zero.
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I part: Ill-posed least squares problems
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I part: Ill-posed least squares problems

Let us consider the following least squares problem: given X ,Y Hilbert
spaces, F : X → Y, nonlinear, continuously differentiable and y ∈ Y, solve

min
x∈X
‖F (x)− y‖2.

Definition

The problem is well-posed if:

1 ∀y ∈ Y it exists a solution x ∈ X ,

2 the solution is unique,

3 property of stability holds.

The problem is ill-posed if one or more of the previous properties do not
hold.
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Ill-posed problems

Let us consider problems of the form

min
x∈Rn
‖F (x)− y‖2, x ∈ (Rn, ‖ · ‖2), y ∈ (Rm, ‖ · ‖2),

with F : Rn → Rm and m ≥ n, arising from the discretization of an
ill-posed problem.

In a realistic situation the data y are affected by noise, we have at
disposal only y δ such that:

‖y − y δ‖ ≤ δ

for some positive δ .

We can handle only a noisy problem:

min
x∈Rn
‖F (x)− y δ‖2.
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Need for regularization

As stability does not hold, the solutions of the original problem do not
depend continuously on the data.
=⇒ The solutions of the noisy problem may not be meaningful
approximations of the original problem solutions.

For ill-posed problems there are no finite bounds on the inverse of the
Jacobian of F around a solution of the original problem.

Classical methods used for well-posed systems are not suitable in this
contest.

⇓
Need for regularization.
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Outline

1) Zero-residual problems: F (x) = y δ

It exists x† such that F (x†) = y . We propose a regularizing trust-region
approach, able to find an approximation to a solution of the unperturbed
problem.

2) Non-zero residual problems: minx∈Rn ‖F (x)− y δ‖2

It does not exist x† such that F (x†)− y = 0.
We extend the trust-region approach designed for zero-residual problem to
small residual problems.
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Trust-region methods

Trust region methods falls into the class of Levenberg-Marquardt methods.

Levenberg-Marquardt - Trust region

LM: min
p

mLM
k (p) =

1

2
‖F (xk)− y + J(xk)p‖2+

λk
2
‖p‖2

TR:
min
p

mTR
k (p) =

1

2
‖F (xk)− y + J(xk)p‖2,

s.t. ‖p‖ ≤ ∆k

It is possible to prove that for TR pk solves

(Bk + λk I )pk = −gk , Bk = J(xk)T J(xk), gk = J(xk)T (F (xk)− y)

for some λk ≥ 0 such that

λk(‖pk‖ −∆k) = 0.

⇒ Trust-region methods are Levenberg-Marquardt methods!
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Trust-region methods

At each iteration the step is accepted if it provides sufficient decrease
in the objective function Φ(x) = 1

2‖F (x)− y δ‖2 and the trust region
radius is updated.

The update is based on the ratio between actual and predicted
reduction:

ρk(pk) =
Φ(xk)− Φ(xk + pk)

mTR
k (0)−mTR

k (pk)
.

Given η ∈ (0, 1):

If ρk < η then set ∆k+1 < ∆k and xk+1 = xk .
If ρk ≥ η then set ∆k+1 ≥ ∆k and xk+1 = xk + pk .
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Zero-residual problems

Zero-residual problems

We consider

F (x) = y δ,

with δ fixed noise level, and let x† be a solution of F (x) = y .
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Iterative regularization methods

Iterative regularization methods generate a sequence {xδk}. If the process
is stopped at iteration k∗(δ) the method is supposed to guarantee the
following properties:

xδk∗(δ) is an approximation of x†;

{xδk∗(δ)} tends to x† if δ tends to zero;

local convergence to x† in the noise-free case.
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Standard trust-region

Standard trust-region

The step pk solves

(Bk + λk I )pk = −gk
for some λk ≥ 0 such that

λk(‖pk‖ −∆k) = 0.

Bk is ill-conditioned.

In trust-region methods the trust region is eventually inactive:
‖pk‖ < ∆k → λk = 0.

It is not a regularization method!
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How to obtain a regularizing method?

