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Ill-posed least squares problems

Let us consider the following least squares problem: given X ,Y Hilbert
spaces, F : X → Y, nonlinear, continuously differentiable and y ∈ Y, solve

min
x∈X
‖F (x)− y‖2.

Definition

The problem is well-posed if:

1 ∀y ∈ Y it exists a solution x ∈ X ,

2 the solution is unique,

3 property of stability holds.

The problem is ill-posed if one or more of the previous properties do not
hold.

Elisa Riccietti (DIMAI - UNIFI) Levenberg-Marquardt method Firenze, 27/09/2016 2 / 40



Ill-posed problems

Let us consider problems of the form

min
x∈Rn
‖F (x)− y‖2, x ∈ (Rn, ‖ · ‖2), y ∈ (Rm, ‖ · ‖2),

with F : Rn → Rm and m ≥ n, arising from the discretization of an
ill-posed problem.

In a realistic situation the data y are affected by noise, we have at
disposal only y δ such that:

‖y − y δ‖ ≤ δ

for some positive δ .

We can handle only a noisy problem:

min
x∈Rn
‖F (x)− y δ‖2.
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Need for regularization

As stability does not hold, the solutions of the original problem do not
depend continuously on the data.
=⇒ The solutions of the noisy problem may not be meaningful
approximations of the original problem solutions.

For ill-posed problems there are no finite bounds on the inverse of the
Jacobian of F around a solution of the original problem.

Classical methods used for well-posed systems are not suitable in this
contest.

⇓
Need for regularization.
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Outline

First part - zero-residual problems: F (x) = y δ

We consider a fixed noise level δ.
We propose a regularizing trust-region approach.

Second part - non-zero residual problems: minx∈Rn ‖F (x)− y δ‖2

It does not exist x such that F (x)− y = 0.
1) First extend the trust-region approach to small residual problems.
2) Then we consider problems with a noise level δ that can vary.
We propose a Levenberg-Marquardt method for large-scale problems.
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Levenberg-Marquardt method

It is an iterative method. Let denote xk the iterate at iteration k .

Given xk ∈ Rn and λk > 0, we denote with J ∈ Rm×n the Jacobian
matrix of F . The step pk ∈ Rn is the minimizer of

mLM
k (p) =

1

2
‖F (xk)− y + J(xk)p‖2 +

1

2
λk‖p‖2.

pk is the solution of

(Bk + λk I )pk = −gk

with Bk = J(xk)T J(xk), gk = J(xk)T (F (xk)− y).
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Set Φ(x) = 1
2‖F (x)− y δ‖2, and compute

ρk(pk) =
Φ(xk)− Φ(xk + pk)

mLM
k (0)−mLM

k (pk)
.

Given η ∈ (0, 1):

If ρk < η then set λk+1 > λk and xk+1 = xk .
If ρk ≥ η then set λk+1 ≤ λk and xk+1 = xk + pk .
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Trust-region methods

Given xk ∈ Rn, the step pk ∈ Rn is the minimizer of

min
p

mTR
k (p) =

1

2
‖F (xk)− y + J(xk)p‖2,

s.t. ‖p‖ ≤ ∆k ,

with ∆k > 0 trust-region radius.

Set Φ(x) = 1
2‖F (x)− y δ‖2, and compute

ρk(pk) =
Φ(xk)− Φ(xk + pk)

mTR
k (0)−mTR

k (pk)
.

Given η ∈ (0, 1):

If ρk < η then set ∆k+1 < ∆k and xk+1 = xk .
If ρk ≥ η then set ∆k+1 ≥ ∆k and xk+1 = xk + pk .
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Trust-region methods

It is possible to prove that pk solves

(Bk + λk I )pk = −gk

for some λk ≥ 0 such that

λk(‖pk‖ −∆k) = 0,

where we have set Bk = J(xk)T J(xk) and gk = J(xk)T (F (xk)− y).

⇒ Trust-region methods are Levenberg-Marquardt methods!
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First part

First part: zero-residual problems

Consider

F (x) = y δ,

with δ fixed noise level, and let x† be a solution of F (x) = y .
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Iterative regularization methods

Iterative regularization methods generate a sequence {xδk}. If the process
is stopped at iteration k∗(δ) the method is supposed to guarantee the
following properties:

xδk∗(δ) is an approximation of x†;

{xδk∗(δ)} tends to x† if δ tends to zero;

local convergence to x† in the noise-free case.

There are many methods of this class in the literature, they are analyzed
only under local assumptions, the definition of globally convergent
approaches is still an open task.
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Standard trust-region

Standard trust-region

The step pk solves

(Bk + λk I )pk = −gk
for some λk ≥ 0 such that

λk(‖pk‖ −∆k) = 0.

