The extended normal equations: conditioning and iterative solution

E. Riccietti (ENS Lyon) http://perso.ens-lyon.fr/elisa.riccietti/

Joint work with: H. Calandra (TOTAL) S. Gratton (IRIT-INP, Toulouse) X. Vasseur (ISAE-SUPAERO, Toulouse)

Communications in NLA 28th September, 2020

Context

Given $A \in \mathbb{R}^{m \times n}$, $m \ge n$ with rank(A) = n, $b \in \mathbb{R}^m$ and $x, c \in \mathbb{R}^n$, we consider the *extended least squares problem*

$$\min_{\mathbf{x}\in\mathbb{R}^n} \frac{1}{2} \|A\mathbf{x} - b\|^2 - \mathbf{c}^T \mathbf{x},$$
(ELS)

whose solution satisfies the extended normal equations

$$A^T A x = A^T b + c. \tag{ENE}$$

 \rightarrow This is a generalization of the least squares problem (case c = 0)

Motivating applications

• Multilevel Levenberg-Marquardt method

Calandra, H., Gratton, S., Riccietti, E., Vasseur, X., On the approximation of the solution of partial differential equations by artificial neural networks trained by a multilevel Levenberg-Marquardt method, OMS, 2020

$$\min_{x\in\mathbb{R}^n}f(x)=\frac{1}{2}\|F(x)\|^2.$$

• Penalty function method

Fletcher, R., A class of methods for nonlinear programming: III. Rates of convergence, Numerical Methods for Nonlinear Optimization, 1973

Estrin, R. and Orban, D. and Saunders, M. A., LNLQ: An iterative method for least-norm problems with an error minimization property, SIMAX, 2019

 $\min_{x} f(x)$
s.t. g(x) = 0.

Our questions

Practical aspects:

• How to numerically solve (ENE) by a stable iterative method?

O Theoretical aspects:

- How to build a good bound for the forward error on the computed solution by such method?
 - What is the conditioning of (ENE)?
 - What is the backward error of (ENE)?

NUMERICAL SOLUTION OF THE SYSTEM

Exploit the structure of the problem

Case c = 0

- Forming matrix $A^T A$ leads to a loss of accuracy
- Practical solution methods do not form this product:

$$A^{T}Ax - A^{T}b = A^{T}(Ax - b)$$

- Direct methods: employ a factorization of A rather than of $A^T A$
- Iterative methods: perform matrix-vector multiplications Ax and A^Ty .

2 Case $c \neq 0$?

CG vs CGLS for normal equations

Same method in exact arithmetic, different performance in finite precision for some problems:

• in CGLS $d_k = b - Ax_k$ is recurred and $r_k = A^T d_k$.

	- Algorithm 2 CGLS for $A^T A x = A^T b$
Algorithm 1 CG for $A^T A x = A^T b$	
Input: A, b, x ₀ .	Input: A, b, x_0 . Define $d_0 = b - Ax_0$, $r_0 = A^T d_0$, $p_1 = r_0$.
Define $r_0 = A^T (b - Ax_0), p_1 = r_0.$	for $k = 1, 2,$ do
for $k = 1, 2,$ do	$t_k = A p_k$,
$\alpha_k = \frac{r_{k-1}^T r_{k-1}}{\ Ap_k\ ^2},$	$\alpha_k = \frac{r_{k-1}^{\tau} r_{k-1}}{\ t_k\ ^2},$
$\begin{aligned} x_k &= x_{k-1}^{-1} + \alpha_k p_k, \\ r_k &= r_{k-1} - \alpha_k A^T (Ap_k), \end{aligned}$	$x_k = x_{k-1} + \alpha_k p_k,$
	$d_k = d_{k-1} - \alpha_k t_k,$ $r_k = A^T d_k,$
$\rho r_k^T r_k$	
$\beta_k = \frac{r_k^T r_k}{r_{k-1}^T r_{k-1}},$	$\beta_k = \frac{r_k^T r_k}{r_{k-1}^T r_{k-1}},$
$p_{k+1} = r_k + \beta_k p_k.$	
end for	$p_{k+1} = r_k + \beta_k p_k.$
	end for