Noisy problem

min
x∈Rn

1

2
‖F (x)− y δ‖2

Exact problem

min
x∈Rn

1

2
‖F (x)− y‖2

1 stopping criterion

2 small steps
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Regularizing trust-region

1) Stopping criterion: with noisy data the process is stopped at iteration
k∗(δ) such that xδk∗(δ) satisfies the discrepancy principle:

‖F (xδk∗(δ))− y δ‖ ≤ τδ < ‖F (xδk )− y δ‖

for 0 ≤ k < k∗(δ) and τ > 1 suitable parameter.
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Regularizing trust-region

2) q-condition: ‖F (xδk )− y δ + J(xδk )p‖ ≥ q‖F (xδk )− y δ‖, q ∈ (0, 1)

→ If ∆k ≤ 1−q
‖Bk‖‖g

δ
k‖ then pk satisfies the q-condition and the trust region

is active.
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Local analysis

Assumption 1 For index k̄ it exist positive ρ and c such that

1 the system F (x) = y is solvable in Bρ(xδ
k̄

);

2 for x , x̃ ∈ B2ρ(xδ
k̄

)

‖F (x)− F (x̃)− J(x)(x − x̃)‖ ≤ c‖x − x̃‖‖F (x)− F (x̃)‖.

For well-posed systems: ‖F (x)− F (x̃)− J(x)(x − x̃)‖ ≤ c‖x − x̃‖2.

Assumption 2: It exists positive KJ such that

‖J(x)‖ ≤ KJ

for all x ∈ L = {x ∈ Rn s.t. Φ(x) ≤ Φ(x0)}.
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Theoretical results

Lemma

The method generates a sequence {xδk} such that:
1) the trust-region is active, i.e. λk > 0,
2) error decreases monotonically: ‖xδk+1 − x†‖ < ‖xδk − x†‖,
for k ≥ k̄, with k̄ < k∗(δ) for noisy data.

Theorem

If δ = 0 the sequence {xk} converges to a solution x∗ of F (x) = y such
that ‖x∗ − x†‖ ≤ ρ.
If δ > 0 the discrepancy principle is satisfied after a finite number of
iterations k∗(δ) and the sequence {xδk∗(δ)} converges to a solution of

F (x) = y if δ tends to zero.

→ Regularizing method, [S. Bellavia, B. Morini, E. R., COAP, 2016].
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Test problems

Four nonlinear ill-posed systems arising from the discretization of
nonlinear first-kind Fredholm integral equation are considered, they
model gravimetric and geophysics problems:∫ 1

0
k(t, s, x(s))ds = y(t), t ∈ [0, 1],

P1,P2, [Vogel, 1990], P3,P4 [Kaltenbacher,2007];

Their kernel is of the form

k(t, s, x(s)) = log

(
(t − s)2 + H2

(t − s)2 + (H − x(s))2

)
;

k(t, s, x(s)) =
1√

1 + (t − s)2 + x(s)2
;
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Regularizing properties of the method.
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Computed solution approximations
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Comparison between regularizing and standard trust-region
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Non-zero residual problems

Non-zero residual problems

We consider non-zero residual problems:
it does not exist x such that F (x)− y = 0, but it exists x† local minimum

of the problem.
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Small residual problems

We extend the approach for zero-residual problems to small residual
problems. → We propose an elliptical trust-region approach.

Let us assume that J is full rank, but ill-conditioned, with
ill-conditioning due to smallest singular value close to zero, as often
happens in these applications.

At a generic iteration k , given ∆k > 0, the following problem is solved:

min
p

mk(p) :=
1

2
‖F (xδk )− y δ + J(xδk )p‖2,

s.t. ‖(Bk)−
1
2 p‖ ≤ ∆k .
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Regularizing properties

To maintain the regularizing properties of the trust-region approach we
assume equivalent conditions on the gradient instead on the function.