Bk is ill-conditioned.

In trust-region methods the trust region is eventually inactive:
‖pk‖ < ∆k → λk = 0.

It is not a regularization method!
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How to obtain a regularizing method?

Noisy problem

min
x∈Rn

1

2
‖F (x)− y δ‖2

Exact problem

min
x∈Rn

1

2
‖F (x)− y‖2

1 stopping criterion

2 small steps
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Regularizing trust-region

1) Stopping criterion: with noisy data the process is stopped at iteration
k∗(δ) such that xδk∗(δ) satisfies the discrepancy principle:

‖F (xδk∗(δ))− y δ‖ ≤ τδ < ‖F (xδk )− y δ‖

for 0 ≤ k < k∗(δ) and τ > 1 suitable parameter.
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Regularizing trust-region

2) q-condition: ‖F (xδk )− y δ + J(xδk )p‖ ≥ q‖F (xδk )− y δ‖, q ∈ (0, 1)

→ If ∆k ≤ 1−q
‖Bk‖‖g

δ
k‖ then pk satisfies the q-condition and the trust region

is active.
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Algorithm : k-th iteration of regularizing trust-region

Given xδ
k , η ∈ (0, 1), γ ∈ (0, 1), 0 < Cmin < Cmax.

Exact data: y , q ∈ (0, 1).

Noisy data: yδ, q ∈ (0, 1), τ > 1/q.

1. Compute Bk = J(xδ
k )TJ(xδ

k ) and gδ
k = J(xδ

k )T (F (xδ
k )− yδ).

2. Choose ∆k ∈
[
Cmin‖gδ

k ‖, min

{
Cmax,

1− q

‖Bk‖

}
‖gδ

k ‖
]

3. Repeat
3.1 Compute the solution pk of trust-region problem.
3.2 Compute

ρk(pk) =
Φ(xδ

k )− Φ(xδ
k + pk)

mTR
k (0)−mTR

k (pk)

with Φ(x) = 1
2
‖F (x)− yδ‖2, mTR

k (p) = 1
2
‖F (xδ

k ) + J(xδ
k )p‖2.

3.3 If ρk(pk) < η,set ∆k = γ∆k .
Until ρk(pk) ≥ η.

4. Set xδ
k+1 = xδ

k + pk .
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Local analysis

Assumption 1 For index k̄ it exist positive ρ and c such that

1 the system F (x) = y is solvable in Bρ(xδ
k̄

);

2 for x , x̃ ∈ B2ρ(xδ
k̄

)

‖F (x)− F (x̃)− J(x)(x − x̃)‖ ≤ c‖x − x̃‖‖F (x)− F (x̃)‖.

For well-posed systems: ‖F (x)− F (x̃)− J(x)(x − x̃)‖ ≤ c‖x − x̃‖2.

Assumption 2: It exists positive KJ such that

‖J(x)‖ ≤ KJ

for all x ∈ L = {x ∈ Rn s.t. Φ(x) ≤ Φ(x0)}.
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Theoretical results

Lemma

The method generates a sequence {xδk} such that:
1) the trust-region is active, i.e. λk > 0,
2) error decreases monotonically: ‖xδk+1 − x†‖ < ‖xδk − x†‖,
for k ≥ k̄, with k̄ < k∗(δ) for noisy data.

Theorem

If δ = 0 the sequence {xk} converges to a solution x∗ of F (x) = y such
that ‖x∗ − x†‖ ≤ ρ.
If δ > 0 the discrepancy principle is satisfied after a finite number of
iterations k∗(δ) and the sequence {xδk∗(δ)} converges to a solution of

F (x) = y if δ tends to zero.

→ Regularizing method, [S. Bellavia, B. Morini, E. R., COAP, 2016].
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Test problems

Four nonlinear ill-posed systems arising from the discretization of
nonlinear first-kind Fredholm integral equation are considered, they
model gravimetric and geophysics problems:∫ 1

0
k(t, s, x(s))ds = y(t), t ∈ [0, 1],

P1,P2, [Vogel, 1990], P3,P4 [Kaltenbacher,2007];

Their kernel is of the form

k(t, s, x(s)) = log

(
(t − s)2 + H2

(t − s)2 + (H − x(s))2

)
;

k(t, s, x(s)) =
1√

1 + (t − s)2 + x(s)2
;
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Regularizing properties of the method.
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Computed solution approximations
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Blue: regularizing TR, Solid line: solution of the original problem.
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Comparison between regularizing and standard trust-region
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Left: regularizing TR, Right: standard TR , Solid line: solution of the original problem.
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Second part

Second part - non-zero residual problems

We consider non-zero residual problems:
it does not exist x such that F (x)− y = 0.
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Small residual problems

We extend the approach for zero-residual problems to small residual
problems. → We propose an elliptical trust-region approach.