Paige, C. C. and Saunders, M. A., *LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares*, ACM Trans. Math. Softw., 1982

Björck, A. and Elfving, T. and Strakos, Z. , *Stability of conjugate gradient and Lanczos methods for linear least squares problems*, SIMAX, 1998

Stable method for solving (ENE): CGLSc

• Extend the successful algorithmic procedures to the case $c \neq 0$

	- Algorithm 4 CGLSc for $A^T A x = A^T b + c$		
Algorithm 3 CG for $A^T A x = A^T b + c$	Algorithm 4 CGLSc for $A^{T}Ax = A^{T}D + c$		
	- Input: A, b, x_0		
Input: A. b. c. x_0 .	Define $r_0 = b - Ax_0$, $s_0 = A^T r_0 + c$, $p_1 = s_0$.		
Input: A, b, c, x_0 . Define $r_0 = A^T (b - Ax_0) + c$, $p_1 = r_0$.	for $k = 1, 2,$ do		
for $k = 1, 2,$ do	$t_k = A \rho_k$		
$\alpha_k = \ r_{k-1}\ ^2 / \ Ap_k\ ^2,$	$\alpha_k = \ s_{k-1}\ ^2 / \ t_k\ ^2$		
$x_k = x_{k-1} + \alpha_k p_k,$	$x_k = x_{k-1} + \alpha_k p_k$		
$\mathbf{r}_{k} = \mathbf{r}_{k-1} - \alpha_{k} \mathbf{A}^{T} (\mathbf{A} \mathbf{p}_{k}),$	$r_k = r_{k=1} - \alpha_k t_k$		
$\beta_k = \ r_k\ ^2 / \ r_{k-1}\ ^2,$	$s_k = A^T r_k + c$		
$p_{k+1} = r_k + \beta_k p_k$	$\beta_k = \ \mathbf{s}_k\ ^2 / \ \mathbf{s}_{k-1}\ ^2$		
end for	$\boldsymbol{p}_{k+1} = \boldsymbol{r}_k + \beta_k \boldsymbol{p}_k$		
	- end for		

Numerical tests: setting

- All the numerical methods have been implemented in Matlab
- Matrix of dimensions m = 100, n = 50 with known singular values distribution
- Performance profiles: 55 matrices, with condition number between 1 and 10¹⁰. The optimality measure is ^{||x x̂||}/_{||x||}, with x the exact solution (x = (n − 1 : −1 : 0)). A simulation is considered unsuccessful if the relative solution accuracy is larger than 10⁻².

Remark

(ENE) is equivalent to the augmented system

$$\begin{bmatrix} \xi I_m & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} y \\ x \end{bmatrix} = \begin{bmatrix} b \\ -c/\xi \end{bmatrix}, \quad r = \xi y = b - Ax,$$
(AUG)

Comparison with iterative methods

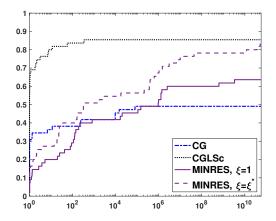
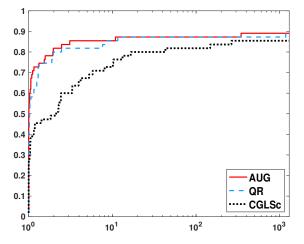


Figure: Performance profile in logarithmic scale. The optimality measure considered is the relative solution accuracy $||x - \hat{x}|| / ||x||$.

Comparison with direct methods



- QR: solves (AUG) with ξ = 1, employing the QR factorization of [A, b].
- AUG: solves (AUG) with $\xi = \xi^*$ using an LBL^T factorization (Matlab ldl).

 \rightarrow CGLSc can compare with direct methods in terms of solution accuracy

THEORETICAL RESULTS: Error bounds

Why can't we use existing theory?

Can we use standard linear systems theory?

This gives underwhelming results already for normal equations.

