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Ill-posed least squares problems

Let us consider the following least squares problem: given X ,Y Hilbert
spaces, F : X → Y, nonlinear, continuously differentiable and y ∈ Y, solve

min
x∈X
‖F (x)− y‖2.

Definition

The problem is well-posed if:

1 ∀y ∈ Y it exists a solution x ∈ X ,

2 the solution is unique,

3 property of stability holds.

The problem is ill-posed if one or more of the previous properties do not
hold.

Elisa Riccietti (DIMAI - UNIFI) Levenberg-Marquardt method Firenze, 27/09/2016 2 / 40



Ill-posed problems

Let us consider problems of the form

min
x∈Rn
‖F (x)− y‖2, x ∈ (Rn, ‖ · ‖2), y ∈ (Rm, ‖ · ‖2),

with F : Rn → Rm and m ≥ n, arising from the discretization of an
ill-posed problem.

In a realistic situation the data y are affected by noise, we have at
disposal only y δ such that:

‖y − y δ‖ ≤ δ

for some positive δ .

We can handle only a noisy problem:

min
x∈Rn
‖F (x)− y δ‖2.
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Need for regularization

As stability does not hold, the solutions of the original problem do not
depend continuously on the data.
=⇒ The solutions of the noisy problem may not be meaningful
approximations of the original problem solutions.

For ill-posed problems there are no finite bounds on the inverse of the
Jacobian of F around a solution of the original problem.

Classical methods used for well-posed systems are not suitable in this
contest.

⇓
Need for regularization.
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Outline

First part - zero-residual problems: F (x) = y δ

We consider a fixed noise level δ.
We propose a regularizing trust-region approach.

Second part - non-zero residual problems: minx∈Rn ‖F (x)− y δ‖2

It does not exist x such that F (x)− y = 0.
1) First extend the trust-region approach to small residual problems.
2) Then we consider problems with a noise level δ that can vary.
We propose a Levenberg-Marquardt method for large-scale problems.
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Levenberg-Marquardt method

It is an iterative method. Let denote xk the iterate at iteration k .

Given xk ∈ Rn and λk > 0, we denote with J ∈ Rm×n the Jacobian
matrix of F . The step pk ∈ Rn is the minimizer of

mLM
k (p) =

1

2
‖F (xk)− y + J(xk)p‖2 +

1

2
λk‖p‖2.

pk is the solution of

(Bk + λk I )pk = −gk

with Bk = J(xk)T J(xk), gk = J(xk)T (F (xk)− y).
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Set Φ(x) = 1
2‖F (x)− y δ‖2, and compute

ρk(pk) =
Φ(xk)− Φ(xk + pk)

mLM
k (0)−mLM

k (pk)
.

Given η ∈ (0, 1):

If ρk < η then set λk+1 > λk and xk+1 = xk .
If ρk ≥ η then set λk+1 ≤ λk and xk+1 = xk + pk .
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Trust-region methods

Given xk ∈ Rn, the step pk ∈ Rn is the minimizer of

min
p

mTR
k (p) =

1

2
‖F (xk)− y + J(xk)p‖2,

s.t. ‖p‖ ≤ ∆k ,

with ∆k > 0 trust-region radius.

Set Φ(x) = 1
2‖F (x)− y δ‖2, and compute

ρk(pk) =
Φ(xk)− Φ(xk + pk)

mTR
k (0)−mTR

k (pk)
.

Given η ∈ (0, 1):

If ρk < η then set ∆k+1 < ∆k and xk+1 = xk .
If ρk ≥ η then set ∆k+1 ≥ ∆k and xk+1 = xk + pk .
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Trust-region methods

It is possible to prove that pk solves

(Bk + λk I )pk = −gk

for some λk ≥ 0 such that

λk(‖pk‖ −∆k) = 0,

where we have set Bk = J(xk)T J(xk) and gk = J(xk)T (F (xk)− y).

⇒ Trust-region methods are Levenberg-Marquardt methods!
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First part

First part: zero-residual problems

Consider

F (x) = y δ,

with δ fixed noise level, and let x† be a solution of F (x) = y .
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Iterative regularization methods

Iterative regularization methods generate a sequence {xδk}. If the process
is stopped at iteration k∗(δ) the method is supposed to guarantee the
following properties:

xδk∗(δ) is an approximation of x†;

{xδk∗(δ)} tends to x† if δ tends to zero;

local convergence to x† in the noise-free case.

There are many methods of this class in the literature, they are analyzed
only under local assumptions, the definition of globally convergent
approaches is still an open task.
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Standard trust-region

Standard trust-region

The step pk solves

(Bk + λk I )pk = −gk
for some λk ≥ 0 such that

λk(‖pk‖ −∆k) = 0.

