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Introduction

Context

Given A e R™" m > n with rank(A) = n, b€ R™ and x, c € R”, we consider the
extended least squares problem

min %HAX_ B2 - cTx, (ELS)

xeR"

whose solution satisfies the extended normal equations

ATAx=ATb+c. (ENE)

— This is a generalization of the least squares problem (case ¢ = 0)
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Motivating applications

@ Multilevel Levenberg-Marquardt method

B

Calandra, H., Gratton, S., Riccietti, E., Vasseur, X., On the approximation of the solution of

partial differential equations by artificial neural networks trained by a multilevel
Levenberg-Marquardt method, OMS, 2020

. 1 )
min f(x) = S |1FCOI™

@ Penalty function method

[
[

Fletcher, R., A class of methods for nonlinear programming: 1ll. Rates of convergence, Numerical
Methods for Nonlinear Optimization, 1973

Estrin, R. and Orban, D. and Saunders, M. A., LNLQ: An iterative method for least-norm
problems with an error minimization property, SIMAX, 2019
min f(x)
X

s.t. g(x) =0.
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Our questions

@ Practical aspects:
e How to numerically solve (ENE) by a stable iterative method?

@ Theoretical aspects:

e How to build a good bound for the forward error on the computed solution by
such method?
@ What is the conditioning of (ENE)?

o What is the backward error of (ENE)?
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Numerical solution of the System

NUMERICAL SOLUTION OF THE SYSTEM
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Numerical solution of the System

Exploit the structure of the problem

Q@ Casec=0

o Forming matrix A" A leads to a loss of accuracy
o Practical solution methods do not form this product:

ATAx-ATb=AT(Ax - b)

o Direct methods: employ a factorization of A rather than of AT A
o lterative methods: perform matrix-vector multiplications Ax and AT y.

Q@ Casec+07?
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Numerical solution of the System

CG vs CGLS for normal equations

Same method in exact arithmetic, different performance in finite precision for
some problems:
@ in CGLS dy = b— Ax, is recurred and r, = AT d,.

Algorithm 2 CGLS for ATAx=ATbh

Algorithm 1 CG for ATAx=ATb

Input: A, b, xp.
Input: A, b, xp. Define dy = b— Axp, ro = Ang, p1=ro.
Define ro = A" (b - Axp), p1 = ro. for k=1,2,... do
for k=1,2,... do te = Apk,
T T
o Fe_1Tk—1 Fe—1"k-1
k= ) ay =
[ Ap 2 [t
Xk = Xk—1 +akp§. Xk = Xk—1 + Qi Prs
re = re1 = oA (Apk), di = dl7<,—1 - Qkt,
3 re re re=A d75,
k= ,
’kT_lfk—l Bi = Trk ri Y
Pk+1 = Tk + Bipx- Me—1Tk-1
end for Pk+1 = I + Bipx.
end for

@ Paige, C. C. and Saunders, M. A., LSQR: An Algorithm for Sparse Linear Equations and Sparse Least
Squares, ACM Trans. Math. Softw., 1982

@ Bjorck, A. and Elfving, T. and Strakos, Z. , Stability of conjugate gradient and Lanczos methods for
linear least squares problems, SIMAX, 1998 7/24



Numerical solution of the System

Stable method for solving (ENE): CGLSc

@ Extend the successful algorithmic procedures to the case ¢ # 0

Algorithm 4 CGLSc for ATAx=ATb+c

Algorithm 3 CG for ATAx=ATb+c

Input: A, b, xo
Input: A, b, c, X0 Define rp = b — Axo, ss=ATr+c pr=s
Define ry = A’ (b— Axp) + ¢, p1 = ro. for k=1,2,... do
for k=1,2,. do ty = Apk
ax = It IP/1Apdl?, ak = s P/l P
Xk = Xk-1 + Qi P, Xk = Xk-1 + Pk
rk:’k—l_(’lkAT(Apk)x Mk = k=1 — ity
B = Incl? /-, sc=Antc
Pk+1 = rk + Bpk- Bk = lIskll”/lIsk-1
end for Pi+1 = i + Bipk
end for
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Numerical solution of the System

Numerical tests: setting

@ All the numerical methods have been implemented in Matlab

@ Matrix of dimensions m = 100, n =50 with known singular values distribution
@ Performance profiles: 55 matrices, with condition number between 1 and

Ix - %]
T L . .
(x=(n-1:-1:0)). A simulation is considered unsuccessful if the relative
solution accuracy is larger than 1072.