Let x and \hat{x} be an exact and a perturbed solution of (LS), $\delta x = x - \hat{x}$, u the machine precision, r = b - Ax the residual.

Forward error bound

Linear systems' theory:

Least squares theory:

$$\frac{\|\delta x\|}{\|x\|} \le \kappa(A)^2 u \qquad \qquad \frac{\|\delta x\|}{\|x\|} \le \frac{m}{1-mu} \kappa(A) \left(1 + \frac{\|A^{\dagger}\| \|r\|}{\|x\|}\right) u$$

Underwhelming result!

The conditioning of the problem depends on $\kappa(A)^2$ only if ||r|| is large! The bound from linear systems' theory is pessimistic.

Why such underwhelming results?

Standard linear systems theory:

- Based on the assumption that the matrix $A^T A$ is formed explicitly.
- Practical solution methods do not form this product:

$$A^T A x - A^T b = A^T (A x - b)$$

- Direct methods: employ a factorization of A rather than of $A^T A$
- Iterative methods: perform matrix-vector multiplications Ax and A^Ty .
- We should consider perturbations on matrix A rather than on matrix $A^T A$: we need a structured analysis to obtain condition number and backward error
- Better error bounds:

$$FE \coloneqq \frac{\|x - \hat{x}\|}{\|x\|} \sim \text{relative condition number} \times \text{backward error}$$

Condition number

Definition

If F is a continuously differentiable function

 $F: \mathcal{X} \to \mathcal{Y}$ $x \longmapsto F(x),$

the absolute condition number of F at x is the scalar

$$\|F'(x)\|_{\mathrm{op}} \coloneqq \sup_{\|v\|_{\mathcal{X}}=1} \|F'(x)v\|_{\mathcal{Y}},$$

where F'(x) is the Fréchet derivative of F at x. The relative condition number of F at x is

$$\frac{\|F'(x)\|_{\mathrm{op}}\,\|x\|_{\mathcal{X}}}{\|F(x)\|_{\mathcal{Y}}}.$$

Conditioning, normal equations (c = 0)

Definition of F

We consider F as the function that maps A, b to the solution x of a least squares problem:

$$F: \mathbb{R}^{m \times n} \times \mathbb{R}^m \to \mathbb{R}^n$$
$$(A, b) \longmapsto F(A, b) = A^{\dagger}b.$$

Explicit formula for the conditioning

The absolute condition number of the normal equations, with Euclidean norm on the solution and Frobenius norm on the data^a, is given by

$$\kappa_{NE} = \|A^{\dagger}\|\sqrt{1+\|x\|^2+\|A^{\dagger}\|^2\|r\|^2}$$

Gratton, S., On the condition number of linear least squares problems in a weighted Frobenius norm, BIT Numerical Mathematics, 1996

 $^{a}\|[A,b]\|_{F}^{2}\coloneqq \|A\|_{F}^{2}+\|b\|^{2}$

Backward error

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and \tilde{x} a perturbed solution of the normal equations. Find the smallest perturbation (E, f) of (A, b) such that the vector \tilde{x} exactly solves

$$(A+E)^{T}(A+E)x = (A+E)^{T}(b+f),$$

i.e. given

$$\mathcal{G} \coloneqq \{ (E, f) \in \mathbb{R}^{m \times n+1} \colon (A+E)^T (A+E) \tilde{x} = (A+E)^T (b+f) \},\$$

we want to compute the quantity:

$$\eta(\tilde{x}) = \min_{(E,f)\in\mathcal{G}} \|[E,f]\|_{F}.$$

Well studied problem \rightarrow explicit formula for $\eta(\tilde{x})$

Why can't we use standard least squares theory?

Presence of *c*:

- Conditioning: different mapping from data to solution.
- Backward error: different set of admissible perturbations.