Let us assume that J is full rank, but ill-conditioned, with
ill-conditioning due to smallest singular value close to zero, as often
happens in these applications.

At a generic iteration k , given ∆k > 0, the following problem is solved:

min
p

mk(p) :=
1

2
‖F (xδk )− y δ + J(xδk )p‖2,

s.t. ‖(Bk)−
1
2 p‖ ≤ ∆k .
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Regularizing properties

To maintain the regularizing properties of the trust-region approach we
assume equivalent conditions on the gradient instead on the function.

1 discrepancy principle :

‖J(xδk∗(δ))T (F (xδk∗(δ))− y δ)‖ ≤ τδ < ‖J(xδk )T (F (xδk )− y δ)‖

2 q-condition:

‖J(xδk )T (F (xδk )− y δ + J(xδk )pk)‖ ≥ q‖J(xδk )T (F (xδk )− y δ)‖

If ∆k ≤ 1−q
‖Bk‖2 ‖(Bk)1/2g δk‖ then pk satisfies the q-condition and the

trust-region is active.
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Convergence analysis

Assumption1: there exists k̄ s.t. a solution exists in Bρ(xk̄) and for
x , x̃ ∈ B2ρ(xk̄)

‖∇f (x̃)−∇f (x)−J(x)T J(x)(x̃−x)‖ ≤ (c‖x̃−x‖+σ)‖∇f (x)−∇f (x̃)‖.

∇2f (x) = J(x)T J(x) + S(x) = J(x)T J(x) +
m∑
j=1

(Fj(x)− yj)∇2Fj(x).

Assumption2: ‖S(x†)‖ ≤ σ < q < 1 (small residual problems)

⇓
Regularizing method.
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Pb. Freh2, xδ0 = (−0.3, . . . ,−0.3)T . Plot of the true and the computed solution

for decreasing noise level, δ = 10(−(k+1)/2), k=4,5,6,7.
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Comparison between regularizing and standard trust-region
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Large scale non-zero residual problems

Collaboration with S. Gratton, CERFACS, Enseeiht-INP, Toulouse.

Data Assimilation: weather forecasting, oceanography.

It is possible to modify the noise on the data δk during the
optimization process. → Need for a strategy to control the noise.

Large-scale non-zero residual ill-posed problems
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Levenberg-Marquardt method

We propose a Levenberg-Marquardt method, globally convergent as the
noise level tends to zero.

At each iteration we have to solve linear systems of the form:

(J(xδkk )T J(xδkk ) + λk I )pk = −g δkk .

We have to compute:

ρδkk (pk) =
Φδk (xδkk )− Φδk (xδkk + pk)

mk(0)−mk(pk)
.

If the noise is too high the reduction in Φδk can be just an effect of
the presence of the noise.
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Noise control

Noise control

Let

δk ≤
1

2
λαk ‖p‖2,

for α ∈ ( 1
2 , 1]. If

ρδkk (pk) =
Φδk (xδkk )− Φδk (xδkk + pk)

mk(0)−mk(pk)
> η

then also

ρk(pk) =
Φ(xδkk )− Φ(xδkk + pk)

mk(0)−mk(pk)
> η.

→ True reduction in the noise-free objective function Φ
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Algorithm : k-th iteration of regularizing Levenberg-Marquardt

Given α ∈
(

1
2
, 1
]
, δ0, η1 ∈ (0, 1), η2 > 0, λmax > λmin > 0, γ > 1, x0 and

λmax > λ0 ≥ λmin.

Compute f δ0 (x0). For k = 0, 1, 2, ...

1. Compute a solution pk of the LM subproblem.

2. If δk ≤ 1
2
λα
k ‖pk‖2, compute Φδk (xδk

k + pk), else reduce δk and go
back to 1.

3. Compute

ρk(pk) =
Φδk (xδk

k )− Φδk (xδk
k + pk)

mk(0)−mk(pk)
.

3.1 If ρδkk (pk) ≥ η1, then set xδk
k+1 = xδk

k + pk and

λk+1 =

{
min{γλk , λmax} if ‖gδk

k ‖ < η2/λk ,

max{λk , λmin} if ‖gδk
k ‖ ≥ η2/λk .