1 discrepancy principle :

‖J(xδk∗(δ))T (F (xδk∗(δ))− y δ)‖ ≤ τδ < ‖J(xδk )T (F (xδk )− y δ)‖

2 q-condition:

‖J(xδk )T (F (xδk )− y δ + J(xδk )pk)‖ ≥ q‖J(xδk )T (F (xδk )− y δ)‖

If ∆k ≤ 1−q
‖Bk‖2 ‖(Bk)1/2g δk‖ then pk satisfies the q-condition and the

trust-region is active.
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Convergence analysis

Assumption1: there exists k̄ s.t. a solution exists in Bρ(xk̄) and for
x , x̃ ∈ B2ρ(xk̄)

‖∇f (x̃)−∇f (x)−J(x)T J(x)(x̃−x)‖ ≤ (c‖x̃−x‖+σ)‖∇f (x)−∇f (x̃)‖.

∇2f (x) = J(x)T J(x) + S(x) = J(x)T J(x) +
m∑
j=1

(Fj(x)− yj)∇2Fj(x).

Assumption2: ‖S(x†)‖ ≤ σ < q < 1 (small residual problems)

⇓
Regularizing method.
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Convergence analysis

Let δ = 0. Under Assumptions 1,2 the sequence {xk} generated
converges to a stationary point x∗ such that ‖x∗ − x†‖ ≤ ρ.

Let δ > 0. Under Assumptions 1,2 the iterates satisfy the discrepancy
principle after a finite number k∗(δ) of iterations. Moreover the
sequence {xδk∗(δ)} converges to a stationary point whenever δ tends to
zero.
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Numerical results

1 P1: We want to reconstruct c in the 2D-elliptic problem

−∆u + cu = f̂ in Ω = (0, 1)× (0, 1)

u = ĝ on ∂Ω

from the knowledge of u in Ω, f̂ ∈ L2(Ω), ĝ the trace of a function in
H2(Ω). If F : D(F )→ L2(Ω) is the operator mapping parameter c to
the solution u we solve

min
c

1

2
‖F (c)− ũ‖2

ũ measured values of u.
2 P2: Reconstruct the conductivity x of the soil from measurements

b = (b1, . . . , bm)T at different heights hi , i = 1, . . . ,m:

min
x

1

2
‖m(x)− b‖2.
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Numerical tests on problem P1, δ = 1.e − 2
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Numerical tests on problem P2, δ = 1.e − 2
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Figure: (a) plot of the true solution x† and of the computed solution xδk∗(δ) for

δ = 10−2, (b) regularization parameters λk .
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II part: Large scale noisy problems
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II part: Large scale noisy problems

6-months collaboration with S. Gratton, INP-ENSEEIHT, Toulouse.

We consider problems for which the objective function is expensive to
evaluate.

We want to recover the solution of the problem relying on cheap
approximations to the objective function:

min
x

1

2
‖Fδ(x)‖2 ‖Fδ(x)− F (x)‖ ≤ δ.

It is possible to improve the approximation quality decreasing the
noise level δ during the optimization process.

Generally we will deal with large-scale non-zero residual problems.
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Levenberg-Marquardt method

At each iteration we consider

min
x

Φδk (x) =
1

2
‖Fδk (x)‖2 ‖Fδk (x)− F (x)‖ ≤ δk .

At each iteration we have to solve a noisy linear systems of the form:

(Jδk (xδkk )T Jδk (xδkk ) + λk I )pk = −gδk (xδk ).

We have to compute:

ρδkk (pk) =
Φδk (xδkk )− Φδk (xδkk + pk)

mk(0)−mk(pk)
.

If the noise is too high the reduction in Φδk can be just an effect of
the presence of the noise.
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Noise control

Noise control

Let

δk ≤
1

2
λαk ‖p‖2,

for α ∈ ( 1
2 , 1]. If

ρδkk (pk) =
Φδk (xδkk )− Φδk (xδkk + pk)

mk(0)−mk(pk)
> η

then also

ρk(pk) =
Φ(xδkk )− Φ(xδkk + pk)

mk(0)−mk(pk)
> η.

→ True reduction in the noise-free objective function Φ
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Algorithm : k-th iteration of regularizing Levenberg-Marquardt

Given α ∈
(

1
2
, 1
]
, δ0, η1 ∈ (0, 1), η2 > 0, λmax > λmin > 0, γ > 1, x0 and

λmax > λ0 ≥ λmin.