Conditioning for (ENE)

We consider F as the function that maps A, b, c to the solution x of ENE

$$F: \mathbb{R}^{m \times n} \times \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^n$$
$$(A, b, c) \longmapsto F(A, b, c) = A^{\dagger}b + A^{\dagger}(A^{\dagger})^{T}c.$$

Lemma

The absolute condition number of the problem ENE is given by

$$\|F'(A,b,c)\|_{\mathrm{op}} = \|[(r^{\mathsf{T}} \otimes (A^{\mathsf{T}}A)^{-1})L_{\mathsf{T}} + x^{\mathsf{T}} \otimes A^{\dagger}, A^{\dagger}, (A^{\mathsf{T}}A)^{-1}]\|,$$

where L_T is the linear operator such that $vec(A^T) = L_T vec(A)$ and r = b - Ax.

Case c = 0

$$\|F'(A,b,c)\|_{\mathrm{op}} = \|[(r^{\mathsf{T}}\otimes (A^{\mathsf{T}}A)^{-1})L_{\mathsf{T}} + x^{\mathsf{T}}\otimes A^{\dagger},A^{\dagger}]\|.$$

An explicit formula for the condition number, $c \neq 0$

Theorem

The absolute condition number of problem (ENE), with Euclidean norm on the solution and Frobenius norm on the data^a, is $\sqrt{\|\bar{M}\|}$, with $\bar{M} \in \mathbb{R}^{n \times n}$ given by

$$\bar{M} = (1 + \|r\|^2)(A^T A)^{-2} + (1 + \|x\|^2)(A^T A)^{-1} - 2 \operatorname{sym}(B)$$

with $B = A^{\dagger} r x^{T} (A^{T} A)^{-1}$, sym $(B) = \frac{1}{2} (B + B^{T})$ and x the exact solution of (ENE).

 ${}^{a} \| (A, b, c) \|_{F}^{2} \coloneqq \| A \|_{F}^{2} + \| b \|^{2} + \| c \|^{2}$

Remark

The structured relative condition number is

$$\kappa_{S} = \frac{\sqrt{\|\bar{M}\|} \|A, b, c\|_{F}}{\|x\|}$$

There are problems in which κ_S can be as large as a quantity of order $\kappa(A)^2$, while in others it can be as low as $\kappa(A)$.

Backward error for (ENE)

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$ and \tilde{x} a perturbed solution to (ENE). Find the smallest perturbation (E, f, g) of (A, b, c) such that the vector \tilde{x} exactly solves

$$(A+E)^{T}(A+E)x = (A+E)^{T}(b+f) + (c+g),$$

i.e. given

 $\mathcal{G} \coloneqq \{ E \in \mathbb{R}^{m \times n}, f \in \mathbb{R}^m, g \in \mathbb{R}^n \colon (A + E)^T (A + E) \tilde{x} = (A + E)^T (b + f) + (c + g) \},\$

we want to compute the quantity:

$$\eta(\tilde{x}) = \min_{(E,f,g)\in\mathcal{G}} \|(E,f,g)\|_F := \sqrt{\|E\|_F^2 + \|f\|^2 + \|g\|^2}$$

Difficult to solve \rightarrow we use a linearized estimate $\bar{\eta}$

First order approximation for the forward error

• Classical analysis:

$$\Delta_{\mathcal{C}} = \kappa(\mathcal{A})^2 \frac{\|\mathcal{A}^T \mathcal{A} \hat{x} - \mathcal{A}^T b - c\|}{\|\mathcal{A}\|^2 \|\hat{x}\|}$$

• Structured analysis:

$$\Delta_{S} = \frac{\sqrt{\|\overline{M}\|} \|(A, b, c)\|_{F}}{\|\hat{x}\|} \overline{\eta}_{r}(\hat{x}).$$

This is valid only if matrix $A^T A$ is not explicitly formed.

Validation of the structured error bound

Table: $\kappa(A)$: condition number, κ_S : structured condition number, FE: $||x - \hat{x}|| / ||x||$ forward error, Δ_C : standard bound, Δ_S : structured estimate.