3.2 Otherwise set xδk
k+1 = xδk

k , λk+1 = γλk .
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Inexact step

Large-scale problems: approximate solution of LM subproblem

p provides the sufficient Cauchy decrease:

mk(0)−mk(pk) ≥ θ

2

‖g δkk ‖
2

‖J(xk)‖2 + λk
, θ > 0.

The Levenberg-Marquardt step computed as

(J(xδkk )T J(xδkk ) + λk I )pk = −g δkk +rk

for a residual rk satisfying ‖rk‖ ≤ εk‖g δkk ‖, with εk small enough achieves
the Cauchy decrease.
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Assumptions

Let L = {x | f (x) ≤ f (x0)}, x† a local minimum of function f .

Assumption 1: It exists K > 0 such that ‖J(x)‖ ≤ K for all x ∈ L.

Assumption 2: f has Lipschitz continuous gradient on L:
‖g(x)− g(y)‖ ≤ L‖x − y‖ for all x , y ∈ L .

Assumption 3: Let H the Hessian matrix of function f , H(x†) � 0, H
is Lipschitz continuous: ‖H(x)− H(y)‖ ≤ M‖x − y‖ for all x , y ∈ L,
and let 0 < l ≤ L <∞ such that l In � H(x†) � L In with In the
identity matrix of size n.

Elisa Riccietti (DIMAI - UNIFI) Levenberg-Marquardt method Firenze, 27/09/2016 34 / 40



Theoretical results

Global convergence: Let Assumptions 1 and 2 hold. Then

lim
k→∞

δk = 0, lim
k→∞

‖g(xδkk )‖ = 0.

Parameters λk: It exists k̄ > 0 such that λk = λmax for all k ≥ k̄ .

Asymptotic step behaviour Let pk satisfy the Cauchy decrease.
Then ∥∥∥∥∥ gδk

k

‖pk‖(λk + K 2)
+

pk
‖pk‖

∥∥∥∥∥
2

= O

(
1

λk

)
If λk is large enough pk tends to a steepest descent step with

step-length 1
λmax

.

Local Convergence perturbed steepest descent: Let Assumptions
1,2 and 3 hold and let pSDk = − 1

λmax
g δkk with 1

λmax
< 1

L . If the starting

guess x0 is close enough to x†, the method converges.
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Numerical Results

Test 1 - Reconstruct electrical conductivity of the soil with respect to
depth, starting from electromagnetic data, n = 20, m = 40, [Deidda,
Fenu, Rodriguez, 2014.]
Test 2 - Fredholm equation of the first kind, n = 640, m = 1000, [Vogel,
1990].
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Figure: True and computed solutions for Test 1 (left) and Test 2 (right).
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Poster: ’Levenberg-Marquardt method for ill-posed large scale nonlinear
least squares problems’, OIP2016, Modena, 19/09/2016-21/09/2016.

’Support Vector Machine classification applied to the parametric design of
centrifugal pumps’, SIMAI 2016, Milano 13/09/2016-16/09/2016.

Visiting at INP-ENSEEIHT, Toulouse, for a collaboration with Prof. Serge
Gratton on ill-posed nonlinear least-squares problems, June-July 2016.

’Regularizing trust-region approaches for ill-posed nonlinear systems and
nonlinear least squares’, 20th Conference of the International Linear Algebra
Society (ILAS), Leuven, Belgium, 11/07/2016-15/07/2016, invited speaker.

’Numerical methods for optimization problems: an application to energetic
districts’, 19th European Conference on Mathematics for Industry ECMI,
Santiago de Compostela, Spain, 13/06/2016-17/06/2016, invited speaker
for receiving the degree award ’Hansjörg Wacker Memorial Prize’.
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’Solving ill-posed nonlinear systems with noisy data: a regularizing
trust-region approach’, ’PING - Inverse Problems in Geophysics’ Workshop
Firenze, 6/04/2016.

’A regularization trust-region approach for ill-posed nonlinear systems’,
Workshop ’Optimization and Data Assimilation’, CERFACS, Toulouse
(France), 13/01/2016-15/01/2016.

November 21-22, 2015, ’On an Adaptive Regularization for Ill-posed
Nonlinear Systems and its Trust-Region Implementation’ Networking in
Numerical Analysis 2015, a two day meeting in Bertinoro’, Bertinoro (FC).

September 12, 2015, ’On an Adaptive Regularization for Ill-posed Nonlinear
Systems and its Trust-Region Implementation’ , XX Congresso UMI, Siena.

ISMP 2015, 22nd International Symposium on Mathematical Programming,
Pittsburgh (USA), 12/07/2015- 17/07/2015.

June 21-26, 2015, CIME course ’Exploiting Hidden Structure in Matrix
Computations. Algorithms and Applications’, Cetraro (CS).
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