Bk is ill-conditioned.

In trust-region methods the trust region is eventually inactive:
‖pk‖ < ∆k → λk = 0.

It is not a regularization method!
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How to obtain a regularizing method?

Noisy problem

min
x∈Rn

1

2
‖F (x)− y δ‖2

Exact problem

min
x∈Rn

1

2
‖F (x)− y‖2

1 stopping criterion

2 small steps
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Regularizing trust-region

1) Stopping criterion: with noisy data the process is stopped at iteration
k∗(δ) such that xδk∗(δ) satisfies the discrepancy principle:

‖F (xδk∗(δ))− y δ‖ ≤ τδ < ‖F (xδk )− y δ‖

for 0 ≤ k < k∗(δ) and τ > 1 suitable parameter.
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Regularizing trust-region

2) q-condition: ‖F (xδk )− y δ + J(xδk )p‖ ≥ q‖F (xδk )− y δ‖, q ∈ (0, 1)

→ If ∆k ≤ 1−q
‖Bk‖‖g

δ
k‖ then pk satisfies the q-condition and the trust region

is active.
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Algorithm : k-th iteration of regularizing trust-region

Given xδ
k , η ∈ (0, 1), γ ∈ (0, 1), 0 < Cmin < Cmax.

Exact data: y , q ∈ (0, 1).

Noisy data: yδ, q ∈ (0, 1), τ > 1/q.

1. Compute Bk = J(xδ
k )TJ(xδ

k ) and gδ
k = J(xδ

k )T (F (xδ
k )− yδ).

2. Choose ∆k ∈
[
Cmin‖gδ

k ‖, min

{
Cmax,

1− q

‖Bk‖

}
‖gδ

k ‖
]

3. Repeat
3.1 Compute the solution pk of trust-region problem.
3.2 Compute

ρk(pk) =
Φ(xδ

k )− Φ(xδ
k + pk)

mTR
k (0)−mTR

k (pk)

with Φ(x) = 1
2
‖F (x)− yδ‖2, mTR

k (p) = 1
2
‖F (xδ

k ) + J(xδ
k )p‖2.

3.3 If ρk(pk) < η,set ∆k = γ∆k .
Until ρk(pk) ≥ η.

4. Set xδ
k+1 = xδ

k + pk .
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Local analysis

Assumption 1 For index k̄ it exist positive ρ and c such that

1 the system F (x) = y is solvable in Bρ(xδ
k̄

);

2 for x , x̃ ∈ B2ρ(xδ
k̄

)

‖F (x)− F (x̃)− J(x)(x − x̃)‖ ≤ c‖x − x̃‖‖F (x)− F (x̃)‖.

For well-posed systems: ‖F (x)− F (x̃)− J(x)(x − x̃)‖ ≤ c‖x − x̃‖2.

Assumption 2: It exists positive KJ such that

‖J(x)‖ ≤ KJ

for all x ∈ L = {x ∈ Rn s.t. Φ(x) ≤ Φ(x0)}.
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Theoretical results

Lemma

The method generates a sequence {xδk} such that:
1) the trust-region is active, i.e. λk > 0,
2) error decreases monotonically: ‖xδk+1 − x†‖ < ‖xδk − x†‖,
for k ≥ k̄, with k̄ < k∗(δ) for noisy data.

Theorem

If δ = 0 the sequence {xk} converges to a solution x∗ of F (x) = y such
that ‖x∗ − x†‖ ≤ ρ.
If δ > 0 the discrepancy principle is satisfied after a finite number of
iterations k∗(δ) and the sequence {xδk∗(δ)} converges to a solution of

F (x) = y if δ tends to zero.

→ Regularizing method, [S. Bellavia, B. Morini, E. R., COAP, 2016].
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Test problems

Four nonlinear ill-posed systems arising from the discretization of
nonlinear first-kind Fredholm integral equation are considered, they
model gravimetric and geophysics problems:∫ 1

0
k(t, s, x(s))ds = y(t), t ∈ [0, 1],

P1,P2, [Vogel, 1990], P3,P4 [Kaltenbacher,2007];

Their kernel is of the form

k(t, s, x(s)) = log

(
(t − s)2 + H2

(t − s)2 + (H − x(s))2

)
;

k(t, s, x(s)) =
1√

1 + (t − s)2 + x(s)2
;
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Regularizing properties of the method.
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Computed solution approximations
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Blue: regularizing TR, Solid line: solution of the original problem.
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Comparison between regularizing and standard trust-region
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Left: regularizing TR, Right: standard TR , Solid line: solution of the original problem.
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Second part

Second part - non-zero residual problems

We consider non-zero residual problems:
it does not exist x such that F (x)− y = 0.
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Small residual problems

We extend the approach for zero-residual problems to small residual
problems. → We propose an elliptical trust-region approach.

