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Introduction

Context

Given A ∈ Rm×n, m ≥ n with rank(A) = n, b ∈ Rm and x , c ∈ Rn, we consider the
extended least squares problem

min
x∈Rn

1

2
∥Ax − b∥2 − cT x , (ELS)

whose solution satisfies the extended normal equations

ATAx = ATb + c. (ENE)

→ This is a generalization of the least squares problem (case c = 0)
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Introduction

Motivating applications

Multilevel Levenberg-Marquardt method

Calandra, H., Gratton, S., Riccietti, E., Vasseur, X., On the approximation of the solution of

partial differential equations by artificial neural networks trained by a multilevel
Levenberg-Marquardt method, OMS, 2020

min
x∈Rn

f (x) = 1

2
∥F (x)∥2.

Penalty function method

Fletcher, R., A class of methods for nonlinear programming: III. Rates of convergence, Numerical

Methods for Nonlinear Optimization, 1973

Estrin, R. and Orban, D. and Saunders, M. A., LNLQ: An iterative method for least-norm

problems with an error minimization property, SIMAX, 2019

min
x

f (x)

s.t. g(x) = 0.
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Introduction

Our questions

1 Practical aspects:

How to numerically solve (ENE) by a stable iterative method?

2 Theoretical aspects:

How to build a good bound for the forward error on the computed solution by
such method?

What is the conditioning of (ENE)?

What is the backward error of (ENE)?
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Numerical solution of the System

NUMERICAL SOLUTION OF THE SYSTEM
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Numerical solution of the System

Exploit the structure of the problem

1 Case c = 0

Forming matrix ATA leads to a loss of accuracy
Practical solution methods do not form this product:

ATAx −ATb = AT (Ax − b)

Direct methods: employ a factorization of A rather than of ATA
Iterative methods: perform matrix-vector multiplications Ax and AT y .

2 Case c ≠ 0 ?
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Numerical solution of the System

CG vs CGLS for normal equations

Same method in exact arithmetic, different performance in finite precision for
some problems:

in CGLS dk = b −Axk is recurred and rk = ATdk .

Algorithm 1 CG for ATAx = ATb

Input: A, b, x0.
Define r0 = AT (b − Ax0), p1 = r0.
for k = 1, 2, . . . do

αk =
rTk−1rk−1

∥Apk∥2
,

xk = xk−1 +αkpk ,
rk = rk−1 −αkA

T (Apk),

βk =
rTk rk

rT
k−1

rk−1

,

pk+1 = rk + βkpk .
end for

Algorithm 2 CGLS for ATAx = ATb

Input: A, b, x0.
Define d0 = b − Ax0, r0 = AT d0, p1 = r0.
for k = 1, 2, . . . do

tk = Apk ,

αk =
rTk−1rk−1

∥tk∥2
,

xk = xk−1 +αkpk ,
dk = dk−1 −αk tk ,
rk = AT dk ,

βk =
rTk rk

rT
k−1

rk−1

,

pk+1 = rk + βkpk .
end for

Paige, C. C. and Saunders, M. A., LSQR: An Algorithm for Sparse Linear Equations and Sparse Least

Squares, ACM Trans. Math. Softw., 1982

Björck, A. and Elfving, T. and Strakos, Z. , Stability of conjugate gradient and Lanczos methods for

linear least squares problems, SIMAX, 1998 7 / 24



Numerical solution of the System

Stable method for solving (ENE): CGLSc

Extend the successful algorithmic procedures to the case c ≠ 0

Algorithm 3 CG for ATAx = ATb + c

Input: A, b, c, x0.
Define r0 = AT (b − Ax0) + c, p1 = r0.
for k = 1, 2, . . . do
αk = ∥rk−1∥2/∥Apk∥2,
xk = xk−1 +αkpk ,
rk = rk−1 −αkA

T (Apk),
βk = ∥rk∥2/∥rk−1∥2,
pk+1 = rk + βkpk .