Pb.	$\kappa(A)$	ĸs	FE	Δ_{C}	Δ_S
1	$9 \cdot 10^2$	$1 \cdot 10^6$	$5 \cdot 10^{-13}$	$2 \cdot 10^{-10}$	$1 \cdot 10^{-11}$
2	$2 \cdot 10^{3}$	$4 \cdot 10^3$	$7 \cdot 10^{-15}$	$3 \cdot 10^{-10}$	$3 \cdot 10^{-13}$
3	$5 \cdot 10^5$	$6 \cdot 10^5$	$1 \cdot 10^{-12}$	$3 \cdot 10^{-5}$	$5\cdot 10^{-11}$
4	$4 \cdot 10^{7}$	$4 \cdot 10^7$	$4 \cdot 10^{-11}$	$6 \cdot 10^{-2}$	$4 \cdot 10^{-9}$
5	$1 \cdot 10^9$	$5 \cdot 10^8$	$3 \cdot 10^{-8}$	$7 \cdot 10^2$	$3 \cdot 10^{-7}$
6	$1 \cdot 10^{5}$	$3\cdot 10^{10}$	$2 \cdot 10^{-8}$	$3 \cdot 10^{-6}$	$1 \cdot 10^{-7}$
7	$1 \cdot 10^4$	$5 \cdot 10^5$	$6 \cdot 10^{-13}$	$2 \cdot 10^{-8}$	$2 \cdot 10^{-12}$
8	$1 \cdot 10^4$	$8\cdot 10^9$	$9 \cdot 10^{-10}$	$8 \cdot 10^{-8}$	$7 \cdot 10^{-8}$
9	$1 \cdot 10^4$	$3 \cdot 10^7$	$5\cdot 10^{-11}$	$2 \cdot 10^{-8}$	$1\cdot 10^{-10}$
10	$1 \cdot 10^7$	$3\cdot 10^{10}$	$3 \cdot 10^{-8}$	$3\cdot 10^{-2}$	$1\cdot 10^{-7}$

CGLS*c*

THANK YOU FOR YOUR ATTENTION

Calandra, H., Gratton, S., Riccietti, E., Vasseur, X., On iterative solution of the extended normal equations, SIMAX, 2020 http://perso.ens-lyon.fr/elisa.riccietti/doc/linear.pdf

QR method

• Solves the augmented system:

$$\begin{bmatrix} \xi I_m & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} y \\ x \end{bmatrix} = \begin{bmatrix} b \\ -c/\xi \end{bmatrix}, \quad r = \xi y = b - Ax,$$

with $\xi = 1$, employing the QR factorization of [A, b], as described in theorem below.

Theorem

Let $A \in \mathbb{R}^{m \times n}$, $m \ge n$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$. Assume that rank(A) = n and let

$$\begin{bmatrix} A, b \end{bmatrix} = Q \begin{bmatrix} R & d_1 \\ 0 & d_2 \end{bmatrix}$$

For any $\xi \neq 0$, the solution to the augmented system can be computed from

$$R^T z = -c, \quad Rx = (d_1 - z), \quad r = Q \begin{bmatrix} z \\ d_2 \end{bmatrix}.$$

Remark

• (ENE) and (AUG) also give the first-order optimality conditions for the problems

$$\min_{x,r} \frac{1}{2} \|r\|^2 - c^T x \text{ subject to } Ax + r = b, \qquad (\text{ELS-primal})$$

and

$$\min_{r} \frac{1}{2} \|r\|^2 - b^T r \quad \text{subject to} \quad A^T r = -c. \quad (\text{ELS-dual})$$

Motivating applications (I)

• Multilevel Levenberg-Marquardt method

Calandra, H., Gratton, S., Riccietti, E., Vasseur, X., On the approximation of the solution of partial differential equations by artificial neural networks trained by a multilevel Levenberg-Marquardt method, OMS, 2020

$$\min_{x\in\mathbb{R}^n}f(x)=\frac{1}{2}\|F(x)\|^2.$$

We have at disposal an approximation to the objective function:

$$f^{H}(x^{H}) = \frac{1}{2} \|F^{H}(x^{H})\|^{2}, \quad x^{H} \in \mathbb{R}^{n_{H}}, \ n_{H} < n$$

Coarse model:

$$m_{k}^{H}(x_{k}^{H}, s^{H}) = \frac{1}{2} \|F^{H}(x_{k}^{H}) + J^{H}(x_{k}^{H})s^{H}\|^{2} + \frac{\lambda_{k}}{2} \|s^{H}\|^{2} + (R \nabla f(x_{k}) - \nabla f^{H}(x_{0}^{H}))^{T}s^{H},$$

with $J^H(x_k^H)$ the Jacobian matrix of F^H at x_k^H , R a full-rank linear restriction operator and $x_0^H = Rx_k$.