Let us assume that J is full rank, but ill-conditioned, with
ill-conditioning due to smallest singular value close to zero, as often
happens in these applications.

At a generic iteration k , given ∆k > 0, the following problem is solved:

min
p

mk(p) :=
1

2
‖F (xδk )− y δ + J(xδk )p‖2,

s.t. ‖(Bk)−
1
2 p‖ ≤ ∆k .
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Regularizing properties

To maintain the regularizing properties of the trust-region approach we
assume equivalent conditions on the gradient instead on the function.

1 discrepancy principle :

‖J(xδk∗(δ))T (F (xδk∗(δ))− y δ)‖ ≤ τδ < ‖J(xδk )T (F (xδk )− y δ)‖

2 q-condition:

‖J(xδk )T (F (xδk )− y δ + J(xδk )pk)‖ ≥ q‖J(xδk )T (F (xδk )− y δ)‖

If ∆k ≤ 1−q
‖Bk‖2 ‖(Bk)1/2g δk‖ then pk satisfies the q-condition and the

trust-region is active.
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Convergence analysis

Assumption1: there exists k̄ s.t. a solution exists in Bρ(xk̄) and for
x , x̃ ∈ B2ρ(xk̄)

‖∇f (x̃)−∇f (x)−J(x)T J(x)(x̃−x)‖ ≤ (c‖x̃−x‖+σ)‖∇f (x)−∇f (x̃)‖.

∇2f (x) = J(x)T J(x) + S(x) = J(x)T J(x) +
m∑
j=1

(Fj(x)− yj)∇2Fj(x).

Assumption2: ‖S(x†)‖ ≤ σ < q < 1 (small residual problems)

⇓
Regularizing method.
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Pb. Freh2, xδ0 = (−0.3, . . . ,−0.3)T . Plot of the true and the computed solution

for decreasing noise level, δ = 10(−(k+1)/2), k=4,5,6,7.
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Comparison between regularizing and standard trust-region
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Large scale non-zero residual problems

Collaboration with S. Gratton, CERFACS, Enseeiht-INP, Toulouse.

Data Assimilation: weather forecasting, oceanography.

It is possible to modify the noise on the data δk during the
optimization process. → Need for a strategy to control the noise.

Large-scale non-zero residual ill-posed problems
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Levenberg-Marquardt method

We propose a Levenberg-Marquardt method, globally convergent as the
noise level tends to zero.

At each iteration we have to solve linear systems of the form:

(J(xδkk )T J(xδkk ) + λk I )pk = −g δkk .

We have to compute:

ρδkk (pk) =
Φδk (xδkk )− Φδk (xδkk + pk)

mk(0)−mk(pk)
.

If the noise is too high the reduction in Φδk can be just an effect of
the presence of the noise.
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Noise control

Noise control

Let

δk ≤
1

2
λαk ‖p‖2,

for α ∈ ( 1
2 , 1]. If

ρδkk (pk) =
Φδk (xδkk )− Φδk (xδkk + pk)

mk(0)−mk(pk)
> η

then also

ρk(pk) =
Φ(xδkk )− Φ(xδkk + pk)

mk(0)−mk(pk)
> η.

→ True reduction in the noise-free objective function Φ
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Algorithm : k-th iteration of regularizing Levenberg-Marquardt

Given α ∈
(

1
2
, 1
]
, δ0, η1 ∈ (0, 1), η2 > 0, λmax > λmin > 0, γ > 1, x0 and

λmax > λ0 ≥ λmin.

Compute f δ0 (x0). For k = 0, 1, 2, ...

1. Compute a solution pk of the LM subproblem.

2. If δk ≤ 1
2
λα
k ‖pk‖2, compute Φδk (xδk

k + pk), else reduce δk and go
back to 1.

3. Compute

ρk(pk) =
Φδk (xδk

k )− Φδk (xδk
k + pk)

mk(0)−mk(pk)
.

3.1 If ρδkk (pk) ≥ η1, then set xδk
k+1 = xδk

k + pk and

λk+1 =

{
min{γλk , λmax} if ‖gδk

k ‖ < η2/λk ,

max{λk , λmin} if ‖gδk
k ‖ ≥ η2/λk .

3.2 Otherwise set xδk
k+1 = xδk

k , λk+1 = γλk .
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Inexact step

Large-scale problems: approximate solution of LM subproblem

p provides the sufficient Cauchy decrease:

mk(0)−mk(pk) ≥ θ

2

‖g δkk ‖
2

‖J(xk)‖2 + λk
, θ > 0.