end for

Algorithm 4 CGLSc for ATAx = ATb+ c
Input: A, b, x0

Define r0 = b − Ax0, s0 = AT r0 + c, p1 = s0.
for k = 1, 2, . . . do

tk = Apk
αk = ∥sk−1∥2/∥tk∥2

xk = xk−1 +αkpk
rk = rk−1 −αk tk
sk = AT rk + c
βk = ∥sk∥2/∥sk−1∥2

pk+1 = rk + βkpk
end for
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Numerical solution of the System

Numerical tests: setting

All the numerical methods have been implemented in Matlab

Matrix of dimensions m = 100, n = 50 with known singular values distribution

Performance profiles: 55 matrices, with condition number between 1 and

1010. The optimality measure is
∥x − x̂∥
∥x∥

, with x the exact solution

(x = (n − 1 ∶ −1 ∶ 0)). A simulation is considered unsuccessful if the relative
solution accuracy is larger than 10−2.

Remark

(ENE) is equivalent to the augmented system

[ξIm A
AT 0

] [y
x
] = [ b

−c/ξ] , r = ξy = b −Ax , (AUG)
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Numerical solution of the System

Comparison with iterative methods
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Figure: Performance profile in logarithmic scale. The optimality measure considered is
the relative solution accuracy ∥x − x̂∥/∥x∥.
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Numerical solution of the System

Comparison with direct methods
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→ CGLSc can compare with direct methods in terms of solution accuracy
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Theoretical results

THEORETICAL RESULTS:
Error bounds

Why can’t we use existing theory?
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Theoretical results

Can we use standard linear systems theory?

This gives underwhelming results already for normal equations.

Let x and x̂ be an exact and a perturbed solution of (LS), δx = x − x̂ , u the
machine precision, r = b −Ax the residual.

Forward error bound

Linear systems’ theory:

∥δx∥
∥x∥

≤ κ(A)2u

Least squares theory:

∥δx∥
∥x∥

≤ m

1 −mu
κ(A)(1 + ∥A†∥∥r∥

∥x∥
)u

Underwhelming result!

The conditioning of the problem depends on κ(A)2 only if ∥r∥ is large! The bound
from linear systems’ theory is pessimistic.
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Theoretical results

Why such underwhelming results?

Standard linear systems theory:

Based on the assumption that the matrix ATA is formed explicitly.

Practical solution methods do not form this product:

ATAx −ATb = AT (Ax − b)

Direct methods: employ a factorization of A rather than of ATA
Iterative methods: perform matrix-vector multiplications Ax and AT y .

We should consider perturbations on matrix A rather than on matrix ATA:
we need a structured analysis to obtain condition number and backward error

Better error bounds:

FE ∶= ∥x − x̂∥
∥x∥

∼ relative condition number × backward error
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Theoretical results

Condition number

Definition

If F is a continuously differentiable function

F ∶ X → Y
x z→ F (x),

the absolute condition number of F at x is the scalar

∥F ′(x)∥op ∶= sup
∥v∥X=1

∥F ′(x)v∥Y ,

where F ′(x) is the Fréchet derivative of F at x .
The relative condition number of F at x is

∥F ′(x)∥op ∥x∥X
∥F (x)∥Y

.

J . R . Rice, A theory of condition, SIAM J . Numer . Anal ., 1966
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Theoretical results

Conditioning, normal equations (c = 0)

Definition of F

We consider F as the function that maps A,b to the solution x of a least squares
problem:

F ∶ Rm×n ×Rm → Rn

(A,b) z→F (A,b) = A†b.

Explicit formula for the conditioning

The absolute condition number of the normal equations, with Euclidean norm on
the solution and Frobenius norm on the dataa, is given by

κNE = ∥A†∥
√

1 + ∥x∥2 + ∥A†∥2∥r∥2

Gratton, S., On the condition number of linear least squares problems in a weighted Frobenius norm,

BIT Numerical Mathematics, 1996

a
∥[A,b]∥2

F ∶= ∥A∥
2
F + ∥b∥2
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Theoretical results

Backward error

Let A ∈ Rm×n, b ∈ Rm and x̃ a perturbed solution of the normal equations. Find
the smallest perturbation (E , f ) of (A,b) such that the vector x̃ exactly solves

(A + E)T (A + E)x = (A + E)T (b + f ),

i.e. given

G ∶= {(E , f ) ∈ Rm×n+1 ∶ (A + E)T (A + E)x̃ = (A + E)T (b + f )},

we want to compute the quantity:

η(x̃) = min
(E ,f )∈G

∥[E , f ]∥F .