Motivating applications (II)

• Penalty function method

- Fletcher, R., A class of methods for nonlinear programming: III. Rates of convergence, Numerical Methods for Nonlinear Optimization, 1973
- Estrin, R. and Orban, D. and Saunders, M. A., LNLQ: An iterative method for least-norm problems with an error minimization property, SIMAX, 2019

$$\min_{x} f(x)$$

s.t. $g(x) = 0$,

Penalty function :

$$\Phi_{\sigma}(x) = f(x) - g(x)^{T} y_{\sigma}(x),$$

where $y_{\sigma}(x) \in \mathbb{R}^m$ is the solution of

$$\min_{y} \|A(x)^{\mathsf{T}}y - \nabla f(x)\|^2 + \sigma g(x)^{\mathsf{T}}y,$$

with A(x) the Jacobian matrix of g(x) at x and $\sigma > 0$, a given real-valued penalty parameter.

Theorem

The absolute condition number of problem (ENE), with Euclidean norm on the solution and Frobenius norm (parameterized by α, β, γ) on the data, is $\sqrt{\|\bar{M}\|}$, with $\bar{M} \in \mathbb{R}^{n \times n}$ given by

$$\bar{M} = \left(\frac{1}{\gamma^2} + \frac{\|r\|^2}{\alpha^2}\right) (A^T A)^{-2} + \left(\frac{1}{\beta^2} + \frac{\|x\|^2}{\alpha^2}\right) (A^T A)^{-1} - \frac{2}{\alpha^2} \operatorname{sym}(B), \quad (1)$$

with $B = A^{\dagger} r x^{T} (A^{T} A)^{-1}$, sym $(B) = \frac{1}{2} (B + B^{T})$ and x the exact solution of (ENE).

The structured conditioning of the normal equations is

$$|F'(A,b)|| = ||A^{\dagger}||\sqrt{\frac{1}{\beta^2} + \frac{||x||^2 + ||A^{\dagger}||^2 ||r||^2}{\alpha^2}}.$$

If c = 0 and $\gamma \to \infty$, the known result for least squares problems is recovered (note that in this case B = 0 as $A^T r = 0$). Taking large values of γ allows us to perturb A and b only, and to include the case c = 0. This is because the condition $\gamma \to \infty$ implies $g \to 0$, from the constraint $\alpha^2 \|E\|_{c}^{2} + \beta^2 \|f\|^{2} + \gamma^2 \|g\|^{2} = 1$ in the definition of the condition number.

Set of admissible perturbations on the matrix

Theorem

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c, \tilde{x} \in \mathbb{R}^n$ and assume that $\tilde{x} \neq 0$. Let $\tilde{r} = b - A\tilde{x}$ and define two sets \mathcal{E}, \mathcal{M} by

$$\mathcal{E} = \{ E \in \mathbb{R}^{m \times n} : (A + E)^T (b - (A + E)\tilde{x}) = -c \}, \\ \mathcal{M} = \{ v (\alpha c^T - v^{\dagger} A) + (I_m - vv^{\dagger}) (\tilde{r}\tilde{x}^{\dagger} + Z(I_n - \tilde{x}\tilde{x}^{\dagger})) : \\ v \in \mathbb{R}^m, Z \in \mathbb{R}^{m \times n}, \alpha \in \mathbb{R}, s.t. \ \alpha \|v\|^2 (v^{\dagger} b - \alpha c^T \tilde{x}) = -1 \}.$$

Then $\mathcal{E} = \mathcal{M}$.