10%°. The optimality measure is

, with x the exact solution

Remark

(ENE) is equivalent to the augmented system

o A2 roen o
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Numerical solution of the System

Comparison with iterative methods

1 : ‘ ‘ ‘ ‘
09 1
08l _‘_ """"" [ - 4
0.7 ,,:’ A a7 4
06} , N r{_'—'_'_
- ="
.
----CG ]
-------- CGLSc ]
—MINRES, ¢=1
- = MINRES, ¢=¢
0 ‘ ‘ ‘ : ‘
10° 102 10% 108 108 10"

Figure: Performance profile in logarithmic scale. The optimality measure considered is
the relative solution accuracy |x - X|/||x]|.
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Numerical solution of the System

Comparison with direct methods

1

091 === @ QR: solves (AUG)
08l Jp— RS LLLEE | with € =1,
07l o employing the QR
factorization of
08 [A, b].
3 .. e AUG: solves (AUG)
04}/ . with £ = £* using
0af | an LBLT
factorization
o2t —AUG 1 (Matlab 1d1).
0.1} -- QR ]
------ CGLSc
(1]o° 10' 102 10°

— CGLSc can compare with direct methods in terms of solution accuracy
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Theoretical results

THEORETICAL RESULTS:
Error bounds

Why can't we use existing theory?
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Theoretical results

Can we use standard linear systems theory?

This gives underwhelming results already for normal equations.

Let x and X be an exact and a perturbed solution of (LS), dx = x - %, u the
machine precision, r = b — Ax the residual.

Forward error bound

Linear systems' theory: Least squares theory:
) Af
1551 _ 24 Ioxt _m (1 1At ) .
I Ix| = 1= mu I

Underwhelming result!

The conditioning of the problem depends on x(A)? only if |r| is large! The bound
from linear systems' theory is pessimistic.

4

13/24



Why such underwhelming results?

Standard linear systems theory:
@ Based on the assumption that the matrix AT A is formed explicitly.

@ Practical solution methods do not form this product:

ATAx - ATb=AT(Ax - b)

o Direct methods: employ a factorization of A rather than of AT A
o lterative methods: perform matrix-vector multiplications Ax and A" y.

e We should consider perturbations on matrix A rather than on matrix AT A:
we need a structured analysis to obtain condition number and backward error

@ Better error bounds:

FE := |X|_|X| ~ relative condition number x backward error
X
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Theoretical results

Condition number

Definition
If F is a continuously differentiable function

F:xXx-)Y

x > F(x),
the absolute condition number of F at x is the scalar

[F'Cllop == sup |F'(x)vly,

[vlx=1

where F’(x) is the Fréchet derivative of F at x.
The relative condition number of F at x is
IF"Cllop lIx]2
IFCOly

@ J . R . Rice, A theory of condition, SIAM J . Numer . Anal ., 1966
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Conditioning, normal equations (¢ = 0)

Definition of F

We consider F as the function that maps A, b to the solution x of a least squares
problem:

F:R™"xR™ > R"
(A, b) —F (A, b) = Alh.

Explicit formula for the conditioning

The absolute condition number of the normal equations, with Euclidean norm on
the solution and Frobenius norm on the data?, is given by

ke = [ATIVL+ [x]2 + |AT2] ]2

@ Gratton, S., On the condition number of linear least squares problems in a weighted Frobenius norm,
BIT Numerical Mathematics, 1996

?I[A, b]I% = [ AlZ + 1]
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Theoretical results

Backward error

Let Ae R™" beR™ and X a perturbed solution of the normal equations. Find
the smallest perturbation (E, f) of (A, b) such that the vector X exactly solves

(A+E)Y(A+E)x=(A+E)T(b+f),
i.e. given
G={(E,f)eR™™ : (A+E)T(A+E)3=(A+E) (b+f)},
we want to compute the quantity:

n(x) = &nin ILE, f1]F-

Well studied problem — explicit formula for n(X)
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Theoretical results

Why can't we use standard least squares theory?

Presence of c:
o Conditioning: different mapping from data to solution.