Well studied problem → explicit formula for η(x̃)
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Theoretical results

Why can’t we use standard least squares theory?

Presence of c :

Conditioning: different mapping from data to solution.

Backward error: different set of admissible perturbations.
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Theoretical results

Conditioning for (ENE)

We consider F as the function that maps A,b, c to the solution x of ENE

F ∶Rm×n ×Rm ×Rn → Rn

(A,b, c) z→F (A,b, c) = A†b +A†(A†)T c .

Lemma

The absolute condition number of the problem ENE is given by

∥F ′(A,b, c)∥op = ∥[(rT ⊗ (ATA)−1)LT + xT ⊗A†,A†, (ATA)−1]∥,

where LT is the linear operator such that vec(AT ) = LTvec(A) and r = b −Ax .

Case c = 0

∥F ′(A,b, c)∥op = ∥[(rT ⊗ (ATA)−1)LT + xT ⊗A†,A†]∥.
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Theoretical results

An explicit formula for the condition number, c ≠ 0

Theorem

The absolute condition number of problem (ENE), with Euclidean norm on the

solution and Frobenius norm on the dataa, is
√

∥M̄∥, with M̄ ∈ Rn×n given by

M̄ = (1 + ∥r∥2)(ATA)−2 + (1 + ∥x∥2)(ATA)−1 − 2 sym(B),

with B = A†rxT (ATA)−1, sym(B) = 1
2
(B +BT ) and x the exact solution of (ENE).

a
∥(A,b, c)∥2

F ∶= ∥A∥
2
F + ∥b∥2

+ ∥c∥2

Remark

The structured relative condition number is

κS =
√

∥M̄∥ ∥A,b, c∥F
∥x∥

There are problems in which κS can be as large as a quantity of order κ(A)2,
while in others it can be as low as κ(A).
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Theoretical results

Backward error for (ENE)

Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn and x̃ a perturbed solution to (ENE). Find the
smallest perturbation (E , f ,g) of (A,b, c) such that the vector x̃ exactly solves

(A + E)T (A + E)x = (A + E)T (b + f ) + (c + g),

i.e. given

G ∶= {E ∈ Rm×n, f ∈ Rm,g ∈ Rn ∶ (A + E)T (A + E)x̃ = (A + E)T (b + f ) + (c + g)},

we want to compute the quantity:

η(x̃) = min
(E ,f ,g)∈G

∥(E , f ,g)∥F ∶=
√

∥E∥2
F + ∥f ∥2 + ∥g∥2

Difficult to solve → we use a linearized estimate η̄
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Theoretical results

First order approximation for the forward error

Classical analysis:

∆C = κ(A)2 ∥ATAx̂ −ATb − c∥
∥A∥2∥x̂∥

Structured analysis:

∆S =
√

∥M̄∥∥(A,b, c)∥F
∥x̂∥

η̄r(x̂).

This is valid only if matrix ATA is not explicitly formed.
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Theoretical results

Validation of the structured error bound

Table: κ(A): condition number, κS : structured condition number, FE: ∥x − x̂∥/∥x∥
forward error, ∆C : standard bound, ∆S : structured estimate.