Compute f δ0 (x0). For k = 0, 1, 2, ...

1. Compute a solution pk of the LM subproblem.

2. If δk ≤ 1
2
λα
k ‖pk‖2, compute Φδk (xδk

k + pk), else reduce δk and go
back to 1.

3. Compute

ρ
δk
k (pk) =

Φδk (xδk
k )− Φδk (xδk

k + pk)

mk(0)−mk(pk)
.

3.1 If ρδkk (pk) ≥ η1, then set xδk
k+1 = xδk

k + pk and

λk+1 =

{
min{γλk , λmax} if ‖gδk (xδ

k )‖ < η2/λk ,

max{λk , λmin} if ‖gδk (xδ
k )‖ ≥ η2/λk .

3.2 Otherwise set xδk
k+1 = xδk

k , λk+1 = γλk .
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Inexact step

Large-scale problems: approximate solution of LM subproblem

p provides the sufficient Cauchy decrease:

mk(0)−mk(pk) ≥ θ

2

‖gδk (xδk )‖2

‖Jδk (xδk )‖2 + λk
, θ > 0.

The Levenberg-Marquardt step computed as

(Jδk (xδkk )T Jδk (xδkk ) + λk I )pk = −gδk (xδk )+rk

for a residual rk satisfying ‖rk‖ ≤ εk‖gδk (xδk )‖, with εk small enough
achieves the Cauchy decrease.
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Assumptions

Let L = {x | f (x) ≤ f (x0)}, x† a local minimum of function f .

Assumption 1: It exists K > 0 such that ‖J(x)‖ ≤ K for all x ∈ L.

Assumption 2: f has Lipschitz continuous gradient on L:
‖g(x)− g(y)‖ ≤ L‖x − y‖ for all x , y ∈ L .

Assumption 3: Let H the Hessian matrix of function f , H(x†) � 0, H
is Lipschitz continuous: ‖H(x)− H(y)‖ ≤ M‖x − y‖ for all x , y ∈ L,
and let 0 < l ≤ L <∞ such that l In � H(x†) � L In with In the
identity matrix of size n.
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Theoretical results

Global convergence: Let Assumptions 1 and 2 hold. Then

lim
k→∞

δk = 0, lim
k→∞

‖gδk (xδk )‖ = 0.

Parameters λk: It exists k̄ > 0 such that λk = λmax for all k ≥ k̄ .

Asymptotic step behaviour Let pk satisfy the Cauchy decrease. Then

lim
k→∞

(pLM
k )i +

θ

K 2 + λk
(gδk (xδ

k ))i = 0 for i = 1, . . . , n,

If λk is large enough pk tends to a steepest descent step with
step-length 1

λmax
.

Local Convergence perturbed steepest descent: Let Assumptions 1,2
and 3 hold and let pSDk = − 1

λmax
gδk (xδk ) with 1

λmax
< 1

L . If the starting

guess x0 is close enough to x†, the method converges locally.
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Numerical results

Nonlinear wave equation:

∂2u(z , t)

∂t2
− ∂2u(z , t)

∂z2
+ µeνu = 0,

u(0, t) = u(1, t) = 0, u(z , 0) = u0(z),

∂u(z , 0)

∂t
= 0, 0 ≤ t ≤ T , 0 ≤ z ≤ 1.

We look for the initial state u0(z), from the knowledge of observations
u(zi , tj), tj > 0. Data assimilation problem:

min
x∈Rn

1

2
‖x − xb‖2

B−1 +
1

2

Nt∑
j=0

‖Hj(x(tj))− yj‖2
R−1
j

‖x‖2
M = xTMx for a symmetric positive definite matrix M,

xb ∈ Rn is the background vector (a priori estimate)

yj ∈ Rmj is the vector of observations at time tj , mj ≤ n.

Hj is the operator modelling the observation process at tj
x(tj) the state vector, solution of the nonlinear model at time tj .
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Numerical results

z
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it 9 12
costf 10 3
costp 67 15
RMSE 1.2e-2 3.8e-2

savef 67%
savep 78%
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