The Levenberg-Marquardt step computed as

(J(xδkk )T J(xδkk ) + λk I )pk = −g δkk +rk

for a residual rk satisfying ‖rk‖ ≤ εk‖g δkk ‖, with εk small enough achieves
the Cauchy decrease.
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Assumptions

Let L = {x | f (x) ≤ f (x0)}, x† a local minimum of function f .

Assumption 1: It exists K > 0 such that ‖J(x)‖ ≤ K for all x ∈ L.

Assumption 2: f has Lipschitz continuous gradient on L:
‖g(x)− g(y)‖ ≤ L‖x − y‖ for all x , y ∈ L .

Assumption 3: Let H the Hessian matrix of function f , H(x†) � 0, H
is Lipschitz continuous: ‖H(x)− H(y)‖ ≤ M‖x − y‖ for all x , y ∈ L,
and let 0 < l ≤ L <∞ such that l In � H(x†) � L In with In the
identity matrix of size n.

Elisa Riccietti (DIMAI - UNIFI) Levenberg-Marquardt method Firenze, 27/09/2016 34 / 40



Theoretical results

Global convergence: Let Assumptions 1 and 2 hold. Then

lim
k→∞

δk = 0, lim
k→∞

‖g(xδkk )‖ = 0.

Parameters λk: It exists k̄ > 0 such that λk = λmax for all k ≥ k̄ .

Asymptotic step behaviour Let pk satisfy the Cauchy decrease.
Then ∥∥∥∥∥ gδk

k

‖pk‖(λk + K 2)
+

pk
‖pk‖

∥∥∥∥∥
2

= O

(
1

λk

)
If λk is large enough pk tends to a steepest descent step with

step-length 1
λmax

.

Local Convergence perturbed steepest descent: Let Assumptions
1,2 and 3 hold and let pSDk = − 1

λmax
g δkk with 1

λmax
< 1

L . If the starting

guess x0 is close enough to x†, the method converges.
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Numerical Results

Test 1 - Reconstruct electrical conductivity of the soil with respect to
depth, starting from electromagnetic data, n = 20, m = 40, [Deidda,
Fenu, Rodriguez, 2014.]
Test 2 - Fredholm equation of the first kind, n = 640, m = 1000, [Vogel,
1990].
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Figure: True and computed solutions for Test 1 (left) and Test 2 (right).
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Poster: ’Levenberg-Marquardt method for ill-posed large scale nonlinear
least squares problems’, OIP2016, Modena, 19/09/2016-21/09/2016.

’Support Vector Machine classification applied to the parametric design of
centrifugal pumps’, SIMAI 2016, Milano 13/09/2016-16/09/2016.

Visiting at INP-ENSEEIHT, Toulouse, for a collaboration with Prof. Serge
Gratton on ill-posed nonlinear least-squares problems, June-July 2016.

’Regularizing trust-region approaches for ill-posed nonlinear systems and
nonlinear least squares’, 20th Conference of the International Linear Algebra
Society (ILAS), Leuven, Belgium, 11/07/2016-15/07/2016, invited speaker.

’Numerical methods for optimization problems: an application to energetic
districts’, 19th European Conference on Mathematics for Industry ECMI,
Santiago de Compostela, Spain, 13/06/2016-17/06/2016, invited speaker
for receiving the degree award ’Hansjörg Wacker Memorial Prize’.
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’Solving ill-posed nonlinear systems with noisy data: a regularizing
trust-region approach’, ’PING - Inverse Problems in Geophysics’ Workshop
Firenze, 6/04/2016.

’A regularization trust-region approach for ill-posed nonlinear systems’,
Workshop ’Optimization and Data Assimilation’, CERFACS, Toulouse
(France), 13/01/2016-15/01/2016.

November 21-22, 2015, ’On an Adaptive Regularization for Ill-posed
Nonlinear Systems and its Trust-Region Implementation’ Networking in
Numerical Analysis 2015, a two day meeting in Bertinoro’, Bertinoro (FC).

September 12, 2015, ’On an Adaptive Regularization for Ill-posed Nonlinear
Systems and its Trust-Region Implementation’ , XX Congresso UMI, Siena.

ISMP 2015, 22nd International Symposium on Mathematical Programming,
Pittsburgh (USA), 12/07/2015- 17/07/2015.

June 21-26, 2015, CIME course ’Exploiting Hidden Structure in Matrix
Computations. Algorithms and Applications’, Cetraro (CS).
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Support Vector Machine classification applied to the parametric
design of centrifugal pumps, submitted.

E.Riccietti, S.Bellavia, S.Sello, Numerical methods for optimization
problems arising in energetic districts, ECMI proceeding, submitted.

S.Bellavia, E.Riccietti, Trust-region methods for ill-posed nonlinear
least-squares problems, in preparation.
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