CGLSc
Pb. κ(A) κS FE ∆C ∆S

1 9 ⋅ 102 1 ⋅ 106 5 ⋅ 10−13 2 ⋅ 10−10 1 ⋅ 10−11

2 2 ⋅ 103 4 ⋅ 103 7 ⋅ 10−15 3 ⋅ 10−10 3 ⋅ 10−13

3 5 ⋅ 105 6 ⋅ 105 1 ⋅ 10−12 3 ⋅ 10−5 5 ⋅ 10−11

4 4 ⋅ 107 4 ⋅ 107 4 ⋅ 10−11 6 ⋅ 10−2 4 ⋅ 10−9

5 1 ⋅ 109 5 ⋅ 108 3 ⋅ 10−8 7 ⋅ 102 3 ⋅ 10−7

6 1 ⋅ 105 3 ⋅ 1010 2 ⋅ 10−8 3 ⋅ 10−6 1 ⋅ 10−7

7 1 ⋅ 104 5 ⋅ 105 6 ⋅ 10−13 2 ⋅ 10−8 2 ⋅ 10−12

8 1 ⋅ 104 8 ⋅ 109 9 ⋅ 10−10 8 ⋅ 10−8 7 ⋅ 10−8

9 1 ⋅ 104 3 ⋅ 107 5 ⋅ 10−11 2 ⋅ 10−8 1 ⋅ 10−10

10 1 ⋅ 107 3 ⋅ 1010 3 ⋅ 10−8 3 ⋅ 10−2 1 ⋅ 10−7
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Theoretical results

THANK YOU FOR YOUR ATTENTION

Calandra, H., Gratton, S., Riccietti, E., Vasseur, X., On iterative
solution of the extended normal equations, SIMAX, 2020
http://perso.ens-lyon.fr/elisa.riccietti/doc/linear.pdf
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Backup slides

QR method

Solves the augmented system:

[ξIm A
AT 0

] [y
x
] = [ b

−c/ξ] , r = ξy = b −Ax ,

with ξ = 1, employing the QR factorization of [A,b], as described in theorem
below.

Theorem

Let A ∈ Rm×n, m ≥ n, b ∈ Rm, c ∈ Rn. Assume that rank(A) = n and let

[A,b] = Q [R d1

0 d2
] .

For any ξ ≠ 0, the solution to the augmented system can be computed from

RT z = −c , Rx = (d1 − z), r = Q [ z
d2

] .
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Backup slides

Remark

(ENE) and (AUG) also give the first-order optimality conditions for the
problems

min
x,r

1

2
∥r∥2 − cT x subject to Ax + r = b, (ELS-primal)

and

min
r

1

2
∥r∥2 − bT r subject to AT r = −c . (ELS-dual)
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Backup slides

Motivating applications (I)

Multilevel Levenberg-Marquardt method

Calandra, H., Gratton, S., Riccietti, E., Vasseur, X., On the approximation of the solution of

partial differential equations by artificial neural networks trained by a multilevel
Levenberg-Marquardt method, OMS, 2020

min
x∈Rn

f (x) = 1

2
∥F (x)∥2.

We have at disposal an approximation to the objective function:

f H(xH) = 1

2
∥FH(xH)∥2, xH ∈ RnH , nH < n

Coarse model:

mH
k (xHk , sH) =1

2
∥FH(xHk ) + JH(xHk )sH∥2 + λk

2
∥sH∥2+

(R∇f (xk) − ∇f H(xH0 ))T sH ,

with JH(xHk ) the Jacobian matrix of FH at xHk , R a full-rank linear restriction
operator and xH0 = Rxk .
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Backup slides

Motivating applications (II)

Penalty function method

Fletcher, R., A class of methods for nonlinear programming: III. Rates of convergence, Numerical

Methods for Nonlinear Optimization, 1973

Estrin, R. and Orban, D. and Saunders, M. A., LNLQ: An iterative method for least-norm

problems with an error minimization property, SIMAX, 2019

min
x

f (x)

s.t. g(x) = 0,

Penalty function :
Φσ(x) = f (x) − g(x)T yσ(x),

where yσ(x) ∈ Rm is the solution of

min
y

∥A(x)T y −∇f (x)∥2 + σg(x)T y ,

with A(x) the Jacobian matrix of g(x) at x and σ > 0, a given real-valued
penalty parameter.
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Backup slides

Theorem

The absolute condition number of problem (ENE), with Euclidean norm on the

solution and Frobenius norm (parameterized by α,β, γ) on the data, is
√

∥M̄∥,
with M̄ ∈ Rn×n given by

M̄ = ( 1

γ2
+ ∥r∥2

α2
)(ATA)−2 + ( 1

β2
+ ∥x∥2

α2
)(ATA)−1 − 2

α2
sym(B), (1)

with B = A†rxT (ATA)−1, sym(B) = 1
2
(B +BT ) and x the exact solution of (ENE).