Case c = 0

$$\mathcal{E} = \{ E \in \mathbb{R}^{m \times n} : (A + E)^T (b - (A + E)\tilde{x}) = 0 \},$$

$$\mathcal{M} = \{ -vv^{\dagger}A + (I_m - vv^{\dagger})(\tilde{r}\tilde{x}^{\dagger} + Z(I_n - \tilde{x}\tilde{x}^{\dagger})) : v \in \mathbb{R}^m, Z \in \mathbb{R}^{m \times n} \}.$$

Lower bound on the backward error

Lemma

The set of admissible perturbations ${\cal E}$ defined in Theorem is such that ${\cal E}\subseteq {\cal M}_2,$ with

$$\mathcal{M}_{2} = \{ v \left(\alpha c^{T} - v^{\dagger} A \right) + (I_{m} - vv^{\dagger}) (\tilde{r} \tilde{x}^{\dagger} + Z(I_{n} - \tilde{x} \tilde{x}^{\dagger})) : v \in \mathbb{R}^{m}, Z \in \mathbb{R}^{m \times n}, \alpha \in \mathbb{R} \}.$$

Then,

$$\min_{\mathcal{E}} \|E\|_{F}^{2} \geq \min_{\mathcal{M}_{2}} \|E\|_{F}^{2} = \frac{\|\tilde{F}\|^{2}}{\|\tilde{x}\|^{2}} + \min\{\lambda_{*}, 0\},$$

for $\lambda_{*} = \lambda_{\min} \left(A(I_{n} - cc^{T})A^{T} - \frac{\tilde{r}\tilde{r}^{T}}{\|\tilde{x}\|^{2}} \right)$, with $\lambda_{\min}(M)$ denoting the smallest eigenvalue of the matrix M .

Case c = 0

$$\min_{\mathcal{E}} \|E\|_{F}^{2} = \frac{\|\tilde{r}\|^{2}}{\|\tilde{x}\|^{2}} + \min\{\lambda_{*}, 0\}, \quad \lambda_{*} = \lambda_{\min}\left(AA^{T} - \frac{\tilde{r}\tilde{r}^{T}}{\|\tilde{x}\|^{2}}\right).$$

Linearization estimate of $\eta(\tilde{x})$

Given $h(A, b, c, x) = A^T(b - Ax) + c$, find (E, f, g) such that

$$\bar{\eta}(\tilde{x}) = \min \|[E, f, g]\|_F \quad \text{s.t.} \quad h(A, b, c, \tilde{x}) + [J_A, J_b, J_c] \begin{bmatrix} \operatorname{vec}(E) \\ f \\ g \end{bmatrix} = 0,$$

where J_A , J_b and J_c are the Jacobian matrices of h with respect to vec(A), b, c. Lemma

$$\bar{\eta}(\tilde{x}) = \left\| \begin{bmatrix} \operatorname{vec}(E) \\ f \\ g \end{bmatrix} \right\| = \|J^{\dagger}h(A, b, c, \tilde{x})\|, \quad J \coloneqq [I_n \otimes \tilde{r}^T - A^T(\tilde{x} \otimes I_m), A^T, I_n].$$

Moreover, assume that $\tilde{r} \neq 0$. If $4\sqrt{2 + \|\tilde{x}\|^2} \|J^{\dagger}\| \eta(\tilde{x}) \leq 1$, then

$$\frac{2}{1+\sqrt{2}} \ \bar{\eta}(\tilde{x}) \leq \eta(\tilde{x}) \leq 2 \ \bar{\eta}(\tilde{x}),$$

Backup slides

Comparison with CG: solution accuracy

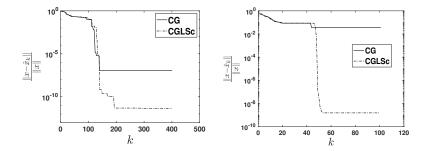


Figure: Left: $\kappa(A) = 10^5$. Right: $\kappa(A) = 5 \times 10^7$.