@ Backward error: different set of admissible perturbations.
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Conditioning for (ENE)

We consider F as the function that maps A, b, ¢ to the solution x of ENE
F:Rmxn XR”‘) XR” _)Rn
(A,b,c) —F(A,b,c)=Alb+ AT(AN) ¢,

Lemma

The absolute condition number of the problem ENE is given by
IF"(Abyc)op = [[(rT @ (ATA) )L + xT @ AT AT, (ATA)]],

where L7 is the linear operator such that vec(A) = Lrvec(A) and r = b — Ax.

Case c=0

IF'(Ab,S)llop = [[(r" ® (ATA) L7 +xT ® A AT]|.
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Theoretical results

An explicit formula for the condition number, ¢ # 0

Theorem

The absolute condition number of problem (ENE), with Euclidean norm on the
solution and Frobenius norm on the data?, is \/||M|, with M e R™" given by

M= (1+|r|?)(ATA) 2+ (1+ |x|*)(ATA)™" -2 sym(B),

with B = AtrxT (AT A)™, sym(B) = 1(B+BT) and x the exact solution of (ENE).

?I(A b, 0) |17 := [ AIZ + 6% + lc|?

Remark

The structured relative condition number is

o = VIMIIA, b, clr
I

There are problems in which ks can be as large as a quantity of order k(A)?,
while in others it can be as low as k(A).
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Theoretical results

Backward error for (ENE)

Let Ac R™" beR™, ceR" and X a perturbed solution to (ENE). Find the
smallest perturbation (E,f,g) of (A, b, c) such that the vector X exactly solves

(A+E)T(A+E)x=(A+E)T(b+f)+(c+g),
i.e. given
Gi={EeR™" feR™ geR": (A+E) (A+E)x=(A+E)T(b+f)+(c+g)},

we want to compute the quantity:

A ; . 2 2 2
0(%) = min (E£.8)e =\ IEIE + 172 + lg]

Difficult to solve — we use a linearized estimate 7
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Theoretical results

First order approximation for the forward error

o Classical analysis:
IATAR - ATb-c|

Ac = r(A)?.
R N VTR

o Structured analysis:

Ag = VIMII(A b, )|

I%]

(%)

This is valid only if matrix AT A is not explicitly formed.
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Validation of the structured error bound

Table: k(A): condition number, ks: structured condition number, FE: |x - %||/|x||
forward error, Ac: standard bound, As: structured estimate.

CGLSc
Pb. | w(A) Ks FE Ac As
1 9.10° | 1-10° [ 5-100® 2.100° 1.1071!
2 2.10° | 4.10° | 7.107%  3.107° 3.107%
3 5.10° | 6-10° | 1-100% 3.10°° 5.1071
4 | 4.10" | 4-10" | 410" 6-102 4.107°
5 1-10° | 5-10% | 3.1078 7-10? 3.1077
6 1-10° | 3.10° | 2.10® 3.10°% 1.1077
7 1-10* | 5-10° | 6-1072 2.10® 2.107%2
8 1-10* | 8-10° | 9.107® 8.10% 7.107®
9 1-10* | 3.10" | 5-107*  2.10® 1.107%
10 | 1-10° | 3-10"° | 3.10® 3.102 1.1077

23 /24



Theoretical results

THANK YOU FOR YOUR ATTENTION

@ Calandra, H., Gratton, S., Riccietti, E., Vasseur, X., On iterative
solution of the extended normal equations, SIMAX, 2020
http://perso.ens-1lyon.fr/elisa.riccietti/doc/linear.pdf
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QR method

@ Solves the augmented system:

(5 820 omsn

with € = 1, employing the QR factorization of [A, b], as described in theorem

below.
Theorem
Let AcR™" m>n, be R™, ceR". Assume that rank(A) = n and let
R d;
A, b] = .
wor-off ]

For any & + 0, the solution to the augmented system can be computed from

RTz=-c, Rx=(d-2z), er[Z].
d>
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Backup slides

Remark

e (ENE) and (AUG) also give the first-order optimality conditions for the
problems

1
min 3 |r|?> - c"x subjectto Ax+r=b, (ELS-primal)

and

1
min 5|\r|\2 ~b"r subjectto ATr=-c. (ELS-dual)
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Motivating applications (1)

o Multilevel Levenberg-Marquardt method

D Calandra, H., Gratton, S., Riccietti, E., Vasseur, X., On the approximation of the solution of

partial differential equations by artificial neural networks trained by a multilevel
Levenberg-Marquardt method, OMS, 2020