The structured conditioning of the normal equations is

∥F ′(A,b)∥ = ∥A†∥
√

1

β2
+ ∥x∥2 + ∥A†∥2∥r∥2

α2
.

If c = 0 and γ →∞, the known result for least squares problems is recovered (note
that in this case B = 0 as AT r = 0).
Taking large values of γ allows us to perturb A and b only, and to include the case
c = 0. This is because the condition γ →∞ implies g → 0, from the constraint
α2∥E∥2

F + β2∥f ∥2 + γ2∥g∥2 = 1 in the definition of the condition number.
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Backup slides

Set of admissible perturbations on the matrix

Theorem

Let A ∈ Rm×n, b ∈ Rm, c , x̃ ∈ Rn and assume that x̃ ≠ 0. Let r̃ = b −Ax̃ and define
two sets E ,M by

E ={E ∈ Rm×n ∶ (A + E)T (b − (A + E)x̃) = −c },
M={v (αcT − v †A) + (Im − vv †)(r̃ x̃† + Z(In − x̃ x̃†)) ∶

v ∈ Rm, Z ∈ Rm×n, α ∈ R, s.t. α∥v∥2(v †b − αcT x̃) = −1}.

Then E =M.

Case c = 0

E ={E ∈ Rm×n ∶ (A + E)T (b − (A + E)x̃) = 0},
M={−vv †A + (Im − vv †)(r̃ x̃† + Z(In − x̃ x̃†)) ∶ v ∈ Rm, Z ∈ Rm×n}.
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Lower bound on the backward error

Lemma

The set of admissible perturbations E defined in Theorem is such that E ⊆M2,
with

M2 = {v (αcT − v †A) + (Im − vv †)(r̃ x̃† + Z(In − x̃ x̃†)) ∶
v ∈ Rm, Z ∈ Rm×n, α ∈ R}.

Then,

min
E

∥E∥2
F ≥ min

M2

∥E∥2
F = ∥r̃∥2

∥x̃∥2
+min{λ∗,0},

for λ∗ = λmin (A(In − ccT )AT − r̃ r̃T

∥x̃∥2
), with λmin(M) denoting the smallest

eigenvalue of the matrix M.

Case c = 0

min
E

∥E∥2
F = ∥r̃∥2

∥x̃∥2
+min{λ∗,0}, λ∗ = λmin (AAT − r̃ r̃T

∥x̃∥2
) .
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Linearization estimate of η(x̃)
Given h(A,b, c , x) = AT (b −Ax) + c , find (E , f ,g) such that

η̄(x̃) = min ∥[E , f ,g]∥F s.t. h(A,b, c , x̃) + [JA, Jb, Jc]
⎡⎢⎢⎢⎢⎢⎣

vec(E)
f
g

⎤⎥⎥⎥⎥⎥⎦
= 0,

where JA, Jb and Jc are the Jacobian matrices of h with respect to vec(A), b, c .

Lemma

η̄(x̃) =
XXXXXXXXXXX

⎡⎢⎢⎢⎢⎢⎣

vec(E)
f
g

⎤⎥⎥⎥⎥⎥⎦

XXXXXXXXXXX
= ∥J†h(A,b, c , x̃)∥, J ∶= [In ⊗ r̃T −AT (x̃ ⊗ Im),AT , In].

Moreover, assume that r̃ ≠ 0. If 4
√

2 + ∥x̃∥2∥J†∥η(x̃) ≤ 1, then

2

1 +
√

2
η̄(x̃) ≤ η(x̃) ≤ 2 η̄(x̃),
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Comparison with CG: solution accuracy
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Figure: Left: κ(A) = 105. Right: κ(A) = 5 × 107.
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