1
inf(x)==|F(x)|>
min £(x) = 5 |F(x)]
We have at disposal an approximation to the objective function:

APy = 2 FR (MY 2, xH eR™ ny<n

|
2
Coarse model:
1 A
il (xf!, M) =S IF™Ol?) + I (xf)s 12 + S 71+

(RVFf(xi) - VFT(x) s,

with JH(x[") the Jacobian matrix of F* at x[?, R a full-rank linear restriction
operator and x' = Rxy.
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Motivating applications (II)

@ Penalty function method

@ Fletcher, R., A class of methods for nonlinear programming: 1ll. Rates of convergence, Numerical
Methods for Nonlinear Optimization, 1973

@ Estrin, R. and Orban, D. and Saunders, M. A., LNLQ: An iterative method for least-norm
problems with an error minimization property, SIMAX, 2019

mXin f(x)
s.t. g(x) =0,

Penalty function :
&y (x) = F(x) ~g(x) "o (%),

where y,(x) € R™ is the solution of

min [A(0)Ty = VAP + 7g() .

with A(x) the Jacobian matrix of g(x) at x and ¢ >0, a given real-valued
penalty parameter.
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Theorem

The absolute condition number of problem (ENE), with Euclidean norm on the

solution and Frobenius norm (parameterized by «, 3,7) on the data, is \/| M|,
with M € R™" given by

e (- o (G B - G om0

with B = ATrxT (AT A)™2, sym(B) = 3(B+B") and x the exact solution of (ENE).

The structured conditioning of the normal equations is

LI+ AT ]2
[F'(A.b)] = IIATI\/ﬁ2 L S

(0%

If ¢ =0 and v - oo, the known result for least squares problems is recovered (note
that in this case B=0as AT r =0).

Taking large values of v allows us to perturb A and b only, and to include the case
¢ =0. This is because the condition v — co implies g — 0, from the constraint
?|E|% + 8% f]? +~2|g|* = 1 in the definition of the condition number.
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Backup slides

Set of admissible perturbations on the matrix

Theorem
Let Ac R™" beR™, ¢,X€R" and assume that X # 0. Let 7= b— AX and define
two sets £, M by
E={EeR™": (A+E)"(b-(A+E)X)=-c},
M ={v(acT =vIA) + (I, - wh)(#x" + Z(1, - %51)) -

veR™ ZeR™" aeR,s.t. a|v|?(vib-ac™x) = -1}.

Then £ = M.

Case c=0

E={EecR™": (A+E)T(b-(A+E)%)=0},
M ={-wlA+ (I, - w7+ Z(1, - %1)) :veR™, Z e R™"}.
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Lower bound on the backward error

Lemma
The set of admissible perturbations £ defined in Theorem is such that £ ¢ M,,
with
My ={v (acT - vTA) + (I = wh(F&T + Z(1, - %51)) =
veR" ZeR™" «eR}.

Then,

=12
in|ER 2 min £ = 171 4 minga,.0
m{/!n ” HF_T/IIS H “F H)?HQ mln{ * }7

for Ax = Amin (A(In —ccT)AT - Hrfllz
X

), with Amin(M) denoting the smallest

eigenvalue of the matrix M.

Case c=0

- 1712
min | E[F = 1~
N HE

. ;T
+min{A.,0}, A =Amin|AA" - — Ak
1% /24




Linearization estimate of 7(X)
Given h(A, b,c,x) = AT(b- Ax) +c, find (E,f,g) such that

vec(E)
77()?) =min ”[Ea f7g]HF s.t. h(Aa b7ca)?)+|:JA7JbaJC] f :07
4

where Ja, Jp and J. are the Jacobian matrices of h with respect to vec(A), b, c.

Lemma

vec(E
H [Jth(A, b, e, %), J=[lh@F —AT(X®I,),A",1,].

(%) = ‘

Moreover, assume that 7 # 0. If 4,/2 + ||%[2|JT||n(X) < 1, then

1+2 5 1(5) (%) £2(3).
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Comparison with CG: solution accuracy

10° 10°
b, 7CG !
i -—CGLSc 1072 i
i i
i i
10 : o o100 ! —CG
S ! ---CGLSc
' 1= i
i =l g0t i
10 ho i
10 " 777777777777 108 ‘\
N
-10
0 20 40 60 80 100 120
0 100 200 5 300 400 500 10

Figure: Left: k(A) = 10°. Right: x(A) =5 x